UNDERSTANDING SPEECH IN THE HEARSAY-II SYSTEM

Frederick Hayes-Roth
Rand Corporation

D. Jack Mostow
Carnegie-Mellon University

Mark S. Fox
Carnegie-Mellon University

1 OVERVIEW OF THE SPEECH UNDERSTANDING PROBLEM

A human speaker who wishes to express a particular thought translates his or her
intention into words and then sound. The speech understanding problem consists of
analyzing this sound, recognizing the spoken words, and inferring the speaker's in-
tention. Uncertainty prevails at every stage during the transduction of a spoken
utterance from a speech waveform to a word-for-word transcription and meaning inter-
pretation. These uncertainties impede development of procedures to perform basic
speech understanding functions, including: dividing the speech signal into rela-
tively invariable acoustic segments; assigning a correct phonetic label to a segment ;
combining segments into a syllable; determining where one word ends and another begins
in time; deciding which word was uttered in a given time interval; and interpreting
the intention of a recognized sequence of words.

There are two basic causes of uncertainty in speech processing: signal vari-
ability and system limitations. Spoken language is characterized by extreme vari-
ability in the possible realizations of a speaker's intent to utter a particular
thought, word, or phoneme. There are many different ways to express a thought in
words, to pronounce (or mispronounce) a word, and to enunciate (or garble) a phoneme.
This variability in the set of speech signals that can communicate the same message
is exacerbated by varying environmental noise and distortions introduced by micro-
phones used for converting speech input into electronic form.

The second basic type of uncertainty originates in the speech understanding
system itself. The mechanisms for recognizing phonetic segments, syllables, and
words are based on knowledge that is incomplete and errorful. Moreover, since each
mechanism works on errorful input, its output is necessarily uncertain. In a success—
ful speech understanding system, these mechanisms must cooperate in such a way that
the errors they make cancel out rather than combine.

A speech understanding system can cope with variable input and imperfect recog-
nition mechanisms by applying many diverse types of knowledge to the recognition

problem, including: acoustic, phonetic, prosodic, syllabic, lexical, syntactic,

Semantic, pragmatic, and contextual. Each of these types of knowledge is insufficient

10 F. Hayes-Roth et al.

by itself to solve the speech understanding problem, but in combination they can be
used effectively to recognize spoken utterances.

Psychological experiments have shown that humans use all of these types of know-
ledge in recognizing speech, in particular the "higher-level" knowledge. Human per-
formance in transcribing utterances decreases significantly when the utterances are
inconsistent with one or more types of higher-level knowledge or when such knowledge
is inapplicable. For example, error rates increase when sentences are heard out of
context (pragmatically inconsistent), are nonsensical (semantically inconsistent), or
are in a language unknown to the subject (lexically inconsistent) [15]. Furthermore,
the state of the art performance in automatic "bottom-up" word recognition -- i.e.,
recognition of connected speech without the use of higher-level knowledge -- is sub-
stantially inferior to human performance [16]. Thus, incorporating this type of
knowledge is essential for artificial speech understanding systems.

A fundamental problem in the design of a speech understanding system is organi-
zing diverse sources of knowledge so they can be applied effectively to the problem
of understanding an utterance. Each type of knowledge can most readily be applied
when the utterance is represented in a particular form, and diverse types of know-
ledge induce varying representations of characteristics of the utterance. For ex-
ample, a phonetic représentation is convenient for applying knowledge about how words
are pronounced but is a poor basis for the application of syntactic or semantic know-
ledge. The various levels of representation suggest a hierarchical problem-solving
organization, in which each source of knowledge can be applied to data represented
at one level in order to produce an interpretation of that data at an adjacent level.
The importance of representing the utterance simultaneously in several forms further
complicates the design of a speech understanding system.

There are many different but potentially useful problem solving methods for
analyzing an utterance. Different methods reflect different ways of applying the
same knowledge about speech. Of course, the most economical and efficient methods
are most preferred. A method is called strong 1if it applies a relatively large
amount of knowledge or requires relatively complete input data to solve a problem
[13]. As the precision of its constraints is increased, a strong method simultaneously
becomes more efficient and less generally applicable. A method is considered weak if
it applies relatively little knowledge or places little constraint on its input data.
Weak methods are more suitable for application to incomplete data than strong methods,
but they tend both to be inefficient and to generate many extraneous results. Thus
a speech understanding system may need an assortment of strong and weak problem solv-
ing methods, although they may be redundant in representing different ways of apply-
ing the same knowledge. The decision to include a particular method in a speech

understanding system depends on its cost-effectiveness when combined with the other

methods being used. An experimental speech understanding system should therefore be

F. Hayes-Roth et al. 11

designed to facilitate the exploration of different problem solving methods and the
interactions between them. This chapter describes the application of syntactic and
semantic knowledge in the HEARSAY-II speech understanding system at Carnegie-Mellon
University and the exploration of different problem solving methods during two years

of experi@entation.
2 ORGANIZATION OF KNOWLEDGE IN HEARSAY-IT

In the HEARSAY-II speech understanding system, different types of speech know-
ledge are encoded in knowledge source modules (KSs). KSs communicate with one another
only by reading, evaluating, correlating, and modifying hypotheses about the utter-—
ance on a global data base called the bZackboard. An hypothesis represents an inter-
pretation of some temporal interval of the utterance at a particular Zevel of repre-
sentation, including acoustic, phonetic, syllabic, lexical, or phrasal. Hypotheses
related implicatively -- for example, a sequence of hypotheses at one level supporting
(providing evidence for) an hypothesis at a higher level —-- are connected explicitly
on the blackboard by directed arcs called Zinks. The overall goal of the system is
to translate the utterance from its initial acoustic representation to successively
higher levels with the ultimate purpose of generating an hypothesis spanning the
entire utterance that provides a plausible interpretation at the phrasal level (i.e.,
a parse).

The blackboard is organized uniformly along the dimensions of ¢ime and level of
representation. An hypothesis that interprets a portion of the utterance at a parti-
cular level of representation -- e.g., postulates that the word "tell" was uttered
in the time interval [10:30] (time measured in centiseconds past the beginning of the
utterance) -- is associated with the appropriate level (lexical in this example) and
has begin and end times 10 and 30. Since these terminal times are somewhat uncertain,
they are represented with ranges indicating their degree of fuzziness. For example,
”tell[10f2:30+]" hypothesizes that the word "tell" starts sometime between 10-2=8
and 10+2=12 csec. following the beginning of the utterance and ends sometime at or
after 30 csec. Alternative interpretations of the same interval at the same level
are represented by different hypotheses. The alternative hypotheses can be consid-
ered to be distributed along a third nominal dimension of possibility or variety.
Thus a second hypotheses "give[8t1:25f2]" could be represented simultaneously with
competing hypothesis ”tell[10t2:30]".

Processing of an utterance in HEARSAY-II exemplifies the hypothesize-and-test
paradigm of problem-solving [12]. Control of processing is distributed among the
varous KS modules. Each KS module includes both a precondition and a procedure (KS
for short). When the precondition detects a configuration of hypotheses to which the
KS's knowledge can be applied, it invokes the KS procedure, i.e., schedules a black-

board-modifying operation by the KS. When this operation is performed, the resulting

12 F. Hayes-Roth et al.

changes to the blackboard trigger the preconditions of other KSs and entail further
activity (KS invocations). This data-directed propagation of activity can occur mul-
tidirectionally -- bottom-up (toward higher levels of representation), top-down
(translation of hypotheses into lower-level representations for purposes of evalua-
tion), or outward along the dimension of time (hypothesization based on surrounding
context). For example, an earlier hypothesization of the word "tell" spanning the
time interval [10:30] could lead to the generation of hypotheses that:

(1) a phrase of the form "Tell me about X" starts at time 10 and ends

sometime after 30 (bottom-up recognition);

(2) the sequence of phonemes "T," "EH," and "L" occurs in the time

interval [10:30] (top-down elaboration);

(3) a word in the category {me, us} starts at time 30 (lateral prediction).

Any newly generated hypotheses would be connected by links to the seminal hypothesis
to indicate the implicative or evidentiary relationship between them.

In general, many inferences -- knowledge source invocations -- are potentially
warranted by the configuration of blackboard hypotheses extant at any point during
analysis of the utterance. If all possible inferences are made in an arbitrary "first
come, first served" order, a combinatorial explosion of predominantly useless infer-
encing behavior results. Thus, some mechanism is needed to focus the attention of
the system in promising directions [2]. A potential inference is considered promising

to the extent that it is:

(1) reliable -- has a high probability of being correct;

(2) necessary —- will not duplicate an existing result; and

(3) useful -- will contribute toward the overall goal of recognizing the
utterance.

Two basic methods are used to solve this focus of attention problem in HEARSAY—II

[2]. The first constrains the hypothesization process by defining thresholds of
minimum acceptable reliability for inferences. The reliability of a proposed infer-
ence depends both on the plausibility of the evidence on which it is based and on

the strength of the inference itself,‘i.e., the conditional probability that the in-
ference is correct given valid supporting evidence. The plausibility of an hypothesis
is represented numerically by its validity, an integer between 100 (maximally plaus-
ible) and -100 (maximally implausible). Similarly, the conditional strength of an
inference is represented by an implication value, ranging from 100 (maximally con-
firming evidence) to -100 (maximally disconfirming evidence). The validity of an
hypothesis is a function of the validity of ‘the hypotheses directly supporting it

via implicative links and the implicative strengths associated with those links.
Changes in validity ratings reflecting creation and modification of hypotheses and
links are propagated automatically throughout the blackboard by a rating policy module
called RPOL [9]. RPOL insures that the validity of an hypothesis is always the best

F. Hayes-Roth et al. 13

current estimate of its plausibility. Other information pertaining to hypotheses
can be specified via attributes created or modified by KSs. Particular attributes
are defined for hypotheses at various levels. Any KSs that know about a particular
attribute can access or change its value.
Given -these measures of hypothesis validity and implicative strength, the hypo-
thesization process can be constrained by defining minimum thresholds on:
(1) the validity of the hypotheses on which an inference is based, i.e.,
the plausibility of the data adduced as evidence for the inference;
(2) the implicative strength of the inference, i.e., the reliability of
the permanent knowledge on which the inference is based; and
(3) the expected validity of the hypothesis produced by the inference,
i.e., the estimated plausibility of the result.
All three of these thresholding methods are used in HEARSAY-II to reduce the number
of hypotheses created. Thresholds can be defined with values local to a particular
time interval and level of representation in response to variatidns in data reli-
ability in different regions of the blackboard. Moreover, thresholds can be lowered
or raised to increase or reduce the amount of hypothesization permitted. Any relaxa-
tion of a threshold constraint necessitates the reconsideration of previously rejec-
ted inferences. Thus KSs must be sensitive to threshold changes as well as to data
changes. Threshold values are determined by a focussing strategy module in a manner
consistent with the desired search policy (e.g., bottom-up, breadth-first, best-first).
The thresholding mechanism is absolute in nature: it decides whether or not to
permit a given inference. In contrast, the second mechanism, priority scheduling,
is relative: it decides what priority to assign to the execution of a proposed in-
ference (knowledge source invocation). Inferences with highest priority are per-
formed first; lower-priority inferences are deferred (possibly forever) until no
higher-priority inferences remain to be executed. The priorify of an inference is a
function of its reliability, necessity, and utility. These can change according to
developments on the blackboard; e.g., a pending inference is obviated if the result
it would have produced is achieved in the interim by other means. Therefore the
priority of a pending scheduled inference is reevaluated periodically to reflect the
best estimate of the inference's promise given the current blackboard configuration.
Scheduling priorities are determined by a scheduling policy based on the factors de-

scribed above.
38 SYNTACTIC AND SEMANTIC KNOWLEDGE

The function of syntactic and semantic knowledge in a speech understanding sys-
tem is to identify correctly the spoken utterance in a combinatorially large search
Space of sequences of hypothesized words. This search space can be graphically re-

Presented by a chart of the blackboard at the word level as in Figure 3.1. In the

chart, the horizontal dimension is time, measured in csec. elapsed since the beginning

14 F. Hayes-Roth et al.

TIME—
0o 10 20 30 40 50 60 70 80 90 100
 — 1 1 1 1 A 1 1 1 i 1
CREDIBILITY
RATING
90-100 %L
80-89

T0-79

60-69
50-59
40-49
30-39

20-29

Figure’3:l: Words hypothesized bottom-up in response to

utterance "Tell me about beef." '"#*" marks correct hypotheses
"[" and "]" denote hypothesized beginning and ending of
utterance.
TIME—
(0] 10 20 30 40 5|O 6|O 7‘0 8|0 9|0 100
L 1 1 1
GIVE - --ce e
SEE ssamz USswmmans
KNOW---- ME-------

Figure 3.2: Words predicted by SASS on the basis of the
hypotheses shown in Figure 3.1.

F. Hayes-Roth et al. 15

of the utterance. The vertical dimension is hypothesis validity rating. Since some
of the uttered words may not be hypothesized by lower-level KSs, this search space is
not guaranteed to contain the correct solution. Hence the system must be able to
hypothesize syntactically and semantically plausible words not detected by other
methods. This capability for top-down prediction can be thought of as expanding the
search space.

Since bottom-up word recognition is imperfect in HEARSAY-II, the data (word
hypotheses) contain a large amount of noise. Typically (for a 1,000-word vocabulary)
only 80% of the uttered words are hypothesized bottom-up and, for each correctly rec-—
ognized word, an average of four incorrect words are hypothesized in the same time
interval with a higher validity rating. Knowledge of syntactic and semantic con-
straints on what constitutes a plausible word sequence can be used to filter out this
"noise."

The KS responsible for syntactic and semantic operations in HEARSAY-ITI is called
SASS. The basic task of SASS is to parse the utterance. SASS must find plausible
word sequences spanning the utterance, e.g., [TELL ME ABOUT BEEF] in Figure 3.1. 1In
the process, SASS must store and use partial parse information; for example, the
plausible, grammatical subsequence ME ABOUT BEEF should be recognized. SASS must
select the most plausible complete parse from those it finds and, finally, it must
interpret the recognized utterance, which in this case is a request for information
about "beef." TIf the utterance is only partially recognized, the recognized frag-
ments should be interpreted [7].

The concept of a word sequence in the domain of speech relies on a generalized
definition of word adjacency not necessary in simpler problems, suéh as understanding
teletyped input. SASS must tolerate fuzzy and inaccurate word boundaries. Figure
3.1 shows the begin and end times of each word but does not indicate the ranges asso-
ciated with these times. Because of inaccuracies associated with word boundaries,
SASS must tolerate some temporal overlap between adjacent words, such as ME and ABOUT
in Figure 3.1. Similarly, SASS must skip over gaps or silences, such as the separa-
tion between the end of ABOUT and the beginning of BEEF in our example. A truly robust
speech understanding system should be able to skip over recognized interjections as
in "Tell me about, let's see, beef" and unintelligible intervals as in "Tell me about
(mumble) beef." The latter phenomena are not currently tolerated by HEARSAY-II but
mechanisms for handling them within the current framework of HEARSAY-II are being
investigated.

Finally, SASS must help control the growth of the search space. One way to do
this is so operate upon only those word hypotheses whose validity exceeds some mini-
mum "recognizability" threshold. This can be represented visually by covering up

all the hypotheses in Figure 3.1 with validity below a threshold of, say, 60. This

mechanism reduces the size of the search space at the risk of ignoring correct but

16 F. Hayes-Roth et al.

poorly rated word hypotheses. Thus SASS should be able to increase its sensitivity
dynamically to detect hypotheses previously ignored. SASS should also be able to
£ill in missing words, i.e., expand the search space. Figure 3.2 shows the words
predicted by SASS on the basis of the words recognized in Figure 3.1. Note that many
incorrect predictions are made in addition to the correct word TELL. This is because
(1) SASS has no way df knowing which recognized words are correct and, hence, makes
many predictions on the basis of incorrect cues; and (2) many incorrect predictions
may be made from a recognized cue, i.e., many words may be syntactically and semanti-
cally plausible in a given context. The number of words plausible in a given context
is called the branching factor. The reliability of a prediction is inversely related
to its branching factor. In order to avoid exploding the size of the_search space,
SASS must take into account the variable reliability of different inferences and gen-
erate only the most reliable predictions.

In sum, SASS must help guide the search for a solution by recognizing plausible
word sequences ("islands of reliability") and using them as a basis for filling in
missing words. In this process, the search space must be explored in a best-first

order and be expanded cautiously on the basis of reliable evidence.
4 OVERVIEW OF THE :CHAPTER: THE EVOLUTION OF SASS

The evolution of SASS can be regarded as an exploration of various recognition
behaviors derivable from linguistic knowledge. The language recognized by HEARSAY-TT
can be described by a set of templates —-- sequences of word and phrase categories --—
occurring in that language. This set of templates is called a semantic template
grammar [1,3,4]. As an example, the template named $REQUEST is defined as the se-
quence TELL $ME $RE $TOPICS and describes a set of typical requests which might be
made to a news retrieval system. An example of a $REQUEST is the utterance TELL ME
ABOUT BEEF. The dollar sign prefix indicates a category; e.g., $ME is the category
{ME, US}. Categories may contain words, phrases, and templates; for example, the
template $TOPICS is defined recursively to include sequences of the form $TOPICS OR
$TOPICS and $TOPICS AND $TOPICS. The linguistic knowledge used in SASS is described
in detail in Section 5.

The definition of SREQUEST represents the knowledge that "the template $REQUEST
occurs in the language and consists of the word TELL, followed by (a member of the
category) $ME, followed by $RE, followed by $TOPICS." How can this knowledge be
applied to produce behavior rules that will help HEARSAY-TT detect utterances des-—
cribed by the template? One obvious type of behavior is recognition. The recogni-
tion rule for S$REQUEST can be stated as "Given temporally adjacent hypotheses for
TELL, $ME, $RE, and $TOPICS, hypothesize that $REQUEST occurs in the time interval
starting at the beginning of the hypothesized TELL and ending at the end of the hypo-

F. Hayes-Roth et al. 17

mechanism for performing such recognition efficiently is described in section 6.

While this mechanism succeeds in efficiently identifying grammatical word se-
quences in a combinatorial search space of possible sequences, it is inadequate to
find the correct utterance unless the search space is complete, i.e., contains all
the words in the utterance. Since the search space provided by bottom-up word re-
cognition is generally incomplete, it is necessary to implement some mechanism for
predicting missing words.

Predictive behavior can be inferred from the linguistic knowledge contained in
the grammar. For example, from our definition of $REQUEST, we can generate predic-
tion rules such as "Given an hypothesis for TELL, hypothesize that $ME occurs to its
right (i.e., following it in time)" and "Given an hypothesis for $ME, hypothesize
that TELL occurs to its left." Obviously such rules should only be applied to pre-
dictive cues having bottom-up (acoustic) support, lest unverified predictions are
used as bases for further predictions. Thus predictions must be evaluated by lower-
level KSs that can match them against the acoustic data and rate them. Note that
the first example of a prediction rules generates an hypothesis for S$ME, which is
not a word. In order for an hypothesized $ME to be evaluated, it must be respelled
into hypotheses for its constituent words, which can then be rated by lower-level
KSs. Thus the knowledge that $ME = {ME, US} leads to respelling rules: "Given an
hypothesis for $ME, hypothesize that ME occurs in the same time interval' and "Given
an hypothesis for $ME, hypothesize that US occurs in the same time interval.'" The
hypotheses for ME and US represent alternative interpretations of' the same time in-
terval of the utterance. We can see that the hypothesization of a category contain-
ing many elements corresponds to a large branching factor prediction. Prediction
and respelling are described in section 7.

Prediction is a weak inference method, because it generally leads to many in-
correct hypotheses and a concomitant explosion of the search sﬁace. Thus only the
most reliable predictions should be made. For example, the prediction of TELL is
much more likely to be correct if SME S$RE $TOPICS has been recognized than if only
$ME has been recognized. Thus it would be useful to have a prediction rule, "Given
temporally adjacent hypotheses for $ME, $RE, and $TOPICS, hypothesize that TELL occurs
to the left of $ME." 1In order to use such a rule, a mechanism is needed for recog-
nizing when the condition of the [condition+>action] rule is satisfied. However, the
sequence $ME $RE $TOPICS is not a template in the grammar, so it is not detected by
our recognition mechanism. A template for $ME $RE STOPICS could be added to the
grammar, but this is only a single subsequence of $REQUEST. $REQUEST has an infinite
number of possible word subsequences, so it is hardly feasible to generate templates

£ ;
or every one. Thus we need a more general device for recognizing partial instan-

tiations of t fias i
thesis for S$TOPICS." Note that TELL is an hypothesis at the word level of the black- of templates. For example, the definition of $REQUEST can be used to gen-
erate the followi 3 't . ; :
board, while $ME, $RE, $TOPICS, and $REQUEST are hypotheses at the phrasal level. A ollowing partial recognition rule: "Given temporally adjacent hypotheses
e e e R N R e PR NS LW, LA L S S b L O TSRS NS SO A e v BT BTN PO IR 20, AR EON 10 2 N a5

18 F. Hayes-Roth et al.

for any contiguous subsequence of TELL S$ME S$RE $TOPICS, hypothesize that SREQUEST
occurs starting at or before the beginning of the first hypothesis and ending at or
after the end of the last hypothesis.'" Prediction of the template's missing consti-
tuents is then effected by a reconstruction rule which is a modified form of re-
spelling: "Given an hypothesis for $REQUEST which is supported by some but not all
of its constituents TELL, $ME, $RE, and $TOPICS, hypothesize the missing constituents
in the appropriate time intervals.'" Partial recognition and reconstruction are suffi-

cient to replace prediction. Partial-matching, described in section 8, is theoreti-

cally sufficient to identify any grammatical subsequence of recognized words. Once

a general partial-matching mechanism is available, SASS could restrict itself to pre-
dictions made from only the most reliable (longest and best-rated) subsequences, so
as to avoid exploding the search space with large numbers. of predictions based on
unreliable evidence.

Unfortunately, our implementation of partial matching produced a combinatorial
explosion in activity, since the conditions for recognition of a template were re-—
laxed to tolerate the absence of necessary constitutents. Thus partial recognition
rules were not effective in filtering out noisy data, and a new filtering mechanism
had to be devised. The mechanism adopted was a word sequence detector named WOSEQ
that efficiently i&;ntifies word sequences which are potentially realiable (high-
rated and relatively complete) partial matches of templates. WOSEQ builds word se-
quences out of word hypotheses that are pairwise temporally and grammatically adja-
cent. An ordered pair of words is considered grammatically adjacent if the second
word can follow the first word in some utterance in the language. Grammatical adja-
cency information is precomputed from the grammar and stored in a boolean matrix.
Thus the grammatical adjacency of a given pair of word hypotheses can be determined
by a simple retrieval, without an expensive search through the grammar. The word
sequences hypothesized by WOSEQ are only pairwise grammatical and must therefore be
parsed by SASS. A word sequence which is parsed, i.e., recognized as a partial in-
stantiation of a template, can then be used as a reliable basis for prediction of

missing constitutents. This filtered partial matching scheme is described in section

9.
We have seen that linguistic knowledge can be converted into several types of

hypothesize-and-test rules. The strong rules tend to convert knowledge into the form

of tests, while weaker rules use the same knowledge for generating new hypotheses.
For example, the recognition rule for a sequence template such as SREQUEST tests that
hypothesis for all sequence constituents present and temporally adjacent. In con-
trast, a prediction rule for the same template tests the presence of only a single
constituent (e.g., TELL), and uses knowledge of the sequential nature of the template
to generate an hypothesis for an adjacent constituent (SME).

Although the current version of SASS has been quite successful, it has certain

l

F. Hayes-Roth et al. 19

limitations. These limitations and other issues our work has highlighted are dis-

cussed in section 10. The effectiveness of the current scheme is evaluated in section

11, and the conclusions of our experience with SASS are summarized in section 12.
5 SYNTACTIC AND SEMANTIC KNOWLEDGE

Syntaétic and semantic knowledge in SASS is supplied by a task-specific semantic
template grammar, which can be characterized as a context-free grammar with ambiguity
and recursion permitted. The templates (nonterminals) of the grammar are sequences
and categories representing sets of phrases in the task laﬁguage. Although the
grammar is a context-free grammar in form, as are general English phrase structure
grammars, there is an important difference in the spirit in which this form is used.
A semantic template represents a set of semantically equivalent (or similar) phrases.
In contrast, a nonterminal in a general phrase structure grammar represents a set of
phrases which can have the same syntactic role (e.g., <noun phrase>) but are other-
wise unrelated. Consequently, a phrase structure grammar can generate —— and parse —-—
utterances that are syntactically permissible but semantically nonsensical. Conditions
for semantic consistency must be represented as additional features imposed on the
grammar, such as the augments in augmented transition networks [19]. This is not
necessary in an appropriately-designed semantic template grammar. Thus a semantic
template grammar imposes considerably more constraint on the phrases it accepts. This
constraint is crucial in rejecting many of the incorrect sequences of words hypothe-
sized by an imperfect word recognizer in a speech understanding system. Moreover, the
use of a semantic template grammar means that much of the semantic analysis of an utter-
ance is accomplished by the process of parsing it. In particular, the parse of an
utterance can classify it as to its general intention.

The concept of semantic template grammars is largely based on the PARRY system,
which simulates a paranoid patient being interviewed [1]. PARRY's linguistic know-
ledge consists of 1700 templates representing standard types of questions abstracted
from transcripts of psychiatric interviews.

BE YOU JOB).

For example, one such template is (WHAT
Each component of this sequential template is the canonical member of

a class of semantically equivalent words. An utterance such as "What is your occupa-
tion" is processed by replacing each word by its canonical equivalent, yielding "WHAT
BE YOU JOB." This matches the template, whose associated semantic interpretation is
then used to determine an appropriate response. Colby's template-based parsing scheme
is considerably more sophisticated than this example shows. Its significance with
Tespect to the current discussion is its ability to interpret a typed utterance in
unconstrained English in under one second. Although such a scheme must be modified
to cope with errorful input (uncertain word hypotheses) and ambiguity (of words and
Phrases in more than one semantic class), a semantic template grammar can provide

considerable efficiency in the analysis of a spoken utterance.

In a system with perfect input, the grammar is used in a straightforward way to

20 F. Hayes-Roth et al.

parse the input word sequence. In contrast, a speech understanding system must use

its grammar in more sophisticated ways, since the correct word sequence must be iden-
tified amid many incorrect word hypotheses and on the absence of some correct words.

One use of syntactic and semantic knowledge, hereafter referred to simply as
grammatical knowledge, is in finding grammatical sequences of temporally contiguous
hypothesized words. This process is called recognition and corresponds to parsing,
since a potential sequence must be parsed to determine whether it's grammatical.

Another application of grammatical knowledge is to hypothesize constituents which
are likely in the recognized context but have not been hypothesized bottom-up. This
process, called prediction, is based on the notion that if part of a sequence template
is found, it's a good idea to look for the rest of it.

A third application of grammatical knowledge is goal reduction. Prediction can
be considered as generating the goal of finding the predicted phrasal constituent.
This goal must be broken down into subgoals for finding individual words before the

lower level KSs can be applied. This form of goal reduction consists of respelling

a predicted sequence (conjunctive goal) into hypotheses for its individual sequence
elements and respelling a predicted category (disjunctive goal) by enumerating the
members of the category and hypothesizing each one.

Grammatical knowledge can be used in still another way, to reduce uncertainty
among hypotheses by identifying hypotheses for which there is confirming contextual
evidence. This process is called postdiction and is based on the notion that the
plausibility of an hypothesized phrase is higher if it is adjacent to a phrase gram-
matically consistent with it.

Recognition, prediction, respelling, and postdiction are just some of the appli-

cations of grammatical knowledge. All four are derivable from the same templates;

some of them (recognition and postdiction) test consistency (temporal and grammatical
adjacency) of a template's hypothesized constituents, while others (prediction and
respelling) use the hypothesized constituents as evidence for hypothesizing missing
constituents. In terms of the generate-and-test paradigm, strong methods are charac-
terized by using knowledge as a basis for testing, while weak methods use the same
knowledge for generation.

These generic types of problem-solving behavior based on grammatical knowledge

can be represented as [stimulusresponse] productions [14]. Given a template and its

constituents, it is straightforward to derive productions for recognizing the template
when all of its constituents are recognized, predicting and postdicting each consti-
tuent from adjacent constituents, and respelling a predicted template into its con-
This derivation is performed by a program called CVSNET (Convert Semantic
Thus the

stituents.
Net), which compiles the grammar into the various types of productions.
run-time component of SASS need only be a production system interpreter to identify

activated productions and perform the appropriate generic behavior associated with

F. Hayes-Roth et al. 21

each one. Furthermore, new generic productions can be introduced simply by defining

their procedural behavior in SASS and augmenting CVSNET to derive them. Since the
behavior is inferred from the knowledge implicit in the grammar, no change in the
grammar itself is required. This is not the case in systems that represent behavior
more explicitly in the grammar. Finally, the non-procedural representation of gram-
matical knowledge greatly simplifies its augmentation, since semantic template gram-

mars are easy to understand, create, and modify.
6 BOTTOM-UP PARSING AND ACORNs

6.1 Problem

Given the semantic template grammar, the purpose of bottom-up parsing is to find
a phrase (non-terminal), if it exists, that generates the sequence of words under con-
sideration. Programming language compilers such as Algol W and Pascal expect the in-
put to be syntactically correct and use various parsing techniques, such as LR(k),
precedence grammars and recursive descent, to parse the input from left to right.
The existence of an error usually results in an informationless error message and the

abortion of the compilation. Recent work in error-correcting parsing [17] has barely

scratched the surface with respect to the error recovery capabilities needed in a

speech understanding system.

The SASS knowledge source is faced with numerous problems when parsing in recog-
nition mode. The information that is extracted from the utterance by other KSs is
highly errorful. This error is characterized by substitution, deletion and insertion
of words throughout the utterance. At present, about ten incorrect words are hypo-
thesized with each correct word. Thus SASS is faced with the problem of weeding out
the incorrect information so that the correct words can be identified. Frequently
an incorrect word sequence is parsed during the search for the correct word sequence.
Though the sequence being parsed may be incorrect, it may contain a subsequence of
the correct sentence. Since incorrect word sequences are frequently processed for
awvhile and then discarded and many of these sequences contain common subsequences,
it would be good to avoid the large amount of recomputation entailed in parsing the

common word subsequences.

A third problem that must be dealt with is the avoidance of a pure depth-first

search for the correct sentence. Strict left-to-right parsing is a depth-first search

in the sense that is it committed to the word sequence being extended. The extension
of a sequence is terminated only when it has accumulated a low validity. The amount
of computation needed to recognize and terminate an incorrect sequence can be quite

large, especially when the initial subsequence is correct. Thus, it seems necessary
to work with the best information available at all times, no matter where it occurs

in the utterance.

6.2. Solution

In order to solve these problems, the ACORN model was developed [3]. An ACORN

22 F. Hayes-Roth et al.

(Automatically Compilable Recognition Network) can be described simply as a filter
network where information enters via terminal nodes (leaves) and flows through the
network, each node filtering the information that traverses it.

An ACORN is constructed for the semantic template grammar described in the pre-
vious section. Terminal nodes in the ACORN correspond to words in the grammar; non-
terminal nodes correspond to phrases (templates) in the grammar. A directed arc con-
nects a template (source node) to the template (sink node) it supports. The direc-
tion of the arc defines the flow of information from the source template to the sink
template. Each node defines a filter upon the information that reaches it. The tem-—
plate grammar ACORN has two types of filters: conjunctive and disjunctive. The con-
junctive filter requires information from all its supporting nodes to be present and
satisfy a specified relation before information is passed to a higher node. It col-
lects information until all is present, then passes it on. The disjunctive filter
requires information from at least one supporting node in order to pass information
on. A node is instantiated whenever its relation is satisfied.

When a word is hypothesized on the blackboard, the terminal node that corresponds
to the word is instantiated. The word's positional information and validity enter
the ACORN via the, terminal node and are passed along the arc joining the terminal
word node to the template node it supports. This positional information is stored
at the supported template and if the template node is disjunctive the information is
again passed on. But if the template node is conjunctive then the positional infor-
mation remains at the node until information from all nodes that support this template
node has arrived and satisfies the specified relation. Once the relation is satisfied,
a composition of the information is passed on. The information flows up through the
network towards the root. Most paths of information terminate far from the root due
to the unsatisfiability of a template node relation. Thus large amounts of informa-
tion (word phrases) are filtered due to the lack of supporting information (words or
phrases that can be joined with the phrase). The paths of information that do com-—
bine to reach the root node define a set of candidate sentences and their correspon-—
ding derivation trees.

All information that enters and is stored in the ACORN remains throughout the

life of the ACORN (i.e., the analysis of a particular utterance). This is an impor-

tant characteristic. Once a subphrase has been parsed, it is never parsed again re-
gardless of the number of different phrases subsuming it. This is a consequence of
the existence of paths in the ACORN from the node defining the subphrase to all sub-
suming phrases. Information about the instantiation of the subphrase template is
known to all higher phrase templates that use it (i.e., a template that has the sub-
phrase as a direct son). Thus the results of the recognition of various words and

their constructed phrases are permanently stored and continually used in the ACORN.

In reality, the constructed ACORN is not isomorphic to the template grammar.

F. Hayes-Roth et al. 23

There exists an intermediate phase in the construction process in which the grammar
is canonically decomposed into binary productions. As a result, there is only one
instance of each different template in the ACORN and it is directly connected to

each templ i it i
plate of which it is a subphrase. 1In addition each conjunctive node in the

t 1 . .
network 1szsupported by only 2 nodes, simplifying the storage and testing of informa-

tion and minimizing the amount of recomputation.

The construction and use of the ACORN in HEARSAY-IT will be elucidated by an
example. Figure 6.1 defines an amended (for expository purposes) portion of the tem-—
plate grammar used for a news retrieval task. Only the nonterminals used for the
derivation of the sentence

TELL ME ABOUT BEEF
are shown. The sentence symbol for the grammar is the nonterminal SPARSE. All sen-—
tences in the grammar are derived from it. Disjunctive templates employ set brackets
to define templates that directly support them (e.g., $REQUEST). Productions without
set brackets define conjunctive templates.

The information that enters the ACORN from the word hypothesis includes its
begin and end times and validity. A disjunctive node in the ACORN passes on the posi-
tional information and validity that reach it from its supporting templates. A con-
junctive node, once all the the supporting templates are instantiated, tests its
relation. If a test is true, the éorresponding information is passed on. A template
can be instantiated by more than one piece of information, i.e., the occurrence of
the same word twice in an utterance will twice instantiate the same terminal word
node in the ACORN with two different sets of information. The test that is applied
at a node must be applied to all possible combinations of information from the sup-
porting templates. The relation is an adjacency test of the words and phrases that
support the template. The ordering of the word and phrase templates is defined by
the ordering of nonterminals on the right side of a production‘in the template gram-—
mar. In other words,

$LOOKUP+TOPIC + $LOOKUP $TOPIC
defines the $LOOKUP+TOPIC template node (nonterminal) to be supported by the templates
(nonterminals) $LOOKUP and $TOPIC, in that order. The adjacency test for the
$LOOKUP+TOPIC template is invoked when both the $LOOKUP and $TOPIC templates are in-
Stantiated. The positional information of both is tested to see if $LOOKUP is left-—
adjacent (prior) to $TOPIC. If the adjacency test succeeds, the begin time from the
leftmost (earliest) supporting template and the end time of the rightmost (latest)
Supporting template are used as the positional information of the $LOOKUP+TOPIC tem—
plate. The new times and a function of the supporting validities are passed up the
network. If the test fails, no information is passed along. It is important to note
that the successful instantiation of a template implies the successful parsing of the

Supporting word sequence.

|
! 24 F. Hayes-Roth et al.
|

10

11

12

13

14

Figure 6.1:

SPARSE -~ [S$REQUEST+]

$REQUEST+]
$REQUEST
{

$LOOKUP+TOPIC
$LOOKUP

{
SGIMME+RE
$OUTPUT

{

$TO+USER
{

$OUTPUT+TO+USER
SGIMME

$RE!WORD
{

SRE

$TOPIC

SWHAT!

Partial News Retrieval Template Grammar

>

> $REQUEST

B
$LOOKUP+TOPIC
$BE+TOPIC

$BE+TOPIC+IN+THE+NEWS
$LOOKUP $TOPIC

>

$GIMME+RE

$GIMME+SOMUCH+RE
SGIMME $RE

TELL }

- SOUTPUT $TO+USER

>
$IWANNA+RECEIVE
$OUTPUT+TO+USER

$AUX+YOU+OUTPUT+TO+USER

SWHAT+BE
$BE+THERE

5
ABOUT
ON }

>

$RE!WORD

$SRE!WORD+REL!PRO

N
SWHO
SWHAT!
SWHERE
STHE+WHAT !

e
BEEF
ROBOTS
GOLF

FOOTBALL }

F. Hayes-Roth et al. 25

The adjacency test must be able to cope with several problems inherent in

speech:
1) boundary fuzziness —-- imperfect adjacencies;
2) silence —-- segments of silence between words;
3) ugeless interjections —- semantically meaningless interjections;
4) gaps --'short periods of uninterpretable speech.

These errors occur often in actual data. Methods that are robust (i.e., insensitive
to data errors) and efficient must be used to handle these errors in a natural way.
To handle boundary fuzziness, an inexact adjacenty test is used that allows a para-
meterized amount of overlap or separation. Useless interjections and silences are
accepted by treating each interjection as a silence and allowing the adjacency test
to succeed if the two words or phrases are separated by a silence. If two phrases
are separated by a short period of uninterpretable speech and if the separation is
greater than the allowable fuzziness separation and less than the maximum gap separa-
tion, a gap hypothesis is generated for the separation and the adjacency test succeeds.
The validity of the hypothesis is a decreasing function of the gap duration. This
method does not solve the problem,currently under investigation, of deciding when an
interval of speech is uninterpretable.

Figure 6.2 shows the ACORN corresponding to 6.1, with the sentence "TELL ME ABOUT
BEEF'" being recognized.

Information about the word hypotheses TELL, ME, ABOUT and BEEF enters the ACORN
via the corresponding terminal templates. The information is of the form (begin time:
end time, validity). The $OUTPUT template is instantiated with (0:10,80) from the
word hypothesis TELL. This information tuple is immediately passed to (instantiates)
the SOUTPUT+TO+USER template because $SOUTPUT is a disjunctive template. Here the
tuple remains until the rest of the constituents of this template are instantiated.
Since ME is a word hypothesis, the $TO+USER template is instanéiated with the tuple
(15:20,60). The adjacency test is applied to the information supporting the
SOUTPUT+TO+USER template resulting in its instantiation with (0:20,70). The $GIMME
template is now fully instantiated. The adjacency test is applied to the $GIMME and
SRE templates. Assuming that a separation of five units is allowable under the fuzzi-
ness boundary, the adjacency test succeeds and a new tuple, (0:40,73), is composed of
the begin time of the $GIMME template instantiation and the end time of the $RE tem-
Plate instantiation and an average of both their validities. This new tuple is used
to instantiate the $GIMME+RE template and is also passed on to the $LOOKUP template.
The process continues similarly until all word hypothesis information has entered
and flowed through the ACORN.

In the HEARSAY—II environment, each instantiation of a template is accomplished
by a separate execution of the SASS knowledge source. The scheduling execution is
controlled by the focussing strategy of the system. If the information exists to

instantiate more than one template, the template supported by the highest rated infor-

Mation will be instantiated first.

26 F. Hayes-Roth et al.

() WORD HYPOTHESIS

CONJUNCTIVE TEMPLATE
i SUPPORT

REQUEST b}
1
|

B)

$BE4TOPIC+..
$TOPIC
(42:50,65)
$WHAT!
(42:50,65)
IFOOTBALLJ I noaorsJ l GOLF l

$RE
(25:40,75)

$LOOKUP.
(0:40,73)

$GIMME+RE
(0:40,73)

$GIMME +S0.

BEEF
(42:50,65)

$GIMME
(0:20,70)

$RE!WORD
(25:40,75)

FIWANNA l stAT«BEJIsBEnHERE]]sns-woﬂm.
$OUTPUT
(0:10,80)
!
/
]
TELL ME I
(0:10,80) (15:20,60) 1
7 /
/
4 I

-
7~
-
-~ /
TELL ABOUT BEEF
(0:10,80) (25:40,75), (42:50,65)

ACORN recognition of "[TELL ME ABOUT BEEF]"

$OUTPUT+TO
(0:20,70)

$TO+USER

ABOUT
(15-20,60) (25:40,75)

Figure 6.2:

The template instantiation process consists of creating a phrasal hypothesis on
the blackboard for the template. The begin and end time and validity information are
derived from the hypotheses that support the new phrasal hypothesis. Links are also
placed on the board, joining the new hypothesis with its supporting hypotheses. Fig-
ure 6.3 shows the blackboard structure that would be built for recognizing TELL ME
ABOUT BEEF.

Only the instantiated portions of the ACORN are placed on the board. Note that
in the description of information entering the ACORN, the terminal word nodes were
instantiated by word level hypotheses on the blackboard. In the nodes of the ACORN
instantiated at the phrasal level on the blackboard, however, the terminal nodes of
the ACORN do not appear since each word level hypothesis can be directly linked to

the instantiated father template of its corresponding ACORN terminal node.

F. Hayes-Roth et al. 27

$PARSE

e, «_ CONJUNCTIVE

TEMPLATE SUPPORT
(O WORD HYPOTHESIS

$REQUEST+]
(0:50,85)

$REQUEST

C
(0:0,100) (0:50,69)

$LOOKUP +

]
TOPIC(0:50,69) (50:50,100)

$LOOKUP
(0:40,73)

BGIMME j $RE
(0:20,70) (25:40,75)

$OUTPUT+TO...

(0:20,70)
$OUTPUT $TO+USER
(0:10,80) (15:20,60)
/ '
2 /

/ /
/ /
TELL ME
(0:10,80) (15:20,60)

Figure 6.3: Blackboard representation of ACORN *
recognition of "[TELL ME ABOUT BEEF]"

A sentence is successfully parsed and recognized when the sentence symbol of the
semantic template grammar is instantiated. The words constituting the recognized

sentence can be found by tracing through the instantiated templates that support the

sentence symbol template. The terminal instantiated templates in the ACORN are the

words of the sentence.

The use of the ACORN in recognition mode is limited in the sense that it requires

all information (i.e., all words) necessary to parse the correct sentence to be hypo-

thesized by the lower modules. But present statistics show that only 80% of the words

in the utterance are supplied to the ACORN. Therefore other methods must be utilized

to provide the missing information.

7 PREDICTION
7.1 Problem

Although the ACORN can effectively filter out noise contained in data provided

s

28 F. Hayes-Roth et al.

by lower-level modules, it is unable to recognize the correct utterance unless all
the correct words and their correct times are provided. In HEARSAY-II, there is no
guarantee that all correct words will be hypothesized. Speech problems such as the
omission of a syllable at word junctures, background noise or poor speaker enuncia-
tion result in incorrect words being hypothesized with high ratings. The correct
word may be hypothesized but with a low validity or it may not be hypothesized at
all. Even if the correct word is hypothesized, it may never be worked on by SASS
knowledge; the focussing policy of the system directs attention to the highest rated
words. Thus a correct word with low validity may never be considered unless the al-
ternatives are exhausted.
7.2 Solution

The solution to this problem of missing or poorly rated constituents is to use
phrases recognized by the ACORN as "islands of reliability" from which to predict con-
stituents that could precede or follow these phrases. In other words, the instantia-
tion of a semantic template in the ACORN is considered to provide enough information
for the system to predict what words can possibly precede or follow the word sequence
supporting the template. The longer the island of reliability, the better, in terms
of validity, is.the prediction. This is a result of the island having a grammatical

constraint directly related to its length.

The prediction process requires the existence of a seed, a maximally instantiated

-3
H

semantic template in the ACORN. A maximally instantiated template is the root of a
subtree representing the parse of a recognized word sequence. In other words it is
the highest template in the ACORN instantiated by the recognition of a word sequence.

Actually, a word sequence can give rise to more than one subtree depending on the

structure of the ACORN. Figure 7.1 shows the part of the ACORN instantiated on the '

blackboard by the recognition of the words "TELL ME". S$GIMME is the template instan-
tiated by the word sequence TELL ME. It is used as the seed. The prediction pro-
cess instantiates templates that are grammatically adjacent to the seed template
(Figure 7.2). This implies that the leftmost or rightmost word support of this pre-
dictively instantiated template (PIT) is adjacent to the seed's supporting word se-
quence.

Respelling is the next step in the prediction process. To respell is to take a
missing constituent of a PIT and instantiate the part of the ACORN necessary to hypo-
thesize words adjacent to the seed. In other words, the ACORN is instantiated down-
ward on a side adjacent to the seed. Figure 7.3 shows the predictive instantiation
necessary to hypothesize the words ABOUT and ON which can be right adjacent to the
word sequence. The templates $RE, SRE!WORD, ABOUT and ON are also PITs. The terminal
word templates ABOUT and ON are now available for verification by other modules in

the HEARSAY-II system.

$GIMME

$OUTPUT +

TO+ USER

$OUTPUT

F. Hayes-Roth et al.

T

$TO+USER

T

D

Figure 7.1
g
N
|i‘j PREDICTION
/7 4"—:-—-“\\
/7 - \ >
/1,7 Y ~
¥ A N
$GIMME $RE $50 + MUCH
$OUTPUT+
TO+USER
$OUTPUT $TO+USER
T
|
|
! |
TELL

Figure 7.2

29

F. Hayes-Roth et al. 31 (
30 F. Hayes-Roth et al. |

7.3 Difficulties and Refinements

TN Combinatorial problems arise when prediction is insufficiently restricted. For
lj:l PREDICTION a number of reasons, many of the predictions that occur will be incorrect. With a
E T vocabulary of 1000 words, the number of words hypothesized bottom-up is quite large.

As a result .the number of recognized phrases is large also. Even if only two words

/,” =" G ~< are predicted from each of these phrases, one on each side of the phrase, the number

\

[- \ ~ of predicted words is quite large. Compounding this problem is the branching factor
N
'

v \ LN of the grammar. The average number of words which can precede or follow a given

$G|MME $RE $SO+ MUCH phrase is considerably greater than one, even for a highly constrained language.

‘\\\\\\23.; The various task grammars used by HEARSAY-II have branching factors of five, ten, “or
more.

The prediction explosion can be controlled through the use of thresholds. Thresh-
$OUTPUT + $REIWORD

TO+USER

olding is applied in two separate ways. The validities of predictive phrases are

thresholded. If validity of a phrase is below a specified threshold then no predic-
tions will be made from it. Another type of thresholding is based on branching fac-

tors. If the number of words that can be predicted from a phrase is above a speci-

$OUTPUT $TO+USER fied threshold, prediction is not allowed. In both cases the thresholds can be dyna-

: - T mically modified, if desired, to reflect variations in the state of the recognition
l" i process in different temporal regions of the utterance. Although thresholding con-
strains the combinatorics of prediction, the amount of constraint afforded is not
ME enough. When excessive thresholding is applied, the correct words are not predicted.
The degree of laxity in the thresholds necessary to avoid this problem causes a com-

[binatorial explosion in the number of predictions that occur.

8 PARTTAL MATCHING

Figure 7.3
. 8.1 Problem and Solutions

It is necessary in the HEARSAY-II environment to execute ah action only when it
H is well supported by blackboard evidence. If this rule is not followed at all levels,
| Actually, the respelling process used differs slightly from the example. Since the system quickly degenerates. This maxim is especially applicable to prediction.
SRE!WORD is a disjunctive template whose sons are all word templates, the terminal There exists a large number of possible phrases from which to predict; the system
Instead the verifying KSs utilize knowledge of which = must be confident of a phrase before it is to be used. This implies that only the

|
|
I templates are not hypothesized. |
:} This is important for efficiency. In a . most reliably supported templates should be used for prediction. However, a phrase —--—
|

words are included in the S$RE!WORD set.
3 j% large vocabulary, the number of words in that set can be quite large and the black-
&l If a word in the S$RE!WORD prediction set

a grammatical sequence of recognized words -- may not directly instantiate any tem-

Plate. Instead it may partially instantiate one or more adjacent templates leaving

board hypothesization overhead expensive.
| fied, th ifying KS can hypothesize the word. This new word would be rec— = several constituents unsupported. If only fully instantiated templates were used as

’ is verified, e ver ' |

(| ognized by SASS, the corresponding word template would be instantiated, the word hypo-. predictors, predictions would be made without the benefit of using the most reliable |

h d t late would be linked, and the terminal template would be inserted into phrases. The predictors used would be subsequences of these phrases corresponding

thesis an emplate 5 : |

h iated ACORN (blackboard structure) by linking it to the PIT $RE!WORD. An to fully instantiated templates, and they would be less reliable. To overcome these

the instantiate |

i i haracterized by the linking of a new instantiated (hypothesized) tem-— defects, HEARSAY-IT recognizes and instantiates partially matched templates and uses
insertion is char

them as a basis for prediction.

plate to an existing instantiated template on the blackboard.

32 F. Hayes-Roth et al.
F. Hayes-Roth et al. 33 t

Taking the example of the recognition of the words ME ABOUT, Figure 8.1 shows
the instantiated portion of the ACORN produced on the blackboard. The template $G|MME+RE = MISSING
$OUTPUT+TO+USER is partial-matched. The grounded arcs in the figure designate that CONSTITUENT |
a constituent (SOUTPUT) is missing. By partial-matching the template SOUTPUT+TO+USER, /O\ ‘il
prediction, as described in the previous section, has been eliminated. All that has , i
= $GIMME $RE ‘

to be done to achieve the same effect as prediction is to £ill in and respell the

Figure 8.2 depicts this respelling. Only the

missing constituents of the template.
respelling necessary to derive the word TELL is shown.
$OUTPUT +

8.2 Difficulties and Refinements
i f TO+USER
e HEARSAY-II system immediately met

$RE!WORD

The introduction of partial matching into th

with difficulties. The possible number of partial matches was enormous. Combinator-

ial explosion occurred. Suddenly the sky darkened, and it began raining hypotheses $T0+USER
Phrases with

and links. To counter the combinatorics, thresholding was introduced.

partial support were not recognized (matched) unless the validity of the support was

|
|
high. - f
8.3 Evaluation and Limitations P
I
The introduction of such thresholding served to reduce the number of partial ABOUT i
I

matches identified. This constraint was inadequate though to eliminate the combina-

torial explosion entailed by relaxing the earlier requirement that all constituents
i
|

of a template be present in order for it to be instantitated on the blackboard. Figure 8.1: Partial match of seq ""ME ABOUT"
st uence T

From testing these ideas we have drawn the following conclusion. Partial match-

matches were unnecessarily made along with the desired maximal partial matches. It
1

! was necessary to constrain the partial-match process to operate only on reliable (lonq
|
{

highly rated) word sequences.

ABOUT

|
N ing results in a combinatorial explosion that simple thresholding cannot control.
} Since so many partial instantiations were possible —- most of them based on incorrect ﬁRESPELLED $G|MME+RE E
[data -- it became clear that some mechanism was needed that could find only the best TEMPLATE i
} (i.e., most complete and reliable) partial matches. /O\ }
\
‘ !
‘ 9 FILTERING AND PARTTAL-MATCHING ACTIVITY $G|MME $RE ‘
. il
| ; |
‘ 9.1 Problen ;;
; In the previous section, partial matching was introduced as a method for recog- | i
[l | |
S nizing maximal grammatical subsequences to be used for prediction. Because the par- $OUTPUT+) !
Ll : , . : : . TO+USER $RE!'WORD i
| tial-match mechanism was applied to all lexical data, the amount of partial matching '
(i T f
" ; grew out of control. The introduction of thresholding did not remedy this problem. 1 "
(] !
(1 | The root of the problem was twofold. First, single word hypotheses are too unreliabll : '
j | | 1 i
“ to warrant partial matches. Second even using correct hypotheses, too many partial $OUTPUT $TO+USER : :\
. : |
! :
: 1
i
|

i 9.2 Solution
‘ An analysis of the problem resulted in the development of a KS called WOSEQ to

f identify the most promising word sequences by using a relatively inexpensive test. |
i
Figure 8.2: Respelling of missing constituents of $OUTPUT+TO+USER ;

34 F. Hayes-Roth et al.

9.4 Evaluation
The introduction of the WOSEQ module into the HEARSAY-II system succeeded in con-

straining the combinatorial explosion that had previously plagued SASS. Although

WOSEQ generates only a few sequences, one Or more of them are usually correct or con-

tain correct subsequences. In the latter case, the decomposition mechanism eventually

finds the correct subsequence for SASS. By permitting partial matching to be applied

only to a small set of reliable sequences, the search space has been drastically
reduced.
9.5 Limitations

WOSEQ knowledge is based on pairwise grammatical adjacency. The module is limi-
Thus WOSEQ cannot
BEEF.

ted in that all constitutents of a sequence must be contiguous.

identify good, potential partial matches containing holes, e.g., TELL ME ...

10 OTHER ISSUES

SASS, as a knowledge source in the HEARSAY-IT system, contributes its own spec-

ialized knowledge to the fulfillment of the system's overall goal of recognizing a
spoken utterance. In order to effect this contribution efficiently and effectively,
an analysis of the amount of needed information must be made. For example, many kind
of semantic infbimation can be accumulated, stored, and possibly manipulated during

the speech recognition process. But there exists a point of diminishing return beyon

which further semantic processing will increase the cost of evaluating an hypothesis
without contributing to its validation. Hence, when adding knowledge to a system an

analysis should be made of how much constraint the knowledge will ostensibly provide

and what its cost of application will be.

Semantic knowledge in SASS is represented by the semantic template grammar de-—
scribed earlier. The grammar can be made arbitrarily complex to accomodate various
types of anticipated dialogues but must remain context-free in form. Our commitment
to representing semantic information in a semantic template grammar stems from the
belief that the level of semantic processing necessary to achieve task-oriented speec

recognition can be carried out most effectively in this framework. Other representa-

tions may be more general, but we believe that most types of generality are not nec-

essary for the purposes at hand. All that generality in syntax and semantics appears

to achieve is a higher processing cost per hypothesis.
As emphasized above, a knowledge of the cost of a representation, method, action
etc. is important to the efficient solution of realistic problems such as speech]

understanding. In HEARSAY-II, KSs are the basic structural elements and their instal

tiations are the basic actions. The scheduling of KS instantiations is, in itself,

an expensive computation. A certain amount of scheduling overhead can be eliminated

if an appropriate order of computation is known a priori. The prediction-verifica-

tion loop illustrates this point. Whenever a set of words is predicted from a word

sequence, the appropriate response-is to verify those words. Prediction and verifi-

cation can be an indivisible single action uninterrupted by scheduling priority com=

F. Hayes-Roth et al. 35

These promising sequences are hypothesized on the blackboard at a word sequence level
inserted between the lexical and phrasal levels.

The inexpensive test is pairwise grammatical adjacency. An ordered pair of
words, W1 and W2, are considered grammatically adjacent if the sequence W1 W2 occurs
in some sentence generated by the grammar. A word sequence Wl,...,Wn is considered
pairwise grammatical if each pair, Wi and Wi+l, is grammatically adjacent. Gramma-
tical adjacency information is precomputed from the grammar and stored in a two-dimen-
sional bit matrix for fast retrieval. For the present vocabulary of 1000 words, the
word adjacency matrix requires a million bits or about 30K of PDP-10 words, which is
not an excessive amount of storage.

Sequences of words are constructed by identifying a few highly rated words as
seed sequences and extending these with words that are both temporally and grammati-
cally adjacent.

The same process is then applied to the new sequences. The result

is a set of varying length sequences. The best sequences are subjected to partial
matching (parsing).
The identified sequences are good in the sense that some or all of the words in

such a sequence are often correct. This follows from the low probability that ran-

domly hypothesized incorrect words can be connected to form a grammatical sequence.
Furthermore, the average validity of a sequence of words is statistically a more re-—
liable indicator of correctness than the validity of a single word hypothesis; i.e.,
a highly rated WOSEQ hypothesis is more likely to be correct than a highly rated word
hypothesis [11]. WOSEQ successfully and efficiently identifies word sequences for
partial matching.
9.8 Difficulties and Refinements

A problem arises when WOSEQ constructs sequence hypotheses. Since its knowledge
is restricted to pairwise grammatical adjacency, a constructed sequence containing
more than two words may not be entirely grammatical. When SASS‘looks at a sequence
hypothesis created by the WOSEQ module, it first parses it to see if it is an allow-
able sequence. If so the sequence is used to partially match templates whose missing
constituents are then respelled as described earlier. If the sequence does not parse,
the hypothesis is rejected. However, it is likely to contain a correct subsequence.
Accordingly, the WOSEQ module monitors for any rejections of its hypotheses. 1If a

Sequence is rejected, it is decomposed. The decomposition of a sequence entails the
construction of two or more sequences that are subsequences of the original. These
new word sequences can be hypothesized on the blackboard or held in abeyance by WOSEQ
depending on their validity and the overall state of the system.

Decomposition is also applied to WOSEQ hypotheses that are successfully parsed
by SASS but lead to dead ends when the system attempts to extend them. Thus sequences
that are unsuccessful are decomposed in an attempt to utilize any correct information

they may contain.

36 F. Hayes-Roth et al.

putation. Another example is the parsing of a WOSEQ hypothesis. These word sequences

are initially presented to SASS to be tested for grammaticality. Since the goal is to
parse the whole sequence, parsing should be a single indivisible action as opposed to
a sequence of KS invocations for each template instantiation encountered in the parse,
A third example of an activity that should be viewed as indivisible is the pre-
diction of words by respelling. Each respelling of a template might require one KS
instantiation. In order to predict a set of words, a number of KS instantiations’ is
necessary to trace down through the ACORN to the terminal word templates. Since the

goal of respelling is to predict words adjacent to a phrase (word sequence), it is

appropriate that the prediction of words be carried out by an internal (non-blackboarg
based) ACORN search which results in a set of word predictions. This search is an
indivisible action in the system.

Tn addition to scheduling costs, the blackboard structures (template instantia-

tions) for respelling are also expensive. The internal ACORN search mentioned above

alleviates two problems: scheduling overhead is eliminated by virtue of invoking onl)
one action; and representation overhead is reduced by refraining from constructing
respelling structures on the blackboard. The actual word predictions are placed, as

an attribute, on thé phrase from which they were predicted. In that form they remain

available for verification by other KSs.

11 EVALUATION

It is virtually impossible to evaluate a single HEARSAY-II KS, such as SASS, in
isolation. The performance of SASS is very much dependent on the environment provide
by the other KSs. Radically different strategies are appropriate in different envir-
onments. For example, if bottom-up word recognition generated all the correct words
(plus a few incorrect words), a simple left-to-right parse might be the most efficien
way to identify the correct utterance. Similarly, in a system with no bottom-up worq
recognition but very reliable word verification, a left-to-right, top—down parser j
would be appropriate. In HEARSAY-IT, roughly 80% of the correct words are hypothe- '
sized bottom-up, with about ten incorrect words generated for every correct word. It
is apparent that such an environment dictates a flexible combination of bottom-up an
top-down problem-solving methods applied to the best data available, wherever it occ&
in the utterance. The task of developing such a strategy was complicated by the facf
that the performance of the other KSs varied tremendously as they too were developed:

On a smaller scale, the evaluation of the various problem-solving methods used
within SASS must be based not on their adequacy or theoretical correctness but on
their efficiency and empirically determined utility when used in various combination
For example, postdiction might turn out to be very worthwhile in some knowledge-basé
inferencing systems, but it was not cost—effective in SASS given the environment in
which it was operating. The information contributed by postdiction was mostly redun’

dant, and simply did not justify the expense of computing it. Accordingly, postdic‘

tion was eliminated.

F. Hayes-Roth et al. 37

Similarly, a scheme to make predictions based on previous discourse was imple-
mented, found not to be cost-effective, and abandoned (at least temporarily). This
scheme was implemented in a straightforward fashion: templates whose instantiation
was predicted by a discourse module were represented as hypotheses on the blackboard
and hypothesgs consistent with these predictions were postdicted by them. Unfortun—’
ately, even when the predictions were correct —- i.e., the predicted templates were
in fact instantiated -- this scheme failed to justify itself. The predictions were
too vague, in two ways. First, the number of ways of instantiating a predicted tem-
plate was quite large, so a prediction provided rather little information as to which
particular words should be sought. Second, these predictions placed no constrainﬁ on
where in the utterance the predicted template would be instantiated. For example, the
discourse module might correctly predict the category template $FOOD, but coult n;t
specify where in the utterance it would be instantiated. Thus incorrect hypotheses
representing words in this category were postdicted along with the word BEEF which
had been correctly hypothesized at the end of the example utterance, TELL ME ABOUT
BEEF. Finally, when the predicted template‘was instantiated bottom-up anyway, as
happened more often than not, the computation associated with discourse prediction
was simply redundant, and merely slowed down the recognition process. Other speech
understanding systems which use sophisticated semantic inferences appear to suffer
from the same problems.

Efficiency considerations resulted in the ACORN instantiation process being made
internal to SASS. The only information now placed on the blackboard at the phrasal
level is the recognized and extended word sequences, with their maximally partially
matched template and missing constitutents as attributes.

The success of -the current scheme seems due to the application of three key con-
cepts: validity, sequential constraint, and branching factor. Validity and sequen-
tial constraint are used to identify maximally promising phrases: These in turn form
B iszanteg meeion ot sricmmmeitatey s s amenmtng Suitor s

: . y and a decreasing function of predic-—
E:Z: :::2::225 zzzt::.heiredicted'words Fhét afe subsequently found are used to ex-
p determine their revised validity.

An interesting aspect of this scheme is its refinement of the hypothesize-and-
test'paradigm to make use of partial solutions. Hypotheses representing promising
Partial solutions (phrases) are expanded into more complete solutions by the processes
:iairzjlzzizz; ffti:Sion’ a?d recognition. Hypotheses representing discredited par-

: grammatical sequences or inextensible phrases —-- are contracted
1?t0 %ess complete solutions by the process of decomposition, in the hope of elimina-
ting incorrect constituents of an otherwise correct partial solution. This mechanism
Iepresents a generalized form of backtracking in which the direction of contraction is
00 longer constrained to be the most recent direction of expansion.

e
N lmportant property of any large knowledge-based inferencing system is the

38 F. Hayes-Roth et al.

ease with which knowledge can be modified and extended. Because SASS's problem sol-
ving behavior is inferred from its grammar rather than explicitly coded in it, the
grammar is simple and readily modifiable. This property became quite noticeable when
the HEARSAY-II task was changed from retrieval of Associated Press news stories to
retrieval of artificial intelligence abstracts, and the vocabulary was accordingly
replaced. Writing a grammar for the new task required only a few man-hours, and did
not require modifications to SASS or CVSNET. The importance of good knowledge engin-
eering will grow as knowledge-based intelligent systems increase in size and complexit

A gross quantitative evaluation of SASS is accomplished by comparing HEARSAY-IT'
performance with and without SASS. (The modular design of HEARSAY-IT permits vari-
able configurations of KSs to be tested.) It must be kept in mind that such an eval-
uation is affected by the cooperative interactions between KSs, such as the verifi-
cation by lower-level KSs of words predicted by SASS. Thus the performance differ-
ence to be described cannot be credited to SASS alone; in a very real way, the whole
of HEARSAY-II is greater than the sum of its parts.

Without the grammatical knowledge provided by SASS (and WOSEQ), HEARSAY-IT be-
comes a bottom-up word recognizer. On average, roughly 80% of the words in an utter-
ance are correctly hypothesized. For every correct word hypothesis, there are 10 or
20 incorrect words. When a correct word is recognized, it is rated lower than an
average of four words hypothesized in the same time interval. Thus the highest-rated
word sequence spanning the utterance is almost never correct.

With SASS (and WOSEQ), HEARSAY-II performs quite respectably. About 90% of the
utterances are recognized correctly or are recognized slightly incorrectly but are
correctly interpreted semantically. As explained in the introduction, the appropriat
performance criterion for a speech understanding system is how often it understands i
the intended meaning of an utterance, rather than how often it correctly recognizes
all words in the utterance. HEARSAY-II currently operates on average in under 25 :
times real-time, i.e., a two-second utterance takes about 50 seconds to recognize on
a Digital Equipment Corporation KL-10. These results are given for a language with
a thousand-word vocabulary and an average branching factor of about ten. Performancé
on languages with larger branching factors is slower and less accurate.

SASS's performance is reasonably good considering the enviromment in which it
works. The approach taken by SASS seems to be fairly robust with respect to variatid
in the rest of HEARSAY-II, but its optimality or sub-optimality within its current

environment can only be determined by future research.

11.1 Future Directions

It appears that some utterances not recognized by HEARSAY-II (within preset timé
and space bounds) could be recognized if SASS could identify partial matches contain
ing "holes," i.e., templates partially instantiated by sequences of words allowing
temporal gaps between successive words. For example, if the words TELL, ME, and BEE!

are recognized, SASS is unable to detect that the template $LOOKUP1+$TOPIC is well

F. Hayes-Roth et al. 39

$LOOKUP+
TOPIC
$LOOKUP
$TOPIC
$GIMME+RE
$WHAT!
"""————_——_<:::::~\\ﬁ:.___ T
|
$GIMME — '
$OUTPUT+
TO+USER
$OUTPUT $TO+USER

Figure 11.1: Partial match of $LOOKUP+TOPIC with missing middle constituent

partial-matched (see Figure 11.1). The efficient identification of sets of grammati-
cally consistent but non-contiguous words and phrases is a problem under investigation.
Another limitation of SASS is its inability to recognize utterances containing
ungrammaticalities such as insertions, deletions, and repetitions. These phenomena
are characteristic of spontaneous speech, and must be tolerated by any sophisticated
speech understanding system. Most phenomena of this sort arise from the introduction
of extraneous information into the utterance. If this information is ignored, the
remainder of the utterance is often grammatical. Ignoring an interval of speech
means skipping over it, i.e., considering its beginning and end to be temporally
adjacent. A mechanism for ignoring intervals is in fact already implemented in SASS,
and is used for ignoring intervals of silence. The same mechanism could be used for
ignoring extraneous information, given a policy for identifying intervals containing
€Xtraneous information. The development of such a policy is another problem under

investigation.

|
4
i
|

40 F. Hayes-Roth et al.

12 CONCLUSION

Experience with SASS has provided many interesting lessons, some of which appear
to have applications outside the domain of speech understanding.

First, the history of SASS illustrates the value of automatic conversion of
static knowledge into practical behavior. The representation of SASS's grammatical
knowledge in a nonprocedural form greatly facilitated both the modification of that
knowledge and the exploration of different generic behaviors which could be inferred
from it.

Second, SASS provides an example of a robust combination of multi-directional
problem solving methods. The efficient cooperation of potentially redundant methods
is an important problem for '"real-world" problem solving systems. When they can be
used, strong methods that test some constraint should be preferred to weaker methods
that enumerate all constituents potentially satisfying the same constraint.

Third, the effective use of partial solutions is a key to robust problem solving
performance. Promising partial solutions should be extended. Rejected partial solu-
tions should be contracted to exploit their possible partial correctness.

Fourth, partial-matching is essential to the process of identifying the best
"islands of reliability" (promising partial solutions). However, partial-matching
must be highly constrained by some filtering mechanism.

Fifth, effective focus of attention is important in a large inferencing system.
The selection of which inference to perform next should be made very carefully to
avoid a combinatorial explosion of useless inferences and to accelerate the process
of finding the correct solution.

Finally, it should be noted that the success of speech understanding research
and of HEARSAY-II in particular indicates maturity and practical potential in the
field of artificial intelligence. Such success is an encouraging sign for future

research on natural language processing.

10.

11.

195

F. Hayes-Roth et al. 41

REFERENCES

Colby, K. M., Faught, B., and Parkinson, R. C. Pattern-matching rules for the
recognition of natural language dialogue expression. AIM-234. Stanford AI
Laboratory, Stanford.

Hayes-Roth, F., and Lesser, V. R. Focus of attention in a distributed logic
speech understanding system. Proceedings of the 1976 I.E.E.E. International
Conference on Acoustics, Speech and Signal Processing, Philadelphia, 1976, 416-
420.

szes—Roth, F., and Mostow, D.J. An automatically compilable recognition
g work for Structured patterns. Proceedings of the Fourth International Joint
onference on Artificial Intelligence, Tbilisi, U.S.S.R., 1975, 246-251.

Hayes-Roth, F., and Mostow, D. J. Syntax and semantics in a distributed logic
speech understanding system. Proceedings of the 1976 I.E.E.E. International
Conference on Acoustics, Speech and Signal Processing, Philadelphia, 1975,
421-424,

Hayes-Roth, F., and Mostow, D. J. Organization and control of syntactic,
semantic, inferential and world knowledge for language understanding.
Proceedings 1976 International Conference on Computational Linguisties,
Ottawa, Canada, 1976.

Hayes-Roth, F., Erman, L. D., Fox, M., and Mostow, D. J. Syntactic processing
in HEARSAY-II. 1In Speech Understanding Systems: Summary of Results of the
Five-Year Research Effort, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, 1976.

Hayes-Roth, F., Fox, M., Gill, G., and Mostow, D. J. Semantics and pragmatics
in the Hearsay-IT speech understanding system. 1In Speech Understanding Systems:
Summary of Results of the Five-Year Research Effort, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, 1976.

Hayes-Roth, F., Gill, G., and Mostow, D. J. Discourse analysis and task
performance in the Hearsay-II speech understanding system: In Speech
Understanding Systems: Summary of Results of the Five-Year Research Effort,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, 1976.

Hayes-Roth, F., Lesser, V. R., Mostow, D. J., and Erman, L. D. Policies for
rating hypotheses, halting, and selecting a solution in the Hearsay-II speech
understanding system. In Speech Understanding Systems: Summary of Results of
the Five-Year Research Effort, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, 1976.

Lesser, V. R., Fennell,, R. D., Erman, L. D., and Reddy, D. R. Organization of
the Hearsay-II speech understanding system. I.E.E.E. Transactions on Acoustics,
Speech and Signal Processing, ASSP-23, 1975, 11-33.

Lesser, V., Hayes-Roth, F., Birnbaum, M. The word-sequence hypothesizer in
Hearsay-II. In Speech Understanding Systems: Summary of Results of the
Five-Year Research Effort, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, 1976.

Newell, A. Heuristic programming: ill-structured problems. In J. Aronofsky
(Ed.), Progress in Operations Research 3. WNew York: Wiley, 1969, 360-414.

R———

42

13.

14.

15+

16

17.

18.

19.

20.

F. Hayes-Roth et al.

Artificial Intelligence and the concept of mind. In R. Schank and

o San Francisco:

K. Colby (Eds.), Computer Models of Thought and Language.
Freeman, 1973, 1-60.

Production Systems: models of control structures. In W. C. Chase

. New York: Academic Press, 1973, 463-526.

(Ed.), Visual Information Processing.

Reddy, D. R. Personal communication, 1976.

Smith, A. R. Word hypothesization in the Hgarsay-II speech syste?.P Progiiitngs
I E’E’E International Conference on Acoustics, Speech, and Signal Proce g

Philadelphia, 1976, 578-581.

Thompson, R. A. Language correction using probabilistic grammars. I.E.E.E.

Transactions on Computers, C-25, 1976,

Final report of the SRI-SDC speech understanding system

D., et al. ;
et i Stanford Research Institute, 1976, in press.

research. Menlo Park:

Woods, W. A. Transition network diagrams for natural language analysis.
, W. A,
Communications of the ACM, 1970, 13, 591-606.

Final report of the BBN speech understanding system
Bolt, Beranek, Newman, 1976, in press.

Woods, W. A., et al.
Cambridge:

research.

AUTOMATIC SPEECH RECOGNITION OF LARGE VOCABULARIES

via
Dyn’émic Search Strategies for Information Retrieval from Large Data Bases

G. M. White
Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304/USA

Introduction

This chapter discusses automatic speech recognition techniques for large vocabularies of acoustically
unambiguous words and short phrases taken from continuous speech or isolated utterances. Techniques
that work for the recognition of small vocabularies are not practical for large vocabularies because of
the large amount of reference data that must be processed. The key to success in this area centers on riew
ways of representing and retrieving knowledge about speech events so that large amounts of speech
information may be compactly stored and quickly retrieved. This is the central problem in speech
recognition for large vocabulary systems. Knowledge can be encoded in operations as well as in static
memories. In such cases, the retrieval of knowledge amounts to computing a result rather than simply
recaliing it from from memory. Knowledge about speech can be encoded with compressed signal
parameters or in more abstract "rules of operation with symbolic representations”. The symbolic
representations include phonemic symbols and the rules operation include syntax. The generally
accepted approach to the 'recognition of large vocabularies is to use symbolic representations and
appropriate rules of syntax. But there is an advantage to working with signal representations: they
contain more information than the symbolic forms derived from them. On the other hand, using signal
parameters has the apparent drawback is that it is computationally more expensive to store, retrieve, and
process the larger amounts of data required for their use. This drawback can be mitigated by new
techniques for retrieving and processing speech data from large data bases. Several new techniques will
be presented.

Methods of representing knowledge may be characterized by the extent to which they employ simple
memory or operational procedures. Knowledge involving essentially pure memory is called "eidetic"
knowledge. Eidetic knowledge is based on the retrieval of reference data involving a minimal amount
of computation. An example of what we mean by eidetic knowledge is the representation of a speech

sound by the storage of a series of numbers representing the amplitude fluctuations as a function of time
of the speech sound. Non-eidetic knowledge, or "procedural” knowledge as we shall call it, is embodied
in sets of operations that enable answers to questions to be computed rather than simply retrieved from
memory. The algorithm for long division of two numbers is an example. Given sufficient memory, the
answers to questions of division can be answered by table lookup. Clearly a great deal of memory is
saved at minor cost in processor time by computing the answers rather than looking them up. The
driving force for the use of procedural knowledge is, in general, the reduction in memory requirements
achieved through its use. The savings in memory must be paid for by increased computation but the
tradeoff is frequently worthwhile.

