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Abstract

KBLPS is a state-of-the-art Decision Support System
with a rich interactive graphics unser interface,
advanced knowledge base and powerful planning algo-
rithms that has been designed and implemented to sup-
port skilled US. Army logisticians to prepare and
evaluate logistics plans to support corps-level battle
scenarios much more rapidly than currently possible.
At the heart of KBLPS is the commodity Distribution
Planner (DP) algorithm, which in a single framework
supports Aimmunition Distribution and Petroleum Dis-
tribution planning. KBLPS uses the problem solving
model of Constrained Heuristic Search (CHS). CHS
views the construction of the distribution plan as a con-
straint optimization problem and uses graph textures to
guide and control the problem solving. KBLPS is fully
implemented in C++ and has undergone a significant
unit and integration testing, and is currently being used
by the US Army.

1.0 Introduction

The complexity of military logistics planning and
emerging needs for ever-higher degrees of responsive-
ness motivate the requirement for automated decision
support tools that complement the strengths of the
human logistics planner. The Knowledge Based
Logistics Planning Shell (KBLPS) under development
by Camnegie Group, Inc. (CGI) and LB&M Associates
with the sponsorship of the Combat Service Support
Division of the U.S. Anny's Human Engineering Labo-

ratory (HEL) and the U.S. Army Strategic Logistics
Agency (SLA) provides such support tools.

At the heart of KBLPS is the Distribution Planner (DP)
planning algorithm, which underpins the Ammunition
Distribution Planner (ADP) and the Petroleum-Qil-
Lubricant (POL) Distribution Planner (PDP). A major
challenge has been to design a single common algo-
rithm general enough for use by these two domain-spe-
cific planners. The ADP and PDP support CORPS/G4
Cell planners in assessing the supportability of pro-
posed Maneuver Courses of Action (MCoA) from
ammunition and POL logistics perspectives. The DP
algorithm reasons and calculates at appropriate levels
of aggregation to demonstrate the logistics supportabil-
ity of a MCoA without overwhelming the user with too
much detail.

KBLPS and the Logistician can work together (o gen-
erate commadity distribution plans much more rapidly
and with greater accuracy, efficiency and responsive-
ness than now possible for the Logistician working
alone. The Logistician can configure the problem/sce-
nario and give guidance to the algorithm by optionally
setting various parameters; the algorithm constructs a
distribution plan which involves significant computa-
tional complexity. As a consequence, the Logistician
can spend more time analyzing and assessing plans
than generating them.

In the following, we describe the logistics planning
domain in more detail, followed by a description of the
problem solving method based on Constrained Heuris-



tic Search [Fox et al., 1989]. Lastly, we describe the
development process, observations and current status.

2.0 Problem Description

The DP addresses the problem of supporting a corps-
level combat mission maneuver course of action by
planning to move as much product as possible forward
to the forward supply points, to meet the user-unit
product consumption/demand over a user-specified
time period (typically 3-5 days in this domain).
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The above picture depicts the flow of materiel. Ammu-
nition distribution requires the planning of ammunition
shipments from Corps  Support Areas (CSA'S) 1o
Ammunition Supply and Transfer Points (ASP's &
ATP's); POL distribution plans POL shipments from
General and Direct Support (GS, DS) points to Main
and Forward Support Battalions (MSB's & FSB's).
Each domain has particular aspects which make it
complex. For example, there are far more Ammunition
types (called DODICs) than POL product types. On the
other hand, POL distribution resources such as ankers
and storage bags are product specific, which is not the
case for ammunition. The shape of the distribution net-
work is potentially more complicated for POL,

The principal goal of distribution planning is to maxi-
mize the satisfaction of unit demand. Priorities must
be respected so that higher priority orders are satisfied
before lower priority orders. But the preference for
higher priority orders must be tempered by the objec-
tive that lower priority orders cannot be completely

ignored and starved; hence, there must be a balance
between these conflictin g goals.

An important secondary objective is to meet day-to-
day inventory stockage objectives, which are Logisti-
cian-specified in terms of number of days of supply in
the context of the CoA being supported. When in con-
flict with the primary objective, this objective is
relaxed.

The distribution planner must assign Material Han-
dling Equipment (MHE), Main Supply Routes (MSR),
truck and available inventories to supply the user units
consumption/demands in the best possible way over
time. In general, this is an “over-constrained” problem
- the net demand is generally substantially greater than
inventory and/or material handling and carrying capac-
ity can handle, at least in some time-frames. Hence,
some of the demand will remain unsatisfied. It is the
G4 Log Planner's responsibility, to find the means to
move more material and/or to set aside the subset of
demand that can best be "left aside” and still meet the
commander's intent with the subset of materials that
can be moved.

Moreover, in different scenarios different resources
will be most scarce. Thus, the planner must maximize
efficient usage of all resources, and in particular the
scarce resources, in order to maximize over-all order
satisfaction. This must be done in light of commander
intent/mission, balanced servicing of all combat units
so they can adequately support the mission and each
other, and available assets.

3.0 Overview of Approach

The planning algorithm plans commodities distribution
through its model of the distribution network of supply
points, with the objective to maximize on-time satis-
faction of demand, in the form of orders, and meet mis-
sion-driven stockage objectives. The generated plans
are feasible - resource capacity constraints are not
exceeded at the level of aggregation being used.

The DP algorithm constructs a plan by iteratively
selecting an order (the 'next best’ order not yet in the
plan) and then placing that order into the plan. The DP
reasons and plans “opportunistically", in the sense that
neither the sequence in which orders are planned nor
the way in which orders will be planned are determined
in advance. Since there are typically a large number of
orders which could be planned next and numerous
ways to plan them, the DP yses knowledge of the prob-
lem structure 1o guide the search to make these deci-



sions quickly, efficiently, and accurately. More
precisely, high priority orders which rely on resources
which are heavily contended for in certain time inter-
vals are planned as early as possible in the planning
process, to ensure that these high priority orders are not
left out of the plan. The algorithm strives to relieve
contention for over-constrained resources by planning
elsewhere (in time and/or location) orders that are con-
tending for those resources and that also have reason-
able alternatives.

The DP algorithm provides a mechanism which allows
a Logistician-specified percentage of higher priority
orders to be satisfied first, then a percentage of lower
priority orders, and then the remainder of the higher
priority orders. In this way, priority is respected but
lower priority units and orders are not starved com-
pletely. This balance mechanism gives control to the
Logistician, and is consistent with the KBLPS philoso-
phy of being a Decision Support System.

3.1 Constrained Heuristics Search

KBLPS uses the problem-solving model of Con-
strained Heuristic Search (CHS) [Fox et al.,, 1989].
CHS combines the power of Constraint Satisfaction
(CSP) techniques with heuristic search. It uses a con-
straint graph to model a problem and uses
measurements of the properties of the constraint graph,
which we call textures, to guide the search process of
iteratively selecting a variable and assigning a value to
it.

CHS models a logistical problem using a temporal/
capacily constraint graph (figure 1). The nodes are
variables to which one or more values are to be
assigned. In the logistics domain, nodes in the graph
represent activities to be scheduled, i.e., assigned a
start time, end time, and a set of resources. The arrows
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represent temporal constraints between activities that
the assignment of the start and end times must satisfy
(e.g., precedence constraints). In this case we show
only “before” temporal constraints. The heavy arcs are
capacity constraints. They are disequalities that specify
that two connected activities cannot use the same
resource at the same time, i.e., cannot be assigned the
same resources during the same temporal period.

An important component of the CHS model is that
there exist domain independent properties of the con-
straint graph, called textures, that can be used to con-
struct search heuristics:

Value Contention: degree of to which more than
one variable wish to have the same value.

Variable Reliance: degree to which a variable
relies upon the assignment of a particular value.

Variable Looseness: size of range (conjunction of
constraints).

Constraint Tightness: degree to which the con-
straint reduces the set of admissable solutions.

Constraint Importance: how important is it to sat-
isfy the constraint,

Figure 2 depicts a Contention Graph, which is a elabo-
ration of the temporal/capacity constraint graph. It adds
an additional node for each resource so that texture
measures can be stored in the graph at the resource
nodes. The picture depicts the aggregate demand over
time that exists for Resource Rz as imparted by the
individual demands of Activities A3, Ay, and Axq

Problem solving is performed by iteratively selecting
an activity and assigning a temporal period, i.e., start
time and end time, and one or more resources. In par-
ticular, the following steps are followed cyclically until
all activities have been assigned resources and time
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periods. Given a logistics problem modelled using a
contention graph:

1. Perform constraint propagation (aka arc-consis-
tency).

2. Measure textures.
3. Select an activity.

4. Assign a temporal period and resources.

In the context of distribution planning, textures that are
measured are contention for a resource from activities,
and the reliance an activity has on a particular resource.
The DP algorithm first identifies which resources are
most heavily in demand relative to their availability at
specific time intervals within the planning horizon, and
then assigns them to the most reliant activities so as to
exploit them as completely as possible.

Backtracking occurs whenever a deadend is reached.
Experience with this approach in the domains of fac-
tory scheduling and spatial planning have shown that
backtracking is minimal [Sadeh, 91; Baykan & Fox,
92].

3.2 Algorithmic Steps

KBLPS implements a variation of CHS based on the
work of [Sadeh & Fox, 90; Sadeh 91]. For each order
for ammunication or POL, there exists more than one
way of satisfying it. A chain of activities defines the
‘process steps' that must be performed to move material
forward; these include truck loading, hauling a quantity
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of commodity from one supply point to another, etc.
Each order can be satisfied by more than one chain of
activities, resolting in a tree of alternative activity
sequences. Activity Model 'templates' define these
generic process/activity sequences. The union of these
activity tree templates for each order defines the con-
straint graph for the distribution planner.

At this point, the constraint graph is not yet complete.
The demand an individual activity has for a resource is
not yet known in the activity tree template for an order.
The demand for ammunition (or bulk petrolenm) is
probablistically propagated through the distribution
network, thereby distributing an individual order’s
demand across the alternative activity chains that may
satisfy it.

With the constraint graph now complete, textures can
be measured. The impact on the modeled resources
(trucks, roads, MHE) if the demand were to be totally
satisfied is calculated. The need for the resources is
compared to their availability in ‘'time/resource
chunks'. The resource(s) most in demand relative to
their availability are singled out for scrutiny. The
demand (in the form of back-propagated orders) con-
tending for those resources are reviewed for criticality;
those orders most dependent (they have fewest alterna-
tive ways of being satisfied) on those resources are
selected to be placed into the plan. This is done in such
a way, however, (e.g., by 'sliding' them in time) as to
relieve the bottleneck effect on the heavily-contended
resource(s) as much as possible. The remaining (as yet
un-scheduled) part of the problem is then re-assessed



and the next-most-bottlenecked resources and most-
critical orders are dealt with. This cyclical process con-
tinues until there is no remaining demand to satisfy or
there are no time/resource fragments remaining that
can be used to build another plan segment.

Of course, the process is considerably more complex in
detail than this summary might suggest. For example,
at the first step, propagation of demand through the dis-
tribution network, a probabilistic view is imposed, rec-
ognizing that there is uncertainty in exactly when
material movements will actually be assigned, how
long shipment will take, which orders and associated
quantities will succeed in capturing resources, etc.

The basic sequence as the Plan is generated is: (1)
Measure Textures; (2) Select an Order; (3) Plan the
Order; (4) Record the plan fragment. We discuss these
steps here in more detail:

1. Measure Textures: For each activity, determine its
probablistic demand for each resource it needs,
such as ammunition, material handling equipment,

. elc. For each resource, aggregate the probablistic
demand from each activity that needs it. For each
activity, determine its reliance on each resource it
needs.

2. Select Order: Select the (approximately) most-con-
tended-for resource in some specific time interval.
At this point a few or many resources may be
approximately equal in their contention measure.
Being able to control how approximate this equality
measure is gives us the capability to trade off some
detailed precision for execution speed; the algo-
rithm can select one of the approximately most-
contended for resources much more rapidly than
selecting the exactly most-contended for resource.
(An underlying observation here is that the conten-
tion measures are probabilistic, and hence not
exactly precise.) We are continuing to explore how
sensitive plan results and computation speed are to
these approximation factors. Numerous researchers
in planning and scheduling have discussed order
selection. We have been influenced most by [Fox et
al., 1989; Sadeh & Fox, 1990; Sadeh, 1991}

The DP algorithm then selects an order from the
group of propagated orders contending for the
selected highly-contended resource at that time.
This selected order has approximately the highest
“Reliance™ on the critical resource in that time
interval. High Reliance reflects the order's need to
be planned on the critical resource in that time
interval; from a planning perspective, it is impor-
tant to make that decision now (i.e., on this plan
fragment cycle) before the critical resource is con-

sumed by another order which doesn't need it as
badly. The algorithm also works to plan the order
without using the critical resource in the critical
time interval, thereby helping to relieve that bottle-
neck. Moreover, the specific activity (e.g., unload
trucks) performed on the critical resource (e.g., lim-
ited MHE) is the focus for planning the order; we
refer to this as the "critical activity" (CA).

3. Plan the Selected Order: Planning the CA is the
focus of planning the order. First, the algorithm
constructs a feasible time window for the CA. This
is done by propagating backwards through the
order’s Activity Model from the order due time and
forwards from the earliest feasible time for begin-
ning the shipment (time is represented continu-
ously). The CA can be laid into any (sufficiently
long) time block within this window; the order will
be feasible with respect to all of its other activities.

The algorithm works to choose the start time for the
critical activity which reduces the contention for
the critical resource to the maximum extent possi-
ble, using the contention measures discussed above.
The algorithm then proceeds to plan up- and down-
stream activities for the order with a just-in-time
approach. Each order is planned such that its exe-
cution is feasible; hence, the plan is feasible at each
successive step (cycle) of the plan-building process;
at whatever point the data drives the algorithm to
stop processing, the plan will be feasible. There
may be some demand that remains unsatisfied as
resources have been consumed by higher priority
demand, but the overall plan as generated will be
feasible according to resource availabilities.

4. Record Plan: Having laid another plan fragment
into the overall emerging plan, the algorithm
updates the resource consumption/availability
tables and the demand profiles for resources which
have been affected. Some constraint propagation is
also performed at this point as needed; e.g., when
resources become exhausted in some time interval,
demand for those resources is recalculated for the
time intervals where they have not been totally con-
sumed.

4.0 Development Process

The developmental process has gone through several
stages of approach and intensity during early require-
ments definttion and more recent focused develop-
ment:



» Conceptual definition of logistics planner tasks, and
what subset could be reduced to engineered soft-
ware solution(s); this was accompanied by a series
of early (LISP-based) prototypes to help clarify
requirements, needs, and possibilities; these efforts
led to first versions of the DP algorithm outside of a
basic research environment.

» First fully integrated KBLPS version, using
scanned paper maps, limited (notional Xth corps)
battle scenarios; expanded second version (applied
research) of DP algorithm; still largely LISP-based
environment,

» Current fully integrated (fully C/C++) version; soft-
ware engineering methodology (using CASE tools)
to develop firm design requirements, coding and
testing of GUI, KB, and DP and Transportation
Scheduler algorithms; step-wise unit testing and
module integration; exhaustive stand-alone algo-
rithm testing, refinements, and changes to increase
execution speed; exhaustive integrated testing; cur-
rent on-going field testing with skilled world-class
logisticians.

The current version of KBLPS has been tested on
problems of a maximize size of 4,000 orders,
20,000 activities, and 300 resources. The average
execution time for a problem with 2,000 orders and
10,000 activities is 2.5 seconds on a Sparc10.

5.0 Validation Process

In order to facilitate testing and validation, we devel-
oped a comprehensive Test-Case Generator (TCG),
which takes a high level scenario description as input
and outputs a full scenario description which can be
input into the DP. We first generated small simple sce-
narios, gradually upgrading the TCG so that it now can
build scenarios that stress the algorithm in specific and
controllable ways. The TCG was indispensable as we
debugged and improved the DP; we now have a test
suite of over 100 test cases.

It is useful to distinguish between bugs that cause the
system to crash and bugs which do not. The former are
usually much easier to find, isolate the cause, and
repair. The DP algorithm is complex; it was inevitable
that there will have been design and coding errors
which do not cause the system to crash, but do cause
the algorithm to make poor decisions. These bugs are
much harder to find, isolate the cause, and fix. After a
substantial baseline algorithm evaluation and debug-
ging process was completed, the DP was reliable in
terms of running to completion even on completely

new scenarios. We then spent a second significant
amount of time examining DP results for plan quality,
i.e., looking for situations where the DP made a poor
decision, figuring out why, and improving the algo-
rithm to make a better decision in that situation. Unfor-
tunately there really is no alternative to this labor
intensive method.

The algorithm subsequently went through a thorough
examination by the domain experts at LB&M Associ-
ates. As a result, they were quite impressed with the
algorithm's responsiveness and sensitivity to changes
in the model, so that, for example, if a little more
resource is added, the algorithm predictably plans more
orders, and vice versa.

The result of this painstaking debugging process is that
the DP is quite robust, running successfully to comple-
tion on new scenarios and generating high quality
plans.

6.0 Observations

The design of the DP algorithm has been challenged by
the need to consider carefully the trade-off between
plan quality and execution speed. Too much calcula-
tion can take too long, while too little can result in
lower guality plans. This issue has been noted by other
researchers trying to build a real system with users in
the field [Sadeh, 91; Zweben et al., 90). As we gain
more experience with the algorithm's behavior and the
utility of the plans it produces, we anticipate design
refinements to continue to balance speed vs. quality.
One aspect may well be other layers of aggregating
data (e.g., placing groups of ammunition types into a
single “demand bucket” thereby reducing the data-
intensity of a problem scenario.)

We have succeeded in designing a single algorithm
capable of handling both Petroleum and Ammunition
commodity distribution. There are some key differ-
ences between these, perhaps most notably the heavy
reliance on Throughput (direct ammunition trans-ship-
ment from CSA to ATP) and less reliance on Through-
put with Class III. KBLPS enables the logistician to
specify the mix of throughput and supply point-to-sup-
ply point shipment he prefers to aim for in any particu-
lar scenario. The DP algorithm respects those user-
specified preferences and works toward satisfying
orders accordingly.

The DP algorithm is designed to be opportunistic, so
that while it is constructing the plan, its selection of the
most constrained resource on which it focuses its atten-



tion is completely dynamic. For each of the modeled
resources, we have test case scenarios in which that
resource is clearly the most constrained, and the DP
continuously focuses its attention on that resource. In
other scenarios, the are several resources which have
heavy contention and the DP shifts its focus from one
to the other, so that as it finishes planning one bottle-
necked resource, it shifts its attention to another.

The DP is also designed to relieve bottlenecks, so that
sometimes as the DP actually relieves a bottlenecked
resource by planning orders elsewhere, that resource
becomes less bottlenecked and the DP shifts its atten-
tion to a more bottlenecked resource. Shifting of atten-
tion also occurs with respect to time, so that the DP can
maintain its focus on one resource but shift the focus to
different times throughout the planning horizon. All of
these shiftings of focus contribute to the construction
of a high guality robust plan, in which heavily con-
tended-for resources are planned to be utilized with
near maximal efficiency.

7.0 Status

KBLPS is currently being used by the XVIIth Air-
borne Corps, Fort Bragg, to plan logistical support for
rapid deployment. KBLPS has also been chosen by the
US Army Materiel Command as one of the sustainabil-
ity tools for the “Lousiana Maneuvers”. It is also being
acquired for use in Europe, Korea and by the Joint
Chiefs of Statf J4.

KBLPS is being integrated into the curriculum at the
US Command and General Staff College, Fort Leaven-
worth, Kanas, for training logisticians in distribution
planning. It is also being integrated into the Army War
College, Carlisle PA, general officers” command post.

8.0 Summary

The Knowledge Based Logistics Planning Shell
(KBLPS) is a cutting-edge application combining the
best of conventional (X-windows, Motif, etc.) and
Artificial Intelligence (Knowledge Base, constraint-
directed scheduling algorithms) technologies. There is
substantial potential for further growth and develop-
ment, including adding new applications modules plat-
formed on top of the rich knowledge base already in
place. KBLPS represents an emerging capability to
accomplish fast and accurate logistics planning at sev-
eral echelons in the army.

This application is currenty undergoing intense evalu-
ation and use by skilled logisticians, supporting their
on-going efforts to plan for regional contingencies
around the world. The user's, and their senior manage-
ment's, current enthusiasm and support bode well for
further constructive development, extensions, and
deployments in the near future.
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