
*Correspondence to: Mark S. Fox, Department of Mechanical and Industrial Engineering, and Department of Computer
Science, University of Toronto, Toronto, Ontario, Canada M5S 3G9. E-mail: msf@ie.utoronto.ca

Contract/grant sponsor: Natural Science and Engineering Research Council of Canada
Contract/grant sponsor: Numetrix Limited
Contract/grant sponsor: IRIS Research Network
Contract/grant sponsor: Materials and Manufacturing, Ontario
Contract/grant sponsor: Digital Equipment of Canada

CCC 1094—6136/98/020089—37$17.50
(1998 John Wiley & Sons, Ltd.

JOURNAL OF SCHEDULING

J. Sched. 1, 89—125 (1998)

THE ODO PROJECT: TOWARD A UNIFIED BASIS FOR
CONSTRAINT-DIRECTED SCHEDULING

J. CHRISTOPHER BECK1, ANDREW J. DAVENPORT2,
EUGENE D. DAVIS3 AND MARK S. FOX1,2,*

1Department of Computer Science, ºniversity of ¹oronto, ¹oronto,Ontario, Canada M5S 3G9
2Department of Mechanical and Industrial Engineering, ºniversity of ¹oronto, ¹oronto, Ontario, Canada M5S 3G9

3People Soft, Inc., 4305 Hacienda Drive Pleasanton, CA 94588, º.S.A.

ABSTRACT

The ODO project is an inquiry into constraint-directed scheduling with the primary motivation of the
development of a unified foundation for constraint-directed search techniques. Central to this foundation is
the exploitation of the knowledge in the constraint representation, the use of commitment assertion and
retraction as search operators, a generic model of scheduling strategies, and the use of texture measurements
to distill constraint information for search guidance. Each of these components is discussed in-depth. The
ODO framework, a commitment-based model of constraint-directed search with which many existing
scheduling techniques can be modelled and implemented, is presented along with a selection of past, current,
and future research using the framework. (1998 John Wiley & Sons, Ltd.

KEY WORDS: scheduling; constraints; search; heuristics; texture measurements; propagators; backtracking

1. INTRODUCTION

The ODO project is a theoretical and empirical inquiry into techniques of constraint-directed
search with a focus on constraint-directed scheduling. Begun in 1991 at the Enterprise Integration
Laboratory, University of Toronto, ODO has, as its chief theoretical motivation, the investiga-
tion of the primacy of constraints not only in the representation but also in the search for
a solution to scheduling problems. Constraints are not simply a knowledge representation tool
that statically represent a scheduling problem. Rather, they have a significant role to play in
guiding search techniques toward a solution [1]. The information represented in constraints
should be actively exploited to prune the search space and to provide information to heuristic
decision-making techniques. In order to investigate the role of constraints in problem solving, we
have created a unified framework for constraint-directed scheduling based on the three concepts

of the constraint graph, the assertion and retraction of commitments, and the scheduling strategy.
In addition, we have identified three components of scheduling strategies: propagators, heuristic
commitment techniques, and retraction techniques. The framework is both a cognitive tool and
an implementational tool in that it provides a conceptual model of constraint-directed scheduling
as well as the object-oriented design of our scheduling system. The primary goal of this paper is
the elucidation of the unified framework and its components.

The ODO project and, indeed, the unified framework itself, are also strongly motivated by
empirical research questions. The first component of our empirical motivation is a deeper
understanding of existing constraint-directed scheduling techniques. With few exceptions (e.g.
References 2 and 3), there has been little comparative analysis of the underlying reasons that one
scheduling algorithm is better than another in a particular circumstance. In addition, there has
been a tendency to view scheduling algorithms as monoliths rather than as containing compo-
nents to be individually investigated. As noted earlier, we have identified three components of
scheduling algorithms. The empirical comparison of instances of each component is critical for
a deeper understanding of search behavior [4] and critical as well to our theoretical motivation.

The second empirical motivation for the ODO project is to address new scheduling problems.
While most scheduling problems as they exist in the real world have some characteristics that
resemble models investigated in the literature, most real problems contain constraints that have
not been addressed in the research. This lack is less today than it was at the inception of the ODO
project as a number of researchers have begun to push beyond the job-shop model (e.g.
References 2, 5—9). However, much of the research still addresses narrowly defined optimization
criteria with questionable real-world relevance (e.g. minimization of makespan) [4]. Extending
the scope of constraint-directed techniques is also important to our theoretical motivation: we
believe the exploitation of the information represented in the constraints becomes far more
critical when the information represented is rich and varied, that is, when there are a wide variety
of constraints. This, indeed, returns to one of the original premises for applying constraint-
directed search techniques to scheduling: in the real-world, a scheduling problem is not simply the
meeting of due dates, rather, it is the satisfaction of a plethora of constraints and objectives from
many parts of the organization [10].

In this paper we present the ODO project, concentrating on the components of the unified
framework and the research issues we have investigated within the framework. In the following
section we present an introduction to constraint-directed search and scheduling. We follow this
with an overview of the ODO framework and a brief introduction of the components of the
framework before devoting a section to an in-depth description of the framework components
and examples of scheduling algorithms as they can be modelled with the framework. Finally, we
examine the research issues we have investigated within the ODO framework and briefly look at
our current and future work.

2. AN OVERVIEW OF CONSTRAINT-DIRECTED SEARCH AND SCHEDULING

Constraint-Directed Search (CDS), broadly defined, is an approach to problem solving that
explores the problem space under the guidance of the relationships, limitations, and dependencies
among problem objects. These relationships, limitations, and dependencies together are known as
constraints. The approach requires that these constraints are first represented, and second,
represented in such a way that search techniques can make use of them for guidance.

90 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 1. A small graph colouring problem represented as a CSP

2.1. The constraint satisfaction problem

The simplest application of constraint directed search is to the finite constraint satisfaction
problem (CSP) [11, 12] which can be defined as follows:
Given:

(1) A set of n variables Z"Mx
1
, . . . , x

n
N with discrete, finite domains D"MD

1
, . . . , D

n
N.

(2) A set of m constraints C"Mc
1
, . . . , c

m
N which are predicates c

k
(x

i
, . . . , x

j
) defined on the

Cartesian product D
i
])))]D

j
. If c

k
is TRUE, the valuation of the variables is said to be

consistent with respect to c
k
or, equivalently, c

k
is satisfied.

Find:

(3) An assignment of a value to each variable, from its respective domain, such that all
constraints are satisfied.

An instance of a CSP (Z, D, C) can be conceptualized as a constraint graph, G"M», EN. For every
variable v3Z there is a corresponding node n3». For every set of variables connected by
a constraint c3C there is a corresponding hyper-edge e3E. Other conceptualizations of a CSP
exist, including the dual constraint graph and join graph [13].

A consistent assignment or consistent valuation of a set of CSP variables, S, is the assignment of
a value to each variable in S such that all constraints in the subgraph induced by variables in S are
satisfied.

In Figure 1 we present a constraint graph of a CSP modelling a small graph colouring problem.
Each variable in the CSP represents a node in the graph to be coloured. Each variable (node) has
a domain of three values Mred, green, blueN and each constraint (edge) expresses a ‘not equals’
relationship.

The search for a solution to a CSP can be viewed as a traversal of the problem space consisting
of all combinations of variable domain subsets. A solution is a state with a single value remaining
in the domain of each variable and no unsatisfied constraints. The mechanism for the traversal of
the problem space is the modification of the constraint graph by the addition and removal of
constraints. The constraint graph, therefore, is an evolving representation of the search state. In
the example of Figure 1, we may (heuristically) add a unary constraint that assigns v

4
"green.

Alternatively, we may have at our disposal an algorithm that is able to infer that v
1

and v
4

must
have the same colour, and therefore we introduce a binary ‘equals’ constraint between those two
variables. Figure 2 shows a search tree for the graph colouring problem in Figure 1.

CSPs have been successfully used to model a wide range of problems, from the abstract (e.g.
graph colouring [14]) to the concrete (e.g. design [15, 16]). For an excellent review of CSP
solution techniques and applications, see References 12 and 17.

THE ODO PROJECT 91

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 2. A possible search tree for the problem in Figure 1

A constraint optimization problem (COP) [12] is defined as a CSP together with an optimiza-
tion function f which maps every tuple to a numerical value: (Z, D, C, f) where (Z, D, C) is a
CSP, and if S is the set of solution tuples of (Z, D, C), then f : SPnumerical value. The task in
a COP is to find a solution tuple with the optimal (minimal or maximal) value of f. A common
variation of this model is one in which the optimization function is a weighted sum of the
constraints violated by a particular valuation of the variables [10, 18—20]. Rather than satisfy all
constraints and optimize f, the goal is to minimize the cost by satisfying as many constraints as
possible.

92 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

2.1.1. ¼hy constraints?
Constraint-directed search relies on two interpendent intuitions. First, the representational

intuition states that to solve a problem, represent the relevant knowledge. Second, the search
intuition states that to solve a problem, guide the search with that represented knowledge.

Underlying these intuitions is the topological assumption [1]: understanding a problem’s search
space will enable the creation and selection of search techniques that can efficiently navigate the
space to solution.

In the context of CDS, the representational intuition results in the creation of a rich constraint
representation that is able to express problem knowledge at a deep level. The search intuition
suggests that we look to the constraints for search guidance: constraints are not passive objects
that evaluate a potential solution, but rather provide an understanding of the structure of the
problem which may be used to guide search in the problem space.

2.2. Constraint-directed scheduling

Constraint-directed scheduling is the representation of a scheduling problem and the search for
a solution to it by focusing upon the constraints in the problem. Given that even simple models of
scheduling (e.g. job-shop scheduling) are NP-hard [21], the search process typically depends on
heuristic commitments, propagation of the effects of commitments, and the retraction of commit-
ments. In more complex scheduling models the goal is not simply meeting due dates but also
satisfying many complex (and interacting) constraints from disparate sources within the organiza-
tion as a whole [10, 22]. In short, scheduling is a prime application area for constraint-directed
search.

2.2.1. ¹he job-shop scheduling problem
One of the simplest models of scheduling widely studied in the literature is the job-shop

scheduling problem. The classical N]M job-shop scheduling problem is formally defined as
follows. Given are a set of N jobs, each composed of M totally ordered activities, and M re-
sources. Each activity A

i
requires exclusive use of a single resource R

j
for some processing

duration dur
i
. There are two types of constraints in this problem:

(1) precedence constraints between two activities in the same job stating that if activity A is
before activity B in the total order then activity A must execute before activity B;

(2) disjunctive resource constraints specifying that no two activities requiring the same re-
source may execute at the same time.

Jobs have release dates (the time after which the activities in the job may be executed) and due
dates (the time by which all activities in the job must finish). In the classical decision problem, the
release date of each job is 0, the global due date is D, and the goal is to determine whether there is
an assignment of a start time to each activity such that the constraints are satisfied and the
maximum finish time of all jobs is less than or equal to D. This problem is NP-complete [21].
A recent survey of techniques for solving the job-shop scheduling problem can be found in
Reference 23.

An example of a 3]5 job-shop scheduling problem is shown in Figure 3. In this example, there
are three jobs (A, B, and C), each job has five activities (e.g. A

1
, . . . , A

5
) and 5 resources

(R
1
, . . . , R

5
). The release date for all jobs is 0 and the due date for all jobs is D. The resource

THE ODO PROJECT 93

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 3. An example 3]5 job-shop scheduling problem

Table I. Notation

Symbol Description

ST
i

A CSP variable representing the start time of A
i

STD
i

The discrete domain of possible values for ST
i

est
i

Earliest start time of A
i

lst
i

Latest start time of A
i

dur
i

Duration of A
i

eft
i

Earliest finish time of A
i

lft
i

Latest finish time of A
i

lft(S) The latest finish time of all activities in S
est(S) The earliest start time of all activities in S
dur(S) The sum of the durations of all activities in S

required by each activity is indicated in the upper-left corner and the duration, though not
specified, is represented by the length of each activity. The arrows represent precedence con-
straints.

Many scheduling problems are not simply CSPs but rather COPs. Relatively simple optimiza-
tion functions have been studied in the literature such as the minimization of makespan (i.e. find
the schedule with the minimum D) [24], minimization of the average (or maximum) tardiness of
activities (i.e. how late after their due-date activities finish), or some combination of other
attributes (e.g. minimize work-in-process combined with tardiness) [10, 18, 25]. There has been
little work that addresses the many complex and interacting objective functions that typically
arise in real-world problems.

For an activity, A
i
, and a set of activities, S, we use the notation in Table I through the balance

of this paper. We will omit the subscript unless there is the possibility of ambiguity.

2.2.2. Historical perspective
A number of threads of research have contributed to modern constraint-directed scheduling. It

is beyond the scope of this document to discuss the contributions of each thread, much less those
of each scheduling system. For our purposes, we note the three chief threads and direct interested
readers to Reference 22 and 26 for more in-depth historical perspectives. There has been
cross-fertilization among these threads as they have evolved and some work (e.g. References
27—29) spans more than one category. This categorization is not meant to indicate completely

94 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

independent lines of research but rather the areas that modern constraint-directed scheduling
draws on.

¹he knowledge representation thread: The original constraint-directed scheduling work is due
to Mark Fox and Steve Smith and their work on the ISS scheduler [10]. They were the first to
adopt constraints as a key knowledge representation (KR) and search guidance tool for both
schedule construction and revision. In particular, this thread is responsible for the use of
constraints to represent scheduling problems in their full generality and for the use of the problem
knowledge represented in the constraints as the main basis for heuristic decision making.
Systems, directly descended from ISIS (OPIS [18], CORTES [30], MicroBOSS [25], DCHS
[31]) and others which have adopted the constraint-directed philosophy (SONIA [32], DAS
[33], GERRY [19, 20], MinConflicts [14], DisARM [7]), investigate a wide space of constraint
representations and solution techniques.

¹he constraint programming thread: The constraint programming (CP) community has tradi-
tionally stressed representation while using more generic solution techniques: CP languages
could typically represent problems far more complex than their solution techniques could handle.
The CP thread, developing from Prolog, aimed to provide languages for clear, declarative
problem representations, with constraint propagation being dealt with by the underlying lan-
guage. Attempts to solve hard scheduling problems with these languages were often unsuccessful
as the propagation in early versions of constraint programming languages, forward-checking and
arc-consistency, was not sufficiently powerful. More recent work in this field has developed
specific propagation techniques for different types of constraints found in scheduling. These
recent investigations have corrected the imbalance in solution power and have provided a num-
ber of impressive results [5, 6, 8, 34—36].

¹he operations research thread: The long(er) history of Operations Research (OR) provides
a number of techniques for constraint-directed scheduling. From work which pre-dates
constraint-directed scheduling itself [37, 38] to techniques which have been adopted and
adapted more recently [24, 27—29], a variety of OR methods have significant impact on both
the approaches to and performance of modern constraint-directed scheduling systems. Within
the OR community, scheduling techniques have been developed based on mathematical pro-
gramming techniques (integer programming, column generation) and local search (tabu
search [39—41], genetic algorithms [42], simulated annealing [43]). Although these techniques
can be very useful, one drawback is that they tend to be developed for a specific problem type
(e.g. job-shop scheduling), and often cannot represent full, real world problems in all
their generality.

3. AN OVERVIEW OF THE ODO FRAMEWORK

The ODO framework is a way to understand constraint-directed scheduling algorithms. As
such, we believe that the existing CDS work can be understood within the framework and that
this understanding allows a new perspective on that work. We are not necessarily proposing this
framework at the implementation level. Depending on the choices made for the various compo-
nents of the scheduling strategy, close interaction may be required and therefore an implementa-
tion may split or merge the components we have identified. That is not to say that the framework
cannot also be used at the implementational level: the ODO framework is also the object-oriented
architecture of the ODO implementation.

THE ODO PROJECT 95

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 4. A high-level view of ODO framework

A high-level overview of the ODO framework is shown in Figure 4. At this level the objects of
the framework are the constraint graph, the scheduling strategy or policy, and commitments which
are asserted into and retracted from the constraint graph by the policy. This framework for CDS
is an extension of the original ODO framework proposed in References 44 and 45.

The constraint graph contains a representation of the current problem state in the form
of variables, constraints, and objects built from variables and constraints. A commitment
is a set of constraints, variables, and problem objects that the search strategy adds to and
removes from the constraint graph. The assertion and retraction of commitments are the only
search operators.

A policy contains the components displayed in Figure 5. A pseudo-code representation of
a policy is presented in Figure 6. The commitment assertion is trivial as it requires adding
a constraint to the existing graph. The other components may require significant effort.

A heuristic commitment technique is a procedure that finds new commitments to be asserted. It
can be divided into two components: the first performs some measurement of the constraint
graph in order to distill information about the search state and the second uses this distilled
information to heuristically choose a commitment to be added to the constraint graph. A propa-
gator is a procedure that examines the existing search state to find commitments that are logically
implied by the current constraint graph. A retraction technique is a procedure for identifying
existing commitments to be removed from the constraint graph. The termination criteria is a list of
user-defined conditions for ending the search. There may be many criteria: a definition of
a solution (e.g. all the activities have a start time and all the constraints are satisfied), determina-
tion that a solution does not exist, limits on the search in terms of CPU time, number of
commitments, number of heuristic commitments, number of retractions, etc.

3.1. Why the framework

The ODO framework provides two important advantages to our research effort. The first is
a cognitive model of constraint-directed scheduling: the framework represents a way to think
about constraint-directed scheduling. Using the framework, we can more quickly understand

96 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 5. Schematic of a policy

Figure 6. Pseudo-code for a policy

THE ODO PROJECT 97

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

(and create) novel scheduling strategies and components, understand the structural similarities
and differences among existing strategies, and approach new problem types.

The second advantage of the ODO framework is as an implementational model of constraint-
direct scheduling. The high-level concepts of constraint graph, commitment, and scheduling
strategy as well as the strategy components all have corresponding objects in our C##

implementation of the ODO scheduling shell. New propagators for example, can be created by
inheriting an interface from an abstract Propagator class and then implementing the details of
the new propagator. At run-time, then, we can specify that the new propagator (perhaps as one of
a set of propagators) is used in a scheduling strategy. The architecture supports rigorous
empirical comparison of the components of scheduling algorithms, allowing us to compare, for
example, different heuristic commitment techniques while keeping the propagators and retraction
techniques constant. It provides the ability to compose novel scheduling strategies simply from
the component instances previously implemented. It also allows us to address novel problems
with extensions to the constraint graph and commitment representations.

4. THE COMPONENTS OF ODO: THE CONSTRAINT GRAPH
AND COMMITMENT MODEL

In this section we discuss two components of the ODO framework: the constraint graph and the
commitment model. The scheduling strategy, together with its components is discussed in the
following section.

4.1. ¹he constraint graph representation

The constraint graph is the evolving representation of the search state. It is composed of
components at the constraint/variable level as well as of components at the higher scheduling
level. These higher level components are themselves composed of sets of variables and constraints.
Examples of the lower level components include interval variables which can be assigned to
a (possibly non-continuous) interval of integer values and constraints expressing various math-
ematical relationships (e.g., less-than, equal) among interval variables. At the higher level, the
constraint graph represents, among other scheduling components, activities, Allen’s 13 temporal
relations [46], and resources and inventories with minimum and maximum constraints. The
components of the constraint graph are not an innovation of the ODO model as most constraint-
directed scheduling systems represent these concepts in some way (e.g. References 34, 36, 47
and 48).

Neither the implementation-level details of the constraint graph nor the scope of the objects
represented are part of the ODO framework. Such prescriptive details and scope would unnecess-
arily limit the applicability of ODO to scheduling problems with well-understood constraint-
based representations. One of the key aspects of constraint-directed search is the extensibility and
flexibility of the representation, and therefore the ODO constraint graph is continuously evolving
as our research explores new areas of application of constraint-directed scheduling.

4.2. The commitment model

In traditional, constructive, constraint-directed search, the forward movement through the
search space is achieved by the assignment of a value to a variable. Given the heuristic nature of

98 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

the assignment step, it is likely (in difficult problems) to encounter a dead-end, that is, a state in
which at least one variable has no values to which it can be assigned without breaking one or
more constraints. At this point some form of backtracking is done: some previously made
assignments are undone. Forward search then continues.

An instance of a CSP or COP can also be addressed with a local search procedure (such as tabu
search and simulated annealing). Local search techniques work on sets of search states S, which
may be partial or complete assignments of values to variables. A local search procedure uses
a neighborhood function f to generate new search states from the current search state : f (S)PS@.
From S@, one or more states are selected for exploration. Some analysis is typically done in each
new state to decide whether it is acceptable. If so, the neighborhood function is applied to the new
state and search continues. If it is not accepted, the previous state is returned to and a different
neighbour is chosen.

4.2.1. Commitments, assertion, and retraction
A commitment is a variable, a constraint, or a set of variables and constraints, added to the

constraint graph representation of the problem during search. Assertion of a commitment is the
process of adding the problem objects in the commitment to the constraint graph. Thus
commitment assertion is a state transition operator. Retraction of a commitment is the process of
removing a commitment from the constraint graph. Like assertion, retraction is a state transition
operator, resulting in a new constraint graph.

Examples of commitments in scheduling include:

(a) Assigning a start time to an activity by posting a unary ‘equals’ constraint (e.g. the start time
of activity A is equal to 100).

(b) Posting a precedence constraint between activities (e.g. activity A executes before activity B)
[49, 50].

(c) Instantiating a process plan, in response to a demand for some amount of an inventory.
A process plan is a set of activities and constraints that together produce some inventory.
Assertion of a process plan commitment, like the assertion of any commitment, adds these
new objects to the constraint graph.

(d) Adding a new resource to the problem. It may be that part of the scheduling problem is to
determine (and perhaps minimize) the number of resources used. Such a problem arises in
transportation applications where it is desired to use as few trucks as possible to meet the
shipment requirements. A resource, like an activity, is composed of variables and con-
straints that, with an assertion, are added to the constraint graph.

4.2.2. Commitments as a unification for constructive and local search
Both constructive and local search techniques can be modelled as the assertion and retraction

of commitments. This is straightforward in constructive search where the assertion and the
retraction are explicit. In local search, the assertion and retraction takes place in a single step.
Changing the value of a variable can be modelled as an assertion (add the new commitment that
assigns the variable to its new value) followed by a retraction (un-assign the variable, that is
remove the commitment that assigned it to its current value). A step in the search space, for local
search, therefore, is one or more assertions and retractions. Figure 7 shows a schematic example
of both styles of search based on assertion and retraction of commitments.

THE ODO PROJECT 99

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 7. Constructive and local search in the commitment model

The definition and use of commitments makes no assumptions either about the form of
a commitment (other than being a set of variables and constraints) or about why particular
commitments are asserted or retracted. The former point is critical in modelling the variety of
commitments that are used in constraint-directed scheduling while the latter point is important
for the wide applicability of the commitment model. One of the major differences between local
search and constructive search styles is in the reasoning that identifies the commitments to be
asserted and retracted. By simply modelling the assertion and retraction of commitments without
specifying the ways in which the commitments are identified, we are able to account for both
constructive and local search techniques.

4.2.3. Research issues
The use of the assertion and retraction of commitments as the sole search operators raises of

a number of research issues:

1. Constructive and local search are generally viewed as having different strengths and
weaknesses. While constructive search, in recent years at least, makes use of both sophisti-
cated propagators and heuristic commitment techniques and is typically systematic and

100 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

complete, local search generally uses simpler heuristics, appears to scale better in
some domains (e.g. hard random 3-SAT [51]), and is often easier to understand. An
overarching issue is the investigation of hybrid techniques that can combine the strengths
of each. For example, can we use propagators with local search techniques? (Some work
has recently been done on this question in the context of vehicle routing [52]). Can
we apply the heuristics that are more typical of local search to constructive search or
vice versa?

2. Are there structural characteristics of a problem (and of a sub-problem) that indicate it is
better to apply constructive rather than local search techniques or vice versa? Can we move
back and forth between constructive and local search while solving a single problem? Can
we identify search states where we should change our style from constructive to local or vice
versa?

3. Given that the same problem may be solved using different commitments (e.g. job-shop
scheduling can be solved by assigning start times or by sequencing activities), is there any
information that can tell us which types of commitments should be used? Can finding the
right commitment type make the search for a solution much easier?

4. Commitments can be of different granularities. ‘Macro commitments’ are large moves in the
search space where, for example, all the activities on a unary resource are sequenced (or
resequenced) [18, 53]. In contrast, ‘micro commitments’ make small steps such as assigning
(or reassigning) the start time of a single activity [25]. An interesting question therefore is
the distinction among commitments of different granularities. Are they all equivalent in
some sense (i.e. is a macro commitment simply an agglomeration of micro commitments)?
Are there structures in the constraint graph or conditions of the search (e.g. significant
backtracking) that suggest that a macro commitment may be of more use? If macro
commitments are based on the same information as a micro commitment are they more cost
effective? Is there a trade-off? (For research that has examined some of these issue see
References 3, 25 and 54.)

5. THE COMPONENTS OF ODO: THE SCHEDULING STRATEGY

In this section, we discuss the three main components of a scheduling strategy: heuristic
commitment techniques, propagators, and retraction techniques.

To model a scheduling algorithm, instances of each component are specified. Since it is the case
that some scheduling algorithms may not use some components of a strategy, say a propagator,
while others may use multiple propagators, it is possible to specify none, one, or many instances
of each component for a single scheduling strategy.

5.1. Heuristic commitment techniques

Traditionally in CSP techniques, a commitment is the assignment of a value to a variable. With
this narrow definition, heuristics focus upon variable and value orderings: what is the next
variable to assign and to what value will it be assigned. With our more general definition of
a commitment, we view heuristics as procedures which, on the basis of measurements of the
current search state, suggest new commitments. The traditional variable and value ordering
heuristics, as well as heuristics that make different search steps (e.g. References 34, 49 and 50), are
particular examples of such procedures.

THE ODO PROJECT 101

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

We divide the heuristic commitment technique into two sub-components: measurement of
textures and the identification of the heuristic commitment based on the information in the
textures. As with the larger search strategy, it is possible to specify a null-component in a heuristic
commitment technique. We do not require heuristic commitment techniques to be based on
texture measurements, however as we argue below, there are few heuristics that do not use
textures for search guidance.

5.1.1. Texture measurements
A texture measurement is a technique for distilling information embedded in the constraint

graph into a form that heuristics can use. A texture measurement is not a heuristic itself. For
example, a texture measurement may label some structures in the constraint graph (e.g. con-
straints, variables, sub-graphs) with information condensed from the surrounding graph. On the
basis of this condensed information, heuristic commitments can be made. A relatively small
number of texture measurements have been explicitly identified [25, 55], however, we take the
broad view of a texture measurement as any analysis of the constraint graph producing
information upon which heuristic commitments are based.

The concept of texture measurements is directly related to the representational and search
intuitions. If we are to intelligently search for a solution to a problem and if the problem
information is represented in a rich constraint representation, we need to look to the constraints
for guidance. We need to distill information from the underlying constraint graph representation
of a problem state and base our search commitments on this information.

It is not the case that any possible heuristic decision that can be made in constraint-directed
search is necessarily based on texture measurements. However, any heuristic commitment
technique that makes use of information in the constraint graph is, at least partially, texture-
based. For example, we would not classify a ‘heuristic’ that randomly selects an activity and
randomly assigns it a start time as texture-based as it is doing no measurement of the constraint
graph.

In general, a texture measurement may be prohibitively expensive (e.g. NP-hard or worse)
to compute. Making practical use of texture measurements, then, often requires a polynomial
estimation algorithm. For example, the value goodness texture is defined to be the probability
that a variable, », will be assigned to a particular value, v

!
, in a solution [55]. To exactly

calculate the value goodness we need the ratio of the number of solutions to the problem
where »"v

!
to the total number of complete valuations. This is clearly impractical. In practice,

therefore we might estimate the goodness of v
!

by examining the proportion of values of
connected variables that are consistent with »"v

!
. We may then base a heuristic commitment

on the (estimated) value goodness by choosing to assign value with greatest (or least) goodness.
What information a texture distills, how that information is practically estimated, and what
commitment is made on the basis of the estimated information form the basic issues surrounding
texture measurements.

Example. The contention texture [25] is the extent to which variables related via a dis-
equality constraint compete to be assigned to the same value. To exactly calculate contention for
disequality constraint, C, we require all the solutions to the problem with constraint C removed.
Contention is the ratio of the number of these solutions that are inconsistent with C to the
total number of solutions. As with value goodness, exact calculation is impractical and therefore
an estimation is required. For a unary resource in scheduling there is the added complication of

102 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 8. Activities A
1
, B

2
, and C

3

the time dimension: contending activities require the same resource over overlapping time
intervals.

The Operation Resource Reliance/Filtered Survivable Schedules (ORR/FSS) heuristic [25]
estimates contention by aggregating a probabilistic estimate of each activity’s individual
demand for the resource over time. If an activity does not require a resource its individual
demand is 0. Otherwise, a uniform probability distribution over the possible start times of the
activity is assumed: each start time has a probability of 1/ DSTD D. (Recall that STD is the domain
of the activity’s start time variable. A uniform probability distribution is the ‘low knowledge’
default. It may be possible to use some local propagation in the constraint graph to find a better
estimate of the individual demand [25, 56].) The individual demand, ID (A, R, t), is the probabil-
istic amount of resource R, required by activity A, at time t. It is calculated as follows, for all
est

A
)t(lft

A
:

ID(A, R, t)"
min(t, lst

A
)!max(t!dur

A
#1, est

A
)

DSTD D
(1)

Using equation (1) an individual demand curve for all activities is constructed. Figure 8 displays
an example of three activities, A

1
, B

2
, and C

3
, competing for a single resource, R

1
. The individual

demand curves of each activity are shown in Figure 9.
Each individual curve is summed to form an aggregate resource demand curve which is used as

an estimation of resource contention. Figure 9 also displays the aggregate curve resulting from
the sum of the three individual demand curves.

5.1.2. Identifying the heuristic commitment
Once the texture information has been distilled, it is necessary to make a heuristic decision to

identify the commitment that will be asserted. There are a large number of ways to identify
commitments that are likely to contribute to the search toward a solution. We illustrate this
process with a portion of the ORR/FSS heuristic in the context of job-shop scheduling.

Once contention has been estimated, the aggregate demand curves and a time interval equal to
the average activity duration are used to identify the Mresource, time intervalN pair with the
greatest contention. By definition, the unassigned activity, A, that contributes the most individual
demand to the critical time interval is the most critical activity. Once A is identified, the value
selection heuristic is used to rate each of its possible start times by again examining the contention
information. This rating takes into account the effect an assignment to A will have both on
activities competing directly with A and on those temporally connected to A. The highest rated
start time is then assigned to A.

THE ODO PROJECT 103

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 9. Individual demand curves (A
1
, B

2
, C

3
) and their aggregate demand curve (R

1
)

5.1.3. Research issues
The texture measurement concept produces a number of research issues.

1. What is the information that is to be distilled by a texture? We may not be able to precisely
calculate this information in any practical algorithm, however a firm theoretical basis
showing that, if we had this information, we could use it to find a solution allows us to then
look to the practical aspects of forming an estimate of this information.

2. Given the impracticality of precisely calculating texture information, can we construct an
algorithm that estimates the desired information? It is likely that we can construct a number
of algorithms producing estimates of increasing accuracy at the cost of increasing computa-
tional complexity. Where is the trade-off in terms of impact on the overall scheduling
algorithm? Can we characterize different estimation techniques on the basis of expected
error from the true measurements?

3. What are the heuristic commitments that are being made on the basis of the information
distilled by the texture measurements? After the texture measurements have been estimated,
it is necessary to use that information to make a heuristic commitment. The type of
commitment and the heuristic for finding the instance of the commitment, based on the
distilled information, may have a significant impact on the search.

4. The texture hypothesis is one focus of our research in constraint-directed scheduling. It states
that spending a significant, but polynomial, computational effort in measuring textures and

104 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

making commitments on the basis of the texture information pays off in the reduced need for
backtracking and hence results in greater search efficiency. We believe this hypothesis to be
true of scheduling though there appear to be CSP domains where it does not hold (e.g. hard
random 3-SAT [51]).

5. Scheduling problems often require a variety of commitment types: the assignment of
activities to resources, the instantiation of process plans, the addition of new resources, etc.
Can textures provide a basis for integrating a variety of commitment types in a single
search? Based on the constraint graph, can we (heuristically) decide that it is better to make
a resource assignment at same point than to sequence activities?

5.2. Propagators

A propagator is a function that analyses the current search state to determine constraints that
are implied by, but are not explicitly present in, the constraint graph. By making these constraints
explicit, we can use them to prune the number of possibilities to be explored in the search space.
The advantages of propagators stem from the soundness of their commitments (a propagator will
never infer a constraint that is not a logical consequence of the current problem state) and the fact
that, when a constraint is explicitly present in the graph, it not only reduces the search space but it
is often possible to further prune the search space.

Examples of propagators in CSP include the various consistency enforcement algorithms such
as forward-checking, arc-consistency [11], and k-consistency [11, 57, 58]. These algorithms are
typically viewed as removing values (or tuples of values) from variable domains, however we treat
them as adding implied constraints that, for example, rule out domain values (i.e. a unary ‘not
equals’ constraints).

5.2.1. Example: constraint-based analysis
Constraint-Based Analysis (CBA) [28, 29, 49, 50] enforces arc-B-consistency on unary resource

constraints. Arc-B-consistency [59] (where ‘B’ stands for ‘bounds’) ensures that for the minimum
and maximum values of any variable, v

1
, there exists at least one consistent assignment for any

other connected variable, v
2

(when considered independently of all other variables). Clearly,
arc-B-consistency is limited to variables where there is a total ordering over the values. The start
time variables in scheduling meet this requirement.

CBA analyses the start and end times of all pairs of activities executing on the same unary
capacity resource. Given activities, A

i
and A

j
, that compete for the same resource, CBA identifies

the following cases:

1. If lft
i
!est

j
(dur

i
#dur

j
)lft

j
!est

i
then A

i
must be before A

j
.

2. If dur
i
#dur

j
'lft

j
!est

i
and dur

i
#dur

j
'lft

i
!est

j
then the current state is a dead-end.

3. If dur
i
#dur

j
)lft

j
!est

i
and dur

i
#dur

j
)lft

i
!est

j
then either sequence is still possible.

If, after looking at all pairs of activities on each resource, CBA finds that all pairs are in Case 3, it
cannot infer any new constraints: all the resource constraints are arc-B-consistent. The worst-case
time complexity for CBA is O(MN2), where N is the number of activities on one resource and
M is the number of resources.

THE ODO PROJECT 105

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

5.2.2. Example: edge-finding
Given, S, a non-empty sub-set of activities executing on the same resource, and activity A NS,

on the same resource as the activities in S, edge-finding operationalizes implications (2) and (3).

C
(lft(S)!est(S)(dur

A
#dur(S))

'(lft(S)!est
A
(dur

A
#dur(S))DPest

A
*est(S)#dur(S) (2)

C
(lft(S)!est(S)(dur

A
#dur(S))

'(lft
A
!est(S)(dur

A
#dur(S))DPlft

A
)lft(S)!dur(S) (3)

Implication (2) states that if A is scheduled at its earliest start time and there is not enough room
for all the activities in S before the latest finish time of S, then A must occur after all the activities
in S have finished. Implication 1 can be used to derive a new earliest start time of A. Similarly,
Implication (3) is used to find a new latest end time.

Complete examination of the 2N subsets of activities on a resource is not practical. However, it
is possible to deduce the same consequences by examining only N2 subsets of activities on each
resource [27, 35, 48]. Algorithms to do this with time-complexity of O(N2) [8] and O(N log N)
[60] for each resource have been presented.

Many powerful propagation techniques have been developed for constraint directed schedul-
ing in recent years [6, 8, 27, 48, 60, 61]. It has long been known that search can be drastically
reduced by enforcing various degrees of consistency however the effort to achieve high degrees of
consistency appears to be at least as expensive as search itself [58]. The goal for propagator
research, then, is to find the trade-off between complexity of the algorithm and the resultant
easing of the search effort.

5.3. Retraction techniques

Assume that a search moves through a sequence of states S"(s
0
, s

1
, s

2
, . . . , s

k
) via the

assertion and retraction of commitments. Further assume that in state s
k
it is determined that one

or more of the currently asserted commitments must be retracted. Such a state arises in
a constructive search because a mistake has been made: as a result of one or more of the asserted
commitments, s

k
is inconsistent with respect to the constraints in the problem. In a local search

context, s
k

is simply any state since, typically, all moves have some retraction component.
In such a state, the retraction component of the search strategy must then answer two

questions:

1. Which commitments should be retracted?
2. In retracting a commitment that was made, say at state s

i
, where i(k, what should be done

with the intervening commitments, that is those made in all states s
j
, where i(j(k?

Techniques for identifying the set of C of commitments to be retracted fall into two general
categories:

1. Provable: Provably, no solution exists in the area of the search space defined by C and the
commitments made prior to C. The proof is typically necessary but not sufficient: at least C must
be retracted, however prior commitments may also need to be retracted. After the proof, the
subspace is not visited again.

106 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

2. Heuristic: Based on a heuristic evaluation, it is determined that C is likely to be the cause of
the need for retraction.

There is a distinction between provability and completeness. It is possible to have a retraction
technique (such as Limited Discrepancy Search (see below)) that is complete but not provable,
that is, that retracts commitments even though there may be a solution in the sub-space. To
maintain completeness, the sub-space is revisited later in the search if no solution has been found
elsewhere.

There are three ways to treat the intervening commitments: retract them all, retract none,
or retract some. Typically, provable retraction retracts all the intervening commitments
though there are examples (e.g. dynamic backtracking [62]) where some intervening
commitments are not retracted if it can be shown that they are not dependent upon the retracted
commitment.

5.3.1. Example: chronological backtracking
At one end of the retraction spectrum is chronological backtracking, which consists of

retracting the most recently made commitment. Clearly, since the search space under the most
recent commitment contains one state and it is a dead-end, we can retract the most recent
commitment without missing a solution. However, it may be that a commitment made much
earlier in the search is responsible for the dead-end that has only been discovered now.
Chronological retraction will exhaustively search the sub-space below that wrong commitment
before finding and retracting it. The question of intervening commitments is moot as there are
none if the most recent commitment is retracted.

If chronological retraction is to be improved upon, while still maintaining provability, it is
necessary to exploit the situation where chronological retraction does too much work: states
where chronological retraction will exhaustively and fruitlessly search a sub-space. All provable
retraction techniques rely on some mechanism to identify the most recent state at which it is
possible to escape the dead-end (e.g. backjumping [63], conflict-directed backjumping [64],
graph-based backjumping [65], dynamic backtracking [62]). Most of these techniques (with the
exception of dynamic backtracking) retract all intervening commitments. While many of these
techniques show good average time performance on constraint satisfaction problems, few have
been applied to scheduling where the most common method of provable retraction is chronologi-
cal retraction.

5.3.2. Example: limited discrepancy search
Limited Discrepancy Search (LDS) [60, 61] is based on the intuition that a good heuristic will

only make a few mistakes in an unsuccessful search for a solution. Therefore, after failing to find
a solution while following the heuristic, a good way to continue search is to examine all those
paths in the search tree that differ from the heuristic path by at most one step, that is with
a discrepancy level of one. If search still fails, then examine all those paths in the search tree with
a discrepancy level of at most two and so on. LDS examines those nodes with a limited number of
discrepancies from the heuristic path, increasing that limit as time allows and while no solution is
found.

LDS is not a provable retraction technique as it retracts commitments without proving that no
solution exist in the sub-tree below the commitment. However LDS is complete, as by revisiting

THE ODO PROJECT 107

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

states, it will eventually (at higher cost than chronological retraction [68]) traverse the entire tree
in a systematic fashion.

In terms of our retraction questions, LDS is limited by the discrepancy level and existing search
tree in choosing the commitments it retracts. Once a commitment is chosen all intervening
commitments are also retracted.

5.3.3. Example: retraction for local search
Retraction for local search is typically completely guided by the heuristics of the local search:

whatever commitments that the heuristic identifies are retracted and intervening commitments
are not. Completeness of search is abandoned for the advantages of free movement in the search
space. This can be seen as the other extreme from chronological backtracking which maintains
completeness at the cost of freedom to move. LDS and its variations (e.g. Improved Limited
Discrepancy Search (ILDS) [68], Depth-bounded Discrepancy Search (DDS) [69] make compro-
mises between the ability to heuristically move through the search space and the additional effort
for the maintenance of completeness [70]. LDS is able to retract a commitment that, based on an
a priori analysis [66], is believed to be more likely to be incorrect than the most recently made
commitment. The trade-off is that to do this and maintain completeness, LDS must spend
polynomial more effort than chronological retraction [68].

Other variations and combinations of retraction techniques have been proposed [8, 62, 71],
however each variation depends on answering our two questions (identifying the to-be-retracted
commitment(s) and dealing with the intervening commitments) in different ways. Interested
readers are referred to Reference 66 for a recent examination of retraction techniques.

6. SCHEDULING ALGORITHMS AS INSTANCES OF THE FRAMEWORK

To illustrate the applicability of our framework, we now demonstrate how it can be used to model
a number of existing scheduling algorithms.

6.1. ¹he ORR/FSS algorithm

One of the algorithms implemented in the MicroBOSS Scheduler is the Operation Resource
Reliance/Filtered Survivable Schedules (ORR/FSS) algorithm [25, 72, 73]. It is a constructive
algorithm that uses the ORR/FS heuristic. The texture measurements estimated are the reliance
of each activity and the contention for each resource. The heuristic commitment is found by
identifying the most critical activity and rating its start times in terms of survivability. Survivabil-
ity is the likelihood that an assignment of the start time will ‘survive’ to participate in a full
solution and is calculated based on the reliance and contention measures. The commitment made
is to assign the most survivable start-time to the activity with the highest reliance on the resource
and time interval with highest contention.

Two propagators are used: temporal propagation and resource propagation. Temporal propa-
gation (technically, arc-B-consistency) operates on the precedence constraints. If A

i
and A

j
are

activities in the same job such that A
j
is a successor of A

i
, temporal propagation enforces that:

est
j
*est

i
#dur

i
and lft

i
)lft

j
!dur

j
. Resource propagation (arc-consistency) plays a similar

role for unary capacity resource constraints. For example, if A
i
and B

j
require the same unary

resource and lst
j
(eft

j
, then for the time interval [lst

j
, eft

j
), B

j
must be the only activity using the

108 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

resource. Resource propagation will remove the values [lst
j
!dur

i
#1, eft

j
!1] from the pos-

sible start times of A
i
. Both propagators remove values from the start-time domain of activities by

asserting commitments composed of unary disequality constraints.
The retraction technique is chronological backtracking.

6.2. ¹he SO¸»E algorithm

The SOLVE algorithm [8, 74] is also a constructive algorithm, but takes a different approach
than ORR/FSS. In ORR/FSS, the main effort (and computational complexity) is in the heuristic
commitment component while the other components are relatively inexpensive. In SOLVE, the
heuristic commitment technique is a simpler, less expensive, less powerful technique while the
propagators are more expensive and more powerful.

The heuristic commitment technique is the Left-Justified Randomized heuristic. The set of
activities that can execute before the minimum earliest finish time of all unscheduled activities is
identified. One activity from this set is randomly selected and scheduled at its earliest start time.
The heuristic commitment that is made is a unary equals constraint, assigning the start-time of
the selected activity. The heuristic commitment technique randomly searches the space of ‘left-
justified’ schedules which have been shown to form a dominance class in terms of makespan
minimization [37]. While it is clearly a measurement of the constraint graph (based on earliest
start times and earliest finish times of activities), it is unclear what, if any, underlying constraint
graph properties are being estimated.

In addition to temporal propagation and resource propagation, SOLVE uses an extensive
set of propagators including edge-finding. Edge-finding adds unary greater-than constraints
on activity start-time variables and unary less-than constraints on the activity end-time
variables.

The retraction technique is bounded chronological backtracking with restart: chronological
backtracking is done until the user-specified bound on the number of backtracks is reached. At
that point all commitments are retracted and the search starts over. Clearly, at the root node
a different commitment than previously must be made to prevent cycling. With a randomized
heuristic commitment technique the random nature of the heuristic performs this function.

6.3. GERRY

GERRY [19, 20] is a local search algorithm based on the MinConflicts heuristic [14]. Working
from a total assignment of start times that fails to satisfy some set of constraints, GERRY will
reschedule some activity in order to reduce the total cost of the schedule. The cost is a weighted
sum of the extent to which each constraint is violated. The precedence constraints are always
maintained (using temporal propagation), therefore, when applied to job shop, the only con-
straints that GERRY repairs are the resource constraints. To do this, GERRY reschedules one of
the conflicting activities in a MinConflicts fashion, that is, by assigning it to a new start time that
will minimize its conflicts with other activities. GERRY examines moving each conflicting
activity to the previous and next time at which the resource is available. Each of these moves is
evaluated by a linear combination of factors including the extent to which the size of the activity
matches the size of the violation, the number of activities temporally dependent on the activity,
and the distance from the current start time of the activity to the new start time. Each move is
scored and the score is used to select the heuristic commitment.

THE ODO PROJECT 109

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Table II. Summary of the ODO policy model of three example scheduling algorithms

Heuristic Commitment Technique

Texture Commitment Retraction
Algorithm measurements identification Propagators technique

ORR/FSS Contention and
reliance.

Assign the most survivable
start-time to the activity
with the highest reliance
on the Mresource, time
intervalN with
highest contention.

Temporal and
resource
propagation.

Chronological
backtracking.

SOLVE Unknown. Randomly pick an activity
from the identified set
and assign it to its earliest
start-time.

Edge-finding,
temporal and
resource
propagation.

Bounded chronological
backtracking with
restart.

GERRY Contention and
over-all
schedule cost.

Assign activities with
highest contention to a
start time that minimizes
contention.

Temporal
propagation.

Retract the previous
start-time assignment for
the activity assigned in
the heuristic technique.

In terms of textures, the activity rating procedure estimates contention by calculating the
weighted sum of violations for each activity and then estimates the change in contention from
moving activities to other start times. Every l commitments, a different texture, the overall cost of
the schedule, is calculated. If the cost is less than the previous schedule (i.e. from l iterations ago),
it is accepted as the new schedule. If it is of lower cost than all schedules seen so far, it is also
stored as the ‘best so far’ schedule. Even if the schedule is of higher cost than the previous schedule
it is accepted at some probability based on a simulated annealing technique [75].

GERRY (and other local search techniques) can be modelled in our framework by encoding the
local search moves as first asserting a new commitment (in this case, start-time assignment) and
then retracting an existing commitment. Every l iterations the retraction is different because the
whole schedule is evaluated. If the new schedule is accepted, the usual retraction takes place (after
replacing the stored solution with the new one). If the new schedule is not accepted, the previous
schedule is put back: the l most recent commitments are retracted and the l commitments that
must be (re)made to return to the previous schedule are asserted.

6.4. Summary

Table II displays a summary of how each of the example scheduling algorithms can be
modelled with an ODO policy.

7. INVESTIGATIONS IN THE ODO FRAMEWORK

Using the ODO framework both as a cognitive and implementational tool, we have addressed
a number of research issues over the past seven years. In this section, we select four examples, as
well as providing brief descriptions of our current and future work.

110 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

7.1. Combining constructive and local search

One of the consequences of our commitment mechanism is the ability to switch between
different styles of search. Given the differing strengths of constructive and local search techniques,
an interesting question is the utility of switching from one to the other within a single problem.

The MinConflicts hill-climbing technique [14] has been successfully applied to a variety of
scheduling problems [20, 21, 76]. It has been observed that MinConflicts performs better when
given a good initial state from which to start [14]. Given ODO’s ability to switch between search
styles, perhaps we could use a powerful constructive technique to find an initial state, switch to
MinConflicts and quickly find a solution. The overall search (constructive plus MinConflicts)
may find a solution more quickly than continuing with constructive search or than starting
MinConflicts from a random initial state.

Using the ORR/FSS algorithm for the constructive portion of the search, our overall strategy
was the following: run ORR/FSS until it either solves the problem or reaches a bound on the
number of heuristic commitments. If the bound is reached, use the existing partial solution as an
initial state for the MinConflicts repair policy. Experiments proved disappointing: we found
solutions more often by simply continuing to use ORR/FSS alone than when we switched to
MinConflicts.

Analysis revealed that similarities in texture information and commitment granularity between
the two search styles that contributed to the negative result. ORR/FSS uses contention and
reliance to identify the unassigned activities with the highest demand on a highly contended-for
resource while MinConflicts uses the activities that had the most resource conflicts with other
activities. These are two measures of the same underlying phenomenon: the competition among
activities for a resource reservation. Given the similarity of this information, it is not surprising
that an area of the search space where ORR/FSS is making many commitments and backtracks is
also an area of the search space from where MinConflicts has difficulty escaping. Secondly, both
ORR/FSS and MinConflicts make small granularity, ‘micro’ commitments: the assignment of
a start time to an activity. Because of this similar granularity, a state from which ORR/FSS is not
able to quickly move to a solution tends to correspond to a state from which MinConflicts can
not quickly move to a solution. When reaching the commitment-bound, the constructive search is
making and retracting micro commitments without much success. In changing to local search, we
hoped that MinConflicts would be able to quickly escape the sub-space and proceed to a solution.
However, MinConflicts made the same granularity of commitment as ORR/FSS and was limited
to accepting new states of lower (or equal) cost. In the starting state for MinConflicts there was
often no possibility to make a micro commitment that immediately resulted in a lower cost state.
What was necessary was a macro commitment (e.g. a set of activity reassignments) that changed
a number of the start times in a single step. Such a commitment may be able to move to a lower
cost state in a single step. At present it is an open question as to what information to gather to
decide when to make macro commitments and also to decide which ones should be made. (Recent
work in the integration of local search with linear programming techniques shows promise in
‘large-scale, coherent moves’ in the search space [54]).

This is the first work of which we are aware that attempts to combine constructive and local
search in this way. While the results are negative, in that we were not able to improve upon
scheduling performance by combining different techniques, the experiment revealed unexpected
intricacies arising from similarities in the commitment types and the texture measurements.
A more in-depth presentation of this work can be found in Reference 44.

THE ODO PROJECT 111

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

7.2. Investigating the texture hypothesis

The texture hypothesis states that spending significant, but polynomial effort, at each search
state, in the estimation of texture information and basing heuristic commitments on that
information will pay-off in terms of higher quality decisions and greater search efficiency. To
investigate this hypothesis and address criticisms of it [8, 49], we conducted an experiment to
evaluate a variety of heuristic commitment techniques while holding the propagators and
retraction techniques constant in each experimental condition.
The heuristic commitment techniques used in the experiments are as follows:

(a) SumHeight—a variation of the ORR/FSS heuristic. The key differences are an event-based
representation of the texture measurement curves and the actual commitment that is made.
Rather than assigning start times with FSS, SumHeight identifies the two activities with
highest reliance on the most critical resource and event-point and heuristically posts
a precedence constraint between them.

(b) CBASlack—the heuristic portion of the Precedence Constraint Posting algorithm [49, 50]
where a pair of activities with the minimal (pairwise) slack are identified and sequenced to
preserve the maximum amount of slack.

(c) FirstCommit—a heuristic that identifies a resource with minimal slack and then completely
sequences that resource before moving to the resource with the next smallest slack [77].
The activity sequencing is done by repeatedly choosing an activity (based on heuristic
criteria) and scheduling it before all the unscheduled activities on the resource.

(d) LJRand—the Left-Justified Randomized heuristic described earlier.

SumHeight and, to a lesser extent, CBASlack are representatives of the texture hypothesis as they
spend more computational effort (as compared to FirstCommit and LJRand) in distilling
information on which to base heuristic commitments.

Three consistency techniques (edge-finding, CBA, and temporal propagation) are used
after each new heuristic commitment is made. Two backtracking techniques are used in two
experimental conditions: chronological backtracking and Limited Discrepancy Search (LDS)
[67].

Using a set of 21 job-shop scheduling problems from the Operations Research library of
bench-mark problems [78], the algorithm (using each heuristic commitment technique) is run on
a number of instances of each problem with a range of makespans. Specifically, for each problem,
the optimal (or best-known upper bound) makespan is used initially. If a solution cannot be
found within the time limit, we increase this makespan by 0)005 times the optimal makespan and
re-run the algorithm. Lengthening of the makespan continues until a solution is found. Only the
results from the final, successful search are used and therefore algorithms are compared on two
criteria: mean relative error (how close to the optimal they were able to solve the problems) and
number of commitments (the effort expanded in finding a solution).

Figures 10 and 11 plot mean relative error from the optimal makespan for each heuristic
against the mean number of heuristic commitments made, for chronological backtracking and
LDS, respectively. The graph layout means that the better algorithms will be closer to the lower
left-hand corner. Note the differing scales of the two graphs.

With chronological backtracking, our experiments show that SumHeight finds significantly
better schedules (i.e. lower mean relative error) than all the other heuristics. CBASlack finds better
schedules than FirstCommit, which in turns finds better schedules than LJRand. The only

112 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 10. Mean relative error vs. mean d of heuristic commitments using chronological backtracking

significant difference in the number of heuristic commitments is that LJRand makes fewer than
any of the other heuristics. The LDS experiments show no significant difference between
SumHeight and CBASlack in terms of mean relative error though both are significantly better
than FirstCommit which is itself significantly better than LJRand. In terms of the number of
heuristic commitments the only significant result is that FirstCommit uses significantly fewer
heuristic commitments than any of the other heuristics.

Overall, these results support the texture hypothesis and fail to corroborate the claims of the
inferiority of sophisticated heuristics. A more detailed description of this work, with more
experimentation, can be found in Reference 79.

7.3. Generalizing texture measurement estimation

Though texture measurements are a domain independent concept [55], they have only been
applied, in scheduling, to the unary capacity resource constraints that exist in job-shop schedul-
ing [25]. To apply textures to different constraints (e.g. inventory minimums, inventory max-
imums, multi-capacity resources) it may be necessary to revisit at least two of the basic texture
measurements research questions: what is the information that is to be distilled from the graph
and what is the algorithm to calculate or estimate this information.

In examining the work on the contention texture [25, 79], it is clear that contention is directly
applicable to disequality constraints: where two or more variables are competing for the same

THE ODO PROJECT 113

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 11. Mean relative error vs. mean d of heuristic commitments using LDS

value and are constrained not to have the same value. To extend contention to constraints
generally, we introduce the concept of the probability of breakage of a constraint. For a disequal-
ity constraint, the probability of breakage is the extent to which its variables compete for the same
value (i.e. contention) because a disequality constraint expresses that the variables cannot be
assigned to the same values. For an equality constraint, for example, the relationship is reversed:
the more the variables ‘compete’ for the same value the less likely the constraint is to be broken.
The probability of breakage measures the extent to which variables compete for value tuples that
the constraint defines as incompatible and so it is applicable to constraints in general, not just to
disequality constraints. A critical advantage of the estimating probability of breakage texture is
that we can compare that probability among different types of constraints (e.g. we can compare
the criticality of a unary maximum resource capacity constraint with that of an minimum
inventory constraint).

In order to test the usefulness of this generalized texture, we formulated three estimation
algorithms for unary capacity resources. The goal of the experiment is to compare heuristics
based on probability of breakage texture to existing heuristics. The three estimations of the
probability of breakage of unary resource constraints developed are JointHeight, TriangleHeight,
and VarHeight. All three are based, as is contention, on an activity’s probabilistic individual
demand for a resource over time. Each estimation uses the event-based individual activity
demand formulation developed in Reference 79. The differences among the methods of estimation
surround how the individual demand is aggregated to form an estimate of the probability of
breakage of a constraint over time.

114 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 12. The TriangleHeight and VarHeight estimations of probability of breakage of a maximum resource con-
straint, M

JointHeight is the most computationally expensive, and, we believe, most accurate estimation.
It calculates (based on the individual demand) the joint probability of any two activities executing
at each event-point. Examples of the TriangleHeight and VarHeight for a resource maximum
constraint are shown in Figure 12. TriangleHeight estimates the probability of breakage based on
the expected value and a distribution around the expected value. The simple sum of individual
demands is the expected value at each event point. In addition, we can find the upper bound and
lower bound on the demand. By assuming a triangular distribution around the expected value,
the probability of breakage at event point t is estimated by a portion of the area under the curve.
Given the maximum capacity constraint, M, the area under the curve to the right of the line
representing M is interpreted as the probability that the maximum capacity constraint will be
broken. For VarHeight, the same expected value is used, but the distribution is assumed to be
a normal distribution formed based on the sum of the variances of the individual demands.
Further discussion of these estimation techniques and their underlying assumptions is beyond the
scope of this document. Interested readers are referred to Reference 80.

The same heuristic commitment is used for each texture estimation: the two most critical
activities are identified based on the aggregate resource curve and they are sequenced based,
again, on the aggregate resource curve.

Our experiments are based on the model described in the previous section. In particular, we use
the same propagators, retraction techniques, and problems. In order to compare our results
against existing techniques we used the two best heuristics from the previous experiment:
SumHeight and CBASlack.

With chronological backtracking (Figure 13) our results indicate that, in terms of mean relative
error, VarHeight outperforms TriangleHeight, CBASlack,and JointHeight while SumHeight

THE ODO PROJECT 115

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 13. Mean relative error vs. mean number of heuristic commitments using chronological backtracking

outperforms CBASlack and TriangleHeight. There are no significant differences among
VarHeight and SumHeight and between SumHeight and JointHeight. There are no significant
differences in the number of heuristic commitments. In the LDS results (Figure 14) we find
no significant differences in mean relative error among CBASlack, VarHeight, and SumHeight.
JointHeight is significantly worse than each of these heuristics and TriangleHeight is signifi-
cantly worse than all other heuristics. In terms of the number of heuristic commit-
ments, VarHeight uses significantly fewer heuristic commitments than CBASlack. The only
other significant differences are that JointHeight uses fewer heuristic commitments than
SumHeight an CBASlack and that TriangleHeight uses fewer heuristic commitments than
CBASlack.

The experiment indicates that we have been successful in formulating new texture measurement
estimation techniques based on the probability of constraint breakage that can form the basis of
the heuristics that are as good or better (or job-shop scheduling problems) than existing
heuristics. In addition, the basis of VarHeight on the more general texture measurement of
probability of breakage indicates that it may be applied to constraints other that disequality
constraints. The application remains to be explored. The lack of performance of JointHeight is
troubling (and interesting) given our expectation that VarHeight and TriangleHeight are poorer
estimates of the probability of breakage than JointHeight. We are unable to explain this anomaly
and plan to further investigate it in future work.

116 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 14. Mean relative error vs. mean number of heuristic commitments using LDS

7.4. Scheduling with uncertainty

In a real-world environment the probability of a precomputed schedule being executed exactly
as planned is low: machines malfunction, raw material deliveries are delayed, resources are not
available when required. A disrupted schedule incurs higher costs due to missed customer
delivery dates, higher work-in-process inventory, and idling of people and/or machines [81].

Unknown uncertainties may be best addressed a purely reactive scheduling system. Alterna-
tively, if the uncertainty in the scheduling environment can be mathematically modelled, then one
can investigate building predictive, robust schedules. A robust schedule is one that is likely to
remain valid under a wide variety of disturbances [82]. Attempts to build robustness into
a schedule try to protect the schedule from being interrupted by stochastic events and therefore
to reduce the implementation cost in the face of uncertainty.

One way of achieving robustness is through the use of temporal protection, first proposed by
Chiang and Fox [81]. Temporal protection adds slack time to an activity’s duration. This slack
time will be used in the event of schedule disruption.

In our extension of [81] a temporally protected activity is composed of an inner interval
P
*//%3

and an outer interval P
065%3

with lower-slack being the difference and coming at the
beginning of P

065%3
as shown in Figure 15. P

*//%3
defines the start time and estimated duration of

the activity (i.e. the time during which we expect the activity to be performed). Critical resources

THE ODO PROJECT 117

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

Figure 15. Temporal protection, illustrating overlapping activities A and B, where A must execute before B

are allocated for the period of P
*//%3

. P
065%3

defines the earliest time we would expect the activity to
start. Non-critical resources for the same activity are allocated from the beginning of P

065%3
. Both

P
*//%3

and P
065%3

are functions of the original activity duration and knowledge about resource
failures. The overlapping slack intervals between activities provide release flexibility during
schedule execution. When executing a schedule, if the previous activity takes less time than the
protected duration, the critical resource is released earlier than specified and the activity can start
as soon as the critical resource is available. Chiang and Fox [81] also defined an upper-slack
parameter between the end of P

*//%3
and the end of P

065%3
. We use an upper-slack of 0 due to the

expectation that it will cause increased tardiness without providing advantages for dealing with
uncertainty.

To determine how much temporal slack to add to an activity, we make use of the following
parameters: P, the original processing time of an activity, F, a random variable representing time
between machine failure, and D, a random variable representing the duration of a failure.

P/F gives the expected number of breakdowns during the processing of an activity. The
extended duration P

%95
with machine breakdown is

P
%95
"P#

P

F
]D (4)

If the mean of D and F are known, as DM and FM , then we can calculate the mean of P
%95

as follows:

P
.%!/

"P#

P

FM
]DM (5)

Instead of being random variables of known distribution, the failure duration and time between
failures may only be known to be bounded approximately. Let the bounds be (D

-"
, D

6"
) for D and

118 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

(F
-"

, F
6"

) for F. We can then calculate the lower and upper bounds on P
%95

as follows:

P
%95-"

"P#

P

F
6"

]D
-"

(6)

P
%956"

"P#

P

F
-"

]D
6"

Equations (4)—(6) are all based on the interpretation of FM as the mean number of failures per unit
of processing time. If FM is actually the mean number of failures per unit of time (be it process-time
or down-time) a slightly different calculation is used [83].

Experiments were run with ODO on Sadeh’s job-shop scheduling problem set [25], using four
methods for the calculation of temporal protection for an activity. Schedule execution was then
simulated, with machine breakdowns generated randomly according to a variety of uncertainty
scenarios. Schedule robustness was evaluated according to two criteria: the sum of the tardiness
cost and the work-in-process cost and the deviation between the makespan of the predictive
schedule and the executed schedule.

The most successful temporal protection parameters were as follows:

P
*//%3

"P
.%!/ (7)

P
065%3

"P
%956"

In addition, the following observations were made:

1. For highly temporally constrained problems, temporal protection reduces work-in-process
cost, but increases the tardiness cost of executing a schedule.

2. For protected schedules under our uncertainty models, the makespan deviation is very
small. For unprotected schedules, the execution makespan is much longer than the predicted
schedule makespan, since machine failures are not taken into account.

3. When tardiness and work-in-process costs are equally weighted, the work-in-process cost is
the majority of the total cost (80 per cent#). Temporal protection reduces work-in-process
costs by releasing the activity around the time it can be worked on. Therefore, although
tardiness cost grows when the schedule is protected, this is more than compensated for by
savings in work-in-process costs.

4. Costs grow when machine failure uncertainty grows. Longer and more frequent failures
increase both work-in-process costs and tardiness.

5. Cost savings by temporal protection are more significant when the bottleneck machine is
subject to failure.

Overall the use of temporal protection of activities shows promise. We plan to extend this work as
part of a more general investigation of predictive and reactive techniques of dealing with
uncertainty in schedule execution. This work is presented fully in Reference 83.

7.5. Current and future work

Research in the ODO project is ongoing with the main focus being the exploration of
incorporation of real-world constraints into the constraint-directed scheduling paradigm. The
exploration includes both inquiries into methods of modelling these constraints as well as

THE ODO PROJECT 119

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

investigation of propagators and texture measurements to enable efficient reasoning and
high-quality scheduling results. Here we briefly note a number of our current and planned
research activities. This is a far from complete discussion due to the on-going nature of the
work.

7.5.1. ¹ransportation scheduling
Many systems exist which can address certain subsets of the transportation problem (e.g.

vehicle routing and vehicle routing with time windows) often using local search techniques [84].
Such systems, however, often cannot deal with the side constraints and optimization issues
important in the real world such as the minimization of inventory holding costs at each retailer.
Our approach is to model transportation problems as scheduling problems, with activities and
constraints between these activities. By using a constraint-directed approach, we aim to be able to
model all the side constraints found in real-world problems. This approach is also being
investigated by a number of other researchers [52, 85].

The constraint representation we are using models vehicles as resources and trips as activities.
Each vehicle is represented by two resources: a unary resource and a multi-capacity resource. The
unary resource deals with constraints on the possible journeys the vehicle can make. For instance,
time window constraints on the vehicle may preclude it from making certain deliveries. The
multi-capacity resource deals with the vehicle capacity constraints, for instance, limitations on
how much the vehicle can carry, and constraints on what type of goods can be mixed in a single
load.

7.5.2. Scheduling with inventory
In the manufacturing context, raw material inventory is transformed by a series of activities to

work-in-process inventory and eventually finished-goods inventory. Each activity may produce
and/or consume quantities of inventory (at varying rates) that may need to be stored before and
after the activity executes. There can be many constraints on the inventory including multiple
storage resources, each with independent minimum and maximum storage levels, timing con-
straints concerning how long an inventory may (or must) remain in some state (e.g. cooling or
curing time, spoilage time), and resource dependencies (e.g. if one activity is performed on
a particular machine then only a subset of the downstream machines can be used for subsequent
activities).

Our initial work addresses a simplified problem with batch-activities which consume inventory
instantaneously at their start times and produce inventory instantaneously at their end times. We
also limit ourselves to a single storage resource for each type of inventory. To solve this problem
we need to sequence the activities on resources such that the resource capacity and the inventory
storage constraints are respected. Our approach has lead to the application of the TriangleHeight
and VarHeight texture estimators to inventory constraints as well as the creation of a new
propagator based on the inventory constraints and the calculation of upper and lower bounds on
the inventory levels. This work will be reported in full in Reference 86.

7.5.3. Alternate resources and alternate process plans
The importance of addressing alternate resources in constraint-directed scheduling cannot be

over-stated. Nearly all real-world production scheduling problems have a choice of resources for

120 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

at least some of their activities. Alternate resources are found in transportation scheduling,
resource allocation, and mixed production planning and scheduling problems. While early
constraint-directed scheduling systems (e.g. ISIS [10] and OPIS [18]) represented and reasoned
about alternative resources and process plans, there has been surprisingly little recent work in this
area (though there are some exceptions, notably [9, 8]).

An approach we are studying is the notion of probability of existence (PEX) which first appeared
in the context of the KBLPS system [9]. An activity that exists in some stage of the search may
not exist in the final solution, even though no backtracking has occurred. For example, if we have
the goal to create n units of widget x, we may do this by either taking the widgets from inventory,
buying them from a third party supplier, or by manufacturing them ourselves. We want to be able
to reason about all of these alternatives within the context of the other constraints in the problem
because the dynamic state of the factory (e.g. the utilization levels of resources) has an impact on
the best alternative. If machines for manufacturing widget x are already highly constrained, there
may be more utility in buying the widgets from an outside supplier rather than further increasing
machine utilization. The PEX approach instantiates an activity for each alternative and, in this
case, links them by a PEX constraint specifying that the three PEX values must sum to 1. The
PEX values can be taken into account by texture measurements and propagation techniques as
well as being modified by commitments during search.

7.5.4. Sequence-dependent changeovers
Given two activities A and B, a changeover occurs when there is a need to execute an activity

between the end of A and the start of B, when A immediately precedes B. Changeovers typically
occur in factories where tools must be configured or resources must be cleaned. Characteristics of
changeover activities (i.e. duration, resource requirements) are often asymmetric: the cost for
APB is different to that for BPA. In addition, a changeover for APB is only executed if
B comes directly after A. If there is another activity C between A and B, then the changeover costs
we have to deal with are the ones between A and C and between C and B.

We deal with changeovers in ODO by explicitly introducing changeover activities that,
depending on scheduling decisions, may or may not exist in the eventual solution. This repres-
entation allows us to directly reason about the changeover activities including the computation
of texture measurements. We are currently investigating heuristic commitment techniques that
will make decisions based on local texture information that will tend to balance the various
conflicting objectives.

7.5.5. Optimization and cost-based scheduling
There has been little basic research on the representation and optimization of the cost of

a schedule in the constraint-directed scheduling literature though single performance measures
(e.g. mean flow time, mean lateness, percentage of jobs tardy, and mean tardiness) and some
combinations have been addressed [10, 25, 87—90]. For example, ISIS [10] included utility values
as a surrogate for costs while MicroBOSS [25] explicitly represented costs in its constraint
optimization algorithms. The actual cost of a schedule, however, is a much richer concept
including not only performance measures but the cost of inventory storage, machine usage,
machine maintenance, and product-quality trade-offs. There exists no general framework that
can represent the various cost components and integrate them with constraint-directed schedul-
ing technology.

THE ODO PROJECT 121

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

This project will create a realistic cost model of the schedule in a multi-stage scheduling
environment to explicitly deal with various cost components of real world scheduling. The
key components of cost-based scheduling will be the creation of techniques to efficiently
propagate cost information through the constraint graph and the formulation of new texture
measurements that explicitly take cost information into account. We expect an interesting
trade-off to arise from potential conflicts between feasibility and cost minimization: in some cases
the commitment to be made to increase the probability of finding a solution may also be the
commitment that will increase the expected cost the most. Understanding these trade-offs and the
subsequent creation of commitment techniques that are able to deal with them are central aspects
of this research.

8. CONCLUSIONS

In this paper we have provided an overview of the ODO project. The original vision of the project
consisted of constructing a unified basis for constraint-directed scheduling encompassing both
satisfaction of problem constraints and optimization of problem objectives. This vision has been
embodied in the ODO framework, based on:

1. The use of the constraint graph as the primary knowledge representation tool.
2. The use of commitment assertion and retraction search operators.
3. A generic model of scheduling strategies.
4. The use of texture measurements as a basis for heuristic decision making.

We have presented a selection of the research we have performed with ODO, but as with any
research project, there are perhaps more questions than answers. In particular, much of the
promise of the use of commitments remains to be explored such as investigations of search states
more amenable to certain styles of search and of the possibility of dynamic transition from one
style to another as necessary during search. The study of texture measurements is also in its early
stages as much needs to be done on the formalization of the underlying measures and estimations
and on the understanding of heuristics based on such estimations.

The final area of work that we note here concerns the field of constraint-directed scheduling as
a whole. It is only recently that researchers have turned to rigorous empirical comparisons of
scheduling techniques rather than algorithmic ‘track meets’ [91]. At the same time, constraint-
directed scheduling techniques are being applied in a variety of real-world contexts where there is
a tendency to settle for a technique that is ‘good enough’ rather than understand the problem and
the algorithms’ behaviors. The ODO project is based on an attempt to balance the sometimes
conflicting pressures of understanding algorithm behaviour versus (short-term) problem solving
and industrial relevance. We are of the strong opinion that the field will not progress without
both the rigorous scientific underpinning and the continual extension to the plethora of real-
world constraints that were the original motivation for applying constraint technology to
scheduling.

ACKNOWLEDGEMENTS

This research was funded in part by the Natural Science and Engineering Research Council of
Canada, Numetrix Limited, the IRIS Research Network, the Materials and Manufacturing
Ontario, and Digital Equipment of Canada.

122 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

With a project of this scope there are many people to be acknowledged. The authors would like
to especially note discussions of the investigations of the ODO project with Norman Sadeh,
Nicola Muscettola, Victor Saks, Edward Sitarski, Ioan Popescu, and Scott Hadley. Thanks also
to the anonymous reviewers for detailed and cogent comments on earlier drafts of this paper.

REFERENCES

1. M. Fox, ‘Observations on the role of constraints in problem solving’, in Proc. of the 6th Canadian Conf. on Artificial
Intelligence, 1986.

2. C. Le Pape and P. Baptiste, ‘An experimental comparison of constraint-based algorithms for the preemptive job shop
scheduling problem’, in CP97 ¼orkshop on Industrial Constraint-Directed Scheduling, 1997.

3. N. Muscettola, ‘On the utility of bottleneck reasoning for scheduling’, in Proc. AAAI-94, 1994, pp. 1105—1110.
4. J. C. Beck, A. J. Davenport and M. S. Fox, ‘Five pitfalls of empirical scheduling research’, in G. Smolka, (ed.), Proc. 3rd

International Conf. on Principles and Practice of Constraint Programming (CP97), Springer, Berlin, 1997, pp. 390—404.
5. Y. Caseau and F. Laburthe, ‘Cumulative scheduling with task intervals’, in Proc. Joint Int. Conf. and Symp on ¸ogic

Programming, MIT Press, Cambridge, MA, 1996.
6. C. Le Pape and P. Baptiste, ‘Constraint propagation techniques for disjunctive scheduling: the preemptive case’,

in Proc. ECAI-96, 1996.
7. D. Neiman, D. Hildum, V. Lesser and T. Sandholm ‘Exploiting meta-level information in a distributed scheduling

system’, in Proc. 12th National Conf. on Artificial Intelligence, Seattle, WA, 1994, pp. 394—400.
8. W. P. M. Nuijten, ‘Time and resource constrained scheduling: a constraint satisfaction approach’, Ph.D. ¹hesis,

Department of Mathematics and Computing Science, Eindhoven University of Technology, 1994.
9. V. Saks, ‘Distribution planner overview’, ¹echnical Report, Carnegie Group, Pittsburgh, PA, 15222, 1992.

10. M. S. Fox, ‘Constraint-directed search: a case study of job-shop scheduling’, Ph.D. ¹hesis, Carnegie Mellon
University, Intelligent Systems Laboratory, The Robotics Institute, Pittsburgh, PA, 1983. CMU-RI-TR-85-7.

11. A. K. Mackworth, ‘Consistency in networks of relations’, Artificial Intelligence, 8, 99—118 (1977).
12. E. P. K. Tsang, Foundations of Constraint Satisfawction, Academic Press, New York, 1993.
13. R. Dechter, A. Dechter and J. Pearl, ‘Optimization in constraint networks’, in R. Oliver and J. Smith (eds.), Influence

Diagrams, Belief Nets, and Decision Analysis, Wiley, Chicester, England, 1990.
14. S. Minton, M. Johnston, A. Philips and P. Laird, ‘Minimizing conflicts: a heuristic repair method for constraint

satisfaction and scheduling problems’, Artificial Intelligence, 58, 161—205 (1992).
15. D. Navinchandra and D. H. Marks, ‘Design exploration through constraint relaxation’, in Expert Systems in

Computer-Aided Design, Elsevier, Amsterdam, 1987.
16. D. Navinchandra, Exploration and Innovation in Design, Springer, New York, 1991.
17. V. Kumar, ‘Algorithms for constraint satisfaction problems: A survey’, AI Mag., 1992, pp. 32—44.
18. S. F. Smith, P. Ow, D. Matthys and J. Potvin, ‘OPIS: An opportunistic factory scheduling system’, in Proc. Int. Symp.

for Computer Scientists, 1989.
19. M. Zweben, E. Davis, B. Daun and M. Deale, ‘Informedness vs. computational cost of heuristics in iterative repair

scheduling’, in Proc. IJCAI-93, 1993, pp. 1416—1422.
20. M. Zweben, B. Daun, E. Davis and M. Deale, ‘Scheduling and rescheduling with iterative repair’, in M. Zweben and

M. Fox (eds.), Intelligent Scheduling, Chap. 8, Morgan Kaufmann Publishers, San Francisco, 1994, pp. 241—256.
21. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guid to the ¹heory of NP-Completeness, W. H.

Freeman and Company, New York, 1979.
22. M. S. Fox, ‘Constraint-guided scheduling—a short history of research at CMU’, Comput. Ind., 14, 79—88 (1990).
23. J. Blazewicz, W. Domschke and E. Pesch, ‘The job shop scheduling problem: Conventional and new solution

techniques’, Eur. J. Oper. Res., 93(1), 1—33 (1996).
24. D. Applegate and W. Cook, ‘A computational study of the job-shop scheduling problem’, ORSA J. Comput., 3,

149—156 (1990).
25. N. Sadeh, ‘Lookahead techniques for micro-opportunistic job-shop scheduling’, Ph.D. ¹hesis, Carnegie-Mellon

Univeristy, 1991, CMU-CS-91-102.
26. C. Le Pape, ‘Constraint-based programming for scheduling: An historical perspective’, in ¼orking Papers of the

Operations Research Seminar on Constraint Handling ¹echniques, 1994.
27. J. Carlier and E. Pinson, ‘An algorithm for solving the job-shop problem’, Management Sci., 35(2), 164—176 (1989).
28. J. Erschler, F. Roubellat and J. P. Vernhes, ‘Finding some essential characteristics of the feasible solutions for

a scheduling problem’, Oper. Res., 24, 772—782 (1976).
29. J. Erschler, F. Roubellat and J. P. Vernhes, ‘Characteristing the set of feasible sequences for n jobs to be carried out on

a single machine’, Euro. J Oper. Res., 4, 189—194 (1980).

THE ODO PROJECT 123

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

30. N. Sadeh and M. Fox, ‘Focus of attention in an activity-based schedule’, in Proc NASA Conf. on Space ¹elerobotics,
1989.

31. K. Sycara, S. Roth, N. Sadeh and M. Fox, ‘Distributed constrained heuristic search’, IEEE ¹rans. Systems, Man,
Cybernet., SMC-21(6), 1446—1461 (1991).

32. A. Collinot and C. Le Pape, ‘Controlling constraint propagation’, in Proc. 10th Int. Joint Conf. on Artificial
Intelligence, 1987.

33. P. Burke and P. Prosser, ‘The distributed asynchronous scheduler’, in M. Zweben and M. Fox (eds.), Intelligent
Scheduling, Chap. 11, Morgan Kaufmann Publishers, San Francisco, 1994, pp. 309—339.

34. P. Van Hentenryck, Constraint Satisfaction in ¸ogic Programming, MIT Press, Cambridge, MA, 1989.
35. Y. Caseau and F. Laburthe, ‘Improving branch and bound for jobshop scheduling with constraint propagation’, in

Proc. 8th Franco-Japanese Conference CCS ’95, 1995.
36. C. Le Pape, ‘Using a constraint-based scheduling library to solve a specific scheduling problem’, in Proc. AAAI-

SIGMAN¼orkshop on Artificial Intelligence Approaches to Modelling and Scheduling Manufacturing Processes, 1994.
37. K. Baker, Introduction to Sequencing and Scheduling, Wiley, New York, 1974.
38. J. Little, K. Murty, D. Sweeney and C. Karel, ‘An algorithm for the traveling saleman problem’, Oper. Res., 11(6),

972—989 (1963).
39. F. Glover, ‘Tabu search part I’, Oper. Res. Soc. Am. (ORSA) J. Comput., 1(3), 109—206 (1989).
40. F. Glover, ‘Tabu search part II’, Oper. Res. Sco. Am. (ORSA) J. Comput., 2(1), 4—32 (1990).
41. E. Nowicki and C. Smutnicki, ‘A fast taboo search algorithm for the job shop problem’, Management Sci., 42(6),

797—813 (1996).
42. U. Dorndorf and E. Pesche, ‘Evolution based learning in a job shop scheduling environment’, Comput. Oper. Res.,

22(1), 25—40 (1995).
43. P. Laarhoven, E. Aarts and J. Lenstra, ‘Job shop scheduling by simulated annealing’, Oper. Res., 40(1), 113—125 (1992).
44. E. D. Davis, ‘ODO: a constraint-based scheduler founded on a unified problem solving model’, Master’s ¹hesis,

Enterprise Integration Laboratory, Department of Industrial Engineering, University of Toronto, 4 Taddle Creek
Road, Toronto, Ontario M5S 3G9, Canada, 1994.

45. E. D. Davis and M. S. Fox, ‘ODO: a constraint-base scheduling shell’, in Proc. ¼orkshop on Production Planning,
Scheduling and Control, IJCAI-93, 1993.

46. J. F. Allen, ‘Maintaining knowledge about temporal intervals’, Commun. ACM, 26(11), 832—843 (1983).
47. C. Le Pape, ‘Implementation of resource constraints in ILOG Schedule: A library for the development of constraint-

based scheduling systems’, Intelligent Systems Engng., 3(2), 55—66 (1994).
48. Y. Caseau and F. Laburthe, ‘Improved CLP scheduling with task intervals’, in Proc. 11th Int. Conf. on ¸ogic

Programming, MIT Press, Cambridge, MA, 1994.
49. S. F. Smith and C. C. Cheng, ‘Slack-based heuristics for constraint satisfaction scheduling’, in Proc. AAAI-93, 1993,

pp. 139—144.
50. C. C. Cheng and S. F. Smith, ‘Applying constraint satisfaction techniques to job shop scheduling’, Ann. Oper. Res.,

Special »olume on Scheduling: ¹heory and Practice, Vol. 1, 1996, forthcoming.
51. B. Selman, H. Levesque and D. G. Mitchell, ‘A new method for solving hard satisfiability problems’, in Proc.

AAAI-92, AAAI Press/MIT Press, Cambridge, MA, 1992, pp. 440—446.
52. B. DeBacker, V. Furnon, P. Kilby, P. Prosser and P. Shaw, ‘Local search in constraint programming: application

to the vehicle routing problem’, in CP97 ¼orkshop on Industrial Constraint-Directed Scheduling, 1997.
53. R. J. M. Vaessens, E. H. L. Aarts and J. K. Lenstra, ‘Job shop scheduling by local search’, Technical Report

COSOR Memorandum 94-05, Eindhoven University of Technology, 1994. Inform. J. Comput., submitted for
publications.

54. D. Clements, J. Crawford, D. Joslin, G. Nemhauser, M. Puttlitz and M. Savelsbergh, ‘Heuristic optimization: A hybrid
AI/OR approach’, in Proc. CP97 Workshop on Constraint-Directed Scheduling, November 1997.

55. M. S. Fox, N. Sadeh and C. Baykan, ‘Constrained heuristic search’, in Proc. IJCAI-89, 1989, pp. 309—316.
56. N. Muscettola, ‘ Scheduling by iterative partition of bottleneck conflicts’, ¹echnical Report CMº-RI-¹R-92-05, The

Robotics Institute, Carnegie Mellon University, 1992.
57. E. C. Freuder, ‘Synthesizing constraining expressions’, Commun. Assoc. Comput. Mach., 21(11), 958—966 (1978).
58. E. C. Freuder, ‘A sufficient condition for backtrack-free search’, J. Assoc. Comput. Mach., 21(1), 24—32 (1982).
59. O. Lhomme, ‘Consistency techniques for numeric CSPs’, in Proc. IJCAI-93, Vol. 1, 1993, 232—238.
60. J. Carlier and E. Pinson, ‘Adjustment of heads and tails for the job-shop problem’, Eur. J Oper. Res., 78, 146—161

(1994).
61. P. Martin and D. Shmoys, ‘A new approach to computing optimal schedules for the job shop scheduling problem’, in

Proc. 5th Conf. on Integer Programming and Combinatorial Optimization, 1996.
62. M. Ginsberg, ‘Dynamic backtracking’, J. Artificial Intelligence Res., 1, 25—46 (1993).
63. J. Gaschnig, ‘Experimental case studies of backtrack vs. waltz-type vs. new algorithms for satisficing assignment

problems’, in Proc. 2nd Nat. Conf. of the Canadian Society for Computational Studies of Intelligence, 1978.
64. P. Prosser, ‘Hybrid algorithms for the constraint satisfaction problem’, Computational Intelligence, 9(3), 268—299

(1993).

124 J. C. BECK E¹ A¸.

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

65. R. Dechter, ‘Enhancement schemes for constraint processing: backjumping, learning and cutset decomposition’,
Artificial Intelligence, 41, 273—312 (1990).

66. W. D. Harvey, ‘Nonsystematic backtracking search’, Ph.D. ¹hesis, Department of Computer Science, Stanford
University, 1995.

67. W. D. Harvey and M. L. Ginsberg, ‘Limited discrepancy search’, in Proc. IJACI-95, 1995, pp. 607—613.
68. R. Korf, ‘Improved limited discrepancy search’, in Proc. AAAI-96, 1996.
69. T. Walsh, ‘Depth-bounded discrepancy search’, in Proc. IJCAI-97, 1997.
70. W. Havens, ‘Nogood caching for multiagent backtrack search’, in Proc. AAAI-97 Constraints and Agents ¼orkshop,

Providence, RI, 1997.
71. N. Sadeh, K. Sycara and Y. Xiong, ‘Backtracking techniques for the job shop scheduling constraint satisfaction’,

Artificial Intelligence, 76, 455—480 (1995).
72. N. Sadeh, ‘Micro-opportunistic scheduling’, in M. Zweben and M. Fox (eds.), Intelligent Scheduling, Chap. 4, Morgan

Kaufmann Publishers, San Francisco, 1994, pp. 99—138.
73. N. Sadeh and M. S. Fox, ‘Variable and value ordering heuristics for the job shop scheduling constraint satisfaction

problem’, Artificial Intelligence J., 86(1), (1996).
74. W. P. M. Nuijten, E. H. L. Aarts, D. A. A. van Arp Taalman Kip and K. M. van Hee, ‘Randomized constraint

satisfaction for job shop scheduling’, in Proc. IJCAI’93 ¼orkshop on Knowledge-Based Production, Scheduling and
Control, 1993, pp. 251—262.

75. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, ‘Optimization by simulated annealing’, Science, 220, 671—680
(1983).

76. M. D. Johnston and G. Miller, ‘SPIKE: Intelligent scheduling of Hubble space telescope observations’, in
M. Zweben and M. Fox (eds.), Intelligent Scheduling, Chap. 14, Morgan Kaufmann Publishers, San Francisco, 1994,
pp. 391—422.

77. P. Baptiste, C. Le Pape and W. Nuijten, ‘Constraint-based optimization and approximation for job-shop scheduling’,
in Proc. AAAI-SIGMAN ¼orkshop on Intelligent Manufacturing Systems, IJCAI-95, 1995.

78. J. E. Beasley, ‘OR-library: distributing test problems by electronic mail’, Journal of the Operational Research Society,
41(11), 1069—1072 (1990). Also available by ftp from ftp://graph.ms.ic.ac.uk/pub/paper.txt.

79. J. C. Beck, A. J. Davenport, E. M. Sitarski and M. S. Fox, ‘Texture-based heuristics for scheduling revisited’, in Proc.
AAAI-97, AAAI Press, Menlo Park, California, 1997.

80. J. C. Beck, A. J. Davenport, E. M. Sitarski and M. S. Fox, ‘Beyond contention: extending texture-based scheduling
heuristics’, in Proc. AAAI-97, AAAI Press, Menlo Park, California, 1997.

81. W. Y. Chiang and M. S. Fox, ‘Protection against uncertainty in a deterministic schedule’, in Proc. Int. Conf. on Expert
Systems for Production and Operations Management, 1990.

82. V. J. Leon, S. D. Wu and R. H. Storer, ‘Robustness measures and robust scheduling for job shop’, IIE ¹rans., 26(5),
32—43 (1994).

83. H. Gao, ‘Building robust schedules using temporal protection—an empirical study of constraint based scheduling
under machine failure uncertainty’, Master’s ¹hesis, Department of Industrial Engineering, University of Toronto,
1995.

84. G. Laporte, ‘The vehicle routing problem: an overview of exact and approximate algorithms’, Eur. J. Oper. Res., 59,
345—358 (1992).

85. P. Peasant, M. Gendreau and J. Rousseau, ‘GENIUS-CP: A generic single-vehicle routing algorithm’, in G. Smolka
(ed.), Proc. 3rd Int. Conf. on Principles and Practice of Constraint Programming (CP97), Springer, Berlin, 1997.

86. J. C. Beck, ‘Constraint-directed techniques for real-world scheduling’, Ph.D. ¹hesis, University of Toronto, 1998,
Forthcoming.

87. P. Ow and T. Morton, ‘The single machine early/tardy problem’, Management Sci., 35(2), 177—191 (1989).
88. T. Morton, S. Lawrence, Rajagopolan and S. Kerre, ‘SCHED-STAR: a price-based shop scheduling module’, J.

Manuf. Oper. Management, 1(2), 131—181 (1988).
89. K. Baker and G. Scudder, ‘Sequencing with earliness and tardiness penalties: A review’, Oper. Res., 38(1), 22—36 (1990).
90. B. Faaland and T. Schmit, ‘Cost-based scheduling of workers and equipment in a fabrication and assembly shop’,

Oper. Res., 41(2), 253—268 (1993).
91. J. N. Hooker, ‘Testing heuristics: we have it all wrong’, J. Heuristics, 1, 33—42 (1996).

THE ODO PROJECT 125

(1998 John Wiley & Sons, Ltd. J. Sched. 1, 89—125 (1998)

