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Abstract 
In order to apply texture measurement based heuristic com- 
mitment techniques beyond the unary capacity resource con- 
straints of job shop scheduling, we extend the contention 
texture measurement to a measure of the probability that a 
constraint will be broken. We define three methods for the 
estimation of this probability and show that they perform as 
well or better than existing heuristics on job shop scheduling 
problems. Empirical insight into the performance is provided 
and we sketch how we have extended probability-based heu- 
ristics to more complicated scheduling constraints. 

the “probability of breakage” of a constraint will allow us to 
directly compare the criticality of different types of con- 
straints. We present three new techniques for estimating the 
probability of breakage of the resource constraint in job 
shop scheduling and compare the performance of heuristics 
based on these estimations against earlier texture-based and 
non-texture-based heuristics for scheduling. We also 
describe how our estimation techniques can be extended to 
more complicated scheduling domains. 

Introduction 
Recently a number of researchers have examined exten- 
sions of constraint-directed scheduling techniques to real- 
world constraints (e.g., cumulative resources, alternative 
resources, sequence-dependent changeovers, inventory 
capacity) as found, for example, in the manufacturing and 
distribution industries (Saks, 1992; Nuij ten, 1994; 
Le Pape, 1994; Brucker and Thiele, 1996; Caseau and 
Laburthe, 1996; Nuijten and Aarts, 1997). With a few 
exceptions (Saks, 1992; Cheng and Smith, 1996), these 
extensions have focussed upon the use of propagation algo- 
rithms (e.g., edge-finding) that identify constraints implicit 
in a search state, rather than upon heuristic search tech- 
niques. 

Job Shop Scheduling Problem The n x m job shop 
duling problem is formally defined as follows: given 

are a set of n jobs, each composed of m totally ordered 
activities, and m resources. Each activity Ai requires exclu- 
sive use of a single resource !?j for some processing dura- 
tion, duri,. There are two types of constraints in this 
problem: 
0 Precedence constraints between activities in the same job 

stating that if activity A is before activity B in the total 
order then activity A must execute before activity B (that 
is, A + B). 

0 Disjunctive resource constraints specifying that no activi- 
ties requiring the same resource may execute at the same 
time. 
Jobs have release dates (the time after which the activi- 

Our philosophy of heuristic search is to spend significant 
but low polynomial effort (0(n*) or even Q(n3)) in the anal- 
ysis of each search state to determine the most critical con- 
straint in that state, and then make a heuristic decision to 
reduce this criticality. It has been shown that texture mea- 
surements can form the basis for the comparison of critical- 
ities of constraints and that such a comparison can, in turn, 
be used as a foundation upon which successful scheduling 
heuristics can be built (Sadeh, 1991; Beck et al., 1997b). 

ties in the job may be executed) and due dates (the time by 
which the last activity in the job must finish). In the deci- 
sion problem, the release date of each job is 0 and a global 
due date is D. The problem is to determine whether there is 
an assignment of a start-time to each activity such that the 
constraints are satisfied and the maximum finish-time of all 
jobs is less than or equal to D. This problem is NP-complete 
(Garey and Johnson, 1979). 

The texture measurements proposed by (Sadeh, 1991) 
determine the criticality of a resource constraint by estimat- 
ing the contention on a resource. One difficulty with the 
contention texture measurement is extension to more com- 
plicated scheduling domains. Contention allows the direct 
comparison of the criticality of the resource constraints in a 
scheduling problem, but it is unclear how to compute con- 
tention for other type of constraints. How, for example, do 
we compare the criticality of an inventory capacity con- 
straint against that of a unary capacity resource constraint? 

Notation For an activity, Ai, S7;, is the start-time variable 
and STDi is the discrete domain of possible start-times. eSti 
and Zsti represent the earliest and latest possible start-times, 
while efii and Zj?i represent the earliest and latest possible 
finish-times. duri is the duration Of Ai. We will omit the sub- 
script unless there is the possibility of ambiguity. 

Texture 

In this paper we take our first step towards resolving this 
problem by recasting contention in terms of probability the- 
ory. Our conjecture is that the calculation or estimation of 

Copyright 0 1997, American Association for Artificial Intelligence (www.aaal.org). All 
rights reserved. 

The intuition behind texture measurement based heuristics 
rests on the conjecture that an understanding of the struc- 
ture of a problem will lead to more effective problem-solv- 
ing methods. Experience in both Operations Research and 
constraint-directed problem solving indicates that many 
problems can be adequately modeled by a constraint graph 
and that the structure of these graphs can have significant 
impact on the efficacy of problem solving methods. There- 
fore, we adopt the view that a problem’s structure is defined 
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by its constraint graph. We then ask if there are problem 
invariant measurements of the graph topology that can form 
the basis of powerful heuristics. Can we distill information 
from the constraint graph and then use the information to 
inform search guiding heuristics? 

A number of such measures, called texture measure- 
ments, have been identified and experimented with (Fox 
et al., 1989; Sadeh, 1991). A texture is a measurement of a 
fundamental, problem-invariant property of a constraint 
graph. A search heuristic (e.g., variable and value ordering), 
which is likely to be specialized for the particular type of 
problem represented in the constraint graph, is a function of 
one or more textures. A texture measurement is not a heu- 
ristic. Rather, it is a method of gathering information from 
the constraint graph which heuristics can then use. 

The primary texture measurements that have been 
applied to scheduling are the contention and reliance tex- 
tures that underlie the Operation Resource Reliance/F& 
tered Survivable Schedules (ORR/FSS) heuristic 
implemented in MicroBOSS (Sadeh, 1991). Informally, 
contention measures the extent to which activities compete 
for the same resource over the same time, while reliance 
assesses the extent to which an activity itself relies on being 
assigned a particular resource in a particular time interval. 
ORR/FSS identifies the most contended-for resource and 
time, and assigns it to the activity that is most reliant on that 
resource and time. Simple chronological backtracking and 
later a form of intelligent backtracking (Xiong et al., 1992) 
have been used to solve a number of constraint satisfaction 
and constraint optimization problems better than the best 
existing dispatch rules. 

The intuition is that by focusing on the most critical con- 
straint, we can make a decision that reduces the likelihood 
of reaching a search state where the constraint is broken and 
furthermore once such critical decisions are made the prob- 
lem is likely to be decomposed into simpler sub-problems. 

In the balance of this section, we present a variation on 
the texture measurement estimation algorithm that under- 
lies ORIUFSS. This formulation relies heavily on Sadeh’s 
work. 

Criticality Estimate 1: SumHeight 
The SumHeight estimate of contention and reliance was 
first proposed in (Beck et al., 1997b). As with all the texture 
measurement estimation algorithms presented here, the 
crux of SumHeight is the formation of an individual 
demand curve for each activity and the aggregation of those 
curves on each resource. 

To calculate an activity’s individual demand, a uniform 
probability distribution over the possible start-times is 
assumed: each start-time has a probability of IIISTDI.’ The 
individual demand, ID(A, R, t), is (probabilistically) the 
amount of resource R, required by activity A, at time t. It is 
calculated as follows, for all estA I t < ZfA: 

ZD(A, R, t) = 
??ZiTZ( t, I$) - T7ZUX(t - durA + 1, WA) 

lSTD/ (1) 

A naive implementation results in an algorithm that 
scales with the number of activities and resources, and with 
the number of time points in the scheduling horizon. To 

1. Local propagation of value preferences can be used to find a 
more informed estimate of the individual demand (Sadeh, 1991; 
Muscettola, 1992). 

escape scaling with the horizon, we use an event-based rep- 
resentation and a piece-wise linear estimation for the ID 
curve. We represent the individual activity demand by four 
(t, ID) pairs: 

(2) 

In order to estimate the overall contention for a resource, 
the individual demands are aggregated, for each resource, 
by summing the individual activity curves for that resource. 
The aggregate demand curve is the expected value of the 
demand at each time point. 
Complexity By storing the incoming and outgoing slopes 
at each point in the individual curves, we can sort the indi- 
vidual time points and then in a single pass generate the 
aggregate demand curve. This process has complexity of 
O(mn log n) + O(mn). The space complexity is O(mn), as 
we maintain an individual demand curve for each activity. 

Beyond Contention 
The contention texture measurement is directly applicable 
in situations where two or more variables, connected by a 
disequality constraint, compete for the same values. The 
more intense the competition, the higher is the contention, 
and, correspondingly, the more critical is the disequality 
constraint. While disequality constraints are common in 
scheduling and a number of other domains, it is desirable to 
be able to compare the criticalities of all constraints in our 
graph. The intuition remains the same: we want to identify 
the most critical constraint. However, we want to use a 
more general basis for our estimation of criticality-a basis 
that can not only be applied to any constraint, but that also 
has a firm mathematical underpinning. The latter desidera- 
tum is due to the fact that, though it may not be possible to 
exactly calculate the texture, it is helpful to know what our 
estimations are estimating and, perhaps, to be able to find 
an error-bound on our estimations. The basis we propose is 
the probability that a constraint will be broken. 

Criticality Estimate 2: JointHeight 
Given a constraint C, a set of variables constrained by C, 
and the individual demand of each variable, we want to cal- 
culate the probability of breakage of the constraint by 
aggregation of the contributions from individual variables. 

The JointHeight algorithm is based on the idea that a 
unary resource constraint is broken if two activities execute 
at the same time point. If the activities are independent, we 
simply need to multiply their individual demands (which 
we interpret as a measure of probability) at the time point. 
Activities are independent unless they are connected by 
some path of precedence constraints, in which case their 
joint probability is 0. This suggests that we calculate the 
probability of breakage, pb, as follows: 

Let R be the set of activities on the resource, R, and C 
be the resource capacity constraint. The function con- 
nected(Ai, Aj) is true is there is a path of precedence 
constraints connecting activity Ai with Aj. 

pw, t> = c joint(Aj, Ay t) (3) 
VAie R,k’Aj~ {R-{A,}} 
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0 connected(A i, A j) 

joint(Ai, Aj, t) = ZD(Ai, R, t) X otherwise (4) 

WAj, R t) 

There are two problems with JointHeight: 
1. The time complexity at a single search state is O(mn3) 

(see below). 
2. The formulation depends strongly on the fact that two 

activities cannot co-occur. It is difficult, therefore, to see 
how JointHeight can be efficiently extended to more 
complex constraints (see, however, the Discussion sec- 
tion below). 

Complexity We can not use the mechanism used in Sum- 
Height to find the aggregate curve. At a single time point, 
we must examine all pairs of activities on the resource 
usin? Equation (4). This alone incurs a time complexity of 
O(n ). There are O(n) time points (due to our event repre- 
sentation) and m resources therefore the total complexity at 
one search state is O(nm’). The space complexity is the 
same as SumHeight: O(mn). 

Criticality Estimate 3: 
TriangleHeight estimates the probability of breakage based 
on the expected value and a distribution around the 
expected value. 

The aggregate curve on a resource provides the expected 
value at each event point. In addition, we can find the upper 
bound and lower bound on the aggregate demand. By 
assuming a triangular distribution around the expected 
value, the probability of breakage at t can be estimated. 
Given the lower bound, the upper bound, and the fact that 
the area of the triangle is 1, the height of the triangle can be 
easily found (see Figure 1). Given the maximum capacity 
constraint, M, the area under the curve to the right of the 
line representing M is interpreted as the probability that the 
maximum capacity constraint will be broken. 

For each event point, t, we use the expected value and 
distribution as in Figure 1. We calculate the area of the tri- 
angle that is greater than the maximum constraint and use it 
as an estimate of the probability that the constraint will be 
broken at t. 

The primary disadvantages of TriangleHeight are that we 
have no justification for a triangular distribution. We 
expect, therefore, that the estimation of probability will be 
worse than JointHeight, and thus that our heuristic deci- 
sions based on TriangleHeight will be more error prone 
than those based on JointHeight. In addition, for Triangle- 
Height we have to maintain the upper and lower bound 
curves as well as the aggregate curve. 

The advantages of this method, however, may outweigh 
the disadvantages. For example: 
1. We can generalize this method to minimum capacity 

constraints by looking at the area under the curve on the 
opposite side of the constraint line (see Figure 1). 

2. We can generalize this method easily for non-unary 
capacity resources and inventory constraints. 

3. We can use the same event-based technique used in 
SumHeight. 

Area used as estimate 
for the probability of 

of maximum 
constraint. 

LB EX M UB Resource Demand 

Figure 1. Calculating the Probability of Breakage at Event t 
with ‘P’riangleHeight. 

Complexity The upper and lower bound curve can be 
maintained in much the same way and with the same com- 
plexity as the aggregate demand curve. As in SumHeight, 
we sort all the individual demand elements and, with a sin- 
gle pass through the list, calculate the probability of break- 
age using the expected value and the triangular distribution. 
Overall, TriangleHeight has the same complexity measure- 
ments as SumHeight: time complexity of O(mn log n) + 
O(mn) and space complexity of O(mn). 

Criticality Estimate 4: Vas 
VarHeight is similar in form to TriangleHeight, but uses a 
different estimate of the distribution around the expected 
value. The probability of breakage is estimated based on the 
expected value and the distribution created by the aggrega- 
tion of the variance of the individual demands. 

In considering resource R, a time point t, and an activity 
A we can associate a random variable X with the demand 
that A has for R at time t. For unary resources the domain of 
X is { 0, 1 }. The expected value for X, EX, assuming a uni- 
form distribution for the start-time of A, is ZD(A, R, t) as 
calculated in Equation (1). We calculate the variance of X, 
VX, as follows: 

VX = EXx(l-EX) (5) 
Derived as follows: 

(1) VX = EX2-(EX)2 and EX2 = Cx2p(x) by defini- 
tion. 

(2) x can take on only the values in (0, 1 } and 
PW = ID(A, R, t) . 

(3) Therefore, EX2 = c.w2p(x) = cxp(x) = EX. 
(4) So VX = EX’ - (EX)’ = EX-(EXf = EXx(l-EX). 

Given this definition, we can calculate EX; and VX; for all 
activities, Aj, at time point t. We 
gate these individual measures to 

would no& like to’aggre- 
find a measure of the total 

expected value and variance at event t. To do this we use the 
following two theorems. 

Theorem 1 The expected value of a sum of random 
variables is the sum-of their expected values. 
Theorem 2 If f and g are independent random vari- 
ables on the sample space S, V(f + g) = V(f) + V(g) . 
Proofs of these theorems can be found in statistics texts 

(e.g., (Bogart, 1988) p. 573 and p. 589, respectively). 
These theorems allow us to simply sum the expected val- 

ues and variances from each activity, provided we make the 
following assumption. 

Egregious Assumption 1 The random variables asso- 
ciated with each activity are mutually independent. 
This assumption is false. We will be sequencing these 

activities by posting precedence constraints and therefore 
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their random variables will become completely interdepen- 
dent. Reality notwithstanding, we make this assumption 
and form the aggregate expected value and variance by 
summing the constituent expected values and variances. 

The aggregate expected value and variance form a distri- 
bution that can be used to represent the aggregate demand 
for resource R at time point t. By comparing this distribu- 
tion with the capacity of R at t we can find an estimate for 
the probability that the capacity constraint will be broken at 
t. To do this we will make our second assumption: 

Egregious Assumption 2 The aggregate random vari- 
able is normally distributed around the expected value. 
Given this assumption (which appears to only slightly 

less dubious than our first), we can compare the expected 
value and the standard deviation of the random variable 
with the capacity at t. This is illustrated in Figure 2. The 
area under the curve greater than the maximum capacity 
constraint is used as an estimate of the probability of break- 
age. 

The disadvantages of the VarHeight method center 
around the assumptions. Since these assumptions do not 
actually hold, we expect that VarHeight, like Triangle- 
Height, will be inferior to JointHeight. Another disadvan- 
tage is that because of the shape of the individual variance 
curve over time, we need to use six event points in our indi- 
vidual activity curve representation. Furthermore, each 
event must contain not only the expected value and variance 
but also the incoming and outgoing slope of these curves at 
that event. In addition to the four points in Expression (2), 
we add the following two points to the individual activity 
curve (calculation of the expected values and variances is 
left as an exercise to the reader, based on Equations (1) and 
(3): 

t = est + min(lst, eft) lft + max( lst, eft) 
5 2 7 t(j = 

2 (6) 
The advantages of VarHeight are the same as those of 

TriangleHeight: we can generalize it easily to minimum 
constraints, we can generalize it beyond unary capacity 
resource constraints, and we can use the same event-based 
formulation as used with SumHeight. 
Complexity As in SumHeight, we sort all the individual 
demand elements and, with a single pass through the list, 
calculate the probability of breakage using the expected 
value and variance curves. &i-Height, therefore, has the 
same complexity as SumHeight and TriangleHeight: time 
complexity of O(mn log n) + O(mn) and space complexity 
of O(mn). 

A Texture-Based Heuristic 
We have presented four methods for the estimation of the 
criticality of a resource constraint, three of which are based 
on the estimation of the probability of breakage of con- 
straints. Each of these estimations can be used as a basis for 
a heuristic scheduling technique. In this paper we are inter- 
ested in comparing the quality of the criticality estimates 
from each of the methods and therefore will use each of 
them in an identical heuristic commitment technique. At a 
high level, the heuristic operates as follows: 
1. Identify the most critical resource and the time point 

based on the texture measurement. 
2. Identify the two activities, A and B, which rely most on 

that resource and time point, and that are not already 
connected by a path of temporal constraints. 

Area used as estimate 
for the probability of 
breakage of maximum 

constraint 

EXM Resource Demand 

Figure 2. Calculating the Probability of 
with VarHeight. 

Breakage at Event t 

3. Analyze the consequences of each sequence possibility 
(A -+ B and B + A) and choose the one that appears to 
be superior. 

After calculating the aggregate curve on each resource, 
the {resource, time point} pair with the maximum critical- 
ity is identified. The two critical activities are those with the 
highest individual demand for the resource at that time 
point that are not connected to each other by a path of tem- 
poral constraints. Once these two activities are identified, a 
sequencing constraint is posted between them (as in Prece- 
dence Constraint Posting (Smith and Cheng, 1993; Cheng 
and Smith, 1996)). To do this we use three sequencing heu- 
ristics, in order: MinimizeMax, Centroid, and Random. If 
MinimizeMax predicts that one sequence is better than the 
other, we commit to that sequence. If not we move to the 
Centroid heuristic. If the Centroid heuristic is similarly 
unable to find a difference between the two choices, we 
move to Random. 
MinimizeMax Sequencing Heuristic MinimizeMax 
(MM) identifies the sequence which satisfies the following: 

MM = min(maxAD,(A, B), maxAD,(B, A)) (7) 

Where: 
maxAD,(A, B) = max(AD’(A, A + B), AD’(B, A + B)) (8) 

AD ‘(A, A + B) is an estimate of the new aggregate 
demand at a single time point. It is calculated as follows: 
0 Given A --+ B, we calculate the new individual demand 

curve of A and identify the time point, tp, in the individ- 
ual demand of activity A that is likely to have the maxi- 
mum increase in height. This leaves us with a pair: { tp, 
Aheight}. 

e We then form AD’(A, A + B) by adding Aheight to the 
height of the aggregate demand curve at tp. 
The same calculation is done for AD’(B, A + B) and the 

maximum is used in maxA~(A, B). Equation (7) indicates 
that we choose the lowest maximum aggregate curve 
height. The intuition is that since we are trying to reduce 
criticality, we estimate the worst case increase and then 
make the commitment that avoids it. 
Centroid Sequencing Heuristic It is possible that 
maxA~(A, B) = rnax~o(B, A), and so MinimizeMax gives 
us no insight. When this happens we move to Centroid. 

The centroid of the individual demand curve is the time 
point that equally divides the area under the curve.2 We cal- 
culate the centroid for each activity and then commit to the 
sequence that preserves the current ordering (e.g., if the 
centroid of A is at 15 and that of B is at 20, we post 

2. This is a simplification of centroid, possible because the indi- 
vidual activity curves, as we calculate them, are symmetric. 
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A -+ B). This centroid heuristic is a variation of one due to 
(Muscettola, 1992). 
Random Sequencing Heuristic As with MinimizeMax, it 
is possible that the centroids of the activities are equal and 
so the Centroid heuristic provides no insight. If the cen- 
troids are equal, we will randomly choose one of the 
sequences. 
Complexity Sequencing requires that the two unconnected 
activities with highest demands are identified. Given a list 
of activities on the critical resource, sorted in descendin 
order of individual demand, we may still require an O(n 2” ) 
traversal of this list to identify the to-be-sequenced activi- 
ties. This is added to the complexity of maintaining the tex- 
ture curves and identifying the critical resource and time. 

Experiments 
Our experiments are designed to evaluate techniques for 
making heuristic commitments and so we only manipulate 
the way in which heuristic commitments are made. Three 
consistency techniques (edge-finding (Carlier and 
Pinson, 1989), constraint-based analysis (CBA) (Erschler 
et al., 1976), and temporal arc-B-consistency propagation 
(Lhomme, 1993)), are used with each heuristic. In order to 
investigate possible interaction between heuristics and 
backtracking techniques, we use two types of backtrackers: 
chronological backtracking and limited discrepancy search 
(LDS) (Harvey and Ginsberg, 1995). The skeleton schedul- 
ing algorithm is outlined in Figure 3. In addition to the heu- 
ristic based on each of our texture estimations, we include 
the simpler CBASlack heuristic (Cheng and Smith, 1996) 
that has been shown to be competitive with SumHeight on 
some problem sets (Beck et al., 1997b). 

The CPU time limit for all experiments is 20 minutes on 
a 100 MHz. HP 9000/7 12 running HPUX 9.05. 

In order to facilitate the presentation and discussion of 
our experimental results, we refer below to the heuristic 
using a particular texture estimation technique by the name 
of its estimation technique (e.g., “the SumHeight heuristic”, 
“the TriangleHeight heuristic”). 

Experiment I 
3 

In this experiment we use a set of 21 job shop scheduling 
problems from the Operations Research library of bench- 
mark problems (Beasley, 1990). The 21 problems are the 
union of the problem sets used in (Vaessens et al., 1994) 
and (Baptiste et al., 1995) and are also used in (Beck 
et al., 1997b). 

25 -  

Each heuristic is run on a number of instances of each 
problem with varying makespans. Specifically, for each 
problem, the optimal (or best known upper bound) 
makespan is used initially. If a solution can not be found 
within the time limit, the makespan is increased by 0.005 
times the optimal. Lengthening of the makespan continues 
until a solution is found. 
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Jointlielght 
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+SumHelght 
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The results of the experiment are plotted in Figures 4 and 
5. The layout of graphs cluster the better algorithms in the 
lower left corner of the graph: low number of heuristic 
commitments, low mean relative error. Note the different 
scales in Figures 4 and 5. 

0 t 
2000 3000 4000 5000 6000 7000 

Mean # of HeureSlc Commdments 

We do not present results for CPU time. It is dominated 
by our relatively inefficient implementation of edge-finding 
and so does not aid in distinguishing among the heuristic 

Figure 5. Mean Relative Error vs. Mean Number of Heuristic 
Commitments using LDS 

finished := false 
whilelfinished = false) { 

edge-finding 
if (edge-finding makes no commitments) 

CBA 
if (no commitments from CBA 

or from edge-finding) 
make heuristic commitment 

if (dead-end) 
backtrack 

else 
arc-B-consistency temporal propagation 

if (all-activities-sequenced OR 
CPU limit reached) 

finished := true 

Figure 3. Basic Scheduling Procedure 
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Figure 4. Mean Relative Error vs. Mean Number of Heuristic 
Commitments using Chronological Backtracking 
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commitment techniques. This issue is discussed in detail in 
(Beck et al., 1997a) 

Using chronological backtracking, the only non-signifi- 
cant differences (tested with a boot-strap paired t test 
(Cohen, 1995)) in terms of mean relative error are between 
VarHeight and SumHeight and between SumHeight and 
JointHeight. In particular %-Height outperforms Triangle- 
Height (p I O.OOOl), CBASlack (p < O.OOl), and 
JointHeight (p 5 0.05) while SumHeight, in turn, is able to 
find better schedules than CBASlack (p 5 0.05) and Trian- 
gleHeight (p IO.0001). JointHeight outperforms CBASlack 
(p < 0.05) and TriangleHeight (p 5 0.0001) and CBASlack 
outperforms only TriangleHeight (p I 0.01). There are no 
significant differences in the number of heuristic commit- 
ments (tested with a boot-strap, two-sample t test 
(Cohen, 1995)). 

Turning to the LDS results we find no significant differ- 
ences in schedule quality among CBASlack, VarHeight, 
and SumHeight. JointHeight is significantly worse than 
each of these heuristics (p IO.0005, p I 0.005, and 
p I 0.005, respectively). TriangleHeight is significantly 
worse than all other heuristics (p IO.0001) except for 
JointHeight where TriangleHeight is worse at (p I 0.05). In 
terms of the number of heuristic commitments, SumHeight 
is statistically indistinguishable from either VarHeight or 
CBASlack, while VarHeight uses significantly fewer heu- 
ristic commitments than CBASlack (p I 0.05). The only 
other significant differences are that JointHeight uses fewer 
heuristic commitments than SumHeight @ I 0.05) and 
CBASlack (p IO.005) and that TriangleHeight uses fewer 
heuristic commitments than CBASlack (p 50.01). 

An interesting side issue arising from these results is the 
relative performance of the two backtracking techniques. 
All heuristics with the exception of JointHeight find signifi- 
cantly better schedules with LDS than with chronological 
backtracking while using significantly more heuristic com- 
mitments. There is no significant difference in mean rela- 
tive error with JointHeight, though LDS still uses 
significantly more heuristic commitments. The magnitude 
of the difference in choosing LDS over chronological back- 
tracking is greatest for TriangleHeight and CBASlack, both 
of which have significantly more improvement than Var- 
Height and SumHeight. While there is no significant differ- 
ence in performance between CBASlack and 
TriangleHeight, VarHeight has significantly less improve- 
ment than SumHeight. 

Experiment 2 
The results of Experiment 1 do not provide much insight 
into why we observe performance differences among the 
heuristics. Before extending the heuristics to more sophisti- 
cated constraints, it would be reassuring to have some eluci- 
dation of why we see the performance differences that we 
do. 

As noted throughout this paper, our intuition as to why 
contention and probability-based heuristics perform well is 
that they are able to find the critical decisions to make at 
each search state. If a heuristic is finding the more critical 
decisions to make, we would expect those decisions to be in 
relatively more constrained areas of the constraint graph 
(indeed, this is what the probability of breakage is measur- 
ing). One indication that a heuristic is identifying critical 
decisions is the ratio of commitments found by the propa- 
gators (implied commitments) to those made by the heuris- 
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Figure 6. Number of Problems Solved vs. Problem Size using 
Chronological Backtracking 
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LDS 

tic (heuristic commitments). We would expect the ratio to 
be higher if the heuristic is really better at identifying the 
critical constraint. 

To test our intuition into the performance of the texture- 
based heuristics, we ran a second experiment using a larger 
problem set with problems of varying sizes and (expected) 
difficulties. Using Taillard’s (Taillard, 1993) generator of 
job shop scheduling problems, we created 5 sets of 60 prob- 
lems each with sizes of { 10x10, 12x12, 15x15, 18x18, 
20x20). We generated a makespan for each problem such 
that the problem instances of each size span the phase tran- 
sition that has been observed in job shop problems (Beck 
and Jackson, 1997). Using a CPU bound of 20 minutes, an 
attempt was made, using each algorithm, to solve each 
problem. If the bound was reached, failure on that problem 
was returned. Results in terms of number of problems 
solved using chronological backtracking and LDS are 
shown in Figures 6 and 7. 

Using chronological backtracking, VarHeight solves sig- 
nificantly more problems than SumHeight (p 5 0.05) but 
there is no significant difference between VarHeight and 
CBASlack or between SumHeight and CBASlack. These 
three algorithms all solve significantly more problems than 
either JointHeight or TriangleHeight (p I 0.05) while 
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JointHeight, in turn solves significantly more problems than 
TriangleHeight (p 5 0.005). 

With LDS as the backtracking component, there are no 
significant differences among VarHeight, SumHeight, and 
CBASlack while each solves more problems than 
JointHeight @ < 0.05) and TriangleHeight (p 5 0.005). 
JointHeight solves significantly more problems than Trian- 
gleHeight (p I 0.05). 

Given these performance measures, Figures 8 and 9 plot 
the ratio between the number of implied commitments and 
heuristic commitments in the problems that the heuristic 
solved. It can be seen that the texture-based heuristics result 
in a very significantly (p IO.0001) higher number of 
implied commitments than CBASlack with both chronolog- 
ical backtracking and LDS. 

Summary of Experimental Results 
Our experiments strongly support the contention that we 
have been successful in formulating new texture measure- 
ment estimation techniques that can form the basis of heu- 
ristics that are as good or better (on job shop scheduling 
problems) than existing heuristics. The (lack of) perfor- 
mance of JointHeight is curious given our expectation that 
Ku-Height and TriangleHeight are poorer estimates of the 
probability of breakage than JointHeight. We are unable to 
explain this anomaly and plan to further investigate it in 
future work. 

Experiment 2 provides support for our intuition as to the 
reasons behind the efficacy of texture-based heuristics: they 
are better able to identify the (truly) most critical constraint 
in a problem state. Unfortunately, we do not observe a sim- 
ple relationship between the commitment ratio and perfor- 
mance. The worst performing heuristic in terms of the 
number of problems solved, TriangleHeight, has the highest 
commitment ratio when used with LDS. Nevertheless, we 
interpret the clear difference between the texture-based 
heuristics and CBASlack in terms of the commitment ratio 
as positive evidence that the probability-based heuristics are 
identifying critical constraints. 

Discussion 
The purpose of this paper is to investigate new methods for 
estimation of texture measurements which are extensible to 
the complex constraints found in more realistic scheduling 
domains. While there has been some other work in the 
extension of texture measurements (Saks, 1992), we believe 
our approach is more general in its scope as it embeds the 
criticality of a constraint in the probability that it will be 
broken. Of the three new texture estimation methods we 
have proposed, VarHeight and TriangleHeight are more 
easily extensible to more complicated scheduling con- 
straints. 

For example, consider a minimum or maximum inven- 
tory capacity constraint where activities produce or con- 
sume inventory instantaneously at their end- and start-times 
respectively (i.e., a “batch” environment). For both Var- 
Height and TriangleHeight, we can adapt their formulation 
so that the expected value is the expected contribution (pos- 
itive or negative) from an activity to an inventory. In Trian- 
gleHeight, we can keep track of upper and lower bounds on 
inventory level and use the same formulation as above. For 
Vat-Height, the calculation of the variance in the contribu- 
tion of an activity at a time point is more complicated than 

VarHelght -a--  
JolntHeight -+- 

TrtangleHelght .o-- 
SumHeIght * 
CBASlack -e -  
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Equation (5), but induces no significant additional over- 
head. With these low-level changes the aggregation and use 
of the heuristics is the same as presented above. 

Additionally, we have a dynamic programming formula- 
tion and implementation of the JointHeight estimation for 
inventory. While the worst case complexity is, as expected, 
exponential in the number of activities on the inventory, the 
average case performance is approximately O(mn3), indi- 
cating that it may be useful in practice. 

Further extension of these estimation methods as well as 
research into heuristics using the criticality information 
forms the basis of our research agenda. In particular, we are 
investigating ways to deal with other real-world constraints 
(e.g., the full inventory problem (where activities produce 
and consume inventory at (possibly varying) rates as they 
execute); scheduling with changeovers; scheduling with 
options for production and consumption). 

Conclusions 
Our goal is to develop techniques to estimate the probabil- 
ity of breakage of constraints in a range of real world 
scheduling problems, such that the criticality of different 
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types of constraints in a search state can be compared 
directly. In this paper we have taken a first step towards this 
goal. We have developed and investigated three new meth- 
ods to estimate the probability of breakage of the resource 
constraint in job shop scheduling. Two of these techniques, 
VarHeight and TriangleHeight, are easily extensible to 
scheduling constraints in more complicated domains, such 
as cumulative resources and inventory constraints. 

Our experiments have shown that heuristics based on the 
estimation of the probability of breakage are competitive 
with existing heuristics which are not easily extensible to 
more complicated scheduling domains. Furthermore, in our 
experiments, the heuristic based on one of these probability 
estimation techniques, VarHeight, was able to outperform 
previous heuristics in terms of the quality of the solutions it 
could find. Our experiments provide support for our intu- 
ition that the texture-based heuristics are able to success- 
fully identify critical constraints in each problem state. 
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