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Abstract 

Recent scheduling work has challenged the need for sophisti- 
cated heuristics such as those based on texture measurements. 
This paper examines these claims in the light of advances in 
scheduling technology. We compare a number of current heu- 
ristic commitment techniques against a texture-based heuris- 
tic. Our results demonstrate that texture-based heuristics can 
outperform these widely-used heuristic commitment tech- 
niques. 

tics with the same consistency techniques 
(Nuijten, 1994). 
In this paper we re-evaluate texture-based heuristics in 

light of recent advances in scheduling technology and show 
that on two job shop scheduling problem sets (a widely 
used set of Operations Research benchmark problems and a 
set of randomly generated, hard problems) a texture-based 
heuristic outperforms heuristic commitment techniques 
found in the literature. 

Introduction 
Our research goal is to be able to model and quickly solve 
scheduling problems as they exist in the real world. We are 
less interested in optimal solutions than in fast approximate 
solutions: a quickly found solution that takes into account 
all the constraints in the real problem is of significantly 
more use than an optimal solution that either takes too long 
to find or does not accurately represent the problem. We are 
applying and extending constraint-directed scheduling tech- 
niques toward this end. 

The n x m Job Shop Scheduling Problem Given are a set 
of n jobs, each composed of m totally ordered activities, and 
m resources. Each activity Ai requires exclusive use of a 
single resource Rj for some processing duration duri.. There 
are two types of constraints in this problem: 
0 Precedence constraints between two activities in the same 

job stating that if activity A is before activity B in the total 
order then A must execute before B (that is, A + B). 

0 Resource constraints specifying that no activities requir- 
ing the same resource may execute at the same time. 
Jobs have release dates (the time after which the activi- 

Our search philosophy is to spend significant but low 
polynomial effort (0(n2) or even 0(n3)) in the analysis of 
each search state to find the most critical constraint in that 
state, and then make a heuristic decision to reduce this criti- 
cality. We believe this will lead to strong algorithms due to 
the decomposition of a problem after critical decisions are 
made and the related minimization of the need for back- 
tracking. Investigation of the validity of this philosophy of 
constraint-directed problem solving forms our long-term 
research agenda. 

ties in the job may be executed) and due dates (the time by 
which the last activity in the job must finish). In the deci- 
sion problem, the release date of each job is 0 and a global 
due date is D. The problem is to determine whether there is 
an assignment of a start-time to each activity such that the 
constraints are satisfied and the maximum finish-time of all 
jobs is less than or equal to D. This problem is NP-complete 
(Garey and Johnson, 1979). 

In this paper we address the use of texture measurements 
(Fox et al., 1989). Texture measurements are a foundation 
for sophisticated heuristic decision making and, as such, are 
complementary to recent advances in scheduling research 
(e.g., edge-finding (Carlier and Pinson, 1989; 
Nuijten, 1994), constraint-based analysis (Smith and 
Cheng, 1993; Cheng and Smith, 1996), limited discrepancy 
search (Harvey and Ginsberg, 1995)). 

A number of criticisms have appeared in the scheduling 
literature with regard to texture-based heuristics. In particu- 
lar, it is claimed that: 
e Texture measurements are too complicated and equal per- 

formance can be achieved with simpler heuristics (Smith 
and Cheng, 1993). 

Notation For an activity, Ai, Sl;: is the start-time variable 
and STDi is the discrete domain of possible start-times. esti 
and ZSti represent the earliest and latest possible start-times, 
while efti and Zfti represent the earliest and latest possible 
finish-times. duri is the duration of Ai. We will omit the sub- 
script unless there is the possibility of ambiguity. 

xture easurements for SC ding 
euristics 

e A simple heuristic with sophisticated consistency tech- 
niques (edge-finding) outperforms texture-based heuris- 

It is our conjecture that an understanding of the structure of 
a problem will lead to more effective methods to solve the 
problem. Therefore, our goal is to formalize the concept of 
problem structure. Experience of both Operations Research 
and constraint-directed problem solving provides evidence 
that many problems can be adequately modeled by a con- 
straint graph and that the structure of these graphs has sig- 
nificant impact on the efficacy of problem solving methods. 
Therefore we adopt the view that a problem’s structure is 
defined by its constraint graph. 

Copyright 0 1997, American Association for Artificial Intelligence (www.aaai.org). All 
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Given a constraint graph representation, are there prob- 
lem invariant measurements of the problem topology that 
may form a basis for heuristic problems solving tech- 
niques? A number of such measures, called texture mea- 
surements, have been identified and experimented with 
(Fox et al., 1989; Sadeh, 1991). A texture is a measurement 
of a fundamental property of a constraint graph. A search 
heuristic (e.g., variable and value ordering heuristics) is a 
function of one or more textures. A texture measurement is 
not a heuristic. Rather, it is a method of gathering informa- 
tion from the constraint graph which heuristics can then 
use. For example, a texture measurement may label some 
structures in the constraint graph (e.g., constraints, vari- 
ables, sub-graphs) with information condensed from the 
surrounding graph. On the basis of this condensed informa- 
tion, heuristic decisions are made. 

The chief example of the use of texture measurements in 
scheduling is the Operation Resource Reliance/Filtered 
Survivable Schedules (ORR/FSS) heuristic implemented in 
the MicroBOSS Scheduler (Sadeh, 1991; Sadeh and 
Fox, 1996). ORR/FSS assigns start-times to activities using 
the contention and reEiance texture measurements as a basis 
for the variable and value ordering heuristics. In general, 
contention is the extent to which two variables, connected 
by a disequality constraint, compete for the same value. 
Similarly, reliance is the extent to which a variable must be 
assigned a particular value if a solution is to be found. In 
scheduling, contention is the extent to which two activities 
compete for the same resource at the same time while reli- 
ance is the extent to which an activity must be executing on 
a specific resource at a particular time point in order to find 
a schedule. The exact calculation of these textures is pro- 
hibitively expensive, therefore, an estimation of the actual 
textures are used. 

MicroBOSS identifies the most contended-for {resource, 
time interval} and assigns it to the activity that is most reli- 
ant on that resource and time interval. Simple chronological 
backtracking and intelligent backtracking (Sadeh 
et al., 1995) have been used in MicroBOSS to solve a num- 
ber of constraint satisfaction and constraint optimization 
problems better than the best existing dispatch rules. 

The SumHeight Heuristic’ 
The texture-based heuristic used here, SumHeight, is a vari- 
ation on ORlUFSS. As with ORR/FSS, SumHeight makes a 
commitment on the activities most reliant on the resource 
for which there is the highest contention. In more detail, 
SumHeight does the following: 
1. Identifies the resource and time point with the maximum 

contention. 
2. Identifies the two activities, A and B, which rely most 

on that resource at that time and that are not already 
connected by a path of temporal constraints. 

1. By referring to the “SumHeight heuristic” we are conflating two 
notions: the estimation of the texture measurements and the heu- 
ristic based on that estimation. Strictly speaking, SumHeight is the 
algorithm for the estimation of contention and reliance, that is, for 
the calculation of the individual and aggregate demand curves. 
The heuristic then, based on the contention and reliance estimate, 
identifies the commitment to be made. Because SumHeight is the 
only texture measurement estimation algorithm used in this paper, 
we refer to the SumHeight heuristic. It should be noted however 
that the same heuristic technique may be based on a different 
underlying texture measurement estimation algorithm (see (Beck 
et al., 1997b) for examples of such). 
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Figure 2. Individual Demand Curves for A,, A,, and A3 

3. Analyzes the consequences of each sequence possibility 
(A -+ B and B + A) and chooses the one that appears to 
be superior. 

The intuition is that by focusing on the most critical 
resource and activities, we can make a decision that reduces 
the likelihood of reaching a search state where the resource 
is over-capacitated and furthermore once such critical deci- 
sions are made the problem is likely to be decomposed into 
simpler sub-problems. 

In the balance of this section, we present our estimations 
of the contention and reliance textures and expand on the 
SumHeight heuristic. These calculations rely heavily on 
Sadeh’s original formulation (Sadeh, 1991). 

Calculating Individual Demand 
To calculate an activity’s demand for a particular resource, 
a uniform probability distribution over the possible start- 
times for an activity is assumed: each start-time has proba- 
bility 111S7”1.2 The individual demand, ID(A,R,t), is (prob- 
abilistically) the amount of resource R, required by activity 
A, at time t. It is calculated as follows, for all estA I t < ZfA: 

ID(A, R, t) = 
min(t, IstA) - max(t - durA + 1, estA) 

IsTDl 
(1) 

For example, we have 3 activities, Al, A,, and A,, on 
resource, Rl. The earliest start-times, the latest finish-times, 
and the durations of each activity are shown in Figure 1. 

2. A uniform probability distribution is the “low knowledge” 
default. Local propagation of value preferences can be used to find 
a different estimate of the individual demand (Sadeh, 1991; 
Muscettola, 1992). 



The individual demand curves of each activity as calcu- 
lated by Equation (1) are illustrated in Figure 2 (the “step” 
functions: sadehA1, sadehA2, and sadehA3). For an intui- 
tive feel for the calculation of the curve for A3, one may 
imagine placing A3 at its earliest start-time, 0, and, for all 
time points at which A, is “executing”, adding a demand of 
l/13 (A3 can start at time points 0 through 12 inclusive). We 
can then place A3 at its second earliest start-time, 1, and 
again add l/13 for all the time points and so on through to 
the latest start-time of A3. 

A naive calculation of individual demand results in an 
algorithm that scales with the number of activities and 
resources, and with the length of the scheduling horizon. To 
escape the dependence on the scheduling horizon, we use 
an event-based representation and a piece-wise linear esti- 
mation of the ID curve. The individual activity demand is 
represented by four (t, ID) pairs: 

(f?St, &)y (ISty min(‘si dur))p 

( 
eft min(~STDI, dur) 

9 
ISTDl ) 

7 u..~, 0) 
(2) 

The use of Equation (1) to calculate the points in Expres- 
sion (2) results in the second set of curves displayed in Fig- 
ure 2 (eventAl, eventA2, and eventA3). 

Aggregating Individual Demand 
To estimate contention, the individual demands of each 
activity are aggregated for each resource. Aggregation is 
done by summing the individual activity curves for that 
resource. This aggregate demand curve is used as a measure 
of the contention for the resource over time. 

With the example used above, the aggregate resource 
demand curve for resource Rl is shown in Figure 3 
(sadehR1 is the aggregate curve using Sadeh’s original for- 
mulation and eventR1 is the aggregate curve using our 
event-based implementation). 

Finding the Critical Activities 
Once the aggregate demand curves are found for each 
resource, we identify the resource and time point for which 
there is the highest contention (with ties broken arbitrarily). 
We then examine the activities that contribute individual 
demand to the resource at that time point. The two activities 
which are not connected to each other by a path of temporal 
constraints and which contribute the most demand to the 
aggregate resource demand at the critical time point are 
defined to be the most critical activities. Because these two 
activities contribute the most to the aggregate demand 
curve, they are the most reliant on the resource at that time. 

It can be seen in Figure 3 that one of the critical time 
points on RI is 35. There are only two activities that con- 
tribute to this time point, as A,‘s latest end-time is 22 (see 
Figure 2). Therefore, Al and A2 are selected as the critical 
activities. 

Sequencing the Critical Activities 
ORRZFSS assigns start-times to activities and so identifies 
the single most reliant activity and uses a value ordering 
heuristic to determine a value assignment.3 Because we 
post sequencing constraints between the two most critical 
activities, rather than assigning start-times, we do not use 

0 20 40 60 80 100 
Ttme 

Figure 3. The Aggregate Demand Curve on IpI 

Sadeh’s value ordering. Instead, to determine the sequence 
of the two most critical activities, we use three heuristics: 
MinimizeMax, Centroid, and Random. If MinimizeMax 
predicts that one sequence will be better than the other, we 
commit to that sequence. If not we try the Centroid heuris- 
tic. If the Centroid heuristic is similarly unable to find a dif- 
ference between the two choices, we move to Random. 
MinimizeMax Sequencing Heuristic MinimizeMax 
(MM) identifies the commitment which satisfies the follow- 
ing: 

MM = min(maxAD,(A, B), maxADv(B, A)) 

where: 

(3) 

maxAD,(A, B) = max(AD’(A, A + B), AD’(B, A + B)) (4) 

AD’(A, A + B) is an estimate of the new aggregate 
demand at a single time point. It is calculated as follows: 
0 Given A + B, we calculate the new individual demand 

curve of A and identify the time point, tp, in the individ- 
ual demand of activity A that is likely to have the maxi- 
mum increase in height. This leaves us with a pair: { tp, 
Aheight}. 

0 We then look at the aggregate demand curve for the 
resource at tp and form AD’(A, A -+ B) by adding 
Aheight to the height of aggregate demand curve at tp. 
The same calculation is done for AD’(B, A + B) and the 

maximum (as shown in Equation (4)) is used in 
~‘?ZUXAD*(A, B). Equation (3) indicates that we choose the 
commitment resulting in the lowest maximum aggregate 
curve height. The intuition is that since we are trying to 
reduce contention, we estimate the worst case increase and 
then make the commitment that avoids it. 
Centroid Sequencing euristic The centroid of the indi- 
vidual demand curve is the time point that equally divides 
the area under the curve.4 We calculate the centroid for 
each activity and then commit to the sequence that pre- 
serves the current ordering (e.g., if the centroid of A is at 15 
and that of B is at 20, we post A + B). Centroid is a varia- 
tion of a heuristic due to (Muscettola, 1992). 

3. ORRFSS also uses a time interval equal to the average activity 
duration rather than a single time point in identifying the critical 
resource and activities. 
4. This is a simplification of centroid that is possible because the 
individual activity curves, as we calculate them, are symmetric. 
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Random Sequencing Heuristic Randomly choose one of 
the sequencings. 

In our example the MinimizeMax heuristic calculates 
that maxAD (Al, A$ = 1.357 and K?UXAD’(A2, Al) = 1.700. 
Therefore the commitment Al + A2 is made. 

Complexjty 
The worst-case time complexity to find a heuristic commit- 
ment at a problem state is due to the aggregation of the 
demand curves for each resource and the selection of the 
critical activities. By storing the incoming and outgoing 
slopes of the individual curves at each point, we can sort all 
the event points and then, with a single pass, generate the 
aggregate curve. This process has complexity of 
O(mn log n) + O(mn). Selection of the pair of unsequenced 
activities on the resource requires at worst an additional 
O(n2). Thus the overall time complexity for a single heuris- 
tic commitment is O(n2) + O(mn log n) + O(mn). 

The space complexity is O(mn) as we maintain an indi- 
vidual curve for each activity and these individual curves 
make up the aggregate curve for each resource. 

The Left-Justified andomized Heuristic 
Nuijten (Nuijten et al., 1993; Nuijten, 1994) presents a ran- 
domized scheduling algorithm, SOLVE, which uses power- 
ful propagation techniques (edge-finding) to identify 
commitments that are implied by the search state. Heuristic 
decisions are made using the Left-Justified Randomized 
Heuristic (LJRand). LJRand finds the smallest earliest fin- 
ish-time of all the unscheduled activities and then identifies 
the set of activities which are able to start before this time. 
One of the activities in this set is selected randomly and 
scheduled at its earliest start-time. Bounded chronological 
backtracking with restart is used to escape dead-ends. 

Experiments compared SOLVE with the ORR/FSS heu- 
ristic (using chronological backtracking, temporal propaga- 
tion and arc-consistency propagation on the resource 
constraints) and with ORR/FSS augmented with the consis- 
tency techniques used in SOLVE. These experiments found 
that SOLVE strongly outperforms augmented ORR/FSS, 
which in turn strongly outperforms unaugmented ORR/ 
FSS. It is not clear whether chronological backtracking or 
the ORIUFSS heuristic are to blame for the poor perfor- 
mance relative to SOLVE. 

Alternative Heuristics for Schedu 
A number of techniques have been suggested for making 
heuristic decisions in the job shop scheduling problem. We 
look at three of these in this section. 

The time-complexity of the LJRand heuristic is O(mn) as 
all the unsequenced activities must be examined and then 
one randomly chosen. 

The FirstCommit 

The CBASlack Heuristic 
The CBASlack heuristic was originally proposed as part of 
the Precedence Constraint Posting (PCP) algorithm (Smith 
and Cheng, 1993; Cheng and Smith, 1996). PCP uses the 
Constraint-Based Analysis (CBA) (Erschler et al., 1976; 
Erschler et al., 1980) propagator to find implied commit- 
ments and the CBASlack heuristic to identify heuristic 
commitments. 

CBASlack analyzes all pairs of activities, not connected 
by a path of temporal constraints, on each resource. The 
heuristic decision is made using the Bslack (“biased-slack”) 
calculation in Equations (5) through (7). 

BsZack(Ai + Aj) = 
sZack(Ai + Aj) 

G (5) 
4J3 

S 
min(sZack(Ai + Aj), sZack(Aj + Ai)) 

= max(sZack(Ai + Ai), sZack(Aj + Ai)) (6) 

sZack(Ai + Aj) = Zftj - esti - (duri + durj) (7) 

Bslack is calculated for all temporally unconnected pairs 
of activities on the same resource and the pair with the 
smallest Bslack value is identified as the most critical. The 
sequence of the critical pair that preserves the most slack is 
the one chosen. The intuition here is that a pair with a 
smaller Bslack is closer to being non-viable than one with a 
larger value. Once this pair is found, it is important to leave 
as much temporal slack as possible to decrease the likeli- 
hood of backtracking to this decision. 

The time complexity of the CBASlack heuristic is 
O(mn2) as all pairs of activities on each resource may have 
to be examined. 

(Baptiste et al., 1995) propose a technique for making heu- 
ristic decisions implemented with the ILOG Schedule con- 
straint library (Le Pape, 1994). The heuristic finds the 
resource with the least slack and then analyses the unse- 
quenced activities on that resource. Based on comparison of 
the time-windows available for each unsequenced activity 
on the critical resource, one is selected to execute first. All 
activities on the critical resource are sequenced before iden- 
tification of the next critical resource. 

Slack on a resource is defined to be the difference 
between supply of the resource (the time interval between 
the minimum est and the maximum lj? of all unsequenced 
activities) and demand (the sum of the durations of all unse- 
quenced activities). The resource with the smallest slack is 
selected. Once a resource is selected, an activity is chosen 
to execute first among the unsequenced activities on the 
resource. Consistency techniques can be used to identify 
activities that can not execute first, however it is unclear 
precisely which are used by (Baptiste et al., 1995). Once 
the set of activities that can execute first is identified, one 
activity is selected by the EST-LST rule: the activity with 
the smallest est breaking ties with the smallest Zst. All activ- 
ities on a resource are scheduled before moving to another 
resource. 

Following (Baptiste et al., 1995), we have implemented 
FirstCommit. The resource with smallest slack is identified 
as described above and the set of activities that can execute 
first is found using an O(n) consistency algorithm based on 
(Caseau and Laburthe, 1995). From this set the EST-LST 
rule is used to choose the activity to execute first. Once the 
resource is completely sequenced, FirstCommit moves to 
the next unsequenced resource with minimum slack. 

Time-complexity is O(mn) to calculate the resource slack 
(which is not done for every heuristic commitment) and 
O(n) to identify the activity to schedule first once the criti- 
cal resource is known. 
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Experiments 
Our experiments are designed to focus on the evaluation of 
techniques for making heuristic commitments and so we 
manipulate only the way in which heuristic commitments 
are made. Three consistency techniques (edge-finding, 
CBA, and temporal arc-B-consistency (Lhomme, 1993)) 
are used after each new heuristic commitment is made. If 
the domain of possible start-times of any activity becomes 
empty, a dead end in the search has been reached and we 
backtrack. We use two backtracking techniques: chronolog- 
ical backtracking and limited discrepancy search (LDS) 
(Harvey and Ginsberg, 1995). The scheduling algorithm is 
outlined in Figure 4. The CPU time limit for all experi- 
ments is 20 minutes on a 100 MHz. HP 9000/7 12 running 
HPUX 9.05. 

Experiment 1 
We used a set of 21 job shop scheduling problems (see 
Table 1) from the Operations Research library of bench- 
mark problems (Beasley, 1990). The problems are the 
union of the problem sets used in (Vaessens et al., 1994) 
and (Baptiste et al., 1995). 

Each heuristic commitment technique is run on a number 
of instances of each problem with a range of makespans. 
Specifically, for each problem, the optimal (or best known 
upper bound) makespan is used initially. If a solution can 
not be found within the time limit, we increase this 
makespan by 0.005 times the optimal makespan and re-run 
the algorithm. Lengthening of the makespan continues until 
a solution is found. Algorithms are then compared based on 
the mean relative error between the makespan that they 
were able to solve and the optimal makespan. 

Figures 5 and 6 plot mean relative error for each heuristic 
against the mean number of heuristic commitments made, 
for chronological backtracking and LDS respectively. The 
graph layout means that the better algorithms will be closer 
to the lower left corner. Note the differing scales of the two 
graphs. We do not report CPU time because it is dominated 
by our relatively inefficient implementation of edge-find- 
ing. This issue is discussed in detail in (Beck et al., 1997a). 

With chronological backtracking, we see that LJRand 
finds schedules with significantly higher mean relative error 
(tested with a boot-strap paired t test (Cohen, 1995)) than 
all the other heuristics (p < 0.0001) with significantly fewer 
heuristic commitments @ 5 0.001, tested with a boot-strap, 
two-sample t test (Cohen, 1995)). SumHeight finds signifi- 

(Adams et al., 1988) 
(Fisher and 

Thompson, 1963) 

(Lawrence, 1984) 

(Applegate and 
Cook, 1991) 

Tal le 1: Test Problems 

laO2(655), la1 9(842), la20(902), 
la21(1046), la24(935), la25(977), 
la27( 1235), la29( 1130/l 153) 
la36( 1268), la37( 1397), la38( 1196), 
la39( 1233), la40( 1222) 
orbOl( 1059), orb02(888), orb03(1005), 
orb04(1005), orbO5(887) 

finished := false 
while(finished = false) { 

edge-finding 
if (edge-finding makes no commitments) 

CBA 
if (no commitments from CBA or 

from edge-finding) 
make heuristic commitment 

if (dead-end) 
backtrack 

else 
arc-B-consistency temporal propagation 

if (all-activities-sequenced OR 
CPU limit reached) 

finished := true 
> 

Figure 4. Basic Scheduling Algorithm 
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cantly better schedules that both CBASlack (p < 0.05) and 
FirstCommit (p I 0.0001) and CBASlack in turn finds bet- 
ter schedules than FirstCommit (p < 0.01). There are no sig- 
nificant differences in the number of heuristic commitments 
amongst SumHeight, CBASlack, and FirstCommit. 

The LDS results show no significant difference between 
SumHeight and CBASlack in terms of mean relative error 
but FirstCommit finds significantly worse schedules 
(p 5 0.001) and LJRand finds significantly worse schedules 
than FirstCommit (p < 0.0001). In terms of the number of 
heuristic commitments the only significant result is that 
FirstCommit uses fewer heuristic commitments than any of 
the other heuristics (p 5 0.05). 

In terms of comparing chronological backtracking with 
LDS, we see that all heuristics find significantly better 
schedules with LDS, although requiring significantly more 
heuristic commitments to do so. SumHeight has signifi- 
cantly less improvement than all other heuristics (p < 0.05, 
tested using the boot-strap paired t test) when it uses LDS 
as compared to when it uses chronological backtracking. 
LJRand has significantly more improvement in using LDS 
than all the others (p < 0.0001). This may be the result of a 
ceiling effect (i.e., SumHeight has less room for improve- 
ment than LJRand due to its better performance with chro- 
nological backtracking), but it appears that LDS is helping 
the weaker heuristics (as judged by their performance with 
chronological backtracking) more than the stronger. 

Experiment 2 
A difficulty with the results of Experiment 1 is that the 
experimental design, though common in scheduling 
research, may result in each algorithm solving different 
problems due to different makespans. This limits the con- 
clusions we can draw from an analysis of the experiments 
using data other than mean relative error. For example, for 
the chronological backtracking results we see that LJRand 
uses significantly fewer heuristic commitments than all 
other heuristics. Perhaps this is a real effect due to some 
characteristic of LJRand; however there is an alternative, 
and, in this case, more likely, explanation: LJRand solves 
problems with significantly larger makespans and fewer 
heuristic commitments simply due to the easier problems. 
Any explanation of performance differences (other than 
those concerning mean relative error) is suspect: there is 
always the argument that the difference is due to solving 
different problems. 

To address this issue we ran a second experiment using a 
larger problem set of varying sizes and (expected) difficul- 
ties. Using Taillard’s (Taillard, 1993) generator of job shop 
scheduling problems, we created 5 sets of 60 problems 
each, with sizes of { 10x10, 12x12, 15x15, 18x18, 20x20). 
We generated a makespan for each problem so that the 
problems within each size span the phase transition that has 
been observed in job shop problems (Beck and 
Jackson, 1997). 

Using a CPU bound of 20 minutes an attempt was made, 
using each algorithm, to solve each problem. If the bound 
was reached, failure on that problem was returned. The 
results using chronological backtracking are shown in Fig- 
ures 7 and 8 while the LDS results are displayed in Figures 
9 and 10. In Figures 8 and 10 (note the differing scales) we 
display the mean number of heuristic commitments made 
by each heuristic. For problems that are not solved, we 
include the number of heuristic commitments that were 
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Problem Size for Chronological Backtracking 

made when the CPU time limit was reached. Therefore, the 
mean number of heuristic commitments is a lower bound on 
the actual number of heuristic commitments required to 
solve these problems. 

In terms of the number of problems solved with chrono- 
logical backtracking (tested using a boot-strap paired t test 
on each problem size), there is no significant difference 
between SumHeight and CBASlack. SumHeight solves sig- 
nificantly more problems than FirstCommit (p I 0.001) and 
LJRand (p < 0.005) as does CBASlack (p 5 0.001 for both). 
FirstCommit solves significantly more problems than 
LJRand (p I 0.005). 

Boot-strap, paired t tests on the number of heuristic com- 
mitments made for each problem show that all differences 
in Figure 8 are significant (p I 0.001) with the exception of 
that between FirstCommit and LJRand on problems of size 
15x15 where there is no significant difference. In particular, 
SumHeight makes significantly fewer heuristic commit- 
ments than CBASlack across all problems sizes @ I 0.0001 
for all sizes except 12x12 where p I 0.001). 

Turning to the results with LDS, we again see no signifi- 
cant difference in terms of the number of problems solved 



between SumHeight and CBASlack, while each solves sig- 
nificantly more problems than each of FirstCommit and 
LJRand (p I 0.005). FirstCommit solves significantly more 
problems than LJRand (p I 0.05). 

All the differences in the number of heuristic commit- 
ments shown in Figure 10 are significant (p I 0.05) except 
for those between SumHeight and FirstCommit at both 
10x10 and 15x15 and that between LJRand and CBASlack 
at 18x18. In particular, SumHeight makes significantly 
fewer heuristic commitments than CBASlack at all problem 
sizes (p < 0.0001). 

In comparing the chronological backtracking results with 
those for LDS, we observe that each heuristic solved signif- 
icantly more problems with LDS than with chronological 
backtracking. The only significant difference in the magni- 
tude of the difference is between CBASlack and LJRand: 
using LDS instead of chronological backtracking increases 
the number of problems LJRand solves significantly more 
than it increases the number of problems CBASlack solves 
(p I 0.05). From the perspective of the number of heuristic 
commitments, for all heuristics, on problems of size 15x15 
or larger the algorithm using LDS makes significantly 
(p IO.0001) more heuristic commitments than that using 
chronological backtracking. For the 12~ 12 problems there 
is no significant differences except for LJRand (p I 0.0001) 
and for the 10x10 problems CBASlack shows no significant 
difference while SumHeight with LDS makes significantly 
more heuristic commitments than SumHeight with chrono- 
logical backtracking (p 5 0.01). Interestingly, for FirstCom- 
mit and LJRand, chronological backtracking results in more 
heuristic commitments than LDS on the 10x10 problems 
(p I 0.005 and p I 0.05, respectively). 

Summary of Experimental Results 
On the OR-Library benchmark problems of Experiment 1 
SumHeight outperforms the LJRand and FirstCommit heu- 
ristics in terms of the quality of the schedules found within 
our CPU time bound. The quality of the schedules found by 
SumHeight was better than those found by CBASlack with 
chronological backtracking, although equal performance 
was achieved with LDS. 

Experiment 2 indicates that SumHeight and CBASlack 
solve the same number of problems across all problem sizes 
while both solve significantly more than either LJRand or 
FirstCommit. In equaling the performance of CBASlack in 
terms of the number of problems solved, SumHeight uses 
significantly fewer heuristic commitments 

These results strongly support our contention that tex- 
ture-based heuristics are still worthwhile in the context of 
modern scheduling techniques. 

Conclusions 
In this paper we have examined texture-based heuristics for 
scheduling in the light of several criticisms concerning their 
performance, and in light of recent advances in scheduling 
technology (e.g., constraint propagation techniques, limited 
discrepancy search). 

The central aim of this paper is the comparison of tex- 
ture-based heuristics with other heuristic commitment tech- 
niques for scheduling. We have shown that, with 
experimental designs that manipulate only the heuristic 
commitment technique, claims of the inferiority of texture- 
based heuristics are not supported. In fact, we have demon- 
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strated significant performance gain in using such sophisti- 
cated heuristics. 

In addition, this is the first work of which we are aware 
that evaluates limited discrepancy search (LDS) in schedul- 
ing in the context of state-of-the-art heuristics and propaga- 
tion techniques. The results strongly show that LDS results 
in increased performance over chronological backtracking. 
The fact that LDS appears to help the weaker algorithms (as 
judged by their performance with chronological backtrack- 
ing) to a greater extent than the stronger algorithms is inter- 
esting but preliminary. 

Our results are consistent with our aim: sophisticated 
heuristics based on texture measurements can outperform 
other heuristic commitment techniques, and therefore 
deserve to be re-examined. 
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