
Managing eCommerce Service Failures:  
Incorporating Validity, Provenance and Trust from the 

Semantic Web 
Mark S. Fox 

Department of Industrial and 
Mechanical Engineering 

University of Toronto 
5 King’s College Rd, Toronto ON  

M5S 3G8 Canada 
+1-416-978-6823 msf@eil.utoronto.ca 

 

 
 
 

ABSTRACT 
High volume, B2C eCommerce web sites that often experience 
millions of visitors and 100,000s of orders a day in the lead up to 
major gift giving occasions, must meet customer demands of high 
availability, responsiveness, and functionality.  These same web 
sites often integrate a large number of 3rd party web services that 
need to but often fail to meet the same demands. This paper 
describes a Semantic Web-based solution to meeting such 
demands.  By distinguishing between action vs information, 
required versus optional, time constrained, and substitutable 
services, combined with the semantic web concepts of 
information validity, provenance and trust, more targeted and 
flexible responses to service failures can be provided. 

Categories and Subject Descriptors 
H.3.5 Online Information Services. I.2.4 Knowledge 
representation Formalisms and Methods;  

General Terms 
Web Services, Semantic Web, Ontology. 

Keywords 
Semantic Web, Information Provenance, Information Validity, 
Trust, Web Service Failure, Ontology. OWL, RDF, XML 

1. INTRODUCTION 
B2C eCommerce, and in particular, online retailing (eRetail) 
presents an interesting set of challenges for those sites that rely 
upon web services, whether they be internal or 3rd party.  Consider 
a gifting web site such as flowers.  Customer volumes and 
demands on web services can be easily planned, for “between 
occasions” periods of time.  But the lead up to gift giving 
occasions, such as Mothers Day, Christmas, Duvali, Chinese New 
Year, etc. see visitor and order volumes grow by 2 orders of 
magnitude into the millions of visitors and 100,000s of orders.  
Regardless of the volumes, customers expect the same user 
experience: high availability, fast response times, 24x7, and no 
reduction in services, such as promised delivery dates, inventory 
availability, coupon processing, payment processing, etc. 

Unbeknownst to most people, today’s eRetail systems integrate 
many 3rd party services in order to deliver their user experience.  
These include: payment processing, product recommendations, 
customer product reviews, taxation, shipping pricing, address 
verification, and fraud analysis.  These services have to satisfy the 

same customer expectations.  Yet, service failures occur 
regardless of best laid plans.  Often, these failures occur at the 
time of highest customer demand, as that is when boundary 
conditions within the services are stressed. 

Much work has gone into the development of general methods for 
responding to service failures. This paper proposes that another 
layer of representation and reasoning needs to be defined on top 
of the general methods in order to tailor the response to service 
failures to meet the special needs of B2C eCommerce: 
• Some services are critical to the operation of the web site. 

For example, payment processing services are critical as they 
determine whether a credit card is valid and whether the 
purchaser has enough “room” available on their card to make 
the purchase. Order processing cannot proceed without credit 
card approval. 

• Some services are strictly informational. For example, 
product reviews are not critical.  The frequency of update can 
be low without affecting the operation of the web site.  On 
the other hand, foreign exchange rates are much more 
important and need to be updated more frequently.  Never 
the less, while these services are not critical, like payment 
processing, they do affect Customer Order conversion rates 
and Average Order Value, which in turn affects profitability1. 

It is clearly the case that not all services are created equal; that 
some services are more important that others.  Some are necessary 
for the operation of the web site, some are not.  Some require 
frequent updates, some don’t. Our goal is to look more closely at 
web services in the context of B2C eCommerce to see how their 
characteristics lead to more specific methods of handling service 
failures. 

In the following we provide two examples of eRetail web sites 
and analyse the types of web service they utilize and how critical 
they are to their operation. We then review some of the relevant 
literature in web service failure management and semantic web 
representations of validity, provenance and trust. Next we list the 
key requirements that a solution to managing service failure 
satisfy followed by our approach to solving the problem.  Finally 
we provide a short example of how information services are 
represented using the semantic web in order to support failure 
management. 

                                                                    
1 eRetailers continuously improve their user experience to boost 

revenues.  Revenue gains of 5% are significant.  Good 
recommendations, reviews, etc. can often boost revenues by this 
much or more. 

Mark Fox
Fox, M.S., (2012), "Managing eCommerce Service Failures: Incorporating Validity, Provenance and 
Trust from the Semantic Web." Proceedings of the 14th Annual International Conference on 
Electronic Commerce (ICEC14), Singapore.



2. MOTIVATION 
Riverbed.ex (not their real name) is an online seller of household 
products and gifts, including consumer electronics, lifestyle 
products, games, and toys.  Their annual online sales exceeds 
$100 million with an average order value of $200. 60% of their 
sales occur during the last 3 months of the year.  During that 
period they process about 300,000 orders, peaking at over 10,000 
orders/day in the run up to Christmas.  Their web site integrates 
with over 15 external web services covering payment processing, 
product reviews and recommendations, shipping, email 
marketing, taxes and click stream analysis.  
 

 
Critical to their operation is payment processing because without 
it orders would have to be queued for manual processing by their 
call centre which is a very expensive process. Alternate payment 
methods, such as Paypal are important but can the site can operate 
without it as long as the primary payment processor of credit 
cards is operational. Reviews and recommendations are also very 
important as they can increase Average Order Value significantly.  
The site can operate without these third party services but at a 
lower level of revenue and profitability. Tax and shipping 
information is important, but shipping and tax tables can be 
cached and if there is a discrepancy between the cached versus 
actual version, the eRetailer “eats the difference”.  Finally, 
inventory information, if not available, the latest version can be 
cached but may result in orders being accepted when the product 
is out of stock2 . 

Flowersrus.ex (not their real name) is an online seller of floral 
arrangements that aggregates and distributes orders to a network 
of floral shops for fulfillment. Their annual online sales exceeds 
$400 million with an average order value of $60. On the peak day 
in the run up to Valentines Day and Mothers Day, they process 
over 100,000 orders. They process over 100 orders/second during 
peak periods. Their web site integrates with a number of internal 
and external web services, including payment processing, 
inventory availability, address verification,  

Critical to their operation are payment processing and availability 
of floral shops to fulfill.  Regarding the latter, if there are over 
10,000 floral shops that have to fulfill from a catalog of 1,000 
                                                                    
2 Multi-channel retailers have their stock drawn down 

simultaneously by the web site, brick and mortar stores and the 
call centre.  Therefore, the web site has to request stock updates 
from the ERP system before processing an order. If the 
connection to the ERP system fails, stock levels stored by the 
web site may become incorrect. 

products, then there is 10,000,000 data points of availability to 
fulfill where each data point is updated at random times by the 
floral shops. 

Over the years customers have come to expect eRetailers’ web 
sites will be reliable.  Reliability has at least three aspects: 

1. Availability: the web site is always available, especially 
during critical shopping periods.  It cannot shut down 
when you have 100,000s of customers accessing you 
site in a day 

2. Responsiveness: The response time of the site should 
be under 3 seconds, with the ideal being less than a 
second. 

3. Functional: All functional capabilities of the web site, 
e.g., payment processing, recommendations, coupons, 
etc., should be available and operating correctly. 

 

Given the number of 3rd party services incorporated in eRetail 
web sites, there is no guarantee that these services will meet the 
level of reliability demanded by consumers.  Hence, eRetail web 
sites have to figure out a way to do without services when they 
become unavailable.   

As discussed in the next section, there are general mechanisms 
that have been proposed to handle web service failures.  But their 
generality limits their usefulness (i.e., ease of use, clarity in how 
to address eRetail problems).  We believe that by developing a 
deeper understanding of the nature of web service failures in 
eRetail, more tailored and relevant solutions can be developed. 

An analysis of eRetail services leads to the following 
categorization of the web services that they use: 

• Action or Information: Does the service perform an action 
(e.g., payment processing) or provide information (e.g., 
product review)? 

• Time Constrained or not: Does the action have to be 
performed or the information returned/updated within a set 
period of time? 

• Required or Optional: Is the action or information required 
(e.g., Taxes, Shipping charges) for the successful operation 
of the web site or can it be omitted (e.g., product reviews)?  

• Substitutable or not: Do there exist other services that can 
be substituted for a failed service (e.g., alternative payment 
processors). 

Depending on the category of a web service, the response of the 
web site may vary from seeking alternatives (e.g., payment 
processors) to completing removing a service from the customer’s 
experience on the web site (e.g., generating recommendations, 
identifying best sellers).  In the situation where an action, such as 
payment processing is time constrained and required, the 
alternative of last resort is to accept the order and process it 
manually. 

An additional consideration has to be taken into account, namely 
data protection.  In the case of credit card processing, we cannot 
rely on the external service to provide the recovery mechanism as 
they should not be able to possess credit card information for any 
extended period of time. 
Finally, given the customers’ demand for reliability, there is one 
overarching goal that any solution must satisfy: Service failures 



should not affect the customer experience3.  To achieve this, the 
web site should dynamically adapt to service failures thereby 
maintaining a good customer experience. 

3. BACKGROUND 
Our approach builds on the growing foundation of the Semantic 
Web by defining new classes in OWL. OWL is a Semantic Web 
implementation of Description Logic (OWG, 2009).  It extends 
the RDF/RDFS layer of the Semantic Web with a richer set of 
XML elements for representing classes and their properties.  
OWL-S is a Web Service Ontology: a set of OWL classes and 
properties that represent services, including their input & output, 
and their process model (Martin et al., 2008).  The following 
summarizes research that has explored how to manage service 
failures using OWL-S: 

• Vaculin & Sycara (2007) introduce a set of application 
independent error event types and suggest additional OWL-S 
Process Model Result classes for recognizing application 
specification errors.  These provide their OWL-S Virtual 
Machine (OVM) with the ability to recognize when service 
results are in error.   

• Vaculin et al. (2008) extend this work with the introduction 
of constraint violation handlers that define violations using 
event expressions (i.e., patterns of events). An important 
event expression, from the perspective this paper, is the 
ability to specify time limits on processes. The handler 
specifies how the OVM is to deal with the constraint 
violation.  Possible responses include compensatory actions. 

 

Given the generality of the OWL-S specification, and more 
specifically the Process Modelling classes, a process model can be 
defined to perform any type of conditional processing based on 
the results of a constituent service.  Secondly the extensions 
defined by Vaculin et al. (2008) provide a powerful mechanism 
for handling failures predefined as event patterns. Never the less, 
the intent here (as in the work of Vaculin et al.) is to provide 
additional ontological primitives that make the specification and 
handling of service errors simpler4. 

Over the last decade, concerns around information validity, 
provenance and trust have grown.  With the web now containing 
billions of documents authored by millions of people, the need to 
know whether the content is true, where the content came from 
and whether to trust its creator has taken on an increasing 
importance. 
Much of the research into provenance has grown out of workflow 
management where the focus has been the evolution of a 
document has it proceeds through a sequence of edits, perhaps by 
many different people.  Tracking the various versions created, 
who did what and when has been the primary concern.  This 
research has culminated in the proposed Semantic Web standard 
called the PROV model (Belhajjame et al., 2012), which has built 
on the work of Hartig & Zhao (2010) and Moreau et al. (2010).  

                                                                    
3 By Customer Experience, we mean the interactions the customer 

has with the web site. 
4 Related to this have been studies of managing exceptions in 

B2B/Supply Chain Management (Lin & Chang, 2005).  Though 
interesting, the response time requirements of eRetail, which is 
measured in seconds, versus days or weeks as in the supply 
chain, limit its relevance. 

Another approach to provenance has employed logic, where web 
content is viewed as propositions with assigned truth values (Fox 
& Huang, 2005b) so that the validity of information can be 
represented.  The truth value can change over time allowing for 
non-monotonicity in what we know (Huang & Fox, 2004a) and 
can also be uncertain (Huang & Fox, 2004b).  This work also 
supports a provenance model of who created and transformed the 
information (Fox & Huang, 2005a). 

Finally, trust in the creator of information begins with the ability 
to certify that the creator is who they say they are.  This builds on 
the existing Public Key Infrastructure.  But determining whether 
to trust the information creator turns out to be highly contextual 
where the decision to trust someone may be based on their 
reputation, contextual information such as meta-data available on 
the web about the creator, or other content-based rules (e.g., don’t 
trust weather predictions that are more then 10 days in advance). 
Examples of the various directions in semantic web-based trust 
include Goldbeck et al. (2003), O’Hara et al. (2004), Goldbeck 
(2006), Huang & Fox (2006) and Huang (2008). 
 

4. KEY REQUIREMENTS 
The key driver behind the design of an B2C eCommerce web site 
is not to lose a customer nor a sale. Hence it must satisfy the 
availability, responsiveness and functional requirements described 
in section 2. To do so, it must have the ability to: 

1. recognize when a service has failed, 
2. reuse prior information, if possible, if it is an 

information service that failed, 
3. remove a service from the user experience on the web 

site when it is optional, 
4. substitute a service when the service is necessary, and 
5. delay a service, with customer agreement, if there is no 

alternative. 
 

5. SOLUTION 
Our solution builds upon the exception handling mechanisms 
introduced in (Vaculin, Wiesner & Sycara, 2008) by assuming 
there exists a client side implementation of their OVM that 
provides the basic web service infrastructure and low level 
constraint failure handling. It is implemented as Java classes 
which in turn access internal and external web services.  
Consequently, much of the complexity of working directly with 
OWL-S and extensions are hidden from the user, thereby 
simplifying eRetail development. 

5.1 Action Service Failure 
The key factor in managing action service failures is determining 
whether a service is required.  If required, the web site has to 
dynamically modify its user experience. For example, if the web 
site has multiple payment options, and Paypal is not available, it 
can simply remove Paypal as an option in the checkout process.  
But if the only payment process service has failed, then it may 
have to communicate to the customer that payment processing is 
not available, that it will process the order but put it on hold until 
it can process the payment. In either case, the web site has to be 
able to access information about the service, i.e., whether it is 
required or optional, and whether the service is available, in order 
to determine how to dynamically modify the user experience. 

Determining whether a service is available relies on two time 
constraints.  The first time constraint defines the amount of time 
the web site is willing to wait for a response from the external 



service before it declares that the service is no longer available.  
The second time constraint defines how long the web site is 
willing to keep trying the service request. In the following, we 
define the parameters for the Action class used to process an 
action service failure.  We assume that the action service provides 
credit card processing that is of critical importance to the 
operation of the eRetail web site. 

• A specification of the primary service.  For example, a credit 
card payment processor. 

• A specification of one or more substitutable services to be 
used when the primary is not available. 

• A specification of the “last resort” alternative to be used if all 
others fail. 

• A flag that indicates whether the service is required or 
optional. 

• A status flag that is set to false when the service is not 
available.  This allows for checking by the web site that may 
result in the service being removed from the web site.  For 
example, the web site may offer an alternative billing 
method, such as Paypal, but can dynamically remove the 
Paypal from the web site if it is not available. 

 
For each service identified above, the following instance of the 
Action Service class/object: 

• A time limit on how long to wait for a response.  
• A time limit on how long to keep retrying the service 

request. If a service is not available it will cache the 
request for later processing. 

• A cache for failed service requests. 
• A status flag that is set to false when this specific 

service is not available. 
 
The Action class will always attempt to use the primary service.  
If the primary service fails (i.e., the retry time limit is exceeded), 
it will attempt each substitutable service in sequence. For each 
attempt, it will transfer the cached requests to the current service. 
At each step of the process, it will recheck the prior services to see 
if they are again available. Each Action Service class will 
continually check the availability of its corresponding service and 
the change its status flag accordingly. 
There has been no attempt here to utilize dynamic service 
discovery as a means of finding substitutable services.  For critical 
services, such as payment processing, the contract negotiation 
process remains manual and lengthy.  Therefore, contracts need to 
be in place with service providers well in advance. 

5.2 Information Service Failure 
Previous work on web service failures treats information 
provisioning like any other service. Our approach is to look more 
closely at information services and to see how their characteristics 
lead to more specific methods of handling service failures.  
Consider an external service that provides product reviews.  A 
review is composed of a product identifier, rating, review, and 
reviewer identifier.  There are a number of failure modes that may 
exist:  

• The service may become unavailable for an extended period 
of time,  

• The service may find that the review contains information 
that it no longer wishes to be available, or  

• The reviewer is found to be untrustworthy and the review 
should be removed altogether. 

In the case of service failure, the product review service is no 
longer operational due to application, server or network failures 
on the service side. This can be easily recognized on the client 
side using temporal constraints.  A simple mechanism for dealing 
with the loss of an information service is to cache the information 
and continue to use the cache until the service becomes available. 
But simple caching does not address the problem of information 
criticality.  One dimension of information criticality is its 
temporal validity; how long can the information be used before it 
should be discarded.  For reviews, the temporal validity can be 
measured in days if not weeks, but for foreign exchange rates the 
temporal validity may be measured in minutes. Temporal validity 
of information defines how long from the last update before it is 
no longer valid and must be discarded. Assuming that the 
information is provided using Semantic Web standards such as 
RDF and OWL, we can extend the representation of reviews with 
temporal validity elements5. The temporal elements would 
provide two date/times: the date/time the information can begin to 
be used, and the date/time the information is no longer to be used. 
To specify the temporal validity of information we incorporate 
our previous work on Dynamic Knowledge Provenance (Huang & 
Fox, 2004; Fox & Huang, 2005a). DKP (Dynamic Knowledge 
Provenance) provides the elements for specifying the temporal 
period during which the information is valid. 

In the case where the service provider determines that a review 
contains information that it no longer wishes to be used by its 
clients, possibly due to inaccuracies or other errors, we need a 
means of removing it from the clients’ web sites. A simple 
solution would be the remove the information in the next update 
retrieved from the service provider by its clients. But if the review 
has an extended temporal validity, it may be a long time before 
clients retrieve an update.  If a review makes false claims about a 
product and the manufacturer is threatening to sue, the speed with 
which the information is removed becomes important (in fact the 
time of removal may be mandated the courts).  Our approach 
builds on the Semantic Web by providing elements for static 
information validity.  In our work on Static Knowledge 
Provenance (Fox & Huang, 2005b), we provide the elements for 
specifying who created the information (i.e., provenance) and the 
status of its validity, independent of time.  Our implementation 
uses these elements to annotate reviews. Independent of temporal 
validity, using the provenance and validity information provided, 
the client can check with the information creator to dynamically 
determine if the information is still valid. For information whose 
temporally validity may be long, the client may periodically verify 
that the information is still valid. Note that this is independent of 
temporal validity as the information may be temporally valid and 
the service still available. 

In the case where the reviewer is found to be untrustworthy, we 
need a mechanism that will allow us to: 

• Identify who the reviewer is, and 

• Determine the trustworthiness of the reviewer 

The determination of whether to trust a review can be made by 
either the client or the service.  Representations and reasoning 
about trust have been explored for some time (Blaze et al., 1996; 
Finin & Joshi, 2002; Golbeck et al., 2003; O’Hara et al., 2004; 
                                                                    
5 We use the term “element” since within the semantic web the 

ontological terms will be represented as XML elements. 



Golbeck, 2006; Huang & Fox, 2006).  Our approach applies the 
provenance and trust representations of Fox & Huang (2004) and 
Huang & Fox (2006), respectively, to annotate the review 
information with elements covering who the originator of the 
information is, the path it has taken from one URI to another 
leading to its current location, and context in which the originator 
can be trusted. 
 

6. IMPLEMENTATION 
In this section, examples of the Information Service Failure 
solution are provided.  Classes have been defined using OWL 2 
(OWG, 2009) and are serialized using the XML/RDF.  

In our example, we start with the specification of a product 
review.  The review ontology is based on the ICECAT Open 
Catalog specification (www.icecat.biz/get_attachment.cgi?5508).  

Given the following RDF namespace declarations for the 
subsequent examples: 
 

<rdf:RDF xmlns:rdf=”http://w3.org/TR/1999/02/22-rdf-
syntax-ns#” 
      xmlns:mie= “http://www.mie.utoronto.ca/faculty#” 
      xmlns:rev=  

      “http://www.eil.utoronto.ca/ontology/reviews#” 
      xmlns:kp=”http://www.eil.utoronto.ca/ontology/kp#” 
      xmlns:tr=”http://www.reviewservice.ex/reviewers#” 
      xmlns:cnet=”http://www.cnet.com/products#” 
      xmlns:foaf=”http://xmlns.com/foaf/0.1/ “        /> 
 

Following is an example of what a review would look like in 
http://www.reviewservice.com/reviews: 
 
    <rev:Review rdf:ID=”r34567”> 
        <rev:reviewer rdf:resource=”&tr;JoeSmith /> 
        <rev:product rdf:resource=”&cnet;472930 /> 
        <rev:productCategory  

rdf:resource=”&cnet;ConsumerElectronics” /> 
        <rev:rating>1</rev:rating> 
        <rev:mainReview  

This product does not work at advertised.   
        </rev:mainReview> 
        <rev:whatsGood>Nothing </rev:whatsGood> 
        <rev:whatsBad>Everything!</rev:whatsBad> 
        <kp:effectiveFrom>2012-01-01</kp:effectiveFrom> 
        <kp:effectiveTo>2012-01-31</kp:effectiveTo> 
        <kp:assignedTruthValue  

rdf:Resource=”&rev;rr34567tv” />  
    </rev:Review> 
The above defines: 

• who the reviewer is (rev:reviewer) 

• the product being reviewed (rev:product) 

• the product category (rev:productCategory) taken from 
CNET’s product categorization 

• a rating of the product (rev:rating) 

• a main review (rev:mainReview)  

• “whats good” about the product (rev:whatsGood) 

• “whats bad” about the product (rev:whatsBad) 

• a start date for which the review is valid 
(kp:effectiveFrom). The web site should not display the 
review prior to its effectiveFrom date. 

• an end date at which the review is no longer valid 
(kp:effectiveTo). If the service provider is not 
available, the client will continue to use the review until 
the effectiveTo date is reached.  At that point, the 
review should be removed from the web site. 

• the truth value (i.e., validity) of the review to which the 
review is believed to be true (kp:assignedTruthValue).  
This link is used to verify that the view is still valid. 

The effectiveFrom and effectiveTo dates address the problem of 
when to start and stop displaying the review if the review service 
has failed. The review can continue to be displayed until the 
effectiveTo date.  For the case where the review service has 
decided that the review content should no longer be displayed, 
they would set the assginedTruthValue to false.  Even though it 
may be within the effective time period, the web site would 
periodically retrieve the truth value and determine if it is to be 
removed. 

Given http://www.reviewservice.com/reviewers contains the 
following information about the reviewer Joe Smith: 
 
<tr:reviewer rdf:ID=”JoeSmith”> 
    <foaf:name>Joe Smith</foaf:name> 
        <tr:hasReview rdf:resource=”r34567rev” /> 
</tr:reviewer> 
 
The above simply defines a reviewer Joe Smith (we have left out 
other information about the reviewer) and that they have one 
review that they have created.  Next we define the trust object that 
links the review service, the reviewer and the review: 
 
<kp:trust_b rdf:ID=”t1”> 
    <kp:trustor rdf:resource=rev:reviewservice/> 
    <kp:trustee rdf:resource=”&tr;JoeSmith” /> 
    <kp:trustObject rdf:resource=”r34567rev” /> 
    <kp:truthValue>False</kp:truthValue> 
</kp:trust_b> 
 
The above states that the review service does not believe in the 
review produced by Joe Smith.  The consequence of this negative 
belief is that the web site should remove it. While the effect is the 
same as setting the truth value of the review to False as we did 
earlier, the semantics is different.  By setting the truth value of a 
review to False, we are saying that the review is no longer valid, 
for whatever reason.  By stating we no longer believe in the 
review produced by the reviewer, we are making a statement both 



about the reviewer and the review.  A consequent being we may 
no longer trust Joe Smith in regards to any other reviews he 
provides. 
 

7. CONCLUSION 
In the world of eRetail, failures are unacceptable.  Customers can 
switch their loyalty at a click of the mouse. The goal of this work 
is to provide a layer of abstraction between the eRetail application 
and the underlying service management mechanisms. (Existing 
web service ontologies such as OWL-S and their failure 
management extensions provide powerful mechanisms for 
recognizing and managing service failures.) This abstraction 
provides the tools necessary for the web site to flexibly respond to 
service failures in a way that minimizes the impact on the user 
experience.  Central to the approach is the adoption of semantic 
web standards and the incorporation of ontologies for information 
validity, provenance and trust. 

8. ACKNOWLEDGMENTS 
This research was sponsored, in part, by the Natural Science and 
Engineering Research Council of Canada, and Novator Systems 
Ltd. where Dr. Fox was Chairman and CEO from 1993 to 2011. 

9. REFERENCES 
Blaze, M., Feigenbaum, and Lacy, J., (1996), “Decentralized 
Trust Management”, Proceedings of the IEEE Conference on 
Privacy and Security. 
Belhajjame, K., Deus, H., Garijo, D., Klyne, G., Missier, P., 
Soiland-Reyes, S., and Zednik,S., (2012), “PROV Model Primer”, 
http://www.w3.org/TR/2012/WD-prov-primer-20120110/ 

Finin, T., and Joshi, A., (2002), “Agents, Trust, and Information 
Access on the Semantic Web”, SIGMOD Record, Vol. 31, No. 4. 
Fox, M.S., and Huang, J., (2005a), “Knowledge Provenance in 
Enterprise Information”, International Journal of Production 
Research, Vol. 43, No. 20., pp. 4471-4492. 
http://www.eil.utoronto.ca/km/papers/fox-ijpr05.pdf 

Fox, M.S., and Huang, J., (2005b), “An Ontology for Static 
Knowledge Provenance”, In Knowledge Sharing in the Integrated 
Enterprise, IFIP, Vol. 183/2005, pp. 203-213. 

J. Golbeck, "Combining Provenance with Trust in Social 
Networks for Semantic Web Content Filtering," in Provenance 
and Annotation of Data, International Provenance, Chicago, IL, 
USA, 2006  

Golbeck, J., Parsia, B., and Hendler, J., (2003), “Trust Networks 
on the Semantic Web”, Cooperative Information Agents VII, Vol. 
1, No. 1, Springer, pp. 238-249. 

Hartig, O., and Zhao, J., (2010), “Publishing and Consuming 
Provenance Metadata on the Web of Linked Data”, Proceedings 
of the Third International Provenance and Annotation Workshop. 

Huang, J., (2008). "Knowledge Provenance: An Approach to 
Modeling and Maintaining The Evolution and Validity of 
Knowledge", PhD Thesis, Dept. of Mechanical and Industrial 
Engineering, University of Toronto. 
http://www.eil.utoronto.ca/km/papers/huang-PHD-2007.pdf 
 
Huang, J., and Fox, M.S., (2004a). "Dynamic Knowledge 
Provenance", Proceedings of Business Agents and Semantic Web 
Workshop, pp. 372-387, National Research Council of Canada, 

London Canada. http://www.eil.utoronto.ca/km/papers/huang-
nrc04.pdf 

Huang, J., and Fox, M.S., (2004b), "Uncertainty in Knowledge 
Provenance", Proceedings of the European Semantic Web 
Symposium, Springer Lecture Notes in Computer Science. 
 http://www.eil.utoronto.ca/km/papers/EuroSemWeb04-online.pdf 
Huang, J., and Fox, M.S, (2006), "An Ontology of Trust – Formal 
Semantics and Transitivity," Proceedings of the International 
Conference on Electronic Commerce, pp. 259-270. 
http://www.eil.utoronto.ca/km/papers/huang-ec06.pdf 

Lin, F., and Chang, H., (2005), “B2B E-Commerce and Enterprise 
Integration: The development and evaluation of Exception 
Handling Mechanisms for Order Fulfillment Process basedon 
BPEL4WS”, Proceedings of the 7th International Conference on 
Electronic Commerce, ACM, pp.  478-484. 
Martin et al., (2008)  “OWL-S: Semantic Markup for Web 
Services”, http://www.ai.sri.com/daml/services/owl-
s/1.2/overview. 

Moreau et al., (2010), “The Open Provenance Model Core 
Specification (v1.1)”, Future Generation Computer Systems.  
Also see openprovenance.org. 

O'Hara, K., Alani, H., Kalfoglou, Y., and Shadbolt, N., (2004), 
"Trust Strategies for the Semantic Web," in Proceedings of the 
ISWC*04 Workshop on Trust, Security, and Reputation on the 
Semantic Web, Hiroshima, Japan.  

OWG: OWL Working Group, (2009), “OWL 2 Web Ontology 
Language”, http://www.w3.org/TR/owl2-overview/ 

Vaculin, R., and Sycara, K., (2007a), “Monitoring Execution of 
OWL-S Web Services”, Proceedings of the European Semantic 
Web Conference: OWL-S Experience and Directions Workshop. 

Vaculin, R., and Sycara, K., (2007b), “Specifying and Monitoring 
Composite Events for Semantic Web Services”, Proceedings of 
the IEEE European Conference on Web Services, IEEE Computer 
Society, pp. 87-96. 

Vaculin, R., Wiesner, K., and Sykara, K., (2008),  “Exception 
Handling and Recovery of Semantic Web Services”, Proceedings 
of the Fourth International Conference on Networking and 
Services, IEEE. 


