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A LADIN is a knowledge-based system to aid alumi-
num alloy design for aerospace applications. Alloy design
isadecision process in which basic composition, and ther-
mal- and mechanical-process steps, are selected to pro-
duce an alloy displaying a set of desired characteristics
(fracture toughness, for example, and resistance to stress
and corrosion cracking). This is a combinatorially explo-
sive problem, dependent upon the choice and amounts of
the composition’s elemental constituents and upon the
selection, parameterization, and sequencing of process-
ing steps. The quest for a new alloy is usually driven by
new product requirements. Once metallurgical experts
receive a requirement set for a new aluminum alloy, they
search the literature for an existing alloy that satisfies
them. If none exists, the experts may draw upon experien-
tial, heuristic, and theory-based knowledge to suggest
new alloys that might exhibit the desired characteristics.

ALADIN’s goal is to provide a decision support envi-
ronment in which expert alloy designers can efficiently
explore alternative compositions and thermomechanical-
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process sequences. The search for a suitable alloy design
can span several years, and may require many hypothe-
size/experiment cycles. Reducing the number of itera-
tions (even by one) or shortening average cycle time
would provide significant gains.

Alloy design can be supported in many ways. Over the
last century, many alloys with varying properties have
been designed. Not all experts are aware of many of these
alloys. By providing an alloy database, we can help alloy
designers determine if a new design is needed. Second, by
identifying alloys with properties “close to the goal,” we
can find a starting point for extrapolative design. Third,
there are some quantitative theories linking structure,
composition. and property. Providing easy access to
these would aid alloy designers. Finally, all alloy design
experts are not created equal. Some are more “expert”
than others, and their expertise covers different domains.
Capturing alloy design knowledge used by various spe-
cialists — and preserving that knowledge in an accessible
form — would facilitate everyone’s design efforts.
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Theoretically, we should be able to determine an
alloy’s properties from its microstructure. Practically,
however, theories are incomplete — requiring the addi-
tion of experiential knowledge to fill gaps. As a result,
multiple partial models of alloy design exist, relating

« Composition to alloy properties,

» Thermomechanical processing to alloy properties,
 Microstructure to alloy properties,

» Composition to microstructure, and

» Thermomechanical processing to microstructure.

The simplest alloy models deal only with the relation-
ship between chemical composition and alloy properties.
From the viewpoint of modern metallurgy, we can accu-
rately determine only a few structure-insensitive proper-
ties (including density and modulus) from these models.
However, empirical (and less precise) knowledge exists
regarding other properties. Everything else being equal,
we can make quantitative comparisons (linear regression,
for example) between alloys of varying composition —
comparisons that yield useful quantitative knowledge
about properties.

Also, somewhat more complex models describe the
relationship between thermomechanical processes and
properties. Since only composition and process descrip-
tions are needed to manufacture an alloy, we could as-
sume that no other models are needed to design alloys.
Historically, many alloys have been designed with com-
position and process models only. Current research in
metallurgy is providing new insights into relationships
between microstructures and physical properties of al-
loys. Therefore, the deepest understanding of alloy design
involves models of microstructural effects on properties
along with models of composition and processing effects
on microstructure.

Thus, issues of interest in the ALADIN project are
(1) what is the appropriate architecture for the explicit
representation and utilization of multiple alternative
models, and (2) how is search in this space of multiple
interacting models to be focused?

One particularly important problem is the degree to
which design decisions are interdependent. Each change
in composition or process alters most properties to some
degree. This differs from most design disciplines, where
functionality is achieved by a system of relatively inde-
pendent parts. In such cases, designers can reduce design
decision interdependence by providing specifications for
each part.! Therefore, material design involves a level of
interaction among goals, extending beyond the usual
situations described in Al planning literature.

Another issue concerns representation. Knowledge of
the relationship between alloy structure and its resultant
properties is semiformal, at best — much consists of
microstructure images and natural language descriptions.
Quantitative models rarely exist; even when they do, they
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are frequently not used. We will briefly describe how
ALADIN was designed to deal with these issues. Our
references provide more detail.>®

We will also discuss (1) the structure of ALADIN’s
knowledge base, which captures complex technical con-
cepts as well as data in symbolic, frame-based terms, (2)
a multilevel planning search architecture, and (3) the
integration of symbolic and numerical approaches. In ad-
dition, we will illustrate ALADIN’s accomplishments by
examining one fragment of an interactive design session
with the system.

The knowledge base

Al has been applied to numerous engineering-design
fields. Although these design areas share some features,
including the need to integrate heuristics with algorithmic
numerical procedures, they also contain some important
differences. Each engineering subfield seems to recog-
nize the importance of representing declarative concepts,
although specific needs vary. In electrical engineering,
for example, representing components with their spatial
and functional relationships seems to be vital.

Mechanical engineers have studied the representation
of solid geometrical shapes, which is considered crucial to
the successful evolution of CAD/CAM systems.”® Mate-
rials science identifies the microstructure as crucial to
understanding the relationship between the characteris-
tics of materials and their composition or processing.
Therefore, a powerful representation of microstructural
features is vital when constructing a materials design
support system.

Our representation of declarative metallurgical
knowledge demonstrates that qualitative and quantitative
knowledge — available to experts in various forms, in-
cluding tables, diagrams, natural language, and pictures
— can be given a structured representation that enables
such knowledge to be utilized through well-known Al
techniques. Although many Al concepts and approaches
used in the representation are routine, its application to the
microstructure domain appears to be a novel concept.
In fact, the literature contains few attempts to define
a taxonomy for describing microstructure — and no
attempts whatsoever to use a taxonomy of schemata for
a computerized knowledge base of microstructure
information.’

Alcoa used a version of this knowledge base to develop
Cordial, a corrosion diagnosis system.'” Alchemist also
uses a semantic network to represent plans for designing
alloys, and methods that define properties and microstruc-
ture causality.! While our discussion focuses on alumi-
num, the knowledge representation framework is useful
for other alloy families — and, to some extent, even for
other materials.

Woods has proposed that knowledge representation
approaches be judged on two features: (1) expressive
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Figure 1. Alloy groups.

{{ 2024-T8-sheet
INSTANCE: alioy
MEMBER-OF: 2xxx-T8-sheet
ADDITIVES: Cu Mg Mn
ELONGATION: 6

AEPLIGATiON: aerospace }}

Sheet-group

Process methods
Solution-heat-treat,
Quench, stretch, age

Product-sheet
Process methods
ast, preheat,
hot-roll, cold-roll

@S—Sheet

Subset-of

Subset-of

2Xxx-series-2

Major-alioying-
elements Mg Cu

Subset-of

Modulus 105
Machinability B

2024-T8-sheet
Elongation 8

Schema 1. A typical alloy schema.

adequacy, including the representation’s ability to make
all of the important distinctions, and to remain noncom-
mittal about details when faced with partial knowledge;
and (2) notational efficacy concerning the representa-
tion’s structure and its influence on the computational
efficiency of inferences, the conciseness of representa-
tion, and the ease of modification."!

In addition, the ALADIN representation was required
to meet the following standards:

« To materials scientists, the representation should
seem natural for supporting knowledge base development
and maintenance by domain experts.

« The representation should be general enough to
support system expansion to include non-aluminum
materials.

The system organizes declarative knowledge by using
schema hierarchies. Representations have a hierarchy of
abstraction levels containing different degrees of detail.
Knowledge Craft’s facilities'? help the system define
relationships and inheritance semantics between metal-
lurgical concepts.'* The most commonly used relations
are Is-a and Instance. The Is-a relation and some other
relations define class hierarchies in which each higher
level subsumes lower level classes. The Instance relation
declares that a given object belongs to a class or a group;
the class description serves as a prototype of instances.

The knowledge base contains information about al-
loys, products, applications, composition, physical prop-
erties, process methods, microstructure, and phase dia-
grams. The representation is general. The goal has been to

Figure 2. A representation of typical alloy properties.

create a representation for all knowledge about aluminum
alloys and metallurgy relevant to the design process.

Alloy representation typifies most of the database. We
will discuss it in some detail. We will also discuss micro-
structure, which requires a more complex representation
— complexity handled largely by using Knowledge
Craft’s meta-information features. This enhances the
representation’s expressive adequacy by permitting finer
optional distinctions.

The alloy hierarchy — composition, properties, and
processing. When viewed from their design standpoint,
alloys are interrelated and grouped together in different
ways. To enable our schemata to reflect this domain
organization, we have defined various formal relation-
ships with different inheritance semantics.'® For example,
alloys are grouped together into series and families based
on composition. They are also related (1) by processes
that occur during fabrication — for example, heat treat-
ment, cold rolling, and tempering, (2) by the type of
application for which they are designed, and (3) by prod-
uct type — for example, sheet, plate, or extrusion. Rela-
tions have been defined to reflect degrees of abstraction
within the hierarchy; for instance, the relationship be-
tween a family and a prototypical member. To hypothe-
size and estimate, we use these relations at various points
during design search — both by analogy along several
different dimensions that define groups of similar alloys,
and by looking for trends within these groups.

Figure 1 depicts some of this knowledge base struc-
ture: An alloy family is used to distinguish alloys by
primary element (let’s say, aluminum or copper). An alloy
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Figure 3. A mechanical-property hierarchy.

series separates a family into subgroups according to
secondary elements. An example of a series is those alloys
containing AIMgCu. An alloy process group gathers
alloys together according to processing methods (forging
or casting, for example). Alloys within a series are further
classified by their processing, to form a process-and-
series group.

A typical alloy schema (see Figure 2 and Schema 1)
will show some of the richness of representations utilized
in ALADIN. In this example, the 2024-T8-sheet alloy
inherits the following characteristics:

* The base element is Al, by inheritance from the
aluminum family, which is an instance of an alloy family.

* The major alloying elements are Mg and Cu, by
inheritance from 2xxx-series-2, which is an instance of an
alloy series (Mn is considered a minor alloying element).

« The temper is T8, by inheritance from the T8 temper
group, which is an instance of the alloy process group.

» The product is sheet by inheritance from the sheet
group, which is an instance of the alloy process group.

* The process methods are (in order) cast, preheat, hot-
roll, cold-roll, solution-heat-treat, quench, stretch, and
age. The 2024-T8-sheet inherits these values from the
2xxx-T8-sheet (an instance of the process-and-series
group), and the 2xxx-T8-sheet gets these values from the
sheet group and the T8 temper group. Since sheet group is
listed before T8 temper group in the Subset-of slot, the
sheet group process methods come first.

* The modulus is 10.6 and machinability is B, by
inheritance from the 2xxx-T8-sheet. The alloy could
inherit the elongation value of 7 from the 2xxx-T8 sheet,
but this value is overridden by the value of 6 explicitly
listed with the alloy.

For use in ALADIN, we have developed a repre-
sentation for more than 20 physical-property quantities.
At the top classification level, properties are divided
into mechanical, chemical, thermal, electrical, and
miscellaneous groups. Figure 3 shows the classes of
mechanical properties.

ALADIN uses the process methods classification hier-
archy to make inferences about the effects of operations

Figure 4. A process hierarchy.

(on microstructure and alloy properties) since groups of
methods often have similar effects. To represent opera-
tional time sequences, the system uses “before” and
“after” relations. Figure 4 depicts aportion of ALADIN’s
process hierarchy.

Symbolic  microstructure representation.
ALADIN’s structure knowledge falls into two categories
— microstructure, and phase diagrams. We can view
microstructure as the configuration of all types of non-
equilibrium defects in an ideal phase.” Thermal and
mechanical processing methods (rapid cooling and cold
working) create such defects. These defects include voids,
cracks, particles, and irregularities in atomic planes —
features called microstructural elements, visible when the
material is magnified several hundred times with a micro-
scope. Features can range in size from a few nanometers
(vacancies and Guiner-Preston zones) to micrometers
(cracks and grains). Geometrical, mechanical, and
chemical properties of microstructural elements — as
well as their spatial distributions and interrelationships —
have a major influence on the material’s macroscopic
properties. The objective of ALADIN’s microstructure
representation is to enable classification and quantifica-
tion of alloy microstructures, thereby facilitating model
formulations that relate the microstructure to the macro-
scopic properties of alloys.

Much empirical knowledge about alloy design in-
volves the microstructure, which is difficult to represent
in a useful way with standard quantitative formalisms.
Metallurgists have attempted to describe microstructural
features systematically® and quantitatively'* but, in prac-
tice, rarely use either approach. Most expert reasoning
about microstructure deals with qualitative facts. Metal-
lurgists rely on visual inspections of micrographs, which
are pictures of metal surfaces taken through a microscope.
Information is communicated with these pictures and
through a verbal explanation of their essential features.

In response to this observation, we created a symbolic
alloy microstructure representation that forms a crucial
part of ALADIN’s database.'® Figure 5 depicts a portion
of ALADIN’s microstructure taxonomy. Two main fea-
tures of an alloy microstructure are grains and grain
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Figure 5. Classes of microstructure.

Figure 7. A micrograph of Al-3Li-0.5Mn in peak-
aged condition. (from Vasudevan'®).

Grain
boundar

-adls-a
Precipitate

Figure 6. Types of microstructural elements.

boundaries, and these are described by an enumeration of
grain types and grain boundaries present. Each micro-
structural element is described in turn by any available
information (including size and distribution) and by rela-
tions to other microstructural elements (including pre-
cipitates and dislocations). This representation enables
important facts to be expressed even if quantitative data
are unavailable (the presence of precipitates on grain
boundaries, for example). Figure 6 shows several such
element types. Each microstructural element can be fur-
ther described by its phase. size, shape. volume fraction,
and distribution.

An example of microstructure representation. A
typical alloy in the ALADIN database contains a micro-
structure description that enumerates all microstructural
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{{ Al-3Li-0.5Mn-pa
MEMBER-OF: experimentAl-Li-Mn-series
MICROSTRUCTURE: Al-3Li-0.5Mn-pa-strc
ADDITIVES:

Li
nominal-percent: 3.0
unit: weight-percent
Mn
nominal-percent: 0.5
unit: weight-percent
PROCESS-METHODS:
cast
class: direct
solution-heat-treat
temperature: 1020
time: 30
stretch
percent-stretch: 2
age
time: 48
temperature: 400
level: peak
class: artificial }}

Schema 2. A representation of Al-3Li-0.5Mn in
peak-aged condition.

elements known to exist within the material. Figure 7
shows a microstructure after solution heat treatment,
cold-water quenching, and peak aging at 400 degrees
Fahrenheit for 48 hours.'® Schema 2 shows the corre-
sponding ALADIN representation of the alloy, and
Schema 3 shows the microstructure.

Schema 2 includes the following information:

» The base element is Al, by inheritance from the
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{{ AL3LI0.5

Schema 3. The microstructure of Al-3Li-0.5Mn in peak-aged condition.

experimentAl-Li-Mn-series, which is an instance of the
alloy family.

* The microstructure is described in schema Al-3Li-
0.5Mn-pa-strc.

» The alloying elements are Li and Mn as specified in
the ADDITIVES slot.

» The process methods are, in order, (1) cast, (2)
solution-heat-treat at 1020 degrees Fahrenheit for 30
hours, (3) stretch two percent, and (4) age for 48 hours at
400 degrees Fahrenheit, which achieves peak aging.

Vasudevan et al. describe the microstructure — re-
ferred to in their paper as “Figure 1(b)” — as follows:
“Figure 1(b) shows the microstructure in the peak-aged
alloy (condition B), where the strengthening matrix §'
precipitates are seen together with coarse-grained bound-
ary O precipitates; these are seen as white regions sur-
rounded by dislocations . . . and a &' precipitate-free zone
(PFZ) 0.5um wide, which has given its solute up to the
grain boundary §.”'®

Schema 3 shows the microstructure representation for
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the alloy used in ALADIN. Most of the lithium is in the
form of either &' (Al3-Li) precipitates inside grains, or &
(AlLi) particles on the grain boundary. In addition. the
grain boundary has a PFZ, with MnAl_ dispersoids
distributed throughout the grains. Treating grain interior
and grain boundary as separate microstructural elements
permitted the association of 8 particles and PFZ with the
grain boundary, a crucial feature in this microstructure.
Characteristics of the microstructure (recrystallization,
high-angle grain boundaries, elongated grains parallel
to the rolling direction. and low dislocation density)
are also represented.

The schema representation — not limited to character-
istics apparent on a micrograph — includes quantitative
information. The representation’s recursive nature (each
microstructural element could contain any other micro-
structural element, even one of the same class) enables
metallurgists to represent a broad-range microstructure
— an important point. For example, suppose the solution-
heat-treated alloy has subgrains inside each grain, and that
each subgrain consists of several cells separated by dislo-
cations. A metallurgist could represent such a structure as
grains with high-angle boundaries that contain small
grains with low-angle boundaries: these small grains
contain even smaller grains (or cells) with low- or
medium-dislocation density of boundaries. Because
grains at each “level” can have various microstructural
elements, a metallurgist can represent microstructures
with an adequate degree of detail.

Many microstructural elements are associated with a
phase (a physically homogeneous part of a material sys-
tem, characterized by its composition and crystal struc-
ture). A phase diagram is a graph of phase stability areas,
with composition and environment variables (for ex-
ample, temperature or pressure) as coordinates.'” In alloy
design, equilibrium phase diagrams define phase regions
as a function of temperature and composition, and are
referenced when selecting heat treatment temperatures.
Occasionally, nonequilibrium phase diagrams are also
available that define aging temperatures required to pro-
duce metastable precipitates in the material.

Region boundaries are sometimes defined by known
thermodynamic equations, which ALADIN can store and
evaluate. More often. however, boundaries are deter-
mined experimentally. In such cases, each region of an n-
dimensional phase diagram can be defined in ALADIN as
the union of (n+1)-point lattices in n-dimensional space.’

Models. Theoretically, we should be able to determine
an alloy’s properties from its microstructure alone. Prac-
tically, the theories are incomplete — requiring the addi-
tion of empirical knowledge to fill the gaps. We can view
amodel as a function that maps from a domain to a range:
for example, from microstructure to properties. Due to
incompleteness, a model is actually a set of partial func-
tions defined across subsets of the domain. Furthermore,

due to uncertainty in these models, domains of partial
functions may overlap and map onto different ranges.
Consequently, we must represent not only the partial
function, but its domain and the credibility of its result.
A set of partial functions and associated information
(regarding how to choose a function to apply at each step
in the design process) can be called a knowledge source.
As such, they resemble knowledge sources in Hearsay-
11,'* where stimulus-response frames define a knowledge
source’s invoking pattern and possible contribution to
the interpretation task.

The knowledge base evaluation. The representation
defined below achieves most of the goals established at
the beginning of this project. This representation is cer-
tainly adequate for describing relevant metallurgical in-
formation about aluminum alloys and for making neces-
sary distinctions. Indeed, some evidence indicates that the
representation can handle non-aluminum materials. We
asked two metallurgists — Alcoa’s J.L. Murray, and M.A.
Przystupa (who is now at UCLA) — to select and describe
the microstructures of non-aluminum-based materials,
including martensitic steel. We then successfully repre-
sented all essential microstructural features of these
materials in the ALADIN system. This test revealed no
limitations in the representation system. The ALADIN
representation provides flexibility with respect to the
amount and level of detail, especially in microstructure
descriptions. This flexibility is important, since micro-
structure evaluation techniques vary and details are often
not available.

However, such expressive power has a cost. Searching
through the nested levels of metaschemata associated
with a detailed microstructure description can be compu-
tationally expensive. This does not present a problem in
our domain. But if this knowledge base were applied to
time-critical problems, we would need to evaluate the
trade-offs between expressive power and performance.
Some materials scientists believe that future products will
be specified by microstructure, and that manufacturing
facilities will be required to monitor and control those
features. In such scenarios, a computer-based representa-
tion would be desirable to support real-time control.

The amount of labor required to interpret micrographs
and to store essential features in the ALADIN system is,
perhaps, a more serious drawback. These tasks, requiring
the expertise of someone with an advanced degree in
materials science, can be tedious and time consuming.
Developing recognition software to automatically inter-
pret micrographs would facilitate the development of a
more complete knowledge base in ALADIN.

The problem-solving architecture

Alloy design problems begin by specifying desired
physical and mechanical properties of the material to be

1
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created, expressed as constraints on these properties. The
designer’s objective is to identify chemical elements that
can be added to pure metal, showing appropriate amounts
as a percentage, and processing methods that can be
employed to yield an alloy with the desired characteris-
tics. Designers normally use a line of reasoning that
resembles goal reduction through a hypothesize-and-test
cycle — starting with abstract choices on microstructure,
composition, and processing — and proceeding towards a
final determination of percentages for each additive and
specification of processing practices to be employed.

Microstructure models provide a powerful guide for
the design process, since they constrain composition and
processing decisions. If metastable precipitates must be
present, for example, then (1) the percentage of additives
must be constrained below the solubility limit, (2) certain
heat treatment processes must be applied, and (3) aging
times and temperatures must be constrained within
certain numerical ranges.'

Similarly, concepts such as solid-solution hardening
and interface-boundary strengthening are abstractions
referring to mechanisms that can involve a range of
additives and process methods, but also lead to narrower
subsequent qualitative and quantitative choices. Sooner
or later, depending on the design task’s nature and the
designer’s style, a known material is selected as a base
line or starting point. The designer then alters the known
material’s properties by making changes to composition
and processing methods, estimates effects of these
changes on various physical properties, and identifies
discrepancies to be corrected in a later iteration.

However, we must consider several complexities.
First, due to the existence of multiple (but incomplete)
models, knowledge is often applied opportunistically.
For example, it is rarely feasible to predict properties
quantitatively from microstructure. But given the class
of microstructure, we can often use semi-empirical
models to predict properties from composition and
processing parameters.

Second, strategies vary among individuals; for
example, when selecting the baseline alloy to begin
their search, some designers like to work with commercial
alloys. Others prefer experimental alloys produced in a
highly controlied environment. Still others like to begin
with a commercially pure material, and design from
basic principles.

Third, when searching for alternatives to meet target
properties, some designers construct a complete model of
the microstructure (a model that will meet all properties);
then, they identify composition and processing options.
Other designers think about one property at a time, iden-
tifying a partial structure characterization and implemen-
tation plan that will meet one property, before moving to
the next. Still other designers avoid microstructure rea-
soning altogether by using direct relationships between
decision variables and design targets.

Fourth, all designers occasionally check their partial
plans by estimating primary and secondary effects of
fabrication decisions on structure and properties. The
frequency of this activity, and the level of sophistication
among estimation models, varies among designers.

We specified the following requirements for
ALADIN’s architecture: The system needs (1) facilities
that integrate multiple incomplete design models, (2) a
range of control strategies that incorporate individual user
preferences, and (3) mechanisms that control search space
size and complexity.

Planning and the design process. We designed the
ALADIN architecture to support opportunistic reasoning
(at different levels of abstraction) across multiple design
spaces, and chose a multispatial reasoning architecture
akin to a blackboard model.'$°

The architecture has five spaces:

(1) Property space — The multidimensional space of
all alloy properties (for example, tensile strength, ductil-
ity, and fracture toughness);

(2) Structure space — The space of all alloy micro-
structures;

(3) Composition space — The space in which each
dimensionrepresents a different alloying element (Cu and
Mg, for example);

(4) Process space — The space of all thermomechani-
cal alloy-manufacturing processes; and

(5) Metaspace — The planning space that directs all
processing. The metaspace stores knowledge about the
design process and control strategies. Planning takes
place in this space, in that goals and goal trees are built
there for subsequent execution.

These spaces are subdivided into levels corresponding
to different degrees of detail — from abstract qualitative
concepts to numerical quantities. Activity is generated on
different planes and levels, resembling Stefik’s Molgen
system.?! Planes contain one or more spaces.

ALADIN’s planes are

(1) The meta (or strategic) plane, which plans the
design process and establishes sequencing, priorities,
and the like;

(2) The structure-planning plane, which formulates
targets at the phase and microstructure level to realize
desired macroproperties; and

(3) The implementation plane, which encompasses
chemical composition, plus thermal and mechanical
processing.

Search activity seeks to reduce the number of outstand-
ing goals through a hypothesize-and-test paradigm. Par-
tial models propose and verify hypotheses at all abstrac-
tion levels connecting two or more knowledge spaces.

AUGUST 1990
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For example, models linking structure and composition
can propose alloying elements in the composition space
that yield a structure specified in the structure space. In
the opposite direction, models can predict properties of a
proposed composition by checking whether a phase
change would occur in the structure space.

Qualitative and quantitative levels of the structure,
composition, and processing spaces are activated (as
appropriate) to generate hypotheses specifying design
variables. Hypotheses generated on other planes and
levels constrain and guide the search for new hypotheses.
An existing qualitative hypothesis suggests the genera-
tion of a quantitative hypothesis. Compositional additives
can produce certain microstructure elements. Specific
processes with the composition, restricting available
choices, can produce others.

Ideally, alloy design begins in the structure space,
where decisions are made on microstructural features that
imply desirable properties. Thereafter, these decisions are
implemented in composition and process space. Since
models are incomplete, the appropriate execution se-
quence is not known beforehand. Consequently, from the
opportunities available, the system must select the most
appropriate model at each decision point.

The metalevel planner determines the degree of oppor-
tunism exhibited by the system. Its basic cycle

(1) Selects a hypothesis to extend (based upon its
credibility),

(2) Evaluates that hypothesis relative to target
properties,

(3) Chooses a property to improve,

(4) Picks a model that will optimize the chosen prop-
erty by refining the hypothesis into new hypotheses, and

(5) Determines how well the new hypotheses meet the
selected property goal.

In practice, sequencing among these steps is flexible.
For example, selection from among a set of new hypothe-
ses often requires that they be evaluated in detail. Deci-
sions about sequencing at this level are made in the
metaspace. The hypothesize-and-test cycle contains a
reasoning sequence based on causal relations (represented
by linking lines in Figure 8). To evaluate a current hy-
pothesis, for instance, the system determines the effects of
composition and process decisions on microstructure.
These microstructure estimates are then used to determine
the alloy’s physical properties. When generating a new
hypothesis, on the other hand, causal relations are exam-
ined in the reverse direction. Once it is given the target,
the system identifies physical properties, microstructure,
and then composition and process alternatives. When
microstructure knowledge is not available, the system —
utilizing the existence of several models — may search
for weaker models that bypass the microstructure plane
(process-property relations, for example).

Property

Structure

Process

Composition : l

Figure 8. Spaces of domain knowledge.

In its basic hypothesize-and-test cycle, the planner
selects goals to satisfy and hypotheses and models with
which to satisfy them. It uses several types of information
in making such decisions, including

* The search status,

* The solution process history,

+ Strategic-alternative constraints, and

* The effectiveness of various strategic alternatives.

The search status is characterized by constraints, hy-
potheses, and estimates that have been created. These
indicate what problems remain. The goals retain solution
process history. Given these information sources, con-
straints on control alternatives are easily represented in
rule form. Some examples follow:

If numerical decisions regarding composition
and process have not yet been made

Then quantitative evaluation models cannot
be applied.

If decisions regarding what processing steps
to use have not yet been made,

Then it makes no sense to reason about
temperatures and rates.

Based on heuristic knowledge obtained from metallur-
gists, the system also has a notion of which strategies will
have the greatest impact on search. For instance,

If it is possible to reason about microstructure,
composition, or process,
Then microstructure reasoning is preferred.

If many fabrication alternatives to meet a single
target have been identified,

Then use simple heuristics to evaluate each
and prune the search.
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Due to the complex interdependence of design deci-
sions on an alloy’s final properties, simple concepts of
goal protection are inadequate and the system employs a
least-commitment strategy minimizing goal interaction.>

ALADIN begins in the metaspace and frequently re-
turns there for new direction. When the metaspace is
activated, strategy rules identify reasonable activities and
create top-level goals with appropriate context, space, and
level information for those chosen activities. Several
alternative strategies are often possible at any point dur-
ing search, and users are offered a menu of possibilities.
The system recommends the strategy it estimates most
effective. After users accept or override this selection,
metarules expand goals by creating more detailed
subgoals. These goal trees constitute a near-term, partial
plan for accomplishing the design task.

When the metaspace can no longer define goals with
current information, control is transferred to the domain
space, which processes goals until their success or failure
is determined. When no further progress can be made in
domain spaces, control returns again to the metaspace,
where a new series of goals is defined. These goals are
often associated with improving and refining design
choices already made. Alternation between metaspaces
and domain spaces continues until the problem-solving
process is complete.

Within the metaspace, we integrated several design
strategies (obtained from different people) into a single
system. As aresult, ALADIN can develop many solutions
to a single problem by applying different approaches.
Flexible user control enables metallurgists to experiment
with different strategies. For example, users can explore
solutions arising from the application of hybrid strategies
not usually applied to single problems.

Reducing search complexity. The partial models
available to ALADIN can generate a large set of alterna-
tive designs. The search space is infinite, in fact. since
some design parameters vary along a continuous spec-
trum. The system uses several domain features to reduce
search complexity. The space is somewhat sparse in
feasible solutions, and strong heuristics are available to
direct search in promising directions. For example, of 103
elements in the periodic chart, only about two dozen are
sufficiently soluble in aluminum to be considered as
alloying additions. Of those two dozen, we can use only
seven as major alloying elements.

Furthermore, to achieve ALADIN’s goal of assisting
alloy designers and speeding up alloy design. it is not
necessary that the program generate feasible or optimal
choices in all cases. To generate a family of alternatives
that is likely to come close to meeting design goals, when
tested. is sufficient.

To reduce search complexity further, ALADIN
employs several techniques that are described in Al
literature, including

« Hierarchical search,
« Least-commitment search, and
« Constraint-directed search.

Hierarchical search. Many spaces are separated into
levels (higher levels being abstractions of lower levels).
In the composition space, for example, ALADIN uses the
highest level to specify whether an element is to be added
or not. Lower levels specify the amounts of an element to
add. In the structure space, the highest level specifies the
phase type — while the next level down specifies types of
microstructural elements present in the microsiructure.
Still lower levels may contain quantitative information
about the microstructure. Planning begins with decisions
made at the abstract level — decisions that gradually
become more precise, enabling global consequences of
abstract decisions to be evaluated before effort is spent in
detailed calculations.

Metallurgical models act as partial filters on design
decisions. That is, when decisions regarding composition
and process are made, they are filtered through the struc-
ture space to predict their effects in the property space.
The filter is partial, since an appropriate metallurgical
model may not exist in all cases. Consequently, micro-
structure decisions form an abstract plan that cuts down
the number of alternatives in composition and process
spaces. In this way, the role of the microstructure differs
in some respects from abstract planning, as Sacerdoti
describes.? The main differences are that

» Microstructure concepts are distinct from composi-
tion and process concepts, and not merely less-detailed
descriptions;

» The microstructure plan is not part of the final design,
since an alloy can be manufactured with composition and
process information only; and

« The microstructure domain is predefined by metal-
lurgical expertise, and not defined during ALADIN’s
implementation or execution.

These differences lead to the following contrasts with
a Molgen-like system:

» Instead of one plan hierarchy, ALADIN has three —
structure, composition, and process — each of which
contains abstraction levels.

» Since structure decisions do not necessarily have the
highest “criticality” (as defined by Sacerdoti). opportun-
istic search is important.

« The effect of abstract hypotheses is more complex,
because decisions in the structure space cut search by
constraining the choice of both composition and process
hypotheses. The existence of more than one level in each
space also introduces new interaction types.

Least commitment. Since most design decisions affect
more than one target property, it is often inappropriate to
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Schema 4. A schema representation
of a typical-aging-temperature model.

make precise commitments early in the design process.
Furthermore, the complexity of design decision inter-
dependence makes simple concepts of goal protection in-
efficient.® Hence, ALADIN employs a least-commitment
strategy that minimizes goal interaction. The system
expresses quantitative hypotheses as constraining in-
equalities, which are kept as broad as possible. Hypo-
theses are refined by posting additional constraints that
reduce the region for design variables, thereby reducing
the need for backtracking when selecting values.

ALADIN’s domain lends itself readily to this tech-
nique: The system can use qualitative reasoning to
determine what constraint should be refined (and most
numerical variables admit to value ranges).

Constraints. Although it focuses on a single property in
the hypothesize-and-test cycle, ALADIN uses constraints
to relate properties. As a result, the system need not spend
time exploring decision paths that would adversely affect
other properties; constraints are represented as Lisp ex-
pressions involving any function or variable evaluating to
a non-negative result. Formulas for density and modulus
immediately yield constraining equations. ALADIN can
obtain constraining equations for other properties by
regression in the alloy database. Some variables are not
easily quantifiable, but have an indirect impact on gener-
ated constraints. For example, temper information is used
to select alloys during regression. Phase diagrams —
heuristic rules involving phase boundaries and solubility
limits — are another source of constraining equations.
During evaluation, the system tests all constraints to
verify that the design is acceptable — not only with the
current goal, but with the other property goals.

In some cases, constraints are also used to generate
decisions. In such instances, a variant of Hadley’s
gradient method is used to find a feasible point for
a system of nonlinear inequalities.?*

Model-based inference

Experience accumulated during our interaction with
metallurgists, and insights gained during our work with
ALADIN, suggest a need for an alternative operational
mode. Typical users of an alloy design system will, for the

Schema 5. A general
age temperature model.

foreseeable future, be metallurgists with considerable
expertise in at least some aspects of alloy design. Each
metallurgist has an individual style (and, often, firm
opinions) on what approach should be taken. Some met-
allurgists prefer a system that leaves the top control to
users, but assists design by suggesting alternatives. That
is the purpose of the design assistant mode, in which
metallurgists guide search in the direction they want.
Hypothesis elaboration is also put under user control by
providing a set of models, with which users can derive
new information.

The design assistant mode applies the general and
powerful.notion of models. We created a schema-based
model representation and a domain-independent infer-
ence engine that invokes models to infer values of attri-
butes in schemata.?> ALADIN uniformly represents do-
main-dependent information, facts, qualitative and quan-
titative models — as well as much domain-independent
control knowledge — in schema form.

Reasoning involves inferring attribute values in exist-
ing or newly created schemata. If we can obtain accept-
able values through simple retrieval, with or without
inheritance, the values are considered known and no
model need be invoked. Otherwise, a value will be in-
ferred (if possible) through a search for the “best” model
that yields an acceptable result. Models are selected in
three stages. First, the domain of model validity is deter-
mined. The validity domain is a subset of all schemata,
specified with Knowledge Craft’s restriction grammar.'?
For example, Schema 4’s DOMAIN attribute limits the
use of that model to temperature schemata of “type class
artificial.” Second, valid models are ranked according to
their credibility. Third, the value generated by the model
has to satisfy range and cardinality restrictions; for ex-
ample, Schema 5’s DOMAIN must be one or two sche-
mata of “type class natural” or “type class artificial.”

Searching and ranking models — as well as determin-
ing domain, credibility, and range — are inferences that
the control models can perform. ALADIN has a set of
domain-independent control models that can be aug-
mented and superseded by domain-dependent control
models whenever appropriate.

The simplest use of a model, to infer a specific slot
value in a schema, is to take the value from the same slot
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INSTANCE: ALLOY
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MICROSTRUCTURE: AL-3LI-0.5MN-PA-STRC
ADDITIVES: LI MN
PROCESS-METHODS: CAST SOLUTION-HEAT-TREAT STRETCH AGE

S

Command Choices

Infer Value
Infer Slot
: Add new slot
. Add new value

Insert new Value

Replace current value

S
\2
V: Add new value w/ editor
i0
r
e

. Edit current value
d: Delete current item

MOUSE-L-2: Edit the schema for the selected item
MOUSE-M-2: Edit meta-information for the selected item
MOUSE-M-3: Return to the previous schema
Meta-X Extended command level
MOUSE-R-3: Menu of global commands

Figure 9. The Infer Value and Infer Slot items can
be selected.

of a similar schema (which then becomes a model or
analog of the first schema). For example, if we want to
determine the aging temperature for Schema 2’s alloy. we
can use knowledge about the typical temperature for

artificial aging as a model (see Schema 4) and assume
that the temperature is 400 degrees Fahrenheit. The
Schema AGE-TEMPERATURE-DEFAULT-MODEL
is declared to be a temperature model through the
MODEL-OF relation.

We can introduce algorithmic and numerical models
through procedural attachment; for example, we can
generate a value by attaching a piece of code to an
attribute. Schema 5 is a model that invokes a procedure
specified by the AGE-TEMPERATURE-MODEL-
PROCEDURE schema.

This model inference system can be viewed as an
extension of more conventional schema representation
features, and is implemented as a function (infer-value) to
be used instead of the function (get-value) provided by
Knowledge Craft’s schema representation system.
Mechanisms for searching and selecting attribute models
make it possible to distinguish cases based on complex
criteria (numerical relationships, for example). The range

and cardinality checks on inferred values implement a
simple backtracking feature. Successfully inferred values

end - - no production ti

ALADIN -

rue

i 256  productions {2463 / /6995 nodes)
! 1 firings (6 rhs actions)

6
1 mean conflict set
9

mean working memory size (6 maximum)

size (1 maximum}

mean token memory size (9 maximum)

Command choices
FORMABILITY
PLAIN-STRAIN-DOME-HEIGHT
ELONGATION
MACHINABILITY
WELDABILITY

DENSITY! x
ELECTRICAL-CONDUCTIVITY
COEFF-OF-THERMAL-EXPANSION
SPECIFIC-HEAT
MELTING-POINT
THERMAL-CONDUCTIVITY
FINISH
ANNODIZE
OXIDATION
CORROSION
CORROSION-FATIGUE
STRESS-CORROSION-CRACKING
ALTERNATE-IMMERSION-SCC
THRESHOLD-SCC
K1-8CC
STRESS-CORROSION-CRACKING-VELOCITY
EXFOLIATION-CORROSION-RATING
DAMAGE-TOLERANCE

goal name

in context

for hypothesis
in space

at level

with focus

ACTIVE GOAL INFORMATION

Get-user-Constraints
Problem-Definition
NIL

Property

2

NiL

FATIGUE
CRACK-GROWTH-RATE
FATIGUE-STRENGTH
FRACTURE-TOUGHNESS
K1C-VALUE
KC-VALUE
DUCTILITY
STRENGTH
STRAIN-HARDENING
COEFFICIENT-IN-CONSIDERE-EQUATION
YIELD-STRESS-ANISOTROPY
CREEP
MODULUS

COMPRESSIVE-YIELD-STRESS
TENSILE-YIELD-STRESS
ULTIMATE-TENSILE-STRENGTH

Control-Q, Quit
MOUSE-R-9: Menu of global commands

DGRESS

has started.
blem-Definition activated.

are optionally stored in the schema, with meta-informa-
tion on their source. Hence, if the same call to the infer-
value function is repeated, the value will be obtained by
simple retrieval. This is also true regarding input data

Figure 10. The user is presented with a menu of properties to constrain and will be given
the opportunity to limit each selected property quantitatively.
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Figure 11. The Infer Value item gives
the resvlt.

and intermediate results obtained by recursive calls to the
infer-value function, either by the selected model or the
infer function itself.

If we adopt a convention to store only facts as regular
values, and to represent default values as models, then
this architecture provides a clean cut between defining
properties and default properties. This addresses a well-
known ambiguity in frame-based knowledge represen-
tation systems.?

Resembling Knowledge Craft’s schema editor, the
design assistant enables users to invoke models and to
enter information (including simple editing commands)
in an interactive environment. Figure 9 shows the menu of

L0

ALADIN

Alloy design support system

end - - no production true
256  productions (2463 / /6995 nodes)
76 firings (180 rhs actions)
20 mean working memory size (31 maximum)
7 mean conflict set size (26 maximum)
117  mean token memory size (183 maximum)

Command Choices
S1-ADD-SOLUTE-LI1268 (0.4)
S1-ADD-AL3LI1272 (0.4)] x

Si-ADD-ALLII276 (0.4)
S1-ADD-SOLUTE-MG1280 (0.4)
S1-ADD-MG2AL31284 (0.4)
S1-ADD-SOLUTE-LI+MG1288 (0.4)
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Select None
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ACTIVE GOAL INFORMATION

goal name Select-Best

in context Hypothesis-Selection
for hypothesis  Baseline-Comp

in space Structure

at level 1

with focus NIL

L: S1-HDD-AL3LI1272 (0.4)

top-level commands. Selecting the Infer Slot command
generates a menu of slots (that is, attributes) that are
appropriate in the displayed schema. In this case, the
menu would resemble the one in Figure 10.

Selecting an attribute introduces it in the displayed
schema. The Infer Value command activates the inference
engine described above, and inserts the resulting value.
Figure 11 shows the result of inferring the density.

Basic system behavior

ALADIN runs on a Symbolics Lisp machine, under
Genera 7.1, within the Knowledge Craft 3.1 environ-
ment,'? at a suitable speed for interaction with expert alloy
designers. The design run outlined in this section (Figures
10, 12, and 13 represent an ordered sequence of snapshots
from an ALADIN run) takes about half an hour and
involves considerable interaction with users, whose
choices influence the outcome. The system has reached
the advanced-prototype stage and can assist in the design
process, especially as aknowledge base and design evalu-
ator (two of the three main functions we set out to develop
— the third mode involves independent design and dis-
covery). Presently, however, the knowledge base focuses

ALADIN PROGRESS

add precipitates of MIL1 because they contain lithium, an element that is lighter than
aluminum

add alpha-al+17+mg because it contains lithium and magnesium, an element that is
lighter than aluminum

add precipitates of AL2 MgLi because they contain lithium and magnesium, elements
that are lighter than aluminum

————— Context Hypothesis-Evaluation activated. - - - - - -

matrix contains lithium and/or magnesium — density low or medium
matrix contains lithium and/or magnesium — density low or medium
matrix contains lithium and/or magnesium — density low or medium
matrix contains lithium and/or magnesium > density low or medium
matrix contains lithium and/or magnesium — density low or medium
matrix contains lithium and/or magnesium — density low or medium
matrix contains lithium and/or magnesium — density low or medium

The hypothesis S1-Add-Al2mgli1294 lacks quantitative restraints

The hypothesis S1-Add-Solute-Li+Mg1290 lacks quantitative restraints
The hypothesis S1-Add-Mg2al31286 lacks quantitative restraints

The hypothesis S$1-Add-Solute-Mg1282 lacks quantitative restraints
The hypothesis S1-Add-Alii1278 lacks quantitative restraints

The hypothesis $1-Add-Al3li1274 lacks quantitative restraints

The hypothesis S1-Add-Solute-Li1278 lacks quantitative restraints

Figure 12. A qualitative evaluation {(which notices that the addition of light elements implies
low density)} is performed. A menu of hypotheses enables users to force a selection.
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ACTIVE GOAL INFORMATION

goal name Display-Best-Hypothesis
in context Hypothesis-Selection
for hypothesis ~ P1-Add-Heat-Treat1435

! in space Structure

| at level 1

; with focus NIL

—

ALADIN PROGRESS
Goal Estimate-Target-Properties rates by default
Context Hypothesis-Generation activated.

must do solution-heat-treat, quench and age to get precipitates
must add lithium to get an alpha phase with lithium
must do solution-heat-treat in the alpha phase
composition must be in the selected phase

Context Hypothesis-Evaluation activated.
matrix contains lithium and/or magnesium — density low or medium
Context Hypothesis-Selection activated.
The hypothesis P1-Add-Heat-Treat1437 lacks quantitative constraints

Hypothesis P1 Add-Heat-Treat1435 is selected
The hypothesis is C1-Add-Element-11441 lacks quantitative constraints
Hypothesis is C1-Add-Element-11439 is selected :::::
The constraints of hypothesis P2-Solution-Heat-Treat1445 are consistent

The constraints of hypothesis C2-Solute-Constraints 1449 are consistent

Hypothesis C2-Solute-Constraints1447 is selected
No hypothesis can be selected on the basis of credibilities

| Figure 13. Quantitative constraints are generated
} {and checked for consistency, if present).

on narrow areas of alloy design and contains expertise on
only three additives, two microstructural aspects, and five
design properties. Some heuristic rules are ad hoc, rather
than being integrated into the strategy-planning-imple-
‘ mentation hierarchy. We have dealt in depth only with
ternary alloys. But these restrictions were by our own
choice, so that we could concentrate on selected areas of
} greatest importance to our expert informants and spon-
1 sors. Within these restrictions lie numerous commercially
! important alloys, whose rediscovery by ALADIN would
be a major milestone.
1 In its independent design mode, ALADIN uses goal-
1 based reasoning. The system’s first goal is to obtain a
target for the desired alloy. A design target is generally
i described in terms of values on various physical proper-
‘ ties, although some design problems can be specified in
| terms of microstructure constraints. Physical property
targets can be associated with any of the attributes listed
i in Figure 10.
‘ During its setup phase, ALADIN also determines the
| material’s application (acrospace, let’s say, or packaging)
~and the product form required (sheet or extruded rod).
| Using this information, the system prioritizes property
| goals, defines an appropriate search strategy, and selects
" astarting point for design search. It makes each of these

decisions by applying its knowledge base of metallurgical
design techniques and guidelines. ALADIN can also
express individual user preferences through its menu-
driven interface, and can use these preferences to modify
default guidelines.

Once the problem is defined and search is set up, the
system enters a cycle of hypothesis generation, selection,
and evaluation. Figure 14 shows a generation step in
which alternative microstructural phases (which may
achieve property targets) are retrieved from the knowl-
edge base. These phases — solid-solution Al-Li, AlLi
precipitates, Al,Li precipitates, solid-solution Al-Mg,
Mg,Al, precipitates, solid-solution Al-Li-Mg, and
Al MgLi precipitates — all contain Li and/or Mg to
reduce the starting alloy’s density. After each generation
step, the system evaluates alternatives relative to targets
(as Figure 12 illustrates). Proposed alloy descriptions are
incomplete during early design iterations, containing only
qualitative microstructural choices. Hence, only approxi-
mate evaluations can be made for each choice. Neverthe-
less, this is sufficient to uncover major differences in
options and to point search in a promising direction.

During later design iterations, the system incremen-
tally develops a hypothesis tree containing quantitative
refinements of early decisions and constraints on
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ACTIVE GOAL INFORMATION

goal name Estimate-Target-Properties
in context Hypothesis-Evaluation

for hypothesis ~ Baseline-Comp

in space Property

at level 1

with focus NIL

> {Confirm Goal} :

' ~

ALADIN PROGRESS
Tensile-Yield-Stress871 has next priority
Kic-Value868 has next priority
Elongation867 has next priority
Elongation870 has next priority

Context-Search-Setup Completed - - - - - - -
------- Context Hypothesis-Generation now activated. - - - - - -

add alpha-al+li because it contains lithium, an element that is lighter than aluminum

add precipitates of Al13Li, because they contain lithium, an element that is lighter than
aluminum

add precipitates of AlLi because they contain lithium, an element that is lighter than
aluminum

add alpha-al+mg because it contains magnesium, an element that is lighter
than aluminum

add precipitates of Mg2AI3 because they contain magnesium, an element that is lighter
than aluminum

add alpha-al+li+mg because it contains lithium and magnesiumelements that are lighter
than aluminum

add precipitates of Al2MgLi because they contain lithium and magnesium, elements
that are lighter than aluminum

Figure 14. In this example, six hypotheses on the microstructural composition are generated —
all involving light elements in response to a low-density target.

composition and processing propagated from micro-
structural constraints. For example, to produce a phase of
ALLi precipitates in the starting material, Li should be
added at a level above the room temperature solubility
limit, and the product should be solution heat treated at a
temperature above the phase diagram’s solvus line.

Because the search for a new alloy is usually driven by
product requirements, designers generally have an appli-
cation in mind. The system uses this information to select
a design strategy. Since ALADIN pursues one target at
a time, it must prioritize targets.

The system uses its database of known commercial and
experimental alloys for qualitative and quantitative
comparisons with the target — comparisons best made
between alloys of similar product forms. In Figure 12,
only a qualitative evaluation is performed. To form a
basis for selection, the subsequent selection phase
assigns credibilities to alternative hypotheses. In such
cases, no quantitative constraints are available that
could affect selection.

The hypothesize-select-evaluate cycle adds design
details incrementally and builds a hypotheses tree (as
Figures 12 and 13 show). A design session produces a
partial description of an alloy, using the knowledge
representation of the alloy database.

A lloy design has been thought to require too high a
degree of creativity and intuition for automation. How-
ever, we have found that hypothesize-and-test cycles,
abstract planning, and rule-based heuristic reasoning can
reproduce a significant portion of the reasoning used by
human designers on prototypical cases. Nevertheless, the
knowledge required to solve real-world problems is
enormous. Metallurgists have suggested that future ef-
forts focus on more specific aspects of material design.
Methods developed here form the necessary basis and
framework for such efforts; the current ALADIN system
has approximately 2400 schemata, 250 Knowledge Craft
OPS rules, and 200 Lisp functions.
This research has

* Provided a representation in which multiple partial
models can be represented declaratively;

» Formulated an architecture in which incomplete and
even inconsistent models can be integrated in the design
process;

+ Satisfied multiple interacting goals by determining
least-commitment constraints;

* Developed a framework and applied a set of tech-
niques that permit the effective coupling of symbolic
(qualitative) and numerical (quantitative) reasoning,
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within a structure containing various representations of
information;

« Found ways to reason qualitatively with constraints
that are expressed quantitatively; and

o Created an interactive environment where experts
can share control of the design process with the system.

As currently practiced, alloy design may involve
many iterations over several years. ALADIN’s overall
goal, as an industrial application of Al techniques, has
been to make the alloy design process more productive.”’
ALADIN can achieve significant productivity improve-
ments and speed the discovery of better alloys by
(1) making the generation of alloying experiments
more systematic, (2) aiding the evaluation of proposed
experiments, and (3) enabling individual designers
to supplement their own specialized expertise with that
of the program, which is a pool of expertise from
various sources.

The domain complexity has given us the opportunity to
extend the frontiers of Al research. Search in the space of
abstract models (in our case, microstructure) has potential
applications in other design areas — the design of other
metallic or nonmetallic materials and, in general, designs
dominated by nongeometrical constraints that require a
combination of qualitative and quantitative reasoning.

Our representation of strategic knowledge, with flex-
ible user control, provides a powerful means for combin-
ing knowledge from multiple experts into a single system.
We hope that these ideas will be useful to developers of
future expert systems.
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