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INTRODUCTION

Recent research in design has incorporated artificial intelligence (Al)
problem-solving architectures in the construction of systems that aid
designers. For many people outside the field of Al, the role of a problem-
solving architecture is unclear. It is our intent, in this chapter, to both
motivate the need for architectures in design and demonstrate their
application in one particular system: Design Fusion.

Design is a complex process; designers bring to bear a variety of
methods and techniques. They have many tasks to perform and numerous
sources of design data. There are algorithmic solutions to several tasks,
but they each solve only part of the design problem. None is an entire
solution in itself, and very few are integrated. It is human expertise that
integrates these design resources, provides the missing pieces, and guides
the process.

The role of a problem-solving architecture is to integrate design
methods and algorithms around a shared representation. In particular, an
architecture provides a means for dynamically coordinating” their
application as required by the problem and the designer. For example,
integration permits communication between tasks without designers
having to execute multiple routines. A shared representation gives the
various modules a common vocabulary, releasing designers from the task
of data transformation (e.g. transforming between coordinate systems).
Integration and a shared representation facilitate the solving of large
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portions of the design problem. Designers are freed to concentrate on the
design, not the process.

The platform for our exploration of problem-solving architectures for
design is Design Fusion, a system whose goal is to support concurrent
design (Finger ef al., 1992). In creating a concurrent design system for
mechanical designers, our goal is to infuse knowledge of downstream
activities into the design process so that designs can be generated
rapidly and correctly. The design space can be viewed as a multidimen-
sional space in which each dimension highlights a different life-cycle
objective such as fabricability, testability, serviceability, reliability, etc.
These dimensions are called perspectives. Each perspective can be
thought of as a different way of looking at the design.

Design Fusion is a computer-based design system that enables a
designer to consider concurrently the interactions and trade-offs among
different, and even conflicting, requirements, arising from one or more
life-cycle perspectives. It surrounds the designer with experts and advisors
that provide continuous feedback based on incremental analysis of the
design as it evolves. These experts and advisors, called perspectives, can
generate comments on the design (e.g. comments on its manufactur-
ability), information that becomes part of the design (e.g. stresses), and
portions of the geometry (e.g. the shape of an airfoil). The perspectives
are not just a sophisticated toolbox for the designer, rather they are a
group of advisors who interact with one another and with the designer.

In the following, we first review requirements for a problem-solving
architecture as motivated by the design task. We then provide an
overview to our architecture and its relationship to other work. Next a
detailed description of the architecture is provided, focusing on
representation, constraints, protocols and version management, followed
by a description of the “design manager”, which controls the direction of
design problem solving. Lastly we provide a detailed trace of the
operation of the Design Fusion system.

REQUIREMENTS

Designers use a variety of methods and techniques throughout the design
process. They have many tasks to perform and numerous sources of
design data. Some subproblems have algorithmic solutions; however, no
single algorithmic solution exists for the design problem in its entirety.
Human expertise is required to integrate the subproblems, provide the
missing pieces, and guide the process known as design. Recently, with the
development of knowledge-based system technologies, software has been

created that can participate directly in the design process by making
design decisions.'

The behaviour exhibited by designers during this process has been
characterized as problem-solving (Simon, 1968; Akin, 1986; Gero and
Coyne, 1987). The components. of a problem-solving system are a
database, procedures, inference rules and a control strategy. The
database contains a representation of the design and its specifications.
The control strategy selects and applies procedures and rules that modify
the database. To support designers, the architecture of the system should
incorporate a general model of problem-solving. -

The design system architecture has two roles. First, it provides an
interactive environment that enables the designer to control the available
resources that consist of data, knowledge, methods and algorithms.
Second, the architecture provides a group problem-solving environment
in which knowledge-based systems contribute to the design process. In
this section, we will examine several design behaviours and identify
requirements for an architecture to support these roles.

At the minimum, the architecture should reduce the “drudgery” of the
design process. There are many computational tools available to the
designer for analysis and deduction. The architecture should be able to aid
in the selection of the most appropriate 100l 1o apply, “massage” the design
data to conform to the tool’s input requirements and apply it.

Design is often a search process that elaborates portions of a design in
a top-down manner, decomposing the design problem into smaller more
manageable subproblems. Subproblems are further decomposed ur.ml
solvable problems are found. At any particular time during the fleSIgn
process, the solving of a subproblem is the goal of the designer, with the
ultimate goal being the creation of an artefact or description of an
artefact. To satisfy goals, designers make changes to the design. The
design progresses through multiple levels of abstraction and refinement
until all goals are satisfied. The architecture should support the process of
goal formulation and decomposition, and the selection of subtasks upon
which to focus design attention.

Early works of Alexander (1965) and Simon (1968) assume t‘his model
of design—that design is a nearly-decomposable problem with little or no
interaction between design subproblems. Alexander later concludes that
such problems tend to be artificial—natural problems contain many
interactions (Alexander, 1968). During problem-solving, designers must
cope with interactions between specifications, the goals of the designer,

! Examples of knowledge-based systems that make design decisions include XCON
(Bachant and McDermott, 1984), PRIDE (Mutal er al., 1985) and ALADIN (Hulthage er
al., 1990).
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and the design decisions made during the design process. The architecture
should provide support for the management of these interactions. It should
identifv which subtasks interact and what impact decisions will have.

Interactions occur between design goals that are closely related
(Mostow, 1985). Cooperation occurs when there is a dependence between
interacting goals, or ane goal is a generalization of others. Competition
arises when satisfaction of one or several goals precludes the satisfaction
of others. For examplc. consider the turbine blade in Figure 1. Its design
has both functional requirements (e.g. lift weight and efficiency) and
physical requirements (c.g. expected life of the blade). In the latter case,
there is a relationship between fatigue and life, and between stresses
(steady-state and vibratory) and fatigue. Designers understand these
relationships and have technigues to resolve the interactions. A designer
may perform a steady-state stress analysis, estimate life, cvaluate the
design hased upon the results, and maodify the physical characteristics of
the artefact until the life requirement is approximated. Only at this point
does the designer begin to consider vibratory stress, and repeats the
process.

Designers must make trade-offs when design decisions conflict with
other decisions ar specifications and the designer's understanding of
current trade-offs affects the overall design process. The design svstem
should provide support enabling options 1o be evaluated, preferences to be
specified, and consiraints to be relaxed (Fox, 1983; Navin chandra. 1987).

Figure 1. Sample turbine blade,
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For example, Rinderle and Watton (1987) discuss one technique to
evaluate critical design relationships. They propose transformations
between variable systems as a means of understanding these critical
relationships. Alternative variable systems are chosen for physical and
functional characteristics. Transformations give the designer alternative
view points of the design, providing insight.

Opportunistic problem solving focuses attention on tightly constrained
portions of the (design) problem (Hayes-Roth and Lesser, 1977).
Resolving these portions of the design problem creates islands of certainty
which can be exploited in other areas of the design. Consider our
example of a turbine blade design. It has very specific aerodynamic
characteristics that tightly constrain the shape of the airfoil. Once the
airfoil has been designed, decisions that constrain other areas of the
design can be propagated. For example, the length of the blade affects its
fatigue life. When designing to meet a fatigue life specification, focusing
the problem-solving process on blade length is reasonable,

Opportunities can be exploited in three ways, First, there is
opportunism in elaboration. Ullman et al. (1987) suggest that designers
add detail to one area of the design while leaving other areas at various
incomplete levels. Opportunism permits movement between areas that
have the greatest degree of certainty. An architecture should support the
identification and focusing on the portions of design that are most certain
and/or constrained.

Second, past designs can be opportunistically exploited during design.
Finger et al. (1988) identify four types of design: selection, routine design
(e.g. configuration, parameterized), extrapolation, and novel. When
there is a direct mapping between the specification and an existing part,
the design task is selection. A design is routine when similar artefacts
have been constructed, providing appropriate problem-solving methodo-
logies. Extrapolation is using the process of a past design to guide the
creation of a new but similar artefact. Extrapolation indexes directly into
past designs, exploiting them during the design process. Routine design
too can be viewed as combination of selection, constraint analysis and
indexing into prior designs or generalizations of prior designs. An
architecture should support opportunistic selection from past designs,
choosing between components of past designs to create new but similar
components in the current design. This has come to be known, more
recently, as “case-based” design (Navin chandra, 1988; Sycara and Navin
chandra, 1989).

In the last decade, industry has recognized the effects of isolating
design from life-cycle concerns. This realization has lead to the formation
of design teams which bring together the expertise of people familiar with
life-cycle activities so that a better design is generated. In parallel,
research in design automation has also turned towards the incorporation
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of life-cycle concerns. This has taken the form of compilations of
knowledge that are used to critique a design once generated: for example,
the Design for Assembly work of Boothroyd (Boothroyd and Dewhurst,
1983). The archutecture should support the opportunistic viewing of the
design from multiple perspectives. Each perspective is a model of some
hfe-cycle activity, such as manuflactuning or service, providing databases
and computational routines to support that perspective’s design effort.
Maovement between these perspectives should be opportunistic. allowing
any onc to participate actively in the design while the others evaluate and
critigue the design effort.  This movement permits application of
algorithms and heuristics at appropriate portions of the design process.

The architecture of a design system coordinates the group problem-
solving activity of these perspectives, including coordinating ncgotiations
between competing perspectives, and providing a vchicle for the
perspectives to view and modify the design. A shared representation also
supported by the architecture provides the perspectives with the vocabulary
to evaluate the design and conduct negotiations (Sycara, 1990). It should
be consistent over these multiple viewpoints and interpretable by them,
allowing answers 1o a set of questions at a level of complexity appropriate
to the design task.

The representation should be precise and complete, capable  of
representing all interesting aspects of the artefuct at various levels of
abstraction. Included in a design representation must be:

® Function. Artefacts are designed to meet some desired behaviour.
A representation of function would permit reasoning about an
artefact’s behaviour and its role in a complex system.

® Geometry and topology. Behaviours are realized through geo-
metries, which must be represented by the system.

® Design constraints. An explicit representation of design con-
straints enables opportunism when evaluating design decisions.

® Goals and specifications. The representation must track the
current goals of the design process, and evaluate design decisions
against desired specifications.

® Design evolution. The representation must be capable of
mapaging an evolving design, and permitting the designer to
back-up to prior instantiations of the design.

The architecture must also provide support for an evolving design. As a
design evolves, multiple versions are created over time. Katz defines a
configuration as a collection of versions of partial designs (Katz, 1985).
The architecture should manage the changing design, and allow the
designer to view any portion of the design history, and revert to a prior
design if necessary. Also, inconsistencies in the design inevitably arise
during the design process. These inconsistencies should be tolerated by
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the system, but also tracked. The designer should be notified of
inconsistencies when appropriate.

The architecture of a computer-assisted design system should also
represent the current focus of attention of the designer, and coordinate the
activities of the system towards this focus. The designer’s focus of attention
affects the manner in which the design is evaluated. The system should
share this focus, and use it to select the subset of its data that is relevant
to the designer's current activity.

Grosz (1986) identifies three requirements for representing focus:

1. The ability to distinguish between data relevant to a particular
task and that which is superfluous.

2. Recognize objects of implicit focus. When the designer is focused
on a portion of the design, its subcomponents and components
which it interacts with are implicitly under focus.

3. Provide a mechanism for shifting focus. As the design changes,
the focus of attention of the designer will shift. These shifts
should be recognized by the system and be reflected in the
system’s behaviour.

The architecture should provide mechanisms for cach of these require-
ments.

Consider the turbine blade design task. A designer focusing on
structural properties will see different design features than when the focus
is on acrodynamic properties. 1f the designer is analysing stress
concentrations in the shank, the system should not point out problems
with the manufacturability of the airfoil. The system may, however,
comment on stress concentrations in the fir-tree portion of the shank or
between the shank and the platform, which are both implicitly under the
designer’s focus of attention.

In summary, the role of the architecture is to integrate partial solutions
to design problems around a shared representation. It should support
problem solving by managing interactions between design constraints,
providing the designer with data to facilitate making trade-offs. The
system should also exploit tightly-constrained arcas of the design,
opportunistically elaborating areas at various levels of abstraction, using
past designs to guide the current process, and moving between multiple
perspectives that affect the design. A common representation enables
these perspectives to view and comment about the design. Lastly, the
system should share a common focus of attention with the designer,
enabling the system to bring appropriate information and techniques to
the design problem.
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OVERVIEW OF DESIGN FUSION ARCHITECTURE

The novelty of the Design Fusion architecture lies not in the incorpora-
tion of a unique representation or method, but in the integration of
represcntations and methods, as identified by our requircments, in a
single operational system. In essence, Design Fusion has become a
testbed for the integration of individual design representations and
methods. In order to ascertain the efficacy of the Design Fusion
architecture, we have applied it to the design of a jet engine blade and a
robot arm, and it is currently being applied to the design of a power
transformer,

The Design Fusion architecture is based on the blackboard model of
problem solving (Erman ef al., 1980; Nii, 1986a.b) illustrated in Figure 2.
The architecture has four major components: the blackboard, knowledge
sources, search manager, and user interface.
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Figure 2. Design Fusion system architecture.
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The blackboard provides a shared representation of the design and is
composed of a hierarchy of three. panels. The geometry panel is the
lowest-level representation of the design and uses a non-manifold
geometric model of the design. The feature panel is a symbolic-level
representation of the design. It provides symbolic representations of
features, constraints, specifications, and the design record. The control
panel contains the information necessary to manage the operation of the
system. .

Perspectives and methods are the two types of knowledge sources.
Perspectives represent knowledge of different stages in the product life-
cycle. Each perspective may criticize design decisions or generate new
design information. Use of perspectives that communicate through a
blackboard architecture enables us to partition the design knowledge.
Each perspective can define its own internal set of features, constraints
and variables, so that inconsistent requirements, names and definitions
are contained within the perspectives. Communication occurs through the
common language of the shared representation. Inconsistencies and
conflicts in goals inevitably arise during the design process. These
inconsistencies are tolerated by the system but are also tracked. The
designer is notified of inconsistencies when appropriate. Methods provide
standard analysis capabilities to the system. Three methods are currently
being used: feature extraction, constraint management, and mathematical
programming.

The search manager provides a means for dynamically coordinating the
perspectives. The system cycles through four stages of control: per-
spective identification, perspective selection, perspective execution and
constraint management. At the beginning of a cycle, that is after a design
decision has been posted to the blackboard, several perspectives may
have contributions to make. The search manager must decide the
sequence of contributions and control their execution. The system keeps
a record of design decisions that led to the creation of a constraint or
feature. Design records are defined by the perspective that generated the
decision, the type of processing that led to the decision and the
information upon which it was based. This information can be used to
maintain consistency when underlying assumptions of the design change,
or to track constraint violations back to the sources.

The user interface provides the designer with a complete interactive
environment for designing. It provides the user with the ability to define
specifications and constraints, to select from a library of existing designs,
and to modify designs. The user can also confirm or override the system’s
suggestions at each stage in the search manager’s decision cycle,

In the remainder of the chapter, we will examine these four
components of the system in more detail, followed by a dctailed example
of the system designing a fan blade.
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DESIGN REPRESENTATION

Our system is based on the concept of a shared representation. The
shared representation of the design is maintained on the blackboard, and
all comments, constraints, and design changes are made in terms of it.
Perspectives may create local representations for reasoning and analysis,
but communication is always through the shared representation. During
the design process, large quantities of information about a design are
used and generated. We have made the decision to include in the shared
representation only those attributes that may be of interest to more than
one perspective. Using perspectives enables us to partition the design
knowledge into manageable chunks, while allowing us the flexibility to
add new information to the representation. For example, the manufac-
turing perspective may have a constraint on the maximum length of a cast
turbine blade. As long as this constraint is not violated, it remains within
the perspective. However, if it is violated, the manufacturing perspective
could post the constraint on the blackboard.

If a complete representation of a design could be constructed, it would
include the following attributes: initial specifications, the geometry with
dimensions and tolerances, the material and structural properties, the
manufacturing and assembly sequences, the design history including
versions and configurations, the bill of materials, the maintenance
procedures, and so on. Depending on the design domain, the importance
of representing particular attributes will vary. We have focused on
representing the geometry, features, and constraints associated with a
design.

The shared representation of the design artefact spans three panels:
geometry, feature and control. The following defines what is represented
on each.

Geometry panel

The geometry panel focuses solely on the representation of the artefact’s
3D geometry. The geometry of the artefact is a neutral representation of
the evolving design. Design Fusion employs a non-manifold geometric
representation. The representation of geometry has been an active area
of research over the last 15 years. In a review paper, Requicha and
Voelcker (1982) discuss the progression from early CAD systems to
advanced solid modellers. Voelcker (1988) also discusses the limitations
of current geometric models as design systems, because they can only
represent the geometry of a completed geometric object rather than an
evolving design. We have found non-manifold representations well-suited
for capturing an evolving design, where part of the model may be a true
solid while other parts are still 2D line sketches. Discussions along similar
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lines can be found in Nielsen er al. (1987) as well as in Gursoz et al.
(1990). ‘

In surface boundary representations, known as b?reps, objects are
modelled by representing their enclosing shell. The basic elerpent§ of a b-
rep are faces, edges, and vertices. The t(?pology of an object is made
explicit by giving the connections between its elements, and thf: geometry
of the object is made explicit by giving coord‘inates to the vertices, giving
lengths to the edges, etc. In constructive solid geometry (CSQ), ob;egts
are modelled as Boolean combinations of a set of primitive S‘OlldS.; tbe}t is,
an object is constructed by adding and sgbtrac}ing the baS{c primitives.
An object is represented as a binary tree in whlgh the terminal nodes of
the tree are solid primitives, and the intermediate nodes'are B(?olean
operations that operate on the primitives to create the desired object..

Both the b-rep and CSG approaches were created to reprlesent solid
objects in R* space. These models are not able. to represent incomplete
objects. The non-manifold geometric modelling systems cre:-ite.d by
Weiler (1986) and extended by Gursoz et al. (1990) addrgss this issue.
These representations build upon the boundary‘ representations, but they
are able to represent the more complex ad)‘acency patt‘erns su'ch as
dangling edges or nested cones that can occur in non-manifold objects.

Because one-, two- and three-dimensional objects can be repr;sented
consistently in non-manifold representations, thfey are well-sgncd to
design systems. With non-manifold representations, the dem‘gn can
include a centre line of a hole, a parting plane for a mould, and internal
boundaries for a finite-element mesh, as well as the enclosing shgll of the
designed object. Figure 3 shows the evolution of the_ construction of a
solid from a wireframe in a non-manifold representation.

-‘Feature panel

A major problem with geometric representations is that they provide no
information about the artefact’s function and no methpd of reasoning
about the life-cycle effects on the artefact. .A geometric representation
must be augmented to permit such reasoning. The following dCSC[lb(?
three types of qualitative knowledge represented in the feature pancl:
features, constraints and the design record.

Feature representation

Our research in feature-based representations of designs has hgcn
motivated by the realization that geometric .modcls represent the design
in greater detail than can be utilized by designers. process planncrs an-d
assembly planners, or by the rule-based systems that emulate their
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Figure 3. Evolution of a solid model.

activities. Experts often abstract geometry into features like ribs, parting
planes, and chamfers (Dixon er al., 1987) which provide for a qualitative
hierarchical description of the artefact.

In the Design Fusion system, features are the primary representation
by which perspectives communicate their beliefs and suggestions. Each
component, subassembly and assembly is defined by a single feature,
which in turn is refined into subfeatures. Consequently, the design
artefact is defined by a network of features.

Parameters represent various values associated with features. Para-
meters may represent geometric characteristics such as width or height,
computed physical characteristics such as weight or volume, or computed
behavioural characteristics such as volume flow for a turbine blade.

Figure 4 depicts a partial representation of a fan blade. The part-of link
provides a device by which a feature hierarchy is buiit. The revises link
provides the mechanism by which design histories are stored. These links
are created by the blackboard functions that create new branches in the
design evolution tree. The constrains link connects a constraint node to
the two or more parameters and/or specifications that it constrains. The
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instance-of link connects an instance of a blackboard entit.y to its
prototype. This link is created by the blackboa{d protocol functions: bb-
post, bb-assert, bb-revise, bb-select, bb-derive and bb-refine. "Fh.e
parameter-of link connects a parameter prototype to the feature that it is
associated with.

For all features on the feature panel, there exists a mapping to the
geometry on the geometry panel that it describes. Many features are oply
used locally within a perspective. For example. the manufacturine




perspective may make a preliminary process plan based on the
manufacturing features recognized in the design. However, a feature or a
feature interaction may cause the manufacturing perspective to generate a
comment to the designer giving a warning or advising a change in the
design. Because the features are defined in terms of the shared geometric
representation, the perspectives can communicate by referring their
features to the shared representation. So. even though the designer may
use a different term for a feature or may chunk the geometry differently,
the manufacturing feature can be highlighted on the geometric display.
For example, in Figure 5, a designer and a manufacturer each have a
set of features defined. The designer sees two slots, defined by their width
and depth, that serve a functional role in meeting a design requirement.
The manufacturer is concerned with making the artefact and not only sees
the two slots but also the wall created between them. A manufacturing
analysis of this wall indicates that it it too thin to be milled to the given
tolerance. Although the designer lacks the wall feature, the manufac-
turer’s definition is used to improve the design. The shared model is a
basis of communication via feature definitions for the two perspectives.

a. Initial design

b. Designer's feature

+0f ~{ 221
c. Manufacturer’s features

@fﬁ/ﬁf

Figure 5. Viewpoint-specific feature extraction.
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Constraint representation

The representation shared among perspectives must include not only the
evolving product geometry and features, but must also include the
allowable limits on geometry, the relationships among behaviour and
geometry, and other constraints. The set of constraints asserted by any
one perspective is an encoding of the life-cycle concerns of that
perspective. The collection of all constraints is the set of currently
relevant life-cycle concerns that determine the acceptability of a design
alternative. Each perspective, when commenting on the design or
suggesting design changes, can view all posted constraints and therefore
suggest modifications that minimize conflict. Additionally, the design
perspective may characterize design trade-offs by evaluating competing
constraints. As the design evolves, features are added and modified
causing individual perspectives to assert additional constraints and to
modify or retract existing constraints. In this way, the collection of
constraints is an embodiment of the evolving life-cycle constraints on an
acceptable design.
Constraints have three distinct states:

® /dle constrainis have not yet been introduced to the design
process. For example you would not want to consider a constraint
on blend radius if no value for blend radius has yet been selected,

® Active constraints have been introduced to the design process and
are in the set of constraints currently under consideration.

® Inactive constraints have been introduced to the design process
but are not in the set of constraints currently under consideration.

The terminology used to refer to state changes of constraints is as
follows:

® Activation refers to the change of state from idle to active.
® Postponement is the process whereby an active constraint

becomes inactive.
® Reactivation refers to the change of state from inactive to active.

Constraints represent physical laws that constrain various aspects of the
artefact being designed (i.e. design specifications, parameter values, and
fabrication and life-cycle requirements). The various types of constraints
are numeric-implicit, algebraic-equality, algebraic-inequality and predic-
ate.

® Numeric-implicit constraints are unidirectional or black-box
constraints. Given values for the set of input variables you can
obtain values for the output variables. An example of this would
be a finite-element analysis of the gecometric model.

® Algebraic-equality constraints are bidirectional and are expressed
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as algebraic equality functions. For instance the cfficiency of a
turbine blade can be expressed as an algebraic cquality in terms
of the rotor loss coefficient, the stator loss coefficient and the
theoretical pressure coefficient.

® Algebraic-inequality constraints are bidirectional and are expressed
as algebraic inequality functions. For instance. in the design of
turbine blades you may want to assert that the blend radius be
less than or equal to 0.0015 m. You might also want to constrain
the blade length by specifying it as an algebraic inequality in
terms of radius-at-tip and radius-at-platform.

® Predicare constraints are unidirectional and are expressed as a
function whose input is a set of keyword value pairs correspond-
ing to the constrained parameters,

Design record representation

A design record tracks the design decisions that led to the creation of a
constraint or feature. Design records are defined by the perspective which
generated the decision, the type of processing that led to the decision,
and the information upon which it was based. This information can be
used to maintain design consistency when underlying assumptions of the
design change or to track constraint violations back to the sources.

Design Fusion maintains a design evolution tree. The design evolution
tree is useful for:

® Tracking design history.

® Reverting to a prior design.

® An explanation facility. A facility such as this would be able to
explain how the propagation of constraints leads to the assign-
ment of various feature attributes.

® Dependency-directed backtracking from constraint violations.

Every node of the design evolution tree is annotated with its design
history number. The design history number is initialized to zero. When a
new branch of the design evolution tree is created, the design history
number is incremented and that value is assigned to every new node.

The current geometric modeller, Noodles, does not have any
mechanism for maintaining design history. Since the physical features
reside solely within Noodles, we need some mechanism to handle
backtracking as it pertains to the geometric model. When backtracking,
we could simply reassert whatever was revised by the node that is being
backtracked. For example, in Figure 4, if we were to backtrack such that
length’ was no longer valid then we would simply have to reassert length
to Noodles causing a new geometric model to be calculated.

Design versions are used to keep track of different versions of the
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design. They are distinct from design histories in a conceptual sense.
Whereas design histories are useful for tracking each significant step in
the design process, design versions are used to track larger milestones.
This is the mechanism by which prior designs are maintained.

Reason maintenance

Design Fusion utilizes a reason maintenance system (RMS) to ensure that
all assertions on the blackboard have valid justifications. All of the first-
level blackboard protocol functions (bb-assert, bb-post, bb-revise, bb-
select, bb-refine, and bb-retract) take a list of justifications as an
argument. Justifications are other entities that must currently be on the
blackboard. The RMS is called immediately following any changes to the
blackboard. Each time the RMS is called, it verifies that every
justification for each entity on the blackboard is itself still on the
blackboard. When the RMS encounters an entity for which this condition
does not hold, it queues that entity for deletion by calling bb-retract.

Control panel

The control panel maintains a description of the state of the design
process. The state description is used by the design manager knowledge
source to decide what activity to perform next. The following information
comprises the state description:

® Phase description. Design Fusion cycles through four phases:
Perspective monitor checking, Perspective prioritization, Per-
spective selection and invocation, and Constraint checking.

® [nvocation list. Design Fusion maintains a list of perspectives that
can be invoked.

® Process trace. In order to identify cycles in the reasoning process.
Design Fusion maintains a process trace that records each
perspective invocation, the features that caused the invocation
and the features that were added/modified.

KNOWLEDGE SOURCES

Opportunism in problem solving can be viewed as pattern-directed
application of heuristics and procedures. Changes in the design give rise
to many cooperating and conflicting opportunities. In order to prevent
opportunities from degenerating into chaos, the architecture must
organize the exploration of alternatives posed by them.




Perspectives

The first step towards organization is to encapsulate this knowledge of
opportunities so that the architecture can intelligently select which to
apply. Perspectives give rise to the need to modularize the procedures
and heuristics applicable to one particular view. The specification of a
perspective, including the designer's perspective, must include its
function, its desired input and expected outputs, and the validity and
certainty of its results. For example, the function of the manufacturing
perspective would be to determine whether an artefact could be
fabricated. Its input would be the geometry of the artefact, and its output
would be confirmation of its manufacturability or a list of problems with
the current design associated with a degree of confidence in this assertion.

Perspectives embody a particular, life-cycle view of the design artefact,
They may be comprised of tables, algorithms and/or heuristics, and may
criticize proposals and decisions placed on the blackboard and/or make
decisions and place them on the blackboard. A perspective is composed
of two parts: one or more monitors that specify a pattern on the
blackboard that will cause the perspective to examine whether it wishes to
respond to the new information by performing an action, and the action
component that may be invoked by the design manager.? With these
representations, a perspective does the following:

1. Recognizes features relevant to its goals.

2. Informs the design manager of its wish to perform a task.

3. If selected by the design manager, it performs its task and
updates the blackboard.

Perspectives included in the first application of Design Fusion to fan
blade design include: Aerodynamics, Structures, Manufacturing and the
Designer.

Methods

While perspectives may opportunistically request invocation during the
design process, methods are designed to participate as a step in the
overall Design Manager’s control cycle. In each iteration, the Constraint
Manager- prioritizes requested perspective invocations, selects a per-
spective, invokes it, checks constraints and then extracts/revises features
(the latter has been in theory but not in practice).

2 This is similar to what was defined by the Hearsay-II system (Erman er al., 1980).

Design manager

It is the responsibility of the Design Manager to control the design
process. At present we run the system “open loop”; it is the human
designer who has the final say as to which perspective is to be invoked
next. In future versions, we plan to give the Design Manager greater
control over the design process.

The Design Manager is implemented as a rule-based system in which
the rules manage the design cycle (i.e. prioritize perspectives, select,
etc.), while other rules provide domain knowledge relevant to each step
in the cycle. Consider the rule ' ‘

IF there is a constraint on the life-time of the blade;
AND there is a proposed geometry for the shank:
AND the stress concentrations in the shank are unknown;
THEN Invoke the Structures perspective to perform a finite
element analysis on the shank geometry

It selects the Structures perspective to perform a stress analysis when a
shank geometry is proposed by the designer. At this time, very little
domain-specific design management knowledge has been developed owing
to our reliance on the designer for guidance.

Constraint manager

The Constraint Management System (CMS) in Design Fusion provides a
facility for manipulating and checking constraints posed by the various
perspectives (Rinderle and Krishnan. 1990; Navin chandra e al., 1992).
The CMS treats the given constraints as a graph of constraints and
parameters which can be manipulated and used in the following ways:

1. Posting. Perspectives are able 10 send constraints to the system’s
constraint graph at any time during a product’s development
cycle. Whenever a constraint is received, it is automatically
linked into the constraint graph, and hence becomes part of the
design’s environment.

2. Consistency. When a perspective makes a change to a feature, it
may request the CMS for a consistency check.

3. Checking and evaluation. Constraints and algebraic expressions
may be evaluated at any time and values can be propagated from
one part of the design to another.

4. Coordination. Constraints and parameters belonging to different
perspectives are logically partitioned in the constraint graph. This
helps in relating the design decisions made by one discipline to
the goals and constraints of another discipline. thus providing a
coordination function.
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The constraints are maintained in a dynamic constraint graph. The
constraint graph is represented as a tripartite graph of constraints,
parameters and entities. Each constraint points 1o the parameters it
constrains and cach parameter points o the constraints that it s
constrained-by (Figure 6). It is possible 1o post constraints to the graph
from a varicty of different perspectives. For example, one might load the
design constraints together with the manufacturing constraints 1o find
possible conflicts. Such conflicts are found well before values are selected
for all the variables in the design. It is for this reason that the constraint
graph representation is useful in coordinating multiple perspectives, In
addition, it makes it possible to provide carly feedback about impending
problems that occur due to incorreet decisions made within a perspective,
or problems that occur due to interactions across perspectives. For
example, while a designer is working on the intricacies of the electrical
connections in a large power transformer. the designer might be alerted
to a problem with maximum allowable size for transportation.

As the CMS uses a single, uniform representation for all constraints,
there is no differentiation between functional, geometric, manufacturing
and other so-called life-cycle constraints. Methods used to refine the
design by processing constraints are applied uniformly to all the
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Figure 6. Bipartite graph of variables and constraints.
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constraints, regardless of their origin. The computer does not dis.tl'ngmsh
between constraints that are functional and those that have tradltlor?ally
been considered downstream of the design phase. All constraints,
upstream or downstream are considered cqual, At any stage‘in the design
process, the computer will focus its attention on the constraints that have
been violated, regardless of their origins. It is for this reason that our
approach achieves concurrency.

Feature extraction

One motivation for creating feature-based design systems is that a
product design is viewed differently as the design evolves aqd as viewed
by different perspectives. Features provide both an abstractlon_ mcchan-
ism and a mechanism for communicating among perspectives in a
heterogeneous environment. .

Our approach is to describe features using a graph grammar. Becauge
the designed object is an element in the lgnguage generated by .thlS
grammar, features can be recognized by parsing a feature graph against
the graph of the object. We provide a reprcspntatnonal llpk between' the
low-level geometric representation and the hlgh-.level desxgq abst'ra_ctlons
by formalizing a language to express classes of high-level objects in terms
of the low-level ones. Given this language, we are ab}e to extract'thc
high-level elements from the neutral low-level geometric representation.
For a more detailed discussion of the representation and the algorithms,
see Pinilla er al. (1989), Safier and Fox (1989a), Finger and Safier (1990)
and Safier and Finger (1990).

Design database

In many design domains, there is a lot of similarity between artef@cts. It
would be convenient to have a way of generating a new design b.y
modifying a previous but similar design. D:esign ngion supports .thlS
methodology through the concept of prior designs. 1t is curreptly possible
for the designer to load a prior design and use that as a basis for a new
design. o o '

Ongoing work involves developing a sophisticated de§1gn hbrarlan to
keep track of prior designs and be able to search for particular attributes.
This would allow finding the prior design that most closely resembles the
current design goals.

DESIGN MANAGEMENT

The architecture provides a group problem-solving environment in which




the designer and the perspectives cooperate in the generation of a design. °
Both the designer and the perspectives have the opportunity to generate
and test design decisions, enabling the simultancous participation of all
perspectives throughout the design process rather than ex post critique.
The competing goals of the designer and the different life-cycle
perspectives as well as the interactions between specification of the
requirements and the specification of the artefact provide many sources of
conflict during the design process. Consequently it is necessary to
determine dynamically which of the perspectives’ contribution dominates
at cach stage of the design process. Specifying a blackboard architecture
is not sufficient to specify the system's design behaviour. The designer
manager’s role is to coordinate the activities so that they are cooperative
and coherent,

The phiiosophy that underlies the group problem-solving strategy is a
least-commitment approach. Rather than making specific design decisions
immediately, constraints are imposed successively until commitments
must be made. The implication is that problem solving is constraint-
directed; however, it is not possible to state all the constraints on a design
and 1o then solve them. In addition to the fact that the initial constraint
set may be unsolvable, it is also true that the constraint set changes over
time as decisions are made and different parts of the design space are
explored. Perspectives represent a partitioning of knowledge relevant to
some stage in the product life-cycle. Much of the knowledge may not be
relevant to the current design task and, depending on the path taken by
the designer, many of the constraints within the perspectives may never
be relevant to a particular design problem. Therefore, posting all of the
constraints on the blackboard at the outset not only obfuscates the
problem but increases the problem-solving complexity to the point of
being unmanageable. An alternative is to let each perspective determine
the relevance of its knowledge to the situation at hand, and then reveal
whatever knowledge is relevant in the form of a constraint.

Design is an exploration among aiternative designs and among the
methods used to generate and evaluate them. At any point in the design
process, the designer and the perspectives may have many contributions
to make. The computer resources and the designer’s time are limited, so
decisions have to be made on which paths to explore and which methods
to use. "An open issue is the determination of which perspective
dominates at any stage in the design process when contributions may
conflict, overlap or be tangential. The current demonstration version of
Design Fusion leaves the selection to the designer, but we believe that the
appropriate approach is based on an analysis of the existing constraints.

Inconsistencies and conflicts in goals inevitably arise during the design
process. Dealing with inconsistencies in the constraint network is another
area of research. Owing to the conflicting goals and variations of
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knowledge of perspectives, revealed constraints can lead to inconsistencies.
These inconsistencies are tolerated by the system but are also tracked.
Our approach is to use a dependency representation so that the sequence
of decisions, and ultimately the core hypotheses that lead to the
inconsistency, can be identified and retracted when necessary.

The search manager’s control abilities are made possible through t.he
definition of a precise, multileve!l protocol that defines how a Perspect.lve
can make contributions. The lower-level protocol focusesAon integrating
the contributions of each perspective through the assertion, derivation
and retraction of constraints. The upper level fgcuses on the postpone-
ment, relaxation and satisfaction of constraints. Flggre 7 defines the lower
level protocol. Work on the upper level protocol is underway.

@® ASSERT: .
e Assigns a value or constraint to a feature . .
e Causes a new branch to be created in the design evolution tree

e Cannot be retracted

@ POST: A
e Assigns a value or constraint to a feature . .
e Causes a new branch to be created in the design evolution tree

e Can be retracted

® REVISE: '
e Modifies a value or constraint of a feature

e Maintains the same branch of the design evolution tree
s Can be retracted

@ DERIVE: ‘
® Assigns a value or constraint to a feature

o Maintains the same branch of the design evolutign tree ‘
o |s retracted automatically if a posting or revision it depends on is retracted

@ RETRACT: ,
® Removes a value or a constraint from a feature

e Causes a new branch to be created in the design evolution tree

Figure 7. Low-level protocol definition.

DETAILED EXAMPLE

In this section, we provide an annotated trace of the Design Fusion
system as it has been used to design a fan blade. Fuch cy'clc of the system
is divided into four steps: checking monitors, prioritize perspectives,
invoke perspective, and checking constraints. At the end of cach ¢ycle the
annotation appears in italics.
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0001 Design Manager

Cheching Monitors:
No momtors activated
Prioritize Perspectives:
Designer (detault-to-designer-control) - |
Invoke perspective Designer: exccuting default-to-designer-control activity,
Loading a perspective: manulacturing,
Manulactuning posting pending proxy: (BLADE-LENGTH = (.2).
Checking Constraints;
No inconsistencies found.

There were no other monitors activated so the designer perspective was
invoked by calling the default-to-designer-control activity. The designer
(.‘lm.w to load the manufaciuring perspective. A proxy for the manufactur-
ing perspective was received at that time and the pending proxy was posted
to the blackhoard. A proxy is a constraint created by a person or system
external 10 Design Fusion 1o be wsed during the (1(’.?!;3” process. '

0002 Design Manager

Checking Monitors:
Firing monitor PENDING-PROXY (designer):
Designer posting comment: Retrieve proxy BLADE-LENGTH-
CONSTRAINT,
Prioritize Perspectives:
Designer (default-to-designer-control): 1.
Invoke perspective Designer: executing default-to-designer-control activity.
Loading a perspective: aerodynamics.
Checking Constraints:
No inconsistencies found.

The pending-proxy monitor was activated due 1o the new pending-proxy on
the blackboard. The activation of this monitor resulted in a comment to the
designer that the proxy was pending and should be retrieved. Again the
default-10-designer-contr0/~acrivily was executed and the designer chose 1o
load the aerodynamics perspective,

0003 Design Manager

Checking Monitors:
No monitors activated.
Prioritize Perspectives:
Designer (default-to-designer-control): 1.

Invoke perspective Designer: executing default-to-designer-control activity,
Loading a perspective: structures.
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Checking Constraints:
No inconsistencies found.

As before, the defaull-to-designer-control activity was executed and the
designer loaded the structures perspective.

0004 Design Manager

Checking Monitors:
No monitors activated.
Prioritize Perspectives:
Designer (default-to-designer-control); 1.
Invoke perspective Designer: executing default-to-designer-control activity.
Loading a prior design: b1001-0725 1989a—pressure: 180, flow rate:
8.0, efficiency: 78.5.
Designer posting constraint: (= GOAL-VOLUME-FLOW 8.6).
Designer posting parameter: VOLUME-FLOW = 8.6d0.
Designer posting constraint: (= GOAL-PRESSURE-RISE 180).
Designer posting parameter: PRESSURE-RISE = 180.
Designer posting constraint: (= GOAL-RPM 1440).
Designer posting parameter: RPM = 1440.
Designer posting parameter: BLADE-LENGTH = 0.2d0.
Designer posting parameter: DENSITY-MEDIUM = 4428,
Designer posting parameter: BLEND-RADIUS = 0.00254d0.
Designer posting parameter: RADIUS-AT-PLATFORM = 0.25.
Designer posting parameter: RADIUS-AT-TIP = 0.5,
Designer posting parameter: NUMBER-OF-BLADES = 4,
Designer posting parameter: X-TILT = 0.0.
Designer posting parameter: Y-TILT = 0.0.
Designer posting parameter: AERO-BLADE = 0.
Designer posting parameter: AERO-EFFICIENCY = 0.785.

Checking Constraints:
No inconsistencies found.

The default-to-designer-control activity was executed and the designer
requested that a prior design be loaded. The design was loaded onto the
panels from the design database. The loading caused the posting of a
number of parameters specified by this prior design.

0005 Design Manager

Checking Monitors:
Firing monitor BLEND-RADIUS-CHECK (aerodynamics):
Aerodynamics posting activity: Reveal a constraint on blend-radius.
Prioritize Perspectives:
Aerodynamics (reveal-blend-radius-constraint); 0.




Designer (default-to-designer-control): 1.
Invoke perspective Aerodynamics: executing reveal-blend-radius-
constraint activity,
Acrodynamics retracting activity: Reveal a constraint on blend-radius.
Acrodynamics posting comment: Aerodynamics: Blend Radius should
be less than 0. 0018 m.
Acrodynamics posting constraint: (BLEND-RADIUS < 0.0015).
Checking Constraints:
(= blend-radius 0.0015): inconsistent,

The monitor blend-radius-check was activated and as a result an activity to
reveal that a constraint on blend radius was posted to the blackboard. The
activity reveal-blend-radius-constraint was executed causing a constraint on
blend radius 10 be posted to the blackboard along with a comment to alert
the designer 10 the new constraint. The new constraint on blend-radius was
flagged by the constraint manager as being inconsistent with the current
value of blend-radius.

0006 Design Manager

Checking Monitors:

Firing monitor INCONSISTENT-CONSTRAINTS (designer):
Designer posting comment: Handle inconsistent constraints. |
Designer posting activity: Postpone any inconsistent constraints.

Prioritize Perspectives:

Designer (default-to-designer-control): 1.

Designer (postpone-inconsistent-constraints): 2.

Invoke perspective Designer: executing postpone-inconsistent-constraints
activity.

Designer retracting activity: Postpone any inconsistent constraints.

Checking Constraints:
No inconsistencies found.

The monitor inconsistent-constraints was activated as a result of blend-
radius-constraint being inconsistent. As a result, the activity postpone-
inconsistent-constraints and a related comment to the designer were posted
10 the blackboard. The designer chose to execute this activity which marks
the previously inconsistent constraints as postponed. The constraint
checking mechanism ignores constraints that are tagged as postponed and
thus reported “No inconsistencies found”.

0007 Design Manager

Checking Monitors:
No monitors activated.
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Prioritize Perspectives:
Designer (default-to-designer-control): 1.
Invoke perspective Designer: executing default-to-designer-control activity.
Setting a Constraint: (= goal-volume-flow 10.0).
Designer revising constraint: (= GOAL-VOLUME-FLOW 8.6) —
(2 GOAL-VOLUME-FLOW 10.0).
Designer revising parameter: VOLUME-FLOW = 8.6d0 —
VOLUME-FLOW = 10.0.
RMS retracting parameter: AERO-EFFICIENCY = 0.785.
RMS retracting parameter: AERO-BLADE = 0.
RMS retracting parameter: RADIUS-AT-TIP = 0.5.
RMS retracting parameter: RADIUS-AT-PLATFORM = 0.25.

Checking Constraints:
No inconsistencies found.

The default-to-designer-control activity was executed and the designer
chose to revise the specification, goal-volume-flow. The revision of
volume-flow causes the RMS to retract the entities aero-efficiency, aero-
blade, radius-at-tip, and radius-at-platform, all of which were originally
derived from volume-flow.

0008 Design Manager

Checking Monitors:
Firing monitor SOLVE-FOR-BLADE-SECTIONS (aerodynamics):
Aerodynamics posting activity: Generate an optimal turbine blade
from specifications.
Aerodynamics posting comment: Aerodynamics: Specifications have
changed. Solve for new aerofoil.|

Prioritize Perspectives:
Designer (default-to-designer-control): 1.
Aerodynamics (solve-for-new-air-foil): 10.
Invoke perspective Aerodynamics: executing solve-for-new-air-foil activity.
Aerodynamics retracting activity: Generate an optimal turbine blade
from specifications.
Aerodynamics retracting comment: Aerodynamics: Specifications have
changed. Solve for new aerofoil.|
Aerodynamics revising parameter: BLEND-RADIUS = 0.00254d0 —
BLEND-RADIUS = 0.0025d0.
Aerodynamics revising parameter: BLADE-LENGTH = 0.2d0 —
BLADE-LENGTH = 0.25d0.
Aerodynamics posting parameter: AERO-BLADE = 2.
Aerodynamics posting parameter: RADIUS-AT-PLATFORM =
0.25d0.
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Acrodynamics posting parameter: RADIUS-AT-TIP = 0.5d0.

Acrodynamics posting parameter: AERO-EFFICIENCY = 77.44d0.
Checking Constraints:

No inconsistencies found.

The monitor solve-for-blude-sections was activated due to the retraction of
aero-blade in the previous cycle. This monitor posts the activity solve-for-
new-air-foil and a related comment 10 the blackboard. The designer chose
to execute the solve-for-new-air-foil activity. The activity and comment
were retracted from the blackboard and a new blade was generated from
the current parameters and specifications resulling in revision of the
parameiers blend-radius and blade-length and the posting of the parameters
aero-blade, radius-at-platform, radius-at-tip and aero-efficiency.

0009 Design Manager

Checking Monitors;
No monitors activated.
Prioritize Perspectives
Designer (default-to-designer-control): 1.
Invoke perspective Designer: executing default-to-designer-control activity,
Retrieving a proxy: blade-length-constraint.
Designer posting constraint: (BLADE-LENGTH < 0.2),
Checking Constraints:
(= blade-length 0.2): inconsistent.

The designer chose to retrieve the pending proxy blade-length constraint,
resulting in the blackboard posting of a constraint on blade-length, The

new constraint on blade-length was found to be inconsistent by the
constraint checker.

0010 Design Manager

Checking Monitors:

Firing monitor INCONSISTENT-CONSTRAINTS (designer):
Designer posting comment: Handle inconsistent constraints. |
Designer posting activity: Postpone any inconsistent constraints,

Firing monitor CHECK-BLADE-LENGTH (aerodynamics):
Aerodynamics posting activity: Generate an optimal turbine blade

from specifications.
Aerodynamics posting comment: Aerodynamics: Constraint viola-

tion.| Blade length = 0.25d0 should be less than or equal to 0.2.]
Solve for new airfoil.|

Prioritize Perspectives:
Designer (default—to-designer-control): 1.
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Designer (postpone-inconsistent-constraints): 2.
Aerodynamics (solve-for-new-air-foil): 10. o N
Invoke perspective Aerodynamics: executing solve—for—n.ew—alr-fm‘l activity.

Aerodynamics retracting activity: Generate an optimal turbine blade
from specifications. . . .

Acrodynamics retracting comment: Aerodynamics: Constraint viola-
tion.| Blade length = 0.25d0 should be less than or egual to 0.2.]
Solve for new airfoil.|

Aerodynamics revising parameter: AERO-BLADE = 2 - AERO-
BLADE = 3.

Aerodynamics revising parameter: BLEND-RADIUS = 0.0025d0 —
BLEND-RADIUS = 0.0025d0.

Aerodynamics revising parameter: BLADE-LENGTH = 0.25d0 —
BLADE-LENGTH = 0.2d0. B

Aerodynamics revising parameter: RADIUS-AT-PLATFORM =
0.25d0 — RADIUS-AT-PLATFORM = 0,3d0.

Aerodynamics revising parameter: RADIUS-AT-TIP = 0.5d0 —
RADIUS-AT-TIP = 0.5d0.

Aerodynamics revising parameter: AERO-EFFICIENCY = 77.4d0 —
AERO-EFFICIENCY = 75.5d0.

Checking Constraints:
No inconsistencies found.

Two monitors, inconsistent-constraints and check-blade-[e.ngth, were bo{h
activated because of the constraint on blade-length that arrived via proxy };n
cycle 9. They posted activities and comments for postponing the
inconsistent constraints and solving for a new qtrfoz{, .respect'wely. The
designer choise to execute the solve-for-new-air-foil activity. As in frame 8,
the activity and comment were retracted from the blackboard a'?d a new
blade was generated from the current parameters and spegﬁcat:ons,
resulting in revision of the parameters aero-blade, [?Iend—radzus, bladhe-
length, radius-at-platform, radius-at-tip and aero-eﬁ‘iczlency,' Note that the
inconsistent contraint from cycle 9 was resolved by this activity.

0011 Design Manager

Checking Monitors:

No monitors activated.
Prioritize Perspectives:

Designer (default-to-designer-control): I

Designer (postpone-inconsistent-constraints): 2. N
Invoke perspective Designer: executing defauit-to-designer-control activity.

Setting a Constraint: (= goal-life 100 000).

Designer posting constraint: (= GOAL-LIFE 100 000).




Designer posting parameter: MINIMUM-LIFE = 100 000.
Checking Constraints:
No inconsistencies found.

The activity default-to-designer-comrol was executed and the designer
chose 1o initialize the specification for goal-life. As with the revision of
goal-volume-flow and volume-flow in frame 7, the parameter minimum-life
is revised 1o satisfy minimally the goal-life specification,

0012 Design Manager

Checking Monitors:
Firing monitor ASSERT-LIFEMAP-ACTIVITIES (structures):
Structures posting activity: Approximate minimum life.
Structures posting activity: Generate life map.,
Firing monitor SATISFY-GOAL-LIFE? (structures):
Structures posting comment: Structures: This design mects the life
goal of 100 000.0.] The current life is 100 000.0.
Prioritize Perspectives:
Designer (default-to-designer-control): 1.
Designer (puslponc~inconsistcnt-constraints): 2.
Structures (approx-life): 2.
Structures (compute-life-map): 8.
Invoke perspective Structures: executing approx-life activity.
Structures revising parameter: MINIMUM-LIFE = 100 000 —
MINIMUM-LIFE = 75 788,
Structures revising constraint: (BLADE-LENGTH < (.2) - (BLADE-
LENGTH = 0.174 114d0).
Structures posting parameter: OPTIMAL-X-TILT —0.007 778d0.
Structures posting parameter: OPTIMAL-Y-TILT = —0.020 786d0).
Structures  posting  parameter: OPTIMAL-BLEND-RADIUS =
0.004 61340,
Structures posting parameter: OPTIMAL-LENGTH = 0.174 114d0.
Checking Constraints:
(=< blade-length 0.174 114d0): inconsistent.

The monitar assert-lifemap-activities was activated owing to the instantia-
tion of the parameter mininuum life in the previous frame. Assert-lifemap-
activities posted activities for approximating the expected minimum life and
generating a life map of the current airfoil. The designer chose 10 execute
the approx-life activity. The parameter, minimum-life, and the constraint
on blade-length were revised and the parameters optimal-x-iilt, optimal-y-
tilt, optimal-blend-radius, and optimal-length were posted to the black-
board. The constraint checker signalled thar the new blade-length
constraint was inconsistent.
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0013 Design Manager

Checking Monitors:
Firing monitor SATISFY-GOAL-LIFE? (structures):

Structures posting comment: Structures: This design does not meet
the current goal of 100 000.0 cycles.| The current life is 75 788.0.
The following changes would improve fatigue life.| Change Tilt
Angle: The current tilt angle is (x = 0.0, y = 0.0).] The optimal
tilt is (x = ~0.007 77840, y = —0.020 786d0).| Blend Radius:
Change the blend radius from 0.0025d0 to 0.004 613d0.| Length:
Reduce the length of the airfoil to approximately 0.174 114d0.|

Firing monitor CHECK-BLADE-LENGTH (aerodynamics):

Aerodynamics posting activity: Generate an optimal turbine blade
from specifications. .

Aerodynamics posting comment: Aerodynamics: Constraint viola-
tion.| Blade length = 0.2d0 should be less than or equal to
0.174 114d0.] Solve for new airfoil |

Prioritize Perspectives:
Designer (defauit-to-designer-control): 1.
Designer (postpone-inconsistent-constraints): 2.
Structures (approx-life): 2.
Structures (compute-life-map): 8.
Acrodynamics (solve-for-new-air-foil): 1),

Invoke perspective Aerodynamics: executing solve-for-new-air-foil activity.
Acrodynamics retracting activity: Generate an optimal wurbine blade
from specifications. ’
Aerodynamics retracting comment: Acrodynamics: Constraint viola-

tion.| Blade length = 02d0 should be less than or cqual to

0.174 114d0.| Solve for new airfol |

Acrodynamics revising parameter: AERO-BLADE = 3 — AERO-

BLADE = 4,

Acrodynamics revising parameter; BLEND-RADIUS = 0.0025d0 —

BLEND-RADIUS = (.0025d0).

Aerodynamics revising parameter: BLADE-LENGTH = 0.2d0 —

BLADE-LENGTH = 0.15d0.

Acrodynamics revising  parameter:  RADIUS-AT-PLATFORM =
0.3d0 - RADIUS-AT-PLATFORM = 0.35d0.
Aerodynamics revising parameter: RADIUS-AT-TIP = 0.5d0 -

RADIUS-AT-TIP = 0.5d0.

Aerodynamics revising parameter: AERO-EFFICIENCY = 75.5d0) —

AERO-EFFICIENCY = 71.5d0.

RMS retracting comment: Structures: This design does not meet the
current goal of 100 000.0 cycles.| The current lift is 75 788.0. The
following changes would improve fatigue life.| Change Tilt Angle:
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The current ult angle is (v = 0.0, v= 0000 The optimal il s
(v = 0007 TIRAO. v = - 0020 786d0) Blend Radius: Change the
Blend radins from 0 062800 (0 0 004 0] 30 Lengthe Reduce the
fength of the airfonl o Approvimately 0174 140

RMS retracting parameter OPTIMAL LENGTH = 0174 114,

RMS  retractng parameter OPTIMAL-BLEND-RADIUS =
(O 6 3t

RMS retracting parameter OPTIMAL-YTILT =0.020 786d0).

RMS setractung parameter OPHIMALN-TILT = -0.007 778d0).

RMS retractng constraint (BLADE-LENGTH < 0.174 114d0).

RMS retracting parameter: MININMUM-LIFE = 75 788

RMS retracting comment: Structures: This design meets the life goal of
100000 The current hife is 100 (K).0),

RMS retracting activity: Generate life map.

RMS retracting activity: Approximate minimum life,

"

A

Checking Constraints:
No inconsistencies found.

The monitors satisfy-goal-life? and check-blade-length were activated. The
firing of satisfy-goal-life? resulicd in a comment to ihe designer thar the
current design does not meet the specification for goal-life. The firing of
check-blade-lengih resulted in the posting of an activity and comment 10
generate a new air foil. The designer chose the solve-for-new-air-foil
activity. The activity and comment were retractod Jrom the blackboard and
a new blade was generated from the current parameters and specifications,
once again resulting in revision of the parameters aero-blade, blend-
radius, blade-length, radius-at-platform, radius-at-tip and aero-efficiency.
In addition, the RMS retracted the comment posted by the satisfy-goal-
life? monitor, the parameters optimal-length, optimal-blend-radius,
optimal-y-tilt, optimal-x-tilt, and minimum-life, the constraint on blade-
length and the activities for generating a life map and approximating the
minimum life. Once again the inconsistent constraint from cycle 12 was
resolved by this activity and no inconsistent constraints were found.

0014 Design Manager

Checking Monitors:

Firing monitor ASSERT-LIFEMAP-ACTIVITIES (structures):
Structures posting activity: Approximate minimum life.
Structures posting activity: Generate life map.

Prioritize Perspectives:
Designer (default~to~designer—control): 1.
Designer (pos[pone-inconsistent-constraints): 2.
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Structures (approx-life): 2.
Structures (compute-life-map): 8.

Invoke perspective Structures: executing approx-life activity,
Structures posting parameter; MINIMUM-LIFE = 87 748.
Structures posting parameter: OPTIMAL-X-TILT = —0.00867d0.
Structures posting paramcter: OPTIMAL-Y-TILT = ~0.019 821d0.
Structures  posting parameter: OPTIMAL-BLEND-RADIUS =

0.003 875d0. ’

Structures posting parameter: OPTIMAL-LENGTH = 0.140 512d0.
Structures posting constraint: (BLADE-LENGTH =< 0.140 512d0).

Checking Constraints:
(=< blade-length 0.140 512d0): inconsistent.

The monitor assert-lifemap-activities was activated, resulting in the posting
of activities to approximate minimum life and generate a life map. The
designer chose to approximate the minimum life. As a result the parameters
minimum-life, optimal-x-tilt, optimal-y-tilt, optimal-blend-radius and
optimal-length, and the constraint blade-length were posted 1o the
blackboard. The new constraint on blade-length was flagged as inconsistent
by the constraint checker.

0015 Design Manager

Checking Monitors:
Firing monitor SATISFY-GOAL-LIFE? (structures):

Structures posting comment: Structures: This design does not meet
the current goal of 100 000.0 cycles.| The current life is 87 748.0.
The following changes would improve fatigue life.| Change Tilt
Angle: The current tilt angle is (x = 0.0, y = 0.0).| The optimal
tilt is (x = —0.008 67d0, y = —0.019 821d0).| Blend Radius:
Change the blend radius from 0.0025d0 to 0.003 875d0.| Length:
Reduce the length of the airfoil to approximately 0.140 512d0.]

Firing monitor CHECK-BLADE-LENGTH (aerodynamics):

Aerodynamics posting activity: Generate an optimal turbine blade
from specifications.

Aerodynamics posting comment; Aerodynamics: Constraint viola-
tion.| Blade length = 0.15d0 should be less than or equal to
0.140 512d0.| Solve for new airfoil.|

Aerodynamics posting feature: MODEL-NOT-APPLICABLE.

Aerodynamics posting comment: Aerodynamics Warning: aero-
dynamic model not applicable for blade lengths less than or equal
to 0.149 metre.

Firing monitor AERO-NOT-APPLICABLE (structures):
Structures posting activity: Refine structures blade-length constraint.
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Prioritize Perspectives:

Designer (default-to-designer-control): 1.

Designer (postpone-inconsistent-constraints): 2.

Structures (approx-life): 2.

Structures (refine-constraint): 2.

Structures (compute-life-map): 8.

Acrodynamics (solve-for-new-air-foil): 10,

Invoke perspective Structures: exccuting refine-constraint activity.
Structures retracting activity: Refine structures blade-length constraint.
Structures revising constraint: (BLADE-LENGTH < 0.140 512d0) —

(BLADE-LENGTH * RADIUS-AT-PLATFORM + (BLADE-
LENGTH / 2)) * (I + ((RADIUS-AT-TIP / RADIUS-AT-
PLATFORM) ~ 2))) < 0.087).

Tms retracting comment: Aerodynamics Warning: acrodynamic model
not applicable for blade|~~14Tlengths less than or equal to 0.149
metre. |

Tms retracting feature: MODEL-NOT-APPLICABLE.

Checking Constraints:

No inconsistencies found.

The monitor satisfv-goal-life? was activated because the new value for
minimum-life posted in the previous cycle did not meet the goal-life
specification. A comment was posted to alert the designer 1o this situation.
The check-blade-length monitor was activated because of the inconsistency
of the constraint on blade-length. As a result, the solve-for-new-air-foil
activity and its related comment. Aerodynamics posted a model-not-
applicable feature and its explanatory comment because its internal model
does not apply once blade lengths are below (.149 metres. And finally, the
aero-not-applicable monitor was activated owing 10 the newly posted
model-not-applicable feature. This resulted in the refine-constraint activity
being posted to the blackboard. The refinement replaced the simple blade
length inequality with a more detailed constraint so that the other
perspectives could alter their decisions in light of what is constraining
Structures; if aerodynamics can compute a solution that satisfies the more
detailed constraint, then it would be acceptable to structures. The designer

chose to execute the refine-constraint activity which refined the constraint
on blade-length.

0016 Design Manager

Checking Monitors:

No monitors activated.

Prioritize Perspectives:

Designer (default-to-designer-control): 1.
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Designer (postpone-inconsistent-constraints): 2.
Structures (approx-life): 2.

Structures {compute-life-map): ‘8. .
Aerodynamics (solve-for-new-air-foil): 10.

Invoke perspective Aerodynamics: executing solve-for-new-air-foil activity.

Aerodynamics retracting activity: Generate an optimal turbine blade
from specifications. ' . ’

Aerodynsmics retracting comment: Aerodynamics: Constraint viola-
tion.| Blade length = 0.15d0 should be less than or equal to
0.140 512d0.| Solve for new airfoil.| :

Aerodynamics revising parameter: AERO-BLADE = 4 — AERO-
BLADE = 5.

Aerodynamics revising parameter: BLEND-RADIUS = 0.0025d0 —
BLEND-RADIUS = 0.0025d0.

Aerodynamics revising parameter: BLADE-LENGTH = 0.15d0 —
BLADE-LENGTH = 0.2d0. B

Aerodynamics revising parameter: RADIUS-AT-PLATFORM =
0.35d0 — RADIUS-AT-PLATFORM = (.25d0.

Acrodynamics revising parameter: RADIUS-AT-TIP = 0.5d0 —
RADIUS-AT-TIP = (.45d0.

Acrodynamics revising parameter: AERO-EFFICIENCY = 71.5d0 —
AERO-EFFICIENCY = 74.5d0. . .

RMS retracting comment: Structures: This destgn. do;s not meet the
current goal of 100 000.0 cycles.| The current life is 87 748.0. The
following changes would improve fatigue life.| Change T:lt Apglg:
The current tilt angle is (x = 0.0, y = 0.0).] The. optimal tilt is
(x = —0.008 67d0, y = —0.019 821d0).| Blend Radius: Change the
blend radius from 0.0025d0 to 0.003 875d0.| Length: Reduce the
length of the airfoil to approximately 0.140 512d0.

RMS retracting parameter: OPTIMAL-LENGTH = 0.140 512d0. B

RMS retracting  parameter: OPTIMAL-BLEND-RADIUS =
0.003 875d0.

RMS retracting parameter: OPTlMAL-Y-T}LT -0.019 821d0.

RMS retracting parameter: OPTlMAL—X-ﬂLT —-0.008 67d0.

RMS retracting parameter: MlNlMUM-Lll-E = 87 748.

RMS retracting activity: Generate life map. .

RMS retracting activity: Approximate minimum life.

Checking Constraints:

No inconsistencies found.

The designer chose ihe solve-for-new-air-foil a(‘li§’i1y causing the plqru-
meters aero-blade, blend-rudius, blade-length. radius-at-platform, rac zAus-’
at-tip and aero-efficiency to be revised. These values were sele:cted to satisfy
structure's refined constraint. In addition, the RMS retracted the para-
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meters opumal-length, opumal-blend-radius, optmal-v-nlt, opumal-x-1il,
and munenyum ife

T Design Manager

Checking Monitors:

Firing monitor ASSEER F-LIFEMAP-ACTIVITIES (structures):
Structures posting activity: Approximate minimum life,
Structures posting activity: Generate life map.

Prioritize Perspectives:

Designer (dcfuul(-m-dcsigncr-conlrol): 1.

Designer (postponc-inconsistent-constraints): 2.

Structures (approx-life): 2.

Structures (compute-lifc-map): 8.

Invoke perspective Structures: executing compute-life-map activity,
Structures posting parameter: MINIMUM-LIFE = 75 788.
Structures posting parameter: OPTIMAL-X-TILT = 0.007 778d0.
Structures posting parameter: OPTIMAL-Y-TILT = -0.020 786d0.
Structures  posting paramcter: OPTIMAL-BLEND-RADIUS =
0.004 613d0.
Structures posting parameler: OPTIMAL-LENGTH = 0.174 114.
Checking Constraints:
No inconsistencies found,

The assert-lifemap-activities was activated because of the new aero-blade
posted in the previous frame. As before, this caused activities for
approximating the minimum life and generating a life map to be posted 10
the blackboard. The designer chose 1o generate a lifemap which resulted in
the posting of the parameters minimume-life, optimal-x-tils, optimal-y-ult,
optimal-blend-radius and optimal-length,

The design of the blade is complete, though the minimum-life goals were
not achieved.

CONCLUSION

The Design Fusion system is an example of an Al approach to computer-
assisted design. At its core, Design Fusion provides a multilevel shared
representation of the design artefact: geometry, features and constraints,
and design control. The shared representation provides a means by which
various life-cycle perspectives and methods can contribute, along with the
user, to the evolving design.

Design Fusion supports an opportunistic approach to design. The
designer and perspectives may jump from one feature to another in the
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design space, from abstract to detailed, from one ciomponent to another.

In order to manage the design process, Design Fusxor} tfacks all featur.es,

their dependencies and constraints, and uses sophisticated constraint-

solving and reasoning-maintenance techniques to propagate and retract
isions, respectively.

dC%lhlco Dcsignp Fusiony system has been used to design fan blades a‘md a

robot arm and is currently being applied to power transformer design.
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