e cpy errillio Lo AT e oo 92
(o o /. /%'/W/%/WQQ/WW //)

HIERARCHICAL GENERATE-AND-TEST vs.
CONSTRAINT-DIRECTED SEARCH

A Comparison in the Context of Layout Synthesis

ULRICH FLEMMING
Department of Architecture and Engincering Design Research Center
Camegie Mellon University
Pittsburgh, PA 15213, U.S.A.

CAN A. BAYKAN
The Robotics Institute
Camegie Mellon University

ROBERTF. COYNE
Department of Architecture and Engineering Design Research Center
Camegie Mcllon University

MARK S. FOX
Department of Industrial Engineering
University of Toronto

Abstract. Two systems for layout synthesis, LOOS and WRIGHT, and the approaches
underlying them are compared. LOOS uses a form of hierarchical gencrate-and-test and
WRIGHT disjunctive constraint satisfaction, a form of constraint-directed search. 1L00S
implements a constructive approach that adds objects sequentially, while WRIGHT uses a
reductionist approach that satisfies constraints incrementally. The comparisons arc
based on a series of experiments in which the systems were used to solve identical
layout problems and to produce insights at very detailed levels. The conclusions are
tentative, as the experiments are still going on at the time of writing.

1. Introduction

The present paper compares two space planning or layout synthesis systems,
LOOS and WRIGHT, each of which implements a well-known approach toward
solving design problems defined through feasibility constraints. The approach
underlying LOOS is a form of hierarchical generate-and-test, in which solutions
are constructed incrementally and intermediate states evaluated for constraint
satisfaction; the overall control is based on these evaluations. WRIGHT
implements a form of constraint-directed search called disjunctive constraint
satisfaction, in which the constraints are incrementally satisfied.

Each approach has been independently implemented in a conceptually clean
and clear fashion, and the resulting systems are able to solve identical layout
problems from various domains. The authors seized the opportunities thus
offered and conducted a series of experiments in order to gain concrete insights
into the advantages and disadvantages of the underlying approaches that g0
beyond summary characterizations that dismiss, for example, the first approach
as generally inefficient.

2 U.FLEMMING, C.BAYKAN, R.COYNE, M.FOX

The present paper reports some initial results of these experiments. Section 2
characterizes the layout problems solved by the two systems. Scctions 3 and 4
briefly describe the systems, and section 5 presents the results of the
experiments. Our conclusions are summarized in Section 6.

2. Layout Problems

The layouts considered in this paper are arrangements of rectangles with
sides parallel to the axes of an orthogonal system of Cartesian coordinates. The
rectangles in a layout can be loosely packed; that is, the layout may have holes
or an irregular boundary. This class of layouts is interesting across a broad
spectrum of applications, domains and disciplines that range from digital and
analog electronics design to building and graphic design.

A layout in this class is completely specified if the comer coordinates (or
some equivalent set of values) are given for each rectangle in the layout. The
problem of finding a feasible set of coordinates gains a considerable degree of
complexity from the fact that values for the coordinates cannot be selected
independently of each other. For example, the rectangles in a layout often
represent physical objects that occupy space and thercfore cannot overlap. The
overall area available for placing the objects is also often restricted. This creates
constraints that may vary with the way in which the objects are placed; an
example is shown in Figure 1. These types of constraints have been called in the
literature dependent (Flemming, 1978) or or inter-element (Eastman, 1973)
constraints; they indicate that considerations of structure or topology and
discrete decisions about structural or topological variables play a prominent role
in layout synthesis, as they do in other design domains dealing with assemblies
of discrete parts in 2- or 3-dimensional space.

d
- d2 3 d2
1 d3 dl
dmax » dmax
ditdy+ds<d_ . d+d,<d_ .

dytdy<d, .
Figure 1. Examples of dependent constraints

In addition to the dependent constraints, layouts must satisfy constraints or
criteria that are independent of a particular structure. Examples are constraints
on the dimensions, area or orientation of an object and required or desired
relations between objects (such as adjacency, proximity or physical access).

The general layout problem solved by the two systems can be summarized as
follows: Given a set of objects to be allocated and a set of constraints on the
shape and placement of these objects, find one or more layouts that satisfy the
constraints. The objects to be allocated are called design units in the following.
Table 1 specifies a very simple layout problem, which will serve as an

ARTIFICIAL INTELLIGENCE IN DESIGN ’92 3

illustration in succeeding sections. It calls for the design of an efficiency
apartment within an area that is accessed from the east and receives natural light
from the west [the example is taken from (Flemming, 1979)].

Table 1. Layout Problem 1

Spaces: Living/sleeping arca Min. dimension 3.60 m
Min. area 22.00 m?
Kitchenette Min. dimension 1.80 m
Min. arca 4.20 m?
Vestibule or hall Min. dimension 1.20m
Max. dimension 6.00 m
Bathroom Min. dimension 1.80 m
Max. extent of overall area from west to east: 7.00 m

Required adjacencies (min. length of sharcd boundary in brackets)

Living arca/vestibule (.90 m) Living area/western border (3.60 m)
Living area/kitchenette (1.20 m) Living area/southern border (3.60 m)
Vestibule/eastern border (1.20 m) Vestibule/bathroom (.70 m)

In solving problems of this kind, both LOOS and WRIGHT perform state-space-
search. The principal differences between the two systems stem from
- contrasting ways in which they represent and handle discrete decisions about
structural variables, which result in contrasting ways of setting up and traversing
the state space. The following sections briefly describe the two systems. Space
limitations prevent us from giving more elaborate descriptions; readers
interested in more details are referred to (Flemming, 1988, Flemming et al.,
1989) for LOOS and (Baykan, 1991, Baykan & Fox, 1991) for WRIGHT.

3. LOOS
3.1. DESIGN VARIABLES

If given a set of design units, LOOS attempts to find feasible layouts of
rectangles in which each rectangle represents one of the design units and no two
rectangles overlap. It ultimately tries to determine for each rectangle » values
x,.X,.y,,Y,, which can be interpreted as the coordinates of its corner points or as
defining the four lines that lie on the boundary of r (see Figure 2).

The variables handled directly by LOOS are the spatial relations above, below,
to the left and to the right, which are defined as follows: If ¢ and r are two
rectangles, then

q is above r <=> Y 2 Y, ris below g <=> qis above r
q 1S to the right of r <=> x,2 X, ristotheleft of q <=> qis to the right of r

Clearly, g and r do not overlap iff at least onc of the spatial relations holds
between them. But since each of the relations is non-reflexive, non-symmetric
and transitive, they cannot be selected independently of each other. We call a

4 UFLEMMING, C.BAYKAN, R.COYNE, M.FOX

Figure 2. Basic design variables for a rectangle

set of relations that can be simultaneously realized and guarantee non-overlap
for each pair of rectangles in a layout a spatial structure. The representation of
spatial structures used by LOOS is derived from the wall representation of
rectangular dissections (Flemming, 1978). A rectangular dissection is a layout
of rectangles that completely fill the area of a larger rectangle without overlap
and holes; an example is shown in Figure 3a. A wall in such a configuration is a
maximal sequence of connected, collinear line segments separating the
rectangles from each other (Figure 3a highlights onc such wall). A wall
representation of a rectangular dissection records all of its walls and the
sequence of rectangles bordering each wall from above and below or from the
Ieft and right.

) b) |

Figure 3. (a) a rectangular dissection and its walls; (b) a loosely packed layout
with the same spatial structure

Each wall implies left/right or above/below relations between pairs of
rectangles on opposing sides of the wall. Figure 3b demonstrates that the spatial
relations implied by the walls of a rectangular dissection can be found also in
loosely packed arrangements; for example, rectangles 1 and 2 are above both
rectangles 3 and 4. Wall representations, or their equivalents, can consequently
also be used to represent the spatial structure of loosely packed layouts if these
layouts can be derived from a rectangular dissection by shrinking some
rectangles or, conversely, if the layout can be turmned into a rectangular dissection
by expanding all rectangles until they touch other rectangles on ail four sides.
Since walls lose their significance in a loosely packed arrangement, we call the
gaps scparating rectangles from each other channels, following the terminology
introduced by VLSI designers when they adapted the wall representation to their
purposes (Supowit and Slutz, 1984). We indicate channels in a layout by dashed
lines as shown in Figure 3b, which also makes the underlying spatial structure
immediately recognizable.

ARTIFICIAL INTELLIGENCE IN DESIGN ’92 5

The spatial structure of a loosely packed layout cannot be represented
directly by a wall representation when the layout contains non-trivial holes,
which are holes that cannot be eliminated by extending the rectangles in an
arrangement until they touch other rectangles (Flemming, 1989); an example is
shown in Figure 4a. LOOS circumvents this difficulty by representing non-trivial
holes explicitly as rectangles that are marked by a special label to distinguish
them from regular rectangles (see Figure 4b). The resulting marked structures
are able to represent any spatial structure (Flemming, 1989) and form the basis
for LOOS, which represents marked structures internally as directed graphs.

a) b)

Figure 4. (2) A layout containing a non-trivial hole;
(b) representation of a non-trivial hole by a special rectangle (shown hatched)

In addition to the spatial relations holding between the rectangles it contains,
the LOOS representation records explicitly lower and upper bounds for the
coordinates of each rectangle; we call the area defined by these values the
(dimensional) range of the rectangle. Figure 5 depicts the range of one rectangle
in a spatial structure with the rectangle drawn in the center of its range. LOOS
uses slacks to indicate how much a rectangle can move in the x- or y-direction
within its range. The range and slacks are called the dimensional attributes of
the rectangle. We store these attributes for each rectangle in a marked structure
and call the resulting representation a configuration. Clearly, a configuration
containing some positive slacks represents not a single layout, but a class of
layouts because some rectangles can have several, if not infinitely many
positions or dimensions, and every combination of these variations defines a
different layout.

5533. 00
!

Figure 5. The dimensional range of a rectangle in a configuration

6 U.FLEMMING, C.BAYKAN, R.COYNE, M.FOX

3.2. GENERATION AND PROPAGATION RULES

LOOS constructs and evaluates configurations by using operators or rules that
work on configurations. These rules are described in this and the following
section.

Generation rules generate marked structures from marked structures by
adding one rectangle at a time, starting with a suitable initial structure which
may represent nothing more than the enclosing rectangle or a configuration of
preplaced objects. Alternative structures are generated if more than one
possibility for adding individual rectangles is pursued. This incremental
construction allows for intermediate evaluations that can be used for pruning.
Figure 6 shows how alternative layouts can be incrementally consiructed by
successive rule applications, including the insertion of non-trivial holes.

The dimensional attributes for a newly inscrted rectangle depend on those of
the surrounding rectangles. Conversely, the dimensional bounds of the
surrounding rectangles are likely to become tighter through the insertion. LOOS
uses propagation rules to compute the dimensional attributes for the newly
inserted rectangle and to propagate the resulting changes recursively through the
structure. The propagation rules can handle rectangles with fixed or variable
dimensions. They are also ablc to take different orientations for a rcctangle into
account (for example, in terms of its front and back).

3.3. TEST RULES

LOOS is able to evaluate a configuration by application of test rules. Each of
these rules checks if a favorable or unfavorable condition exists and takes an
appropriate action. For example, if a test rule discovers that a particular
constraint is violated, it writes an appropriate entry into an evaluation record of
the configuration; examples of such failing tests are shown in Figure 6.

Test rules can also estimate how well a configuration performs with respect
to true criteria (that is, performance aspects that are measured on some sort of
scale and differ from constraints which are either satisfied or not). An example
is the minimum size of the overall area, for which LOOS is able to estimate lower
bounds at any state.

Any aspect that can be evaluated based on the information contained in a
configuration can be incorporated into a test rule, and since any configuration
produced by a generation rule represents a formally complete layout of
rectangles, test rules can be applied not only to terminal, but also to intermediate
configurations that do not contain all of the design units in a given layout
problem. The only restriction is that certain aspects can be evaluated with
certainty only if all units have been allocated. An example is a forbidden
adjacency between two units, which may exist in an intermediate state, but
disappear with the placement of additional units.

The design units in a specific problem are instances of prototypes and inherit
constraints from them. Domain knowledge about these prototypes is stored in a
hierarchy that must be constructed for each application domain.

3.4. OVERALL ARCHITECTURE AND CONTROL
The original intent behind LOOS was to create a complement to human

designers in the form of a system able to systematically enumerate solutions to
layout problems characterized by diverse and possibly conflicting criteria or

ARTIFICIAL INTELLIGENCE IN DESIGN '92 7

constraints. A specific goal was the gencration of alternatives with interesting

trade-offs in terms of these criteria. The architecture of LOOS reflects this goal

and implements a hierarchical generate-and-test (HGT) approach (Stefik et al.,

1983). HGT uscs intermediate evaluations to guide the scarch for solutions into

promising directions and to avoid the inefficiencies associated with blind

generate-and-test. LOOS has strong similarities with and was inspired by

DENDRAL, a system able to find chemical structures that are likely to produce a

given mass spectrogram (Buchanan ct al., 1969).

LOOS comprises five major components:

1. A preprocessor that accepts a problem description from the user and performs
some initial computations. If some units are preplaced, for example, the
preprocessor must construct a starting configuration that describes the spatial
relations between these units.

2. A generator that accepts any configuration and is able to find all possible
ways of adding a new rectangle. It applies the generation and propagation
rules under a (rather complicated) control strategy which assures that the
spatial relations between already allocated rectangles remain unchanged. This
monotonicity of the spatial relations during generation makes it possible to
evaluate and consequenily prune intermediate states of the search space with
certainly because constraints that are structure-dependent and not satisfied by
an intermediate state cannot be satisfied by a configuration generated from it
(exceptions are the constraints mentioned in the previous section that depend
on complete configurations).

3. A tester that applies the test rules sequentially to evaluate any intermediate or
terminal state according to domain-specific constraints or criteria. It is built
and works very much like a diagnostic expert system.

4. A controller that mediates between generator and tester. After each
expansion, it passes the new states to the tester for evaluation; inspects the test
results; and terminates the search or selects a new state for expansion and
passes it to the generator. In making its decisions, the controller follows a
straight-forward branch-and-bound strategy; that is, it selects those and only
thosc states for expansion that have currently the best record. The constraints
and criteria are classified as strong, intermediate or weak. The controller
counts the number of constraints violated in each class and selects states with
the lowest counts, where the counts are ranked lexicographically over the
constraint classes.

5. A postprocessor that finetunes the solutions thus produced. For example, it
may inspect the ranges of rectangles with positive slacks in each terminal state
and determine final values for the dimensional coordinates; that is, it selects a
specific instance from among the layouts represented by the state. This
selection can be the result of some form of optimization, for example,
minimization of the total area occupicd by the rectangles.

LOOS is able to eliminate certain states before they are generated. Even the
carliest versions of the generator computed the dimensional range for the new
rectangle for cach possible expansion and executed only those that could
accommodate the new object; that is, all layouts generated could at least be
physically realized. Another pregeneration test that we added in the early stages

8 UFLEMMING, C.BAYKAN, R.COYNE, M.FOX

of the system checks whether the insertion under consideration would intcrrupt a
hard arc, an arc in the graph representing the spatial structure of the current
configuration that has been declared unbreakable; that is, the direct spatial
relation represented by that arc between two rectangles cannot be interrupted by
putting another rectangle inbetween. Hard arcs can be established by the tester
when checking for satisfaction of adjacency constraints and can be effective in
preventing the generation of flawed configurations.

More recently, we have added the capability for additional pregencration
tests whose execution remains optional. These tests are restricted at the present
time to desired topological properties such as adjacencies including those with
the exterior. LOOS is able to determine if these adjacencies are possible after a
particular application of a generation rule before it is applied. We call this mode
constrained generation. It does not eliminate the need for tests afier generation
because the pregeneration tests currently performed by LOOS arc not
comprehensive; in particular, they do not consider constraints that govemn the
placement of previously allocated rectangles (except for those indicated by hard
arcs).

Failing tests:

H/L adjecency hallliving area
K/L adjacency kitchenette/living area

B/H adjacency bathroom/hall
X crossing adjacencies along channel

Figure 6. State space for Problem 1 as generated by 1L0OOS

Figure 6 gives a complete trace of how LOOS solves Problem 1 as specified in
Table 1 with hard arcs set and pretesting enabled for all required adjacencies.
LOOS finds 24 feasible solutions and needs 40 states to find them. The states are
numbered in the figure in the order in which they are generated. The figure also
lists the constraints violated by a state. Since aside from dimensional
constraints, required adjacencies are the only constraints specified for the
problem, very few infeasible states are gencrated: pretesting prevents
adjacencies that are satisfied in a state from being interrupted by insertion of a

ARTIFICIAL INTELLIGENCE IN DESIGN ’92 9

new object (hard arcs) and guarantees that all the adjacencies required for the
ncw object are satisfied after insertion. Exceptions occur when a non-trivial
hole is inserted, in which case the current generator does not pretest for hard
arcs, but may interrupt adjacencies required for objects already placed (c.g
configuration 7). The only other constraint violation occurs when required
adjacencies cross cach other along a channel and thus cannot be simultaneously
satisfied (configurations 6 and 37); the rules that test for required adjacencies
always check for this condition, but only after generation.

4. WRIGHT
4.1. DESIGN VARIABLES

WRIGHT represents a layout using algebraic cquations and inequalities in
variables that represent the border lines, dimensions, areas and orientations of
the design units. A design unit r is defined by north, south, east and west lines.
The north and south lines are horizontal, and their values arc the coordinates Y,
and y,; the east and west lines are vertical, and their values are the coordinates X,
and x, (sec Figure 2). A dimension is the distance between any two parallel lines
or the area of a design unit. The variables in Problem 1 are listed in Table 2 for

[urther reference. The domains of the variables are closed intervals, defined by
a minimum and a maximum value.

Table 2. Design units and variables in Problem 1 as defined by WRIGHT

Design unit * north-In south-In west-In east-In xdim ydim area
Apartment apN apS apW apk

Living room IrN IrS rw IrE IrX Iry IrA
Vestibule vbN vbS vbw VDI vbX vbY

Kitchen ktN ktS ktW ke ktX ktY ktA
Bathroom btN btS btw bk brX bty

4.2. ATOMIC CONSTRAINTS

The algebraic equations and inequalities that define a layout are called atomic
constraints. For example, the absolute location of a line is expressed as a binary
constraint between the line and a constant. If gpW is a vertical line, and
100 < apW < 150, the location of apW defined by this constraint is the grey arca
in Figure 7. Topology and alignment are expressed by >, > and = relations
between two lines. The coordinate system used has the x-axis pointing to the
right and the y-axis pointing down.

Figure 8 shows the atomic constraints defining the initial state of Problem 1.
These constraints define the relationships between variables belonging to the
same design unit. Any change in the bounds of a variable is propagated to the
others via the constrainis linking them; these relationships are thus maintained in
all configurations.

10 U FLEMMING, C.BAYKAN, R.COYNE, M.FOX

Figure 7. Location of apW defined by apW e [100, 150]

IrN + IrY = Ir§ W+ IrX =IrE
vON + vbY = vbS§ vbW + vbX = vbE
kiN + ktY = kS kW + ktX = ktE
bIN + btY = btS otW + btX = liE
IrX xIrY = IrA kiX X ktY = kiA

Figure 8. Atomic constraints defining the initial state of Problem 1

vOW >=ktE ktS > vbN vbl = apE
btS = vbN ktS =IrN IrE =vbW '
rW = apW IrS = apS biIN = apN
btE = apE btW = ktE ktN = apN
ktW = apW vbS = ap$S

Figure 9. Atomic constraints defining a solution to Problem 1

WRIGHT constructs solutions by asserting atomic constraints. For example,
the configuration in state 25 in Figure 12 is defined by adding the constraints
given in Figure 9 to the initial state. After adding some constraints, propagation
updates variable domains and checks consistency of the constraint set.

A finite set of variables V = {v,, v, , ..., v, }, each with an associated domain
of values, and a set of atomic constraints in these variables A = {¢;, ¢, , ..., c, }
define a constraint satisfaction problem [CSP]. In WRIGHT, every configuration
and search state is a CSP. The CSP is consistent if there exist values for all
variables that simultaneously satisfy all constraints. During propagation, lower
bounds can only increase and upper bounds can only decrease; that is,
propagation behaves monotonically. An inconsistency is detected if the upper
bound for some variable becomes less than its lower bound. The propagation
algorithm used by WRIGHT while running the experiments discussed in this
paper is path-consistency (Mackworth, 1977).

ARTIFICIAL INTELLIGENCE IN DESIGN 92 11

4.3. DISJUNCTIVE CONSTRAINTS

Design in general and intelligent CAD require a fundamental problem-
solving methodology that is able to incorporate arbitrary amounts of knowledge
in a principled manncr. WRIGHT uses disjunctive constraint satisfaction 10 this
end. It provides a formal method for representing expertise uniformly and
declaratively in terms of disjunctive and conjunctive combinations of atomic
constraints and sclects efficient search strategies based on topological and other
features of the constraints.

A disjunctive constraint is a Boolean combination of atomic constraints. The
canonical form of a disjunctive constraint is defined to be its disjunctive normal:
the top level clements, called disjuncts, are connected by an or (v); the second
level elements, which are atomic constraints, by an and (A); and there are at
most two levels. Thus, a disjunctive constraint C; has the form

Ci=(dyvdy,v..v d[k(i)),
and each disjunct dj the form

clj.:(cjl‘/\cﬂ/\..../\cjk(j)). ' . . .

A disjunctive constraint can consist of a single disjunct, and a disjunct can
consist of a single atomic constraint.

Each disjunct defines a partial configuration that satisfies a disjunctive
constraint in a significantly different way, and the disjuncts, taken together,
specify the structural alternatives considered by WRIGHT for satisfying the
constraint. Consider for example two design units that must be adjacent. This
can be achieved by placing the first design unit to the north, south, east or west
of the second; thus an adjacency requirement can be represented by a disjunctive
constraint with four disjuncts. Some requirements of Problem 1 are formulated
as disjunctive constraints in Figure 10. PC-23 formulates the four alternatives of
placing the bathroom adjacent to hall. The requirement that the bathroom
should be inside the apartment is expressed by PC-12, which has a single
disjunct.

The requirements which define a problem form a set of disjunctive
constraints, D = {C|, C, , ..., Cp 4, all of which have to be satisfied by a solution.
The resulting problem is called a disjunctive CSP (DCSP). In WRIGHT, there are
no built-in constraints to ensure that design units are non-overlapping or that
they are inside the configuration area. Al requirements must be explicitly
specified. Thus WRIGHT can solve problems containing design units at dif(erent
levels of aggregation and generate tightly and loosely packed configurations by
changing the problem requirements.

Figure 11 shows the disjunctive constraints defining Problem 1. Constraints
PC-19—PC-24 express adjacency requirements and are termed performance
constraints. PC-9—PC-18 specify that all interior spaces must be inside the
apartment and interior spaces should not overlap; they are termed realizability
constraints. Constraints OR-1—OR-16 climinate trivial holes by cenforcing that
every design unit is adjacent to either another design unit or to the boundary of
the envelope on all sides. These latter are called style constraints in WRIGHT.
Style constraints may also specify which design units can be adjacent to the
boundaries of the envelope or occupy corners.

Variables, atomic constraints and disjunctive constraints form a constraint
graph, which is an and/or network created by the constraint compiler at the
outset of search. The inputs to the constraint compiler are a taxonomy of

12 U FLEMMING, C.BAYKAN, R.COYNE, M.FOX

PC-23 bathroom next-to vestibule = 70

(((vON + [70,00] = btS) A (DIN + [70,00] = vbS) A (BIW = VDE)) v
((vBN + [70,00] = btS) A (BIN + [70,00] = vbS) A (BLE = vDW)) v
(VDWW + [70,00] = BIE) A (DIW + [70,20] = VDE) A (DIS = VON}) v
((vbW + [70,00] = BIE) A (BIW + [70,00] = VBE) A (DIN = vbS)))

PC-15 vestibule non-overlap bathroom
((vbN = b1S) v (BIN > vbS) v ((vbW = bIE) A (vbS > DIN) A (1S > vbN)) v
((BIW = VBE) A (vbS > bBIN) A (bLS > vON)))

PC-12 bathroom inside apartment
((BIN = apN) A (bIW = apW) A (apE = btE) A (apS 2 btS))

OR-1 bathroom north-adj (livingroom v vestibule v kitchen v N)
(((BIN = IrS) A (BtE > IrW) A (IFE > biW)) v

((BIN =vbS) A (DtE > vBW) A (VBE > DiW)) v

((bIN = ktS) A (BLE > ktW) A (KtE > btW)) v (bIN = apN))

Figure 10, Expressing spatial relations between design units as disjunctive constraints

prototype design units (also used in LOOS); the templates defining the spatial
relations used in constraints; general knowledge about the design domain in the
form of ‘desired spatial relations between the prototype design units; and the
design unit instances and variables in a problem. For example, given the domain
constraint that rooms should not overlap and the design units in Problem 1, the
constraint compiler creates the constraints PC-13—PC-18, and by using the
templates defining the spatial relation non-overlap, it creates their atomic
constraints. The design unit taxonomy, the templates defining spatial relations
and the domain constraints are represented explicitly and declaratively, are
extensible and can be modified by the user through a graphical interface. Users
thus can have direct control over the behavior of WRIGHT and apply it to solve
layout problems in differcnt domains.

4.4, SOLUTION METHOD AND SEARCH CONTROL

WRIGHT solves the DCSP created by the constraint compiler by sequentially
instantiating disjunctive constraints using backtracking search. A disjunctive
constraint is instantiated by selecting one of its disjuncts. The atomic constraints
in the disjuncts selected in a search path define the configuration. During
search, forward-checking (Haralick & Elliott, 1980) removes disjuncts that are
incompatible with already instantiated disjunctive constraints from further
consideration and identifies disjuncts that are satisfied due to transitivity or
constraint propagation. The singleton-disjunct heuristic instantiates any
disjunctive constraint that has only one disjunct left in its domain by
immediately asserting the disjunct. The DCSP is solved when all disjunctive
constraints are instantiated.

Figure 12 shows the search tree that WRIGHT generates as it solves Problem
1. The numbers attached to states indicate the order of generation. The

ARTIFICIAL INTELLIGENCE IN DESIGN "92 13

PC-9 vestibule inside apartment PC-17 livingroom non-overlap bathroom
PC-10 livingroom inside apartment PC-18 kitchen non-overlap bathroom
PC-11 kitchen inside apartment PC-19 livingroom completely-next-to S
PC-12 bathroom inside apartment PC-20 livingroom completely-next-to W
PC-13 vestibule non-overlap livingroom PC-21 livingroom next-to vestibule > 90
PC-14 vestibule non-overlap kitchen PC-22 kitchen next-to livingroom > 120
PC-15 vestibule non-overlap bathroom PC-23 bathroom next-to vestibule > 70
PC-16 livingroom non-overlap kitchen PC-24 vestibule next-to E

OR-1 bathroom north-adj (livingroom v vestibule v kitchen v N)
OR-2 bathroom south-adj (livingroom v vestibule v kitchen v S)
OR-3 bathroom east-adj (livingroom v vestibule v kitchen v E)
OR-4 bathroom west-adj (livingroom v vestibule v kitchen v W)
OR-5 kitchen north-adj (vestibule v livingroom v bathroom v N)
OR-6 kitchen south-adj (vestibule v livingroom v bathroom v S)
OR-7 kitchen east-adj (vestibule v livingroom v bathroom v E)
OR-8 kitchen west-adj (vestibule v livingroom v bathroom v W)
OR-9 livingroom north-adj (vestibule v kitchen v bathroom v N)
OR-10 livingroom south-adj (vestibule v kitchen v bathroom v S)
OR-11 livingroom east-adj (vestibule v kitchen v bathroom v E)
OR-12 livingroom west-adj (vestibule v kitchen v bathroom v W)
OR-13 vestibule north-adj (livingroom v kitchen v bathroom v N)
OR-14 vestibule south-adj (livingroom v kitchen v bathroom v S)
OR-15 vestibule east-adj (livingroom v kitchen v bathroom v E)
OR-16 vestibule west-adj (livingroom v kitchen v bathroom v W)

Figure 11. Disjunctive constraints defining Problem 1

constraint identified beneath intermediate states is the disjunctive constraint that
is instantiated in that state. States 1,3,5 and 8 have two lists beside them. The
top list shows the disjunctive constraints which forward-checking identifies as
satisficd. The bottom list shows the disjunctive constraints that are instantiated
by the singleton-disjunct heuristic or identified by forward checking after
applying the singleton-disjunct heuristic. Solution states have their
configuration(s) shown under them. WRIGHT generates 39 states and finds 22
solutions without generating any dead-ends.

The search space expanded by backtracking is the Cartesian product of the
domains of all disjunctive constraints and increases exponentially with the
number of disjunctive constraints. However, adding constraints reduces the
number of solutions and possibly also the number of search states that must be
cxamined because additional constraints increase the probability of inconsistent
combinations. A more realistic measure of the effort required to solve a problem
is problem "difficulty" according to (Purdom, 1983): Hard problems have an
exponential number of solutions, and it takes exponential time to solve them by
backtracking search; difficult problecms have an exponentially small number of
solutions, but backtracking still takes exponential time; easy problems have an
exponentially small number of solutions, and there are known procedures for
solving them in polynomial time. Problem difficulty is reduced as the ratio of

14 UFLEMMING, C.BAYKAN, R.COYNE, M.FOX

[
{BC-9,PC-10,PC-11, PC-12, FC-19, PC-20, PC-24, 0R-10, OR-12, OR-15)

{PC-16, OR-§, OR~9)
0

(PC-13)
{PC-14, OR-3, 0R~14)

PC-23

() (2 &)) ® (9 © © O ~.
“i OR-9 PC-14 b [v JP—] ﬂl PC=17 PC-14 PC-18 PC-18 :
- 1 : t E - METL HL b é s
OR-5 B Pc-18 pe-18 B 1 h Tv) B FEE] =i []
€ 1
L Al [wlir Lofplle E L L I L
X] o m— pC-14 -
: [ed
| L | | P
24 25
K Te
Al
(PC-15,0C-18, 0R-1)
@ﬁ (PC-17,0R-2, OR-3, OR-4, OR~5, OR-7, OR-11, OR-13,OR-1€)

Figure 12. State space for Problem 1 as generated by WRIGHT

PC—-23

constrainis to variables increases. Purdom showed that for a subset of difficult
problems, backtracking takes polynomial time with dynamic instantiation and
exponential time with fixed instantiation. He also conjectured that dynamic
instantiation may save exponential time throughout the difficult region even
though the resulting times may still be exponential. As they are initially given,
layout problems usually do not contain enough constraints to restrict the
solutions 10 an exponentially small set. Baykan (1991) conjectured that by
modifying constraints, the designer changes hard problems into difficult ones.
These are the problems on which the dynamic control strategy of WRIGHT leads
to the greatest reduction in search effort.

WRIGHT selects the disjunctive constraint to instantiate dynamically in each
state, using a function of textures, which are mecasures of topological and other
features of the constraint graph (Fox, et al., 1989). We have defined three
texture measures: Looseness-1 implements a fail-first strategy by sclecting a
disjunctive constraint that has the fewest active disjuncts; thus the highest
probability of failing and terminating the current branch of the search tree using
minimum effort. Looseness-2 calculates the reduction in the domains of interval
variables due to satisfying a disjunctive constraint; it is a formulation of fail-first
and prune-early straiegies that takes into account the sizes of the design units,
their current locations and the type of spatial relation in a uniform way.
Interaction is a measure of the interaction between disjunctive constraints due to
shared design units; it favors a constraint that interacts strongly with others,
which reduces dead-ends and thrashing (Baykan, 1991).

Textures are applied lexicographically in WRIGHT. Each texturc assigns
ratings to all future disjunctive constraints and eliminates those with lower
values. Dynamic selection using textures reduced search by between 80-90% in
difficult problems and by 34-67% in easy problems over random instantiation
orders (Baykan, 1991). WRIGHT demonstrates that analysis of problem structure

ARTIFICTAL INTELLIGENCE IN DESIGN ’92 15

in a domain independent fashion can lead to very good problem solving
performance.

5. Comparison

Both LOOS and WRIGHT are portable across workstations running Unix,
CommonLISP and X11. LOOS is written in LISP and CLOS (Common Lisp
Object System). WRIGHT is written in LISP with a few of the critical procedurcs
written in C. In our experiments, both systems were running on single-user DEC
5000/200 machines - LOOS on a machine with 48 megabytes of memory,
WRIGHT on a machine with 64 megabyies of memory. But the CPU times given
in the following tables should be seen as only broad indicators. Both systems
were implemented in the context of research projects with the goal of
demonstrating the underlying approach, and computational efficiency received
little initial atiention beyond attempts to follow established rules of "good
programming"”. WRIGHT has since then undergone determined efforts to improve
its computational performance, which caused improvements by several orders of
magnitude. LOOS on the other hand keeps expanding in its capabilities without
much attention being paid to this aspect; in particular, the abstraction and
decomposition capabilities described below may add overhead even when they
are not used in solving the problem (as is the case in all examples shown in this
paper).

Table 3 gives some basic statistics on the computational efficiency of both
LOOS and WRIGHT in solving Problem 1. For LOOS, the results are given for
running the system with pretesting enabled and disabled. WRIGHT was run with
or without style constraints.

Table 3. Computational performance of LOOS and WRIGHT in solving Problem 1

No. of No. of CPU time
states solutions {(sec)
LOOS pretesting enabled 40 24 5.1
pretesting disabled 51 24 5.9
WRIGHT with style constraints 39 22 0.2
without style constraints 41 23 0.1

Given that both systems are based on formalizations that guarantee propertics
such as completeness of search, it is not surprising that they generate very
similar solution sets when solving the same problem. This becomes especially
obvious when one realizes that the representation underlying LOOS makes
coarser distinctions in terms of spatial relations than WRIGHT; for example, the
LOOS solution 30 represents the WRIGHT solutions 21 and 25 (without non-trivial
holes) because LOOS suppresses the distinctions made by WRIGHT between these
two possibilities; LOOS generates the variants with non-trivial holes, however, as
distinct solutions.

The only real difference between the two solution sets is that LOOS generates
solution 28, which has no equivalent in the set produced by WRIGHT, and this

16 UFLEMMING, C.BAYKAN, R.COYNE, M.FOX

points to0 a deeper difference between the two systems. When WRIGHT is run
with the no-trivial-hole constraint in Problem 1, it pushes in this particular case
every space towards the extemal boundary and produces layouts that are as
densely packed as possible; it also activates for the hall the maximum dimension
constraint, which cannot be satisfied for solution 28 under these circumstances.
LOOS cannot take maximum dimensions (or maximum areas) into consideration
when it ecvaluates intermediate states because these constraints have
conscquences only for densely packed arrangements, which LOOS can only
generate through its postprocessor, for example, an optimizer that attempts to
eliminate trivial holes for a configuration of spatial relations generated by its
generator. WRIGHT, on the other hand, can deal with the entire set of units at any
level in the search. This difference points to a real distinction between the
constructive approach taken by LOOS and the reductionist approach underlying
WRIGHT.

However, upper bounds like the ones under consideration here often reflect
more general concerns of efficient space planning. LOOS can take these into
account during generation; for example, it can estimate the minimum arca
needed to accommodate placed units for any state and incorporate this as a true
criterion into its branch-and-bound strategy because the minimum area can only
increase through placement of additional objects; this will be demonstrated in
the next example.

As a second problem, we chose a modified version of the problem described
in (Flemming, 1978), which calls for the layout of a 3-bedroom apartment in an
L-shaped area that borders an open court from the north and east and is accessed
from a corridor on its eastern side; the western and southern sides of the
available area are blocked from receiving natural light. Table 4 gives a general
formulation of the problem that would assure minimum standards of comfort.
The court is treated as a unit with variable dimensions and adjacency
requirements that assure its position in the south-west corner of the overall area.
The general requirement for natural light and ventilation for the major spaces is
expressed through adjacencies with the northem border or the court. The
adjacencies that force the living room to be adjacent to the entrance side and the
master bedroom to the NW comer do not reflect standards of comfort, but
general design heuristics that place these larger spaces immediately in the most
appropriate zones within the given area.

This general problem formulation is severely underconstrained, and both
LOOS and WRIGHT produce an unmanageably large number of feasible solutions.
At the time of this writing, we are still experimenting with different ways of
handling this problem for both systems. The question is how to introduce
general guidelines of good or efficient layout design into the systems.

An obvious way for LOOS is to estimate the minimum overall area for any
state as indicated above and take these estimates into account during branch-
and-bound. In the current implementation, these estimates come into play after
all constraints on the currently placed units have been considered; that is, the
controller expands those states that violate not more constraints than any other
state and have the lowest area estimates. This left the controller itself
completely unchanged. The results produced by this approach are encouraging:
LOOS gencrates 26 {casible "best” solutions in reasonable time (see Table 5),
where the solutions are allowed to exceed the minimum area by a preset factor
(this allows the gencration of solutions that excced the optimal arca by a small

ARTIFICIAL INTELLIGENCE IN DESIGN ’92 17

Table 4. Layout problem 2

corridor

Context W

Spaces

Court Min. dimension 3.60m

Living room Min. dimension 3.60m Min. area 22.00 m?

Master bedroom Min. dimension 330m Max. dimension 540 m
Min. area 14.00 m?

Bedroom 1 Min. dimension 240m Max. dimension 420m
Min. area 7.20 m? Max. area 10.00 m?

Bedroom 2 Min. dimension 240 m Max. dimension 420 m
Min. area 7.20 m2 Max. area 10.00 m?

Hall Min. dimension 1.20 m Mazx. dimension 6.00 m

Kitchen Min. dimension 2.10m Max. dimension 540 m
Min. area 7.20 m?2

Bathroom Min. dimension 1.80 m Max. dimension 420 m
Min. area 4.20 m?2

Max. extent of overall area from north to south: 18.00 m

Max. extent of overall area from west to east: 12.00 m

Required adjacencies (min. length of shared boundary in brackets)

Court/southern border (3.60 m) Court/western border (3.60 m)

Living room/eastern border (3.60m) Living room/northern border or court (3.60 m)
Living room/hall (.90 m) Living room/kitchen (.90 m)

Bedroomy/hall (90 m) Bedroom/northern border or court (1.20 m)

Masier bedr./northern border (3.30 m) Master bedr./western border (3.30 m)
Kitchen/northern border or court (90 m)

fraction, but may have other advantages).

One approach that can be used in WRIGHT is to declare style constraints that
eliminate trivial holes and prevent the hall from being placed towards the
outside. In the current problem, this reduces the number of feasible solutions
from 3134 to 97 as seen in Table 5 and markedly improves solution quality. But
WRIGHT could also adopt the optimizing approach taken by LOOS, which should
lead to a reduction in search over the current satisficing formulation, but we
have not made this extension. We experimented with the satisficing approach
by placing a limit on the maximum area of the apartment. If a reasonable bound
is not known at the outset, the system can be run repeatedly with increasing

18 UFLEMMING, C.BAYKAN, R.COYNE, M.FOX

Table 5. Computational performance of LOOS and WRIGHT in solving Problem 2

No. of No. of CPU time
states solutions (sec)

" LOOS with area pretesting enabled 517 26 130.7
minimization pretesting disabled 831 26 188.8
WRIGHT underconstrained problem 6930 3134 30.5

with style constraints 630 97 14.1
area < 86 m? 321 7 12.3

values untll a good limit has been found. In the present example, an initial limit
of 85m? generates the solution seen in the top left corner in Figure 13, and a

second run with the limit raised to 86m? generates the 7 feasible solutions in the
same figure.

Figure 13. Minimum area solutions generated by WRIGHT for Problem 2

WRIGHT is again significantly faster that LOOS. But it is interesting to notc
that LOOS’s performance improves relatively to WRIGHT, and this indicates a
promising direction for further study. At the present time, we can only speculate
that the explosion in the number of constraints that have to be explicitly
considered by WRIGHT becomes more significant for larger problems. For
example, the number of constraints that assure non-overlap in WRIGHT increases
with the square of n, the number of design units. In LOOS, this constraint is
automatically satisfied by the generator, and the number of tests to be performed
increases roughly linearly with #. Thus, LOOS and WRIGHT may become more
similar in computational efficiency as n increases, and this would certainly be a
counterintuitive result.

ARTIFICIAL INTELLIGENCE IN DESIGN ’92 19

WRIGHT is able to compute more accurate minimum values for the overall
arca due to achieving path-consistency. LOOS on the other hand cxecutes its
tests independent of each other and does take into account only a limited set of
interactions (like the crossing of adjacencies along a channel mentioned above).
As a result, two units may lay claim to the same area without realizing that they
cannot occupy it simultaneously, and the first and very rough area cstimates
implemented for LOOS tend to underestimate the minimum area significantly;
this explains why LOOS finds more solutions than WRIGHT. But this is a
limitation not so much of the approach itself, but of the current implementation
of the tester. Even so, the solutions sets produced by the two systems favor the
same overall allocation of objects. This leads us to belicve that the current very
rough area estimates made by LOOS can be improved without more dramatic
changes to the tester and indicates a fruitful direction for further study.

Some important differences between the two systems are not revealed by the
two problems described so far. One is that there exist constrainis in layout
synthesis whose formulation would be difficult in WRIGHT. An example is the
requirement that two units be physically accessible from cach other, that is, that
there be a path between the two units with at least minimal clearance at cach
point. The difficulty is that an arbitrary number of additional units may be
involved in maintaining the path, and this number changes with the layouts
themselves. LOOS can handle this constraint without difficulty through a test
rule that tries to find this path in a configuration to be evaluated (this is easy
because the channel representation indicates all possible paths; LOOS can even
find the path with minimal distance along these channels). WRIGHT would have
16 come up with a disjunct that specifies all possible paths between the two units
in terms of the various sets of additional units involved. A more promising
solution may be to add a test after the DCSP has been solved; that is, WRIGHT
may have (o include some form of postgeneration test similar to LOOS.

WRIGHT deals with an overconstrained problem by relaxing constraints. It
helps greatly if the user has specified which constraints can be relaxed, and in
which order to relax the constraints. If these are not specified, the default is to
relax style constraints first and performance constraints later. As relaxation
possibilities increase, performance gets worse. The generate-and-test approach
used by LOOS, on the other hand, does not need such devices because its
evaluations can be carried out on feasible or infeasible solutions. A problem
occurs, however, when pretesting becomes too strict and prevents the generation
of any solution. This is another fruitful area for further study.

In general, the distinction between the generator and tester underlying LOOS
cnables the system to treat a broad set of constraints and criteria uniformly,
while WRIGHT may have to make special provisions for certain classes of
constraints. A limitation of the constructivist approach underlying LOOS is that
certain aspects have to wait for evaluation until the relevant units have been
placed; and the current implementation of the tester does not handle interactions
between constraints in a consistent manner. WRIGHT, on the other hand,
considers interactions automatically and does not have to delay the satisfaction
of constraints for those constraint classes that fit well into its approach.

Another difference between the constructive approach of LOOS and the
reductionist approach of WRIGHT stems from differences in degrees of
interaction they allow. Every state generated by LOOS represents a formally
complete layout that can be understood as such by an observer, who can thus

20 UFLEMMING, C.BAYKAN, R.COYNE, M.FOX

follow the generation process step by step and interrupt at any state. Such an
interactive editing capability is currently being devcloped for LOOS.
Furthermore, transitions between modes of generation are easy at any state: a
designer may take over and complete the layout through interactive cditing,
invoke an optimizer to test the potential of an intermediate solution or shift to an
iterative improvement strategy. All of this can be done based on the same
representation and may use the same rules. For example, any backwards
application of a generation rule removes an object and produces again a formally
complete layout which can be displayed as such. Removed objects can be
reinserted by reapplication of the generation rules, and the tester is a general
purpose tool that can evaluate any configuration independently of the way in
which it was generated.

In WRIGHT, all design units are placed inside the design envelope at the
outsct, as it were, and their bounds overlap until their relative locations arc
determined by the incremental satisfaction of constraints. Thus, displaying an
intermediate state poses some problems. On the other hand, an explicit
representation of constraints and bounding boxes opens the possibility of
constraint propagation in real time, which would change the whole configuration
in response to user’s actions. Graphical interaction with WRIGHT is one of the
research topics being pursued.

Both LOOS and WRIGHT will eventually run into problems as the number of
design units increases. Much of the recent work on LOOS has been devoted to
this issue and resulted in an expanded version, ABLOOS (Abstraction-bascd
LOOS) (Coyne, 1991, Coyne and Flemming, 1990), which indicates a direction
for dealing with this problem that can, in principle, also be used by WRIGHT.

ABLOOS was conceived both as a hierarchical extension of the LOOS approach
and as an extensible design framework that is evolving to incorporate a variety
of design strategies and methods for producing alternative layouts. It provides
designers with an interactive planning capability that allows a layout task to be
hierarchically decomposed into subtasks. Each subtask represents a layout
problem at a specific level of abstraction (scale or granularity); the subtasks can
then be solved and recomposed to achieve an overall solution.

To achieve this, ABLOOS extends the representation underlying LOOS
recursively so that a configuration can be decomposed into rectangular
components and subcomponents; that is, a rectangle may represent a single
design unit or a configuration of rectangles which may in turn represent
configurations. This makes it possible to treat a layout as a hierarchy of
components and to model decompositions typically found in artifact design; for
example, a building is subdivided into floors, a floor into departments, a
department into rooms and a room into clusters of furniture or equipment. Such
a decomposition defines at the same time a division of the layout problem into
tasks and subtasks; that is, it can be used to partition both the process and
product of design. The construct used to decompose uniformly both the layout
process and the components to be placed is called a goal-object (GOB) in
ABLOOS. Each GOB specifies a complete layout task in terms of subgoals
represented in turn as GOBs. A problem is decomposcd by a designer by
specifying a hierarchy of GORBs.

ARTIFICTAL INTELLIGENCE IN DESIGN °92 21

6. Conclusions

Our conclusions are still tentative at the time of this writing because our
cxperiments with the two systems under review have not been completed yet.
But we hope that even the short comparisons provided so far indicate how uscflul
this type of close inspection in the context of realistic design problems can be.

Another note of caution has to be added with respect to the generalizations
suggested by our findings. Positive aspects surely indicate circumstances in
which the overall approach taken by a system (i.e. hierarchical generate-and-test
vs. constraint-directed search) is working. But negative aspects have to be
interpreted with greater care: they may not indicate shortcomings of the overall
approach, but of either the design stratcgy implemented under the approach
(constructive vs. reductionist) or, at an even lower level of abstraction, the
particular form in which the design strategy has been implemented
(representation, operators, control). We try in the following to keep these levels
of distinction in mind when summarizing our findings.

At first sight, our data confirm what is generally known about the two
approaches; CDS is computationally more efficient, but less general than HGT in
the type of constraints and criteria it can incorporate. More interesting are
indications that each approach can overcome some of its limitations by
incorporating features of the other approach. DS can add in principle
postgeneration tests to account for constraints that are hard to formulate in the
generality required at the outset. HGT can incorporate mechanisms that preclude
many infeasible states from being generated.

If pushed hard enough, the two systems (and the approaches they represent)
may become roughly equivalent in terms of efficiency when solving equivalent
problems. That is, further work may blur the basic differences between the
systems. But the actual development of the two systems has been moving in
opposite directions. The developers of WRIGHT have been concentrating on
identifying heuristic measures of features of the constraint graph that enable
efficient search strategics, while the developers of LOOS have been working
towards breaking its monolithic problem-solving strategy apart and making the
mechanisms used individually available for implementing a broader range of
design strategies and modes from a common toolkit. ABLOOS is a first version
of a general framework that would allow for this.

These diverging directions may indicate deeper differences between the two
approaches than are brought out by a comparison of run-time statistics, however
instructive they may be: WRIGHT appears as a precision tool that executes the
tasks for which it was designed very well, while LOOS appears as a collection of
powerful mechanisms that can be combined to implement various contrasting
design strategies, including and especially interactive ones, and allow for easy
transitions between strategies.

Acknowledgments

Work on LOOS and ABLOOS has been supported by EDRC, the Engincering
Design Research Center at Carnegic Mellon, an NSF-supported Engineering
Research Center.

22 UFLEMMING, C.BAYKAN, R.COYNE, M.FOX

References

Baykan C.A. : 1991, Formulating Spatial Layout as a Disjunctive Constraint
Satisfaction Problem. Doctoral dissertation, Dept. of Architecture, Carnegie Mellon
University, Pittsburgh, PA.

Baykan C.A. and Fox M.S. : 1991, Constraint satisfaction techniques for spatial
planning. In P.J.W.ilen Hagen, P.J.Veerkamp (Ed.), Intelligent CAD Systems Il
Practical Experience and Evaluation. Berlin: Springer-Verlag.

Baykan C.A. and Fox M.S. : forthcoming, WRIGHT: A constraint-bascd spatial layout
system. In C. Tong and D. Sriram (Eds.), Artificial Intelligence in Engineering
Design. Academic Press.

Buchanan, B.; Sutherland, Georgia and Feigenbaum, E.A. : 1969, HEURISTIC
DENDRAL.: a program for generating explanatory hypotheses in organic chemistry.
In Meltzer, B. and Michie, D. (Ed.), Machine Intelligence 4. Edinburgh: Edinburgh
University Press.

Coyne, RE. : 1991, ABLOOS: An evolving hierarchical design framework. Doctoral
dissertation, Dept. of Architecture, Carnegie Mellon University, Pittsburgh, PA.

Coyne, R.F. and Flemming, U. : 1990, Planning in Design Synthesis - Abstraction-
Based 1.OOS. In J. Gero (Ed.), Artificial Intelligence in Engineering V. Vol 1:
Design (Proceedings of the Fifth International Conference, Bosion, MA). New
York: Springer (Computational Mechanics Publications).

Eastman, Charles M. : 1973, Automated space planning. Artificial Intelligence, 4,
41-64.

Flemming, U. : 1978, Wall representations of rectangular dissections and their use in
automated space allocation. Environment and Planning B, 5, 215-232.

Flemming, U. : 1979, Representing an infinite set of solutions through a finite set of
principal options. A. Seidel and S. Danford (Eds.), Proc. 10th Conf. of the
Environmental Design Research Association. Buffalo, NY.

Flemming, U.; Coyne, R.; Glavin, T. and Rychener, M. : 1988, A generative expert
system for the design of building layouts - version 2. In J. Gero (Ed.), Artificial
Intelligence in Engineering: Design (Proceedings of the Third International
Conference, Palo Alto, CA). New York: Elsevier (Computational Mechanics
Publications).

Flemming, U. : 1989, More on the representation and generation of loosely packed
arrangements of rectangles . Environment and Planning B. Planning and Design, 16,
327-359.

Flemming, U., Coyne, R. F., Glavin, T., Hung Hsi, Rychener, M. D. : 1989, A
generative expert system for the design of building layouts (final report). Report
EDRC 48-15-89, Engineering Design Research Center, Carnegie-Mellon University.

Fox M.S., Sadeh N., and Baykan C. : 1989, Constrained heuristic search. Proceedings
of IJCAI-11. ,TJCAL

Haralick R.M. and Elliott G.L. : 1980, Increasing tree search efficiency for constraint
satisfaction problems. Al, 14, 263-313.

Mackworth A X. : 1977, Consistency in networks of relations. A/, 8, 99-118.

Purdom P.W. : 1983, Search rearrangement backtracking and polynomial average time.
Al 21, 117-133.

Stefik, M. et al. : 1983, Basic concepts for building expert systems. In Hayes-Roth,
F. et al. (Eds.), Building Expert Systems. Reading, MA: Addison-Wesley.

Supowit, K.J. and Stutz, E.A. : 1984, Placement algorithms for custom VLSI. Computer
Aided Design, 16, 46-52.

