0 CONCURRENT DESIGN

SUSAN FINGER, MARK S. FOX,
FRIEDRICH B. PRINZ, and JAMES R. RINDERLE

Carnegie Mellon University, Pittsburgh, Pennsylvania
15213

iven the initial functional specifications for a product, a designer must create the descrip-
om of a physical device that meets those requirements. The final design must simultaneously
eet cost and quality requirements, as well as meet the constraints imposed by activities such
* manufacturing, assembly, and maintenance. Mechanical designs are often composed of
ghly integrated, tightly coupled components where the interactions are essential to the
thavior and economic execution of the design. Therefore, concurrent rather than sequential
nsideration of requirements, such as structural, thermal, and manufacturing constraints,
Ul result in superior designs.

Our goal is to create a computer-based design system that will enable a designer to
nsider concurrently the interactions and tradeoffs among different, even conflicting, re-
lirements. We are creating a system that surrounds the designer with experts and advisors
 provide continuous feedback based on incremental analysis of the design as it evolves.
lese experts and advisors, called perspectives, can generate comments on the design (e.g.,
mments on its manufacturability), information that becomes part of the design (e.g.,
‘esses), and portions of the geometry (e.g., the shape of an airfoil). However, the perspec-
es are not just a sophisticated toolbox for the designer; rather, they are a group of advisors
10 interact with one another and with the designer.

This article focuses on the motivation and integration of the research that has resulted
wm the multidisciplinary group creating this design system, called Design Fusion. The

vearch falls into broad areas: geometric modeling, features, constraints, and system archi-
ture.

\ODUCTION

creating a concurrent design system for mechanical designers, our goal is
1se knowledge of downstream activities into the design process so that
s can be generated rapidly and correctly. The design space can be viewed
aultidimensional space in which each dimension is a different lifecycle
ive such as fabrication, testing, serviceability, and reliability. An intelli-
esign system should aid the designer in understanding the interactions and
ffs among different, even conflicting, requirements. We are creating a
 that surrounds the designer with experts and advisors that provide contin-
sedback based on incremental analysis of the design as it evolves. These
s and advisors, called perspectives, can generate comments on the design
comments on its manufacturability), information that becomes part of the
(e.g., stresses), and portions of the geometry (e.g., the shape of an
. The perspectives are not just a sophisticated toolbox for the designer;

Artificial Intelligence: 6:257-283, 1992
1t © 1992 by Hemisphere Publishing Corporation 257

258 S. Finger et al.

rather, they are a group of advisors who interact with one another and with the
designer. ' .

The design methodology is integrated around a sharec!, dynamlc, domain-
neutral representation of the design. The shared representation includes the geo-
metric model of the design, as well as the features, constraints, and desxgn
record. Constraints are the language by which perspectives communigate wn.h
one another and with the designer. The design record contains the desxgn deci-
sions that led to the creation of a constraint or feature. The perspectlves are
coordinated through a blackboard architecture that uses a heterarchical control
structure.

DESIGN-SYSTEM ARCHITECTURE

Designers use a variety of methods and techniques throughout thg design
process. They have many tasks to perform and numerous sources of demgq datg.
Some subproblems have algorithmic solutions; however, no smglle allgorlth.mlc
solution exists for the design problem in its entirety. Human expertise is required
to integrate the subproblems, provide the missing pieces, and guide the process
known as design. Recently, with the development of know'ledge-b.ased-syst?m
technologies, software has been created that can participate directly in the design
process by making design decisions. Examples of knowledge-based systems that
make design decisions include XCON (Bachant and McDermott, 1984), PRIDE
(Mittal et al., 1985), and ALADIN (Hulthage et al.,. 1999). ' '

The design-system architecture has two roles. First, it Prowdes an interac-
tive environment that enables the designer to control the available resources that
consist of data, knowledge, methods, and algorithms. Secondly, the architecture
provides a group problem-solving environment in which kn(?wledge—'based Sys-
tems contribute to the design process; the Design Fusion archlts?cture is ba.sed on
the blackboard model of problem solving (Erman et al., 1980) illustrated in Fig.
1. The architecture has four major components: the blackboard, knowledge
sources, search manager, and user interface. ‘ .

The blackboard provides a shared representation of the Qemgn and is com-
posed of a hierarchy of three panels. The geometry panel is Fhe lowest-lev}fl
representation of the design and uses a nonmanifold geometric model pf t i
design. The feature panel is a symbolic-level represer?tatlon of 'the Qe51gn, ld
provides symbolic representations of features, cgnstramt.s, specifications, an_
the design record. The control panel contains the information necessary to man
age the operation of the system.

: Persplt)zctives and methods are the two types pf knowledge sources. lPersg)eé:};
tives represent knowledge of different stages in the product-pfe -C};C €. t:)n
perspective may criticize design decisions or generate new demgn in ormriiableé
Using perspectives that communicate through a blackboard architecture €

Concurrent Design 259

Design
Manager
Potential Tasks P
: Contstraints
Goals

Control Panel

o
]
g
z
o
<
v
N
‘a
]
5
4
-
=

Constraint
Manager

Design Record
Constrainis
Features

FEZO~aE

Hypothesize & Criticize

Feature
Extraction

~

Feature
Elaboration

1

~ t

e . v
[/N;odIes —
\' < Geometry Panel

Figure 1. Design fusion system architecture.

us to partition the design knowledge. Each perspective can define its own inter-
nal set of features, constraints, and variables, so that inconsistent requirements
names, and definitions are contained within the perspectives. CommunicatiOI;
occurs through the common language of the shared representation. Methods
pr9v1de standard analysis capabilities to the System. Three methods are currently
being gsed: feature extraction, constraint management, and mathematical pro-
gramming,

’Ijhe search manager provides a means for dynamically coordinating the per-
spectives. The system cycles through four stages of control: perspective identifi-
cation, perspective selection, perspective execution, and constraint manage-

260 S. Finger et al.

ment. At the beginning of a cycle, that is, after a design decision has been
posted to the blackboard, any number of perspectives may have contributions to
make. The search manager must decide the sequence of contributions and con-
trol their execution.

The user interface provides the designer with a complete interactive environ-
ment for designing. It provides the user with the ability to define specifications
and constraints, to select from a library of existing designs, and to modify
designs. The user also has the capability to confirm or override the system’s
suggestions at each stage in the search manager’s decision cycle.

DESIGN REPRESENTATION

Our system is based on the concept of a shared representation. The shared
representation of the design is maintained on the blackboard; and all comments,
constraints, and design changes are made in terms of it. Perspectives may create
local representations for reasoning and analysis, but communication is always
through the shared representation. During the design process, large quantities of
information about a design are used and generated. We have made the decision
to include in the shared representation only those attributes that may be of
interest to more than one perspective. Using perspectives enables us to partition
the design knowledge into manageable chunks, while allowing us the flexibility
to add new information to the representation. For example, the manufacturing
perspective may have a constraint on the maximum length of a cast-turbine
blade. As long as this constraint is not violated, it remains within the perspec-
tive; however, if it is violated, the manufacturing perspective would post the
constraint on the blackboard.

If a complete representation of a design could be constructed, it would
include attributes like the initial specifications; the geometry with dimensions
and tolerances; the material and structural properties; the manufacturing and
assembly sequences; the design history, including versions and configurations,
the bill of materials, the maintenance procedures, and so on. Depending on the
design domain, the importance of representing particular attributes will vary. We
have focused on representing the geometry, features, and constraints associated
with a design.

Geometric Representation

The representation of geometry has been an active area of research over the
last 15 years. In a review paper, Requicha and Voelcker (1982) discuss the
progression from early CAD systems to advanced solid modellers. Voelcker
(1988) also discusses the limitations of current geometric models as design sys-
tems because they can only represent the geometry of a completed geometric

Concurrent Design 261

her than an evolving design. Discussions along similar lines can be
Nielsen et al. (1987) as well as in Gursoz et al. (1988).
face-boundary representations, known as b-reps, objects are modeled
:nting their enclosing shell. The basic elements of a b-rep are faces,
d vertices. The topology of an object is made explicit by giving the
1s between its elements, and the geometry of the object is made ex-
riving coordinates to the vertices, giving lengths to the edges, etc. In
ve solid geometry (CSG), objects are modeled as boolean combina-
set of primitive solids; that is, an object is constructed by adding and
g the basic primitives. An object is represented as a binary tree in
terminal nodes of the tree are solid primitives, and the intermediate
boolean operations that operate on the primitives to create the desired

the b-rep and CSG approaches were created to represent solid objects
ce. These models are not able to represent incomplete objects. The
)ld geometric modeling systems created by Weiler (1986) and by Gur-
(1988) address this issue. These representations build upon the bound-
sentations, but they are able to represent the more complex adjacency
uch as dangling edges or nested cones that can occur in nonmanifold

ise one-, two-, and three-dimensional objects can be represented con-
n nonmanifold representations, they are well-suited to design systems.
nanifold representations, the design can include a center line of a hole,
plane for a mold, and internal boundaries for a finite-element mesh, as
e enclosing shell of the designed object. Figure 2 shows the evolution
istruction of a solid from a wireframe in a nonmanifold representation.

Representation

esearch in feature-based representations of designs has been motivated
ization that geometric models represent the design in greater detail
be utilized by designers, process planners, and assembly planners
rule-based systems that emulate these activities. Experts often abstract
into features like ribs, parting planes, and chamfers. To date, our
1as been on defining and recognizing shape features, that is, features
erivable from the geometry and topology of the design. We represent
‘ures using a graph grammar based on the nonmanifold representation.
retry of the designed object and the feature definitions both use the
ld representation, so features can be recognized by matching the
resenting the feature with a subgraph of the graph representing the

features are used only locally by perspectives. For example, the man

262 S. Finger et al.

Wircframe Model

Surface Model

Solid Model

Figure 2. Evolution of a solid model.

ufacturing perspective may make a preliminary process plan based on the manu-
facturing features recognized in the design. However, a feature or a feature
interaction may cause the manufacturing perspective to generate a comment to
the designer, giving a warning or advising a change in the design. Because the
features are defined in terms of the shared representation, the perspectives can
communicate by referring their features to the shared representation. So, even
though the designer may use a different term for a feature or may chunk the
geometry differently, the manufacturing feature can be highlighted on the geo-
metric display.

For example, in Fig. 3, a designer and a manufacturer each have a set of
features defined. The designer sees two slots, defined by their width and depth,
that serve a functional role in meeting a design requirement. The manufacturer
is concerned with making the artifact and not only sees the two slots but also the

Loncurrent Uesign 263

wall created between them. A manufacturing analysis of this wall indicates that
it is too thin to be milled to the given tolerance. Although the designer lacks the
wall feature, the manufacturer’s definition is used to improve the design. The
shared model is a basis of communication via feature definitions for the two
perspectives.

Constraint Representation

The representation shared among perspectives must include not only the
evolving product geometry and features, but it must also include the allowable
limits on geometry, the relationships among behavior and geometry, and other
constraints. The set of constraints asserted by any one perspective is an encoding

a. Initial design

b. Designer’s feature
fa +o >

c. Manufacturer’s features

e

Figure 3. View-point specific feature interaction.

264 S. Finger et al.

of the life-cycle concerns of that perspective. The collection of all constraints is
the set of currently relevant life-cycle concerns that determine the acceptability
of a design alternative.. Each perspective, when commenting on the design or
suggesting design changes, can view all posted constraints and, therefore, sug-
gest modifications that minimize conflict. Additionally, the design perspective
may characterize design tradeoffs by evaluating competing constraints. As the
design evolves, features are added and modified, causing individual perspectives
to assert additional constraints and to modify or retract existing constraints. In
this way, the collection of constraints is an embodiment of the evolving life-cycle
constraints on an acceptable design.

A design record tracks the design decisions that led to the creation of a
constraint or feature. Design records are defined by the perspective that gener-
ated the decision, the type of processing that led to the decision, and the infor-
mation upon which it was based. This information can be used to maintain
design consistency when underlying assumptions of the design change or to
track constraint violations back to the sources.

Quantitative and Qualitative Representations

Qualitative representations provide a means for reasoning about complex
systems without the need for quantitative data. Most design systems perform
quantitative analysis of the results of the design process. Numeric algorithms,
given numeric input, produce numeric descriptions for properties of the design.
One problem with numeric models is that the underlying relationships are often
lost or hidden in quantitative representations. In addition, these underlying rela-
tionships cannot be manipulated symbolically. Qualitative representations extend
quantitative representations by making implicit relationships explicit and acces-
sible.

Procedural knowledge provides a representation for the processes necessary
to perform some tasks. It can be algorithmic, such as a finite-element analysis
program, or heuristic, such as problem-solving. The design representation re-
quires both algorithmic and heuristic information, one augmenting the other.
Some tasks have algorithmic solutions that result in some relationship between
design parameters. Other tasks use heuristic methods, such as a pattern-directed
search that guides the problem-solving process.

Consider the pattern, or production, in Fig. 4. The production is composed
of a condition and an action. When the condition is satisfied, the action is
invoked. In this case, the stress concentrations in a turbine-blade shank are
computed when a shank geometry is proposed by the designer. Production sys-
tems use pattern-directed search to encapsulate operational descriptions for
problem-solving tasks.

Concurrent Design 265

IF

L. there is a constraint on the life-time of the blade;
2. and there is a proposed geometry for the shank;

3. and the stress concentrations in the shank are unknown,
THEN

l.execute the finite element model on the shank

geometry

Figure 4. Sample production.

ATURES

Features provide both an abstraction mechanism and a mechanism for com-
nicating among experts in a heterogeneous environment. Our approach is to
cribe features using a graph grammar. Because the designed object is an
nent in the language generated by this grammar, features can be recognized
parsing the graph representing a feature against the graph representing the
:ct. We provide a representational link between the low-level geometric rep-
'ntation and the high-level design abstractions by formalizing a language to
ress classes of high-level objects in terms of the low-level ones. Given this
juage, we are able to extract the high-level elements from the neutral low-
1 geometric representation.

The use of features derivable from the geometry—that is, form features—is
irea of active investigation in mechanical design (Finger and Dixon, 1989).
°r researchers have constructed systems that extract features from two-
ifold solid models. Using a boundary representation, these systems define
Ares as patterns, and instances of the pattern are extracted from the model
cidieno and Giannini, 1989; de Floriani, 1989; Gavankar et al., 1990; Joshi
Chang, 1988; Sakurai and Gossard, 1988). Other research in using features
AD systems has focused on single domains. Woo (1983) utilizes decomposi-
using form features to perform structural analysis. Shah and Rogers (1988)
ed at mapping features between domains. Several researchers, including
er and Ray (1988), Cutkosky et al. (1988), Chang et al. (1988), and Hayes
Wright (1989) have explored the use of features in constructing process
s for parts. Many research groups are currently working on feature-based
in systems. The two of most interest here are Dixon (1988) and Cutkosky et

266 S. Finger et al.

al. (1988). Our approach differs from these in that we do not use a predefined
set of features to build and represent the design.

Figure 5 illustrates several features, all labeled hole. From a functional point
of view, a designer might specify a hole only by its centerline, radius, and
purpose (e.g., alignment), while a manufacturer might define a hole by its loca-
tion, radius, and manufacturing process (e.g., a punched hole). Both the de-
signer and manufacturer use the label hole. While the features labeled as holes
are similar, they are not identical. The difference of perspective for characteriz-
ing the concept hole necessitates differing feature definitions. The ability to
represent both manifold and nonmanifold objects is essential in describing par-
tial designs or referring to conceptual elements such as center lines or symmetry
planes.

Representation Formalisms

Our work on feature grammars builds on the work of Stiny (1975), who first
created shape grammars based on the formalisms of linguistics. Using a formal
grammar, instances of a class of objects can be generated based on a sequence of
production rules. We use a graph grammar, the class of grammars that operates
on two-dimensional graphs. A tutorial on graph grammars and their applications
is given by Ehrig (1987). Our approach to defining features is based on the work
of Pinella et al. (1989). He defines form features by a context-sensitive graph
grammar called an augmented topology graph grammar. This grammar repre-
sents features as topological and geometric entities and permits pattern-directed
recognition and generation of salient features from a solid model.

To describe the boundaries of 3D objects, which are inherently two-
dimensional, we have created a grammar whose domain is the graphs represent-
ing an object’s topology augmented with geometric information. Both nonmani-
fold and manifold objects can be represented with this augmented topology
graph (ATG). Topology is encoded by four primitives: nodes (points in 3-space),
edges, faces, and loops (the enclosing boundaries of faces). Each primitive is
represented as a vertex in the augmented topology graph.

a7 == na =7

Designer Assembler Manufacturer

Figure 5. A hole from three different perspectives.

These elements form a graph structure in which the nodes contain the topo-
logical elements and the arcs contain relationships between the elements. The
relationships are both topological and cross-referencing geometric information,
such as adjacencies and distances or angles between elements, as well as self-
referencing geometric information, such as face area or edge-solid angle. The
self-referencing information is represented by self-loop arcs. Thus, we achieve a
uniform representation of properties in the arcs and simplify the labeling of the
nodes of the graph. Figure 6(a and b) illustrates a simplified model and its
associated augmented topology graph. In Pinella et al. (1989), we present a
more complete description of the grammar, productions, and embedding rules.

Feature Grammars

In order to parse a design to recognize its features, a set of features must
exist in a representation consistent with the representation of the design. Each
feature is represented by its faces, edges, and nodes, as well as dimensional
characteristics. The features are stored in a graph that represents the adjacencies
and relationships between features, providing a base for further abstraction.

We use three levels of abstraction for recognizing features. At the lowest
level is a nonmanifold solid modeller. This level provides complete information
for representing a solid, including all topological and geometric data about the
model. The intermediate level of abstraction is the augmented topology graph.
This level captures the geometric relationships from the input grammar and
maintains a nonmanifold representation. The most absiract level represents man-
ifold features and any manifold portion of nonmanifold features such as geomet-
ric and topological relations between faces. Any nonmanifold portion of these
features is represented at the intermediate level. By providing multiple levels of
abstraction, we reduce the search space and concentrate the search on the areas
most likely to match particular features.

The power of the recognition system relies on the completeness and specific-
ity of the feature descriptions. A recognizer that requires enumeration of all
possible cases will be slow and inefficient as well as difficult to implement and
maintain, since the number of cases is often infinite. The description must be
able to express classes of objects, not only instances of them. The recognizer
must be able to recognize individual instances of those classes from the general
description. Such a description conforms to the formalism of a language that can
be described with a grammar. Under this formalism, a class of features is de-
scribed by a grammar whose starting symbol is a canonical form of the feature
and a finite set of rewrite rules that generates all possible instances of the class.
Figure 7 illustrates a simple rule for splitting walls in a slot, that is, for creating
a new instance of the slot feature.

«. Slot feature 7/ i

h. Augmented topology graph for siot feature

c. Abstracted augmented topology graph for slot feature

‘ Legend

Edge

6]
OO | o

O Face

———

Topology link
G Convex link
wVwm Concave link

Figure 6. Example: A slot feature.

Feature Recognition

Using our methodology, the recognition of a feature is reduced to identifying
a subgraph within the object’s ATG. The subgraph can be generated by a gram-
mar associated with the feature. For a complete recognizer in a domain, a num-
ber of grammars must be developed, one for each feature class considered. A
feature extractor finds the complete set of feature instances derivable from the
productions of an augmented topology graph grammar given the grammar and
an augmented topology graph representing the geometry of a design. Because
both the geometric model and the feature definitions are represented as graphs,
the problem of feature extraction is the problem of finding isomorphic sub-
graphs, an NP-complete problem.

Concurrent Design 269

Feature recognition occurs in two phases. In the ﬁrst. phase, called grammar
1pilation, a feature grammar is processed to enable 1ncrerqental processing.
he second phase, feature parsing, the compiled grammar is used.to extract
ures from as solid model. Because this method of feature extraction occurs
‘ementally, features can be extracted from an incomplete model as the model
onstructed. As the graph representing the model is built, its vertices can be
»ped on the recognizer. As features come into existence, they are found by
recognizer. ‘

During grammar compilation, the graph defining a feature is transforrped
» an equivalent graph that allows for more efficient processing. The vertices
he input-feature grammar are classified according to the number and type of
s connecting the vertex. Then, these classes are ranked so that those with the
-est member vertices have the highest priority. The recognizer is constructed
1 directed graph from vertices with the highest priority to vertice§ \fvith_the
er or equal priority. Consider the slot feature in Fig. 6; its most distinguish-
characteristic is its bottom face. By focusing on vertices in the design model

a. Rewrite rude 1o split slot wall

vV

b. Slot Featre

Figure 7. A simple rewrite rule for a slot grammar.

270 S. Finger et al.

that are characteristic of bottom faces, the fraction of the model that must be
searched can be reduced. In this feature, as in many other features, the manifold
edges and nodes contain little information that is useful in parsing. For two-
manifold features, geometric relationships between faces provide the most use-
ful information. For example, in Fig. 6a and b, all edges in the feature are
connected to two faces and two nodes. The structure of the nodes and edges is
the same no matter where they occur in the feature. They are not useful for
discriminating between high-level features. The feature in Fig. 6b removes these
ambiguous nodes and includes only those attributes that provide less ambiguous
information, that is, the geometric relationships between faces.

Applying the feature compilation procedure to Fig. 6b, the vertices of the
graph are collected into four classes: those with a single convex connection
(Class A), those with three convex connections (Class B), those with two convex
connections and one concave connection (Class C), and those with two convex
connections and two concave connections (Class D). The class with the highest
priority, Class D, is the starting vertex for the recognizer. Vertices are added to
the recognizer, one for each vertex in the input graph, based on the priority of
the class containing the vertex. Directed links are added from vertices with
higher priority to lower. If vertices have equal priority, the direction is assigned
arbitrarily. The feature recognizer for the slot is shown in Fig. 8.

During feature parsing, the complied recognizer is used to find features in
the design model. First, the vertices representing faces in the design model are
mapped into the same classes that were defined in the input grammar. Then,
connectivity from the feature grammar is verified in the model, guided from the
least frequently occurring classes to the most. Again, consider the compiled
feature in Fig. 8 and the model represented in Fig. 9. First, the face vertices in
the model are mapped onto all the classes defined by the grammar. Note that this
is not a unique mapping. There may be vertices in the model that are not repre-
sented by any class in the recognizer; likewise, there are vertices in the model
that map onto more than one class in the grammar. For example, faces that are
convex with three other faces, like class C in the example, are also members of
class A, a face that is convex with another face. The assignment of classes to
vertices in the model is shown in Fig. 9c. Finally, if the vertices in the feature
and the design model match, then the connectivity in the feature recognizer must
be verified. In Fig. 9e, all the nodes in the recognizer have been identified and
verified, so the slot feature has been matched in the design model.

This model of feature matching is a special case of the rete-match algorithm
(Forgy, 1982). The rete algorithm is an efficient method of matching many
patterns to many objects. The rete-match process has two steps. First, patterns
are matched with objects in a working memory. Second, interpattern dependen-
cies are verified. These two phases correspond to the mapping of face vertices
onto classes and verifying that the faces are configured properly. The algorithm

LUINGUITENL UESIYIit &rt

Recognizer for slot feature

OR0N02050

Figure 8. Feature recognizer for a slot.

presented here tunes the more general rete algorithm to the problem of feature
extraction.

In Safier and Finger (1990), we present the complete algorithm for feature
extraction. Because our method of feature recognition is bottom-up, features can
be extracted from an incomplete model while the model is being constructed. As
the graph representing the model is built, the vertices of the graph can be
mapped on the recognizer. As features come into existence, analyses can be
performed, and the designer can be given feedback on the design as it evolves.

Constraints

In the context of engineering design, a constraint can be thought of as a
required relationship among design features and characteristics. Constraints may
embody a design objective (e.g., weight), a physical law (e.g. F = ma), geo-
metric compatibility (e.g., mating of parts), production requirements (e.g., no
blind holes), or any other design requirement. Collectively, the constraints de-
fine what will be an acceptable design. The number, diversity, and variable
context of constraints make finding an acceptable design a difficult task. Fur-
thermore, finding the design that satisfies all the constraints is only possible
when the constraint network represents all design alternatives, when it is com-
plete and consistent, and when it results in a unique solution. These conditions
are rarely, if ever, met. Perhaps more importantly, just a solution to a set of
constraints does not necessarily contribute to the designer’s understanding of the
relative impact of various constraints and, therefore, does not assist the designer
in identifying alternative design configurations that are not governed by similar
constraints.

Design constraints are usually numerous, complex, and highly nonlinear.
Our objective is to provide the designer with insights about the critical interac-
tions among features, redundant requirements, and inconsistencies. This infor-
mation is useful to the designer even if the constraints can be solved numerically

2712 S. Finger et al.

because a purely numerical solution does not facilitate understanding of the
design task.

In many cases, it is difficult for a designer to understand the nature of a
solution or deadlock, particularly if constraints refer to each other in a circuitous
structure. Some of this difficulty can be alleviated by identifying suitable trans-
formations on constraint networks that result in directed rather than circuitous

a. Model

Co— :

b. Augmented topology graph of model

c. Assignment of classes to vertices in mode!

Figure 9. Recognition of a slot feature in a design model.

Concurrent Design 273

structures. The numerical evaluation of circuitous constraints is relatively
straightforward. The algebraic transformation is significantly more difficult, es-
pecially if the goal is to find transformations that have physical significance to a
designer and that augment a designer’s insight into the design problem (Watton,
1989).

In design, a small set of constraints often is critical in determining many
other design relations. The ability to identify and address these critical con-
straints early in the design process is important to the designer. As different
perspectives impose new constraints on the design, the importance of identifying
bottleneck constraints becomes even greater. We are currently exploring several
different techniques for identifying the bottleneck constraints.

Monotonicity Analysis and Interval Methods

Monotonicity analysis (Papalambros and Wilde, 1988) facilitates the simpli-
fication of a constraint network and the identification of inappropriately bonded
constraint networks. Unfortunately, most engineering design constraints do not
exhibit the global monotonicity required for the application of monotonicity
analysis; however, regional properties of functions can be exploited. The re-
gional information can, then, be reassembled to draw global inferences. We are
using a methodology based on interval analysis to represent, utilize, update, and
reassemble regional information.

Using the monotonicity principles can result in the deletion of constraints
and reduction in size and complexity of the model when variables are regionally
monotonic. Similarly, different constraints may become active and dominant in
different regions; hence, we gain leverage by exploiting regional information.
We apply interval methods to represent, abstract, and manipulate regional infor-
mation.

Interval arithmetic is used as the basis for evaluating algebraic relations
containing interval variables, yielding interval results. By using interval meth-
ods, we can characterize regional monotonicities, regional feasibilities, etc., of
design constraints. The four basic arithmetic operations produce exact intervals,
but the representation of higher level functions in terms of these basic arithmetic
operators introduces some difficulty. Conservative interval calculation destroys
the one-to-one correspondence between intervals on arguments and intervals on
functions. This has important implications for design systems, in which it is
often necessary to determine what range of arguments will satisfy a range on a
function itself. The extent to which a computed interval deviates from the actual
interval determines how strong the inferences are that can be made on the inter-
vals on variables.

Some specific techniques can be used to mediate against the expansion of
intervals. One such approach is the centered form of functions based on a

274 S. Finger et al.

Fourier expansion of the intervais and is described by Moore (1979). Other
heuristics, for example, dealing with even exponents, are also useful. In addi-
tion, several ad-hoc methods obtain less conservative intervals and even exact
intervals.

Constraint Propagation in Design

When a design decision is made, constraints can be used to propagate the
decision to other parts of the design. For example, once a motor-shaft diameter
is specified, it is possible to determine some characteristics of other compo-
nents, such as the bearings. Depending on the topological structure of the con-
straint network, propagating and checking the consistency of constraints are
difficult. In addition, a designer needs not just the solution but also needs an
understanding of the nature of the solution. In particular, a designer needs to
understand how certain design decisions or variables were set, how those vari-
ables depend on other design variables, and the leverage that design variables
and constraints have upon other design decisions. We address this need by pro-
viding a solution and an explanation of the solution that tracks the dependencies
in a constraint network and evaluates the impact of a decision on other design
variables.

Another important issue in the satisfaction of a constraint network is the
scope of changes in a design that result from a single design decision or a change
in a constraint. When changes can be localized, understanding the nature of the
constraints is straightforward. However, a small change that, at first, may ap-
pear to be local may, in fact, propagate across the entire design space. The
effects of such changes are difficult to track and understand.

Intervals can be effective for representing and reasoning about design-
parameter values. Interval values can also be propagated through a set of con-
straints so that potential constraint violations can be detected. By propagating
design decisions through constraints, the effect of some design parameters on
one another can be determined. In the process, redundant constraints are identi-
fied and eliminated. The intervals of the parameters can also be refined in this
process.

Any variable can affect any other variable if there is a chain of constraints
connecting them. Propagation can occur in any direction; it is not the case that
one variable in a constraint must be selected a priori as being dependent while
all others are regarded as independent. As constraints are propagated and as
intervals narrow, specifications may be found to be inconsistent with other con-
straints, thereby identifying violations and redundancies before design decisions
are made. Interval propagation provides insight about a design without the need
to choose specific values for design parameters. We believe that the ability to

draw inferences about a design problem early in the process is important in
concurrent design.

A large body of research exists on solving constraint propagation problems
including that of Sutherland (1983), Mackworth (1977}, Borning (1979), Suss-
man and Steele (1980), Gosling (1983), Popplestone et al. (1980), Steward
(1965), Sadeh and Fox (1988), and Serrano (1987). These techniques provide a
core of solution methods directly applicable to algebraic constraints in real vari-
ables. Based on these methods, we are developing propagation techniques appli-
cable to constraints among interval variables. Some important differences exist
when dealing with interval constraints: the distinctions between equality and
inequality constraints change, constraints may be evaluated when any number of
interval variables are not yet specified or even when all intervals are finite, and a
single constraint may be evaluated many times to obtain additional design infor-
mation.

Interval Criticality, Dominance, and Activity

The large number of constraints that arise in a concurrent design environ-
ment makes it useful to characterize the relative importance of each constraint.
Some constraints are active; their presence influences the design. Constraints
that are known to be inactive can be eliminated without influencing the design.
Some of the active constraints are critical; they determine a part of the design
solution. Most critical constraints are inequality constraints that are satisfied as
equalities in the final design. Some constraints dominate others; satisfying the
dominant constraints ensures the satisfaction of the others. Dominated con-
straints are inactive and can be deleted.

Constraints in design may not be globally monotonic, active, dominant, or
critical but may have these properties within a region. Therefore, the concepts
of constraint criticality, dominance, and activity defined over regions are more
effective in identifying the critical constraints and eliminating the insignificant
ones. Interval methods can again be used to characterize regionally dominant,
critical, and active constraints (Krishnan et al., 1990; Rinderle and Krishnan,
1990).

Constraint dominance is an especially useful property for the following rea-
sons:

® Dominance is transitive; dominance relationships can be propagated.

* Dominance often is context-independent; the dominance relationship between
two constraints may be independent of objective and other constraints.

* Context-dependent properties, like constraint activity and criticality, can be
identified using constraint dominance.

* Dominance can help manage constraints in a concurrent design setting where

- v uiyor B G,

constraints may be dynamically asserted. The significance of newly asserted
constraints can be evaluated by examining their interaction with currently
dominant constraints.

In a concurrent design setting where life-cycle constraints can be dynami-
cally asserted, the effect of a newly introduced constraint can be studied by
testing for dominance against the currently dominant constraint in different re-
gions of the design space. If a new constraint dominates the currently critical
constraint in some region of the design space, then the new constraint is critical.
Thus, the transitivity of dominance can be used to prove criticality of a new
constraint.

Global Optimization

Global optimization of a general, nonlinear, nonconvex objective function
subject to nonlinear constraints is an unsolved problem. There is no single best
method to attain a globally optimal solution. Most traditional nonlinear pro-
gramming techniques are local methods and can get stuck in local valleys. Also,
only under strong assumptions about the function can a solution be guaranteed to
be globally optimal.

Interval methods have been used to solve the global optimization problem
(Ratschek and Rokne 1988). The methodology behind these approaches for un-
constrained optimization is as follows:

¢ Use interval methods to represent regional information.

* Exploit the bounds provided by the interval method to guide the branch-and-
bound search strategy in which regions of the design space that have lower
bounds are examined first.

® Use a subdivisioning procedure to accelerate the search by yielding tighter
bounds.

To solve the constrained optimization problem, these methods successively
subdivide the constrained design space until they arrive at a part of the space that
satisfies all the constraints. Due to the extreme conservatism of interval calcula-
tions and the nonlinearity of the constraints, it is difficult to obtain a region that
satisfies all the constraints through interval calculations. On the other hand, it is
necessary that each and every constraint be satisfied in every region through
interval calculations. A large portion of the constraints is dominated in some
regions and can be deleted from those regions.

Concurrent Design 277

Reduction of Computational Complexity

Design problems often have large numbers of complex constraints that must
»e satisfied to complete a design task. Because it is impossible to guarantee the
iimultaneous solution of a large set of system constraints, we have investigated
lgorithms for planning and simplifying constraint satisfaction. Satisfying a
arge number of constraints does not imply that all the constraints must be solyed
iimultaneously. We have developed algorithms for finding coupled constraints
ind for creating a solution plan that minimizes the need for simultaneous solu-
ion.

The simplest type of constraint sets are those that do not need to be solved
;imultaneously. Constraint sets are said to be serially decomposable if the con-
straints can be solved serially, yielding the value of one new variable for each
sonstraint evaluation (Steward, 1965). We have also found that estimating the
salue of critical variables can sometimes uncouple equations, thereby reducing
»r eliminating simultaneity.

A serially decomposable constraint set can be ordered using a simple row
ind column-climination algorithm. This algorithm fails if the constraint set is
10t serially decomposable. An algorithm for assessing the decomposability of a
sonstraint set, prior to ordering, has been proposed by Krishnan et al. (1990?.

When a constraint set is not serially decomposable, portions of the constraint
set must be solved simultaneously. Using algorithms based the work of Serrano
'1987) and Steward (1965), subsets of the constraint set can be identified and
solated to be solved simultaneously. The algorithm consists of two stages:
natching and ordering. A matching should be maximal, that is, the maximum
wmber of possible matchings should be found. This is achieved using a stan-
iard bipartite matching algorithm (Aho et al., 1983). A maximal match det;r-
nines which variable is computed from which constraint but does not determine
he order of solution. The ordering of the computation is based on variable-
sonstraint matching. These dependencies can be represented as a directed graph
imong variables. When these dependencies are circuitous, a group qf con-
straints, said to comprise a strong component, must be considered s1multa-
seously. Strong components can sometimes be broken or simplified by estimat-
ing the value of one of the variables in the strong component. The process is
analogous to untying knots in a string. Untying a large knot either might reveal
smaller knots or might eliminate the knot altogether. By breaking a strong com-
ponent, a single-degree-of-freedom search can be performed on one variable
instead of solving for all the variables simultaneously.

It is our hypothesis that this idea can be extended to larger problems. In
Navinchandra and Rinderle (1989), we present algorithms that help to identify
the best variables to select in order to simplify a given constraint problem. We

278 S. Finger et al.

also present experiments that show that, in many cases, it is possible to eliminate
simultaneity by estimating the value of just one variable.

The notion of using bipartite matching and the strong components algorithm
together was originally suggested by Wang (1973). The algorithms were used to
solve Gaussian matrices for solving sets of equations using Newton-Raphson-
like methods. Serrano (1987) applied a similar algorithm for finding strong
components in sets of constraints. The aim of his work was to concentrate
solution on components and to avoid solving the entire constraint set simulta-
neously. Both these efforts are aimed at bidirectional constraints. We have ex-
tended the algorithms to unidirectional constraints. We have also developed the
notion of breaking strong components using heuristic approaches.

CONTROLLING THE DESIGN PROCESS

The architecture provides a group problem-solving environment in which
the designer and the perspectives cooperate in the generation of a design. Both
the designer and the perspectives have the opportunity to generate and test de-
sign decisions, enabling the simultaneous participation of all perspectives
throughout the design process rather than ex post critique. The competing goals
of the designer and the different life-cycle perspectives, as well as the interac-
tions between specification of the requirements and the specification of the arti-
fact, provide many sources of conflict during the design process. Consequently,
it is necessary to determine dynamically which of the perspectives’ contribution
dominates at each stage of the design process. Specifying a blackboard architec-
ture is not sufficient to specify the system’s design behavior. The designer man-
ager’s role is to coordinate the activities so that they are cooperative and coher-
ent.

The philosophy that underlies the group problem-solving strategy is a least-
commitment approach. Rather than making specific design decisions immedi-
ately, constraints are imposed successively until commitments must be made.
The implication is that problem-solving is constraint-directed; however, it is not
possible to state all the constraints on a design and then to solve them. In
addition to the fact that the initial constraint set may be unsolvable, it is also true
that the constraint set changes over time as decisions are made and different
parts of the design space are explored. Perspectives represent a partitioning of
knowledge relevant to some stage in the product life cycle. Much of the knowl-
edge may not be relevant to the current design task; and, depending on the path
taken by the designer, many of the constraints within the perspectives may never
be relevant to a particular design problem. Therefore, posting all of the con-
straints on the blackboard at the outset would not only obfuscate the problem but
increase the problem-solving complexity to that point of being unmanageable.
The alternative is to let each perspective determine the relevance of its knowl-

Concurrent Design 279

edge to the situation at hand and, then, reveal whatever knowledge is relevant in
the form of a constraint.

Design is an exploration among alternative designs and among the methods
to generate and evaluate them. At any point in the design process, the designer
and the perspectives may have many contributions to make. The computer re-
sources and the designer’s time are limited, so decisions have to be made on
which paths to explore and which methods to use. An open issue is the determi-
nation of which perspective dominates at any state in the design process when
contributions may conflict, overlap, or be tangential. The current demonstration
version of Design Fusion leaves the selection to the designer, but we believe that
the appropriate approach is based on an analysis of the existing constraints.

Inconsistencies and conflicts in goals inevitably arise during the design pro-
cess. Dealing with inconsistencies in the constraint network is another area of
research. Due to the conflicting goals and variations of knowledge of perspec-
tives, revealed constraints can lead to inconsistencies. These inconsistencies are
tolerated by the system but are also tracked. Our approach is to use a depen-
dency representation so that the sequence of decisions—and, ultimately, the core
hypotheses that lead to the inconsistency—can be identified and retracted when
necessary.

The search manager’s control abilities are made possible through the defini-
tion of a precise, multilevel protocol that defines how a perspective can make
contributions. The lower-level protocol focuses on integrating the contributions
of each perspective through the assertion, derivation, and retraction of con-
straints. The upper level focuses on the postponement, relaxation, and satisfac-
tion of constraints. Figure 10 defines the lower-level protocol; work on the
upper-level protocol is underway.

CONCLUSION

We have implemented the first version of the design system that embodies
the research presented in this article. This system, known as Design Fusion, has
enabled us to test and refine our ideas on concurrent design. In the process of
implementing the Design Fusion system, we have

¢ created a method for defining and recognizing nonmanifold features and have
begun to implement an efficient algorithm for recognizing features in an
evolving design;

» created an architecture that integrates partial solutions to portions of the de-
sign problem based on a common representation;

e created new algorithms for reasoning about constraints using interval methods
and regional partitioning.

280 S. Finger et al.

The Design Fusion system supports concurrent design by enabling the si-
rpultaneous consideration of life-cycie constraints. It uses a shared representa-
tion of the design, which can be parsed using perspective-specific features. It
uses constraints as a language by which perspectives communicate with one
another and with the designer. The perspectives are coordinated through a black-
board architecture that uses a heterarchical control structure.

e ASSERT:
* Assigns a value or constraint to a feature.

* Causes a new branch to be created in the design evolution tree.

» Cannot be retracted.

¢ POST:
* Assigns a value or constraint to a feature.

» Causes a new branch to be created in the design evolution wee.

* Can be retracted.

* REVISE:
* Modifies a value or constraint of a feature.

* Maintains the same branch of the design evolution tree.

« Can be retracted.

e DERIVE:
* Assigns a value or constraint to a feature.
* Maintains the same branch of the design evolution tree.

* Is retracted automatically if a posting or revision it depends on

is retracted.

* RETRACT:
* Removes a value or a constraint from a feature.
* Causes a new branch to be created in the design evolution tree.

Figure 10. Low level protocol definition.

Concurrent Design 281

.CKNOWLEDGMENTS

This work has been sponsored, in part, by Defense Advanced Research
rojects Agency (DARPA) under contract No. MDA972-88-C-0047 for the
'ARPA Initiative on Concurrent Engineering (DICE) and by the National Sci-
1ce Foundation under the Engineering Research Centers Program, Grant CDR-
522616.

We wish to acknowledge the work of Yung-Cheng Chao, Eric Gardner,
srry Griffin, Levent Gursoz, V. Krishnan, D. Navinchandra, Harold Paxton,
liguel Pinilla, Scott Safier, Atul Sudhalkar, and Christopher Young, all of
hom have contributed many ideas and substantial time to the creation of the
esign Fusion system.

EFERENCES

10, A. V., Hopcroft, J. E., and Ullman, J. D., 1983, Data Structures and Algorithms, Reading, Mass.:
Addison-Wesley Publishing Company.

ichant, J., and McDermott, J., 1984, R1 Revisited: Four Years in the Trenches, Al Magazine, 5:21-32.

rning, A., 1979, Thingl.ab—A Constraint-Oriented Simulation Laboratory, Technical Report, Xerox Palo
Alto Research Center, Palo Alto, Calif.

wang, T. C., Anderson, D. C., and Mitchell, O. R., 1988, QTC—An Integrated Design/Manufacturing/
Inspection System for Prismatic Parts, Computers in Engineering 1988, pp. 417-426, San Francisco,
Calif.: American Society of Mechanical Engineers.

itkosky, M. R., Tenenbaum, J. M., and Muller, D., 1988, Features in Process-Based Design, in Proceed-
ings of the International Computers in Engineering Conference, San Francisco, Calif.: American Society
of Mechanical Engineers.

Floriani, L., 1989, Feature Extraction from Boundary Models of Three-Dimensional Objects, JEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 11:785-797.

xon, J. R., 1988, Designing with Features: Building Manufacturing Knowledge into More Intelligent CAD
Systems,” in Proceedings of ASME Manufacturing International-88, New York: American Society of
Mechanical Engineers.

rig, H., 1987, Tutorial Introduction to the Algebraic Approach of Graph Grammars, in Graph-Grammars
and their Applications to Computer Science, pp. 3-14, New York: Springer-Verlag.

man, L. D., Hayes-Roth, F, Lesser, V. R., and Reddy, D. R., 1980, The Hearsay-II Speech Understanding
System: Integrating Knowledge to Resolve Uncertainty, Computing Surveys, 12:213-253.

Icidieno, B., and Giannini, F., 1989, Automatic Recognition and Representation of Shape-Based Features in
a Geometric Modeling System, Computer Vision, Graphics, and Image Processing, 48:93-123.

nger, S., and Dixon, J. R., 1989. A Review of Research in Mechanical Engineering Design, Part 1I,
Research in Engineering Design, 1:121-137.

rgy, C., 1982, Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem, The
Journal of Artificial Intelligence, 19:17-37.

wankar, P., Chuang, S. H., Henderson, M. R., and Ganu, P., 1990, Graph-Based Feature Extraction, in
Proceedings of the First International Workshop on Formal Methods in Engineering Design, Manufactur-
ing, and Assembly, pp. 167-183, Colorado: Colorado State University.

sling, J., 1983, Algebraic Constraints, Ph.D. dissertation, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Pa.

irsoz, E. L., Choi, Y., and Prinz, F,, 1988, Vertex-based Representation of Non-manifold Boundaries, in
Second Workshop on Geometric Modeling, New York: IFIP.

282 S. Finger et al.

Hayes, C. C., and Wright, P. K., 1989, Automating Process Planning: Using Feature Interactions to Guide
Search, The Journal of Manufacturing Systems, 8:1-15.

Hulthage, I., Fox, M. S., Rychener, M. D., and Farinacci, M. L., 1990, The Architecture of ALADIN: A
Knowledge-Based Approach to Alloy Design, IEEE Expert, 5:56-73.

Joshi, S., and Chang, T. C., 1988, Graph-Based Heuristics for Recognition of Machined Features from a 3D
Solid Model, Computer-Aided Design, 20:58-66.

Krishnan, V., Navinchandra, D., Rane, P., and Rinderle, J. R., 1990, Constraint Reasoning and Planning in
Concurrent Design, Technical Report CMU-RI-TR-90-03, Robotics Institute, Carncgic-Mellon Univer-
sity, Pittsburgh, Pa.

Mackworth, A. K., 1977, Consistency in Network Relations, Artificial Intelligence, 8:99-118.

Mitial, S., Dym, C., and Morjaria, M., 1985, PRIDE: An Expert System for the Design of Paper Handling
Systems, in Applications of Knowledge-Based Systems to Engineering Analysis and Design, pp. 99-116,
San Francisco, Calif.: American Society of Mechanica! Engineers.

Moore, R., 1979, Methods and Applications of Interval Analysis, Philadelphia, Pa.: SIAM.

Navinchandra, D., and Rinderle, J. R., 1989, Interval Approaches for Concurrent Evaluation of Design
Constraints, Paper presented at 1989 ASME Symposium on Concurrent Product and Process Design,
American Society of Mechanical Engineers, San Francisco, Calif., December.

Nielsen, E. H., Dixon, J. R., and Simmons, M. K., 1987, How Shall We Represent the Geometry of De-
signed Objects?, Technical Report 6-87, Mechanical Design Automation Laboratory, University of Mas-
sachusetts, Amherst, Mass.

Papalambros, P. J., and Wilde, D. J., 1988, Principles of Optical Design, New York: Cambridge University
Press.

Pinilla, J. M., Finger, S., and Prinz, F. B., 1989, Shape-Feature Description and Recognition Using an
Augmented Topology Graph Grammar, in Proceedings of NSF Engineering Design Research Conference,
pp- 285-300, Ambherst, Mass.: University of Massachusetts.

Popplestone, R. J., Ambler, A. P., and Bellos, 1., 1980, An Interpreter for a Language for Describing Assem-
blies, Artificial Intelligence, 14:79-107.

Ratschek, H., and Rokne, J., 1988, New Computer Methods for Global Optimization, Chichester, England:
Ellis Horwood Limited.

Requicha, A. A. G., and Voelcker, H. B., 1982, Solid Modeling: A Historical Summary and Contemporary
Assessment, IEEE Computer Graphics and Applications, 2:9-24.

Rinderle, J. R., and Krishnan, V., 1990, Constraint Reasoning in Concurrent Design, ASME Design Theory
and Methodology DTM *90, ASME, 1990, Chicago, IL: American Society of Mechanical Engineers,
submitted.

Sadeh, N. and Fox, M. S., 1988, Preference Propagation in Temporal Constraints Graphs, Technical Report
CMU-RI-TR-89-2, Intelligent Systems Laboratory, The Robotics Institute.

Safier, S. A., and Finger, S., 1990, Parsing Features in Solid Geometric Models, in Proceedings of the
European Conference on Artificial Intelligence-90, pp. 566-572, London: Pitman Publishing.

Sakurai, H., and Gossard, D. C., 1988, Shape-Feature Recognition from 3-d Solid Models, in Proceedings of
the International Computers in Engineering Conference, San Francisco, Calif.: Society of Mechanical
Engineers.

Serrano, D., 1987, Constraint Management in Conceptual Design, Ph.D. dissertation, Department of Mechan-
ical Engineering, Massachusetts Institute of Technology, Boston, Mass.

Shah, J. J., and Rogers, M. T., 1988, Feature-Based Modelling Shell: Design and Implementation, in Pro-
ceedings of the International Computers in Engineering Conference, San Francisco, Calif.: American
Society of Mechanical Engineers.

Steward, D. V., 1965, Partioning and Tearing Systems of Equations, Journal of SIAM, Numerical Analysis
Series B, 2:345-365.

Stiny, G., 1975, Pictorial and Formal Aspects of Shape and Shape Grammars, Basel: Birkhauser.

Sussman, G. J., and Steele, G. L., 1980, CONSTRAINTS—A Language for Expressing Almost Hierarchical
Constraints, Artificial Intelligence, 14:1-39.

Sutherland, 1. E., 1983, Sketchpad—A Man-Machine Graphical Communication System, Technical Report
296, MIT Lincoln Laboratory, Boston, Mass.

Concurrent Design 283

Unger, M. B, and Ray, S. R., 1988, Feature-Based Process Planning at the AMRF, in Computers in Engineer-
ing 1988, pp. 563-569, San Francisco, Calif.: American Society of Mechanical Engineers.

Voelcker, H. B., 1988, Modeling in the Design Process, in Design and Analysis of Integrated Manufacturing
Systems, pp. 167-199, Washington, D.C.: National Academy Press.

Wang, R. T. R., 1973, Bandwidth Minimization, Reducibility Decomposition, and Triangularization of Sparse
Matrices, Ph.D. dissertation, Computer and Information Science Research Center, Ohio State University,
Columbus, Ohio.

Watton, J. D., 1989, Automatic Identification of Critical Design Constraints, Ph.D. dissertation, Department
of Mechanical Engineering, Camegie Mellon University, Pittsburgh, Pa.

Weiler, K. J., 1986, Topological Structures for Geometric Modeling, Ph.D. dissertation, Rensselaer Polytech-
nic Institute, Troy, N.Y.

Woo, T. C., 1983, Interfacing Solid Modeling to CAD and CAM: Data Structures and Algorithms for Decom-
posing a Solid, in Computer-Integrated Manufacturing, pp. 39-45, New York: ASME.

