Chapter 13

WRIGHT:
A CONSTRAINT BASED
SPATIAL LAYOUT SYSTEM

Can A. Baykan and Mark S. Fox

Abstract

WRIGHT formulates the problem of generating two dimensional layouts con-
sisting of rectangular design units as a Boolean

13.1. INTRODUCTION

WRIGHT is a constraint based spatial layout design System. It formulates
layout problems as constrained optimization problems (COP) |, and solves them
by constrained heuristic search (CHS) . CHS combines constraint satisfaction
with heuristic search , and adds
states, operators and an evaluation function

measures of problem topology that allows searc
reduces backtracking [13].

Spatial layout deals with the design of two dimensional configurations, such

as site plans, floor plans, manufacturing facility layouts, and arrangement of
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396 BAYKAN AND FOX

equipment in rooms. In spatial layout, topological relations such as adjacency,
alignment, grouping, and properties such as shape, dimension, distance, and
other functions of spatial arrangement are a principal concern [8]. Spatial layout
is a design task. It is an important aspect of architectural design and other fieldg
that deal with physical design.

Design is the process of constructing a description of an artifact that satisfieg
a functional specification, meets explicit or implicit performance criteria, is
realizable and satisfies restrictions on the design process itself [20]. There are
requirements on performance in terms of time, space, energy consumption,
simplicity, reliability, maintainability, fabrication and cost. These may either be
specified by the client or by design codes or be implicit in established practice of
good design in the field. Realizability means that the artifact conforms to limita-
tions of the target medium, i.e. is a building that can be built by some means. It
is natural to define design problems in terms of constraints. WRIGHT uses con-
straints to represent arbitrary amounts of expertise in a uniform and principled
manner, and derives an understanding of the problem (search) space that leads to
more efficient search from constraints.

For each design task, the availability of an implicitly specified set of primitive
components and a set of primitive relations between the components can be as-
sumed. For example, in electronics the primitive components are transistor,
capacitor; and the relations are serial and parallel connections. In spatial layout,
the primitive components can be a set of rooms with different functions, and the
relations are topological and geometrical relations such as adjacency, distance
and alignment.

The primitive objects are called design units, and the relations are called
spatial relations in WRIGHT. Design units are rectangular shapes with discrete
orientations pointing in one of the four principal directions. Spatial relations are
topological or geometrical, such as adjacency, distance and overlap. The set of
possible spatial relations is very large. Therefore, instead of defining a complete
and fixed set, we have defined the relations that are required most often, and
supplied a template for defining new spatial relations. WRIGHT formulates
spatial layout as the generation of configurations of design units satisfying
given spatial relations and limits on dimensions. A spatial layout problem is
defined by the following inputs.
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Figure 13-1: Plan Showing Initial Configuration of Kitchen
* An initial layout which may be an empty space,
* Design units to locate and/or dimension,

1. Sink

2. Refrigerator

3. Range

4. Sink center

5. Mix center

6. Range center

7. Circulation area

¢ Constraints specifying spatial relations between design units and
limits on their dimensions.

1. Sink should be inside sink center

2. Sink should be completely next to circulation area
3. Sink shou..' he facing circulation area

4. Sink should be completely next to window

5. Sink length > 90 cm.

Spatial layout has the following characteristics:

* The variables under consideration such as length, width, area, and
location of objects are continuous. Though dimensions and loca-
tions can be discretized using a grid, this arbitrarily eliminates some
solutions.
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DPS [21] and GSP [8] use drawing based representations. In GSP design un
must be rectangles, and in DPS they can be arbitrary polygons. Dimensions
the design units must be fixed. In drawing based systems, locations tried :
placing a design unit depends on the existing layou. as seen in Figure 13-3.
a result of this, configurations generated depend on tne order in which desi
units enter the layout. Since GSP and DPS try only one ordering, they may m
possible solutions. Their correctness is not guaranteed.
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Figure 13-3: Locations Considered by GSP for Placing the Next Design U.

Locations are defined by lines projected by the edges of the space and the
objects that are in place. Placing an object at every location above, in four
possible orientations, results in 96 new configurations.

Reprinted by permission of Elsevier Science Publishers B.V. from ~Automated Space Planning.” by
C.M. Eastman, in Arvificial Intelligence (Vol, 4: p. 57, 1973).

+  Relational representations use nodes to denote points, lines, design uni
some combination of these and edges to denote adjacencies between them.
possible representation is an adjacency graph, where nodes denote design 1
and edges between them denote adjacency, as in GRAMPA [15]. Another
sibility is to use adjacencies between design units and the maximal lines bo!
ing them in an arrangement. This is called a wall-representation and is usc
DIS [10] and LOOS [12].

The representation used in DIS and LOOS has two steps: determining
relational structure of an arrangement using north-of and east-of relations
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Figure 13-4: A DIS Structure and Possible Configurations Represented by it

Reprinted by permission of Pion. Lid., London. from "Wall Represcatations of
Rectangular Disscctions and Their Usc in Automated Space Allocation,” by
U. Flemming. in Environment and Planning B (Vol. 5. p. 225.1978).

deriving the constraints on the dimensions of the design units based on the
topology defined by the wall-representation.

Figure 13-4 shows a configuration of four design units labeled 1 to 4. The
relational structure is seen at left, where north-of relation is indicated by solid
arrows and east-of relation is shown by dotted lines and arrows. Design units 1
and 3 are north-of 2and 4, 1 is east-of 3, and 4 is east-of 2. The three configura-
tions in the same Figure show possible layouts that are represented by this rela-
tional structure. This structure gives rise to constraints on the dimensions of the
design units called dependent constraints. Let x; and v, be the x and y-
dimensions of the i design unit. The dependent constraints for the configura-
tion seen in Figure 13-4 are x, +X; =X, + X4, ¥, = Y3, V2= Ja - Required ad-
jacencies between design units also result 1n dependent constraints. For ex-
ample, the requirement design unit 3 must be adjacent to design unit 4 for at
Jeast L units results inx; - x, = L .

Both WRIGHT and DIS/LOOS use constraints to define an equivalence class
of configurations, but WRIGHT uses constraints to define both topology and
dimensions whereas DIS and LOOS use 2 relational structure to define topology
and to derive dependent constraints. Relational systems have built in assump-
tions that permit only well-formed arrangements to be described. In the three
relational systems above, GRAMPA, DIS and LOOS, well-formedness means
that design units do not overlap. Relational systems use a restricted set of rela-
tions to describe configurations so it may not be possible to describe all aspects
of a configuration we are interested in. For example, adjacency graphs do not

e et ina e AR A SR
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describe alignment or relative location such as north-of or south-of. The wall-
representation does not explicitly describe alignment or adjacencies between
regions using the relations but uses the dependent constraints to represent them.

WRIGHT expresses topology by algebraic relations between the lines of the
design units, which is also how spatial relations spatial relations are defined. A
configuration is represented by a CSP where the variables such as the locations
and dimensions of the design units are interval variables, and the attributes of
the layout such as adjacencies and distances are algebraic constraints on the
variables. Alternative configurations are generated by solving a discrete CSP,
where the variables are the spatial relations to be satisfied and their values are
the distinct ways of satisfying them. WRIGHT employs a priority strategy,
where search operators determine only the attributes specified by the selected
constraint. The topology and dimensions of a configuration can be decided in
any order due to the CSP formulation used.

GSP and DPS implement fail-first using domain heuristics for selecting a
design unit, such as selecting the largest one or the one most strongly connected
to those already located. Since DPS can deal with arbitrary polygons, it also
uses a priority strategy by forming macro design units out of those that are
strongly connected, and then treating it as one object. In DIS and LOOS, the or-
der of entering the design units is given by the user.

Issues in CSP literature relevant to WRIGHT’s method are balancing search
and consistency methods, variable and value selection heuristics, and compar-
ing dynamic versus fixed variable selection. REF-ARF [9] combines constraint
manipulation with assigning values to variables by backtracking search. A vari-
able is selected by first looking at the constraints which have the least number of
free variables. Among that set, it attempts to use constraints which most severly
restrict the values of the variables recurring in them. Constraints are mathemati-
cal equations, inequalities and disjunctions. The relations specified in con-
straints are ordered from most to least restrictive. Equations are assumed to be
most restrictive and disjunctions least restrictive. Among those variables occur-
ring in the most restrictive set of constraints, the one with the smallest range is
selected for assigning a value at that search level. Other heuristics mentioned
are selecting a variable with least number of constraints, selecting a variable
with most number of constraints, and selecting a variable connected most
strongly to previous variables [6]; partitioning constraint graphs into stable sets
[14]. Purdom [22] determined that dynamic variable ordering during search is
efficient only in problems with an exponentially small number of solutions but
that require exponential search. ‘




WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT

13.3. USER INTERFACE

Design is engaged in determining the specifications as much as in searching
for solutions. In descriptive studies of design, it is observed that designers iden-
tify new constraints throughout the design process [1, 3, 7]. Thus there are two
aspects to design [1, 3]:

1. creating an artifact that satisfies the constraints: problem solving,

2. defining or modifying a problem by identifying, refining, relaxing,
and retracting constraints: problem structuring.

A model has been proposed by Simon [23] to account for both types of be-
havior. The model consists of a problem solver which operates in a well-
structured problem space at any given point in time, and a noticing and evoking
mechanism which modifies that problem space. The user interface is based on
the premise that WRIGHT finds the solutions satisfying the set of constraints,
and the designer is the problem structuring agent, even though s/he may also
search for solutions.

Below is a list of possible tasks that may be carried out during design, using
WRIGHT:

1. Defining new design units. It is possible to modify the hierarchy of
design units in the domain, for example to define a new a type of
room or appliance to be used as a primitive at some level of
design.

2. Identifying new spatial relations. Some domains such as site layout
or kitchen layout may require a new spatial relation in order to ex-
press desired configurations. Spatial relations are defined in terms
of algebraic relations and the designer can introduce new ones.

3. Changing the set of design units in a configuration. After looking
at some candidate solutions, the designer may determine that it is

possible to place another bedroom in the house or a that hallway is
needed.

4. Identifying new constraints. Looking at a particular configuration,
the designer may identify additional constraints and need to in-
clude them in the knowledge base.

5. Relaxing constraints. When it is not possible to satisfy all the con-
straints, some have to be relaxed.

6. Maintaining multiple alternatives. These are pareto optimal partial
solutions that are significantly different from each other.
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7. Selecting a partial solution to expand.

8. Selecting an operator for generating new alternatives.

The first four operations are carried out only by the designer. Constraints,
design units and spatial relations are defined declaratively and can easily be
changed by the designer during the design process. The changes may become ™
part of the knowledge base. The system carries out the last four operations,
using the knowledge defined by design units, spatial relations and constraints. :
Constraints specifying relations between design units at any level of the class =&
hierarchy, including particular instances of design units, are posted, relaxed and -
retracted by selecting the elements from pop-up menus. The designer can inter- ’g
act with WRIGHT to make the layout decisions. There are commands to create,
size, locate, and orient design units. The designer can define a rectangle by %
clicking at its top left and bottom right corners in the graphlcs window using the ’%}
mouse. Rectangles are used to input minimum size, maximum size and bound-
ing box of the location of objects. It is possible to think of a rectangle as a con--
straint, because it indicates bounds. During interactive sizing and locating
operations, WRIGHT will not allow the user to violate existing bounds on a .
design unit. For relaxing bounds, one needs to move up in the search tree to a
state where those values have not been determined yet or have looser bounds.

lrdhe A

13.4. KNOWLEDGE-BASE

e o

WRIGHT expresses domain knowledge using prototype design units, spatial
relations and constraints. It has knowledge bases for designing kitchens, houses, -
manufacturing facilities and for solving bin-packing problems.

13.4.1. Design Unit Hierarchy

The taxonomy of design units in some layout domain are defined by prototype
design units. These are organized hierarchically using is-a links. The design :
units used in the design of small home kitchens is seen in Figure 13-5.

Configuration knowledge is expressed as constraints on the prototypes. Con- :
straints are inherited through the hierarchy, therefore its structure should .
facilitate organizing domain knowledge. A new prototype can be created and
placed at the appropriate point in the hierarchy, so that it inherits constraints and :
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space< kitchen
hall

boundary door sink
design-unit window range

circulation wall refrigerator

equipment appliance dishwasher

work—-cente sink-center

table mix-center

range-center

Figure 13-5: Taxonomy of Kitchen Design Units

values from above, and those below inherit from it. Inheritance of constraints
eliminates duplication.

Abstraction by aggregation combines design units into larger design units,
which are the primitive objects of configurations at another level of aggregation.
A design problem may span-more than one level. For example, in the design of a
housing complex, the levels of aggregation are building, apartment, room, and
furniture. The hierarchy in Figure 13-5 contains design units at three levels of
aggregation: spaces, work centers and appliances. A kitchen contains the work
centers and circulation. A sink-center may contain sink and dishwasher.
WRIGHT can represent and solve spatial layout problems involving multiple
levels. There is no difference in the way objects at different levels of aggrega-
tion are treated.

13.4.2, Spatial Relations and Limits on Dimensions

WRIGHT’s constraints specify spatial relations between design units or limits
on their dimensions. Spatial relations indicate the location of one design unit
Wwith respect to another. For example, adjacency is a spatial relation. Some spa-
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tial relations are purely topological, independent of any dimensions, such as ad-

jacency. Others such as distance involve a dimension. Some spatial relations £

are dependent on the orientations of the design units.

There is a very large number of possible spatial relations. Therefore in
WRIGHT, we have defined a set of spatial relations with the goal of expressing
the characteristics of configurations that are of interest in spatial planning. Ifin -

some domain we need to express other relationships, it is possible to define new

spatial relations using a grammar defined for this purpose.
The spatial relations currently defined in WRIGHT are seen in Figure 13-6,
Spatial relations are grouped in two, based on whether the orientation of the

design units is considered, or whether the relations are defined with respect to

the global coordinates of the configuration. Object-centered relations are
defined with respect to the orientation of one of the design units involved,
Global relations are defined with respect to the global coordinates, which has
the y-axis pointing down and the x-axis pointing towards the right.2

The types of global relations are position, spatial-overlap, alignment and ad-
Jacency. Position relations indicate the location of one object with respect to
another. Spatial-overlap deals with combinations of overlapping or non-
overlapping of the x and/or y components of rectangles. Alignment relations
specify that the north, south, east or west lines of two rectangles are equal.
Global relations are seen in Figure 13-7.

Note that the relations are not mutually exclusive. For example, non-overlap,
west-of, completely-next-to, and align-one-side relations can hold at the same
time between two design units. Also some relations are inverses, i.e. inside is
the inverse of has-inside, and east-of is the inverse of west-of. Inverses are seen
under the same picture.

There are object-centered relations corresponding to all global relations ex-

cept spatial-overlap. These are similar to their global counterparts except they -

also depend on the orientation of the first design unit. Direction relations are on
the orientations of both design units. Some object-centered relations are seen in
Figure 13-8.

The set of spatial relations are not fixed in WRIGHT. 1t is possible to define
new relations by specifying the semantics of the relation using a grammar
defined for this purpose.

The second group of constraint types are limits on dimensions. Limits are
greater-than, greater-than-or-equal, less-than, less-than-or-equal, and equal-to.
They are for expressing constraints on dimensions. The use of spatial relations
and limits in constraints are described below.

2This is based the convention used in most graphics systems today, and is defined for ease
of displaying text by starting from the origin and going from left to right in positive x direc-
tion and top to bottom in positive y direction.
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A A A
A B
B B
A inside B A complete-overlap B A overlap B B
A one-dim-overlag B
A A
B B
A next-tc B A completely-next-to B
A A
B B
A north~of B A west-of B
A
A A
A
B B B B
A align-corner B A align-three-sides B A align-two-sides B A align-one-side
A
Euclidean’ 'Vem:ical
]
- >
Horizontal
B

A distance B

Figure 13-7: Global Relations




WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT
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A parallel B A perpendicular B
A ccw B
B cw A

fA ‘A

B B

A back-adjacent B A front-complete-adjacent B

Figure 13-8: Object-centered Relations

13.4.3. Domain Constraints

Constraints express knowledge of the design domain in the form of desired
relations between design units, spatial constraints, or limits on their dimensions,
dimensional constraints.

Spatial constraints specify a relation between two design units. Since con-
straints expressing domain knowledge are posted to prototype design units, they
must also contain quantifiers designating how they apply to instances. The
quantifiers in WRIGHT are all and some. Some spatial relations, such as dis-
tance or next-to may require numerical values specifying a minimum or max-
imum. The following are spatial domain constraints:

All sink completely-next—-to some window
All sink next-to some window = 50 cm.
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Dimensional constraints specify a design unit, a dimension of the design
unit,> and an algebraic relation. Dimensional constraints also contain quan-
tifiers.

Some sink length greater-eq 90 cm.

The constraint above requires that there must be at least one sink longer than 90
cm, while the constraint below requires that all sinks must be longer than 90 cm.
in a layout.

All sink length greater-eq 90 cm.

The dimensional constraints above are unary dimensional constraints. Binary
dimensional constraints specify a limit between two dimensions. There are no
binary dimensional constraints in kitchens, so the following example is from the
domain of house layout:

All masterbedroom area greater—than all bedroom area.

Every domain constraint is assigned an importance value between 0 and I,
used for rating solutions. Relavations are tried when a constraint can not be
satisfied. Relaxation of a constraint is another constraint that specifies alter-
native relations, alternative design units, or looser bounds on numerical vari-
ables. Relaxations are specified explicitly, either by denoting one or more con-
straints as relaxations of some constraint, or by specifying that it is possible to
omit the constraint, i.e., the empty relaxation. Constraints that may not be
relaxed cause a configuration to be eliminated when they are violated. Relaxa-
tions have lower importance values than the constraint they relax, and an empty
relaxation contributes an importance of 0.

Design knowledge is expressed in terms of required spatial relations in
WRIGHT. Consider the relationship of the sink to windows: "The average
housekeeper spends nearly 1 and 1/4 hours at the sink each day so there is a
good case for putting the sink at a window for good light and view." [2], p.72.
One way of satisfying the requirements is placing the back of the sink com-
pletely next to the window, which is expressed by the following constraints:

¢ All sink completely—next-to some window, importance=1l

¢ All sink at-back some window, importance=1l

When it is not possible to put the sink completely next to the window, placing it
in front of and perpendicular to the window will allow direct light and a view of

3Dimensional variables associated with design units are length, width and area. They are
defined in the section on layout representation.
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outside. The sink must also be close enough to the window. The following con-
straints express this case:

* All sink distance some window < 120 cm., importance=0.8

* All sink one-dim-overlap some window > 30 cm., importance=0.6

¢ All sink perpendicular-to some window, importance=0.8

The second set of constraints are a relaxation of the first two, and have lower
importance values. Distance is measured between closest points, and one

dimensional overlap means overlap in either the vertical direction or the
horizontal direction.

13.5. REPRESENTATION OF CONFIGURATIONS

Configurations are made up of design unit instances and algebraic constraints
which define their relative positions. A design unit instance is a structured vari-
able which consists of 8 variables: north-line, south-line, east-line, west-line,
length, width, area, and orientation. North-line, south-line, east-line and west-
line are the locations of the four lines of the rectangle. Length and width are
dimensions, indicating distances between pairs of lines. Area is another dimen-
sion, equal to length times width. Locations and dimensions are interval vari-
ables defined by a minimum and a maximum value. For locations, the domain
initially is [-eo, e}, and for dimensions [0, =]. Orientation indicates which way
the front of the design unit is facing. The domain of orientation variables is {0,
90,180, 270}. The algebraic constraints are: =,>, 2,4+, and x.

A design unit defines constraints between its lines, dimensions and area, as
seen in Figure 13-9,

|

i

{ Configurations are defined by algebraic relations between variables. In
i

i

i

|

i

{

Figure 13-10, the sink is south of the window, and adjacent to it for S0 cm. or
longer. The algebraic relations which define this configuration are seen in the
same Figure. Variables v/ and v2 are created for expressing the adjacent dis-
tance between sink and window.

A configuration is formed by adding relations and sometimes new variables

incrementally. After each change, local propagation using interval arithmetic
maintains the consistency of the layout.
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11 11 + W = 12
11 < 12
W 13 + L = 14
‘ 13 < 14
12 L * W = Area
et L -
13 14

Figure 13-9: Constraining Relations Defined by a Design Unit

Reprinted by permission of Springer Verlag from *Constraint Satisfaction
Techniques for Spatial Planning,” by Can Baykan and Mark Fox, in Intelligent
CAD Systems HI: Practical Experience and Evaluation (p. 194, 1991).

13.6. CONSTRAINT COMPILER

The constraint compiler takes the prototype design units, domain constraints
and spatial relations in the knowledge base and the design unit instances in a
given problem, and creates a constraint graph which will be used for generating
and testing solutions.

represented as combinations of algebraic constraints on the components of the.
design unit instances.

The constraint graph is an and/or network that refines design knowledge
represented by constraints on prototype design units into a design specification
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Figure 13-10: A Configuration and the Algebraic Constraints Defining It

Reprinted by permission of Springer Verlag from ‘Constraint Satisfaction
Techniques for Spatial Planning,” by Can Baykan and Mark Fox, in Intelligent
CAD Systems Ill: Practical Experience and Evaluation (p. 194. 1991).

13.6.1. Defining Spatial Relations

The prototype design unit hierarchy, spatial relations, domain constraints, and
design unit instances have been defined above. Spatial relations are defined in
terms of and/or combinations of algebraic constraints on the lines of two design
units. The terms used in the grammar are: and, or or algebraic constraint such
as equal-to or less-eq between two components. The first component is from the
design unit listed first in the constraint, and the second component is from the
design unit listed second.

The definition of completely-next-to relation is seen in Figure 13-11. There
are four topologically distinct ways of satisfying the completely-next-to relation.
These alternatives split the domains of location variables into discontinuous in-
tervals, defining topologically different alternatives. The mapping of the spatial
relations must be defined such that the alternatives are exhaustive and mutually

exclusive, because they will be used for generating solutions.
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(*OR* (*AND* (equal-to west-line east-line)
(less—eq south-line south-line)
(greater—eq north-line north-line))

(*AND* (equal-to east-line west-line)
(less—-eqg south-line south-line)
(greater-eq north-line north-line))

(*AND* (equal-to south—line north-line)
(less—-eq east-line east-line)
(greater—eq west-line west-line})

(*AND* (equal-to north-line south-~line)
(less—eg east-line east-line)
(greater—eq west-line west-line}})

Figure 13-11: Definition of competely-next-to
using WRIGHT’s Mapping Grammar

13.6.2. Constraint Graph

The mapping of the domain constraint

All sink completely-next-to some window

into algebraic constraints on the component lines of sinkl, windowl and
window?2 using the definition of completely-next-to given above is seen in
Figure 13-12.

A constraint graph consists of nodes and links as seen in Figure 13-12. Inter-
nal nodes are of two types: and-nodes and or-nodes. And-nodes are expressed
by connecting the links leaving the node by an arc. The links in the constraint
graph indicate reliance between constraints. Leaf nodes are algebraic con-
straints. The leaf nodes are shown in abbreviated form, where an algebraic con-
straint and the variables it connects, such as linel = line2, are represented by a
single node.

The constraint graph specifies alternative ways of satisfying a constraint.
Prototype design units that have more than one instance and spatial relations that
can be satisfied in different ways introduce disjuncts to the constraint graph.
The top level of the graph is in conjoint normal form.

13.6.3. Abstract Constraints

When there are conditions which hold true in all the alternatives, they can be
used to bound solutions without committing to a specific alternative. These are
called abstract constraints. Abstract constraints exist for adjacency and distance
relations, and for dimensional constraints. '



(1661 ‘961 “d) wonDIMDAZ pup Joua112dXF (104 - (1] SaIsK§ (o MaSan X0 Y pue ueyAeq wed
£q Suiuueld ereds 10) sanbiuya], UONICISTIES JUIENSUOT, WOI) Fepop 10fuudg Jo uotssiuad £q patunday

siurensuo)) oy} Surddey ydein jurensuo) fenred gI-€1 2angy

LU PUB | OPULM ] YUIS JO SIU2U0d 0D DY) UO SIUIRNSUOD O
~a<83w:SmmE::«En:<c:siz§;:mEca2¢527422QEou<Ea=<

01-1xau-Ara1ardwo> 03-3x3u-Aro3a1duod

Tuayoa Ty
apysuy
YUTS

Tus 23T

WRIGHT: CONSTRAINT BASED SPATIAL LAYOUT




52

416 BAYKAN ANDFOX

The abstract constraints for: )
sinkl completely-next-to windowl ﬁ'
where sink1 and window1 are as seen in Figure 13-12, are given below:

ind 2> 1n7 o
1n8 2 1n3 ’
in2 2 1n5
1n6 2> 1nl
When it is determined that sinkl should be completely-next-to windowl,
these abstract constraints may be used to prune other alternatives without com-
mitting to a particular way of satisfying the sink1—window1 adjacency.

13.6.4. Formulating Spatial Layout as Constrained Optimization

A constraint satisfaction problem (CSP) [19] consists of a set of variables
with predefined domains, and constraints between them. All variables and con- ¥
straints are given at the start. The goal is to find one or all combinations of
values that are consistent. The COP formulation of WRIGHT extends the CSP .
model by assigning importances to the values.

A spatial layout problem can be formulated as a CSP where the variables are
the locations, dimensions and orientations. But location and dimension vari-
ables have continuous values, thus trying possible values using generate and test *
is infeasible. Though dimensions and locations can be discretized using a grid, g
this arbitrarily eliminates some solutions. Also, solutions found as a result of as-
signing values to interval variables will not be different from each other in sig- ‘
nificant ways. %

In WRIGHT’s formulation, the variables are the nodes connected to the root E
of the constraint graph. The values for the variables are the alternative ways of &

satisfying them, as given below them in the constraint graph. The consistency '
of the layout is ensured by keeping the interval values for locations and dimen-
sions legal. For example, the variables in the constraint graph in Figure 13-12,
are the two nodes connected to the root. The first variable has 8 alternative
values. Four of them are the distinct ways of placing sink1 completely-next-to
windowl, and the other 4 are ways of placing sinkl completely next-to
window?2. The second variable has only one value as there is only one way of
placing sink1 inside kitchenl. :
The importance of each value is determined by the importance of the domain’
constraint it is derived form. When an alternative is due to a relaxation, it will
have the importance of the relaxation. If a nuil relaxation has been specified for
a constraint, it means that the variable can be removed from the COP, and not
assigned a value. WRIGHT tries to find all pareto optimal solutions.
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This is the dual of the problem where the variables are lines and dimensions,
and the constraints are spatial relations and limits. The advantage of
WRIGHT’s formulation is that it becomes a discrete problem where the alter-
natives are structurally different.

13.7. SEARCH

WRIGHT formulates spatial layout as a COP and solves it by constrained
heuristic search(CHS). CHS combines constraint satisfaction with heuristic
search [13]. It retains heuristic search’s synthetic capabilities, and adds to it the
structural capabilities of constraint satisfaction. The CHS model adds problem
lextures to the definition of a problem space composed of states, operators and
an evaluation function. Problem textures are based on the topology of the con-
straint graph and they allow search to be focused in a way that reduces back-
tracking.

The problem is solved by backtracking search combined with constraint
propagation. Search operates by selecting a variable and assigning values to it,
In this case, variables are the nodes that are connected to the root of the con-
straint graph, and possible values are the algebraic constraints it maps into.
Satisfying the algebraic constraints removes values from the domains of numeri-
cal variables by constraint propagation. If the minimum of an interval variable
becomes greater than its maximum, then the algebraic constraints are inconsis-
tent. Reducing the domains of lines and dimensions may remove alternatives
from search variables. If the range of a variable becomes empty, then that con-
straint is violated.

The cycle repeated in every state is

1. Select a dual variable with alternative values, using texture
measures.

2. Create new states by assigning a different possible value to the
variable in each state.

3. Propagate constraints, changing values of numerical variables.
Test algebraic and orientation constraints, which will determine
the status of nodes above them in the constraint graph. Satisfy
dual variables with one remaining alternative.

The third step itself is a cycle that is repeated until quiescence. . The whole cycle
is seen in Figure 13-13.
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Reduce Choice

Space

Constraint
Propagation

Figure 13-13: The Cycle of Operations in Every Search State

Given the constraint graph in Figure 13-12, the constraint

Sinkl inside kitchenl

will be satisfied first, because there is one way of satisfying it.
constraints at its leaves are satisfied by propagating values.

change the location of the sink so that when the active nodes
graph are checked, there remains two alternatives for the or-nod

The algebraic
Propagation will
in the constraint
e, which are

1. placing sink1 south-of window 1,
2. placing sink! west-of window?2,

Since it is the only active variable, searc

h continues by trying its two values,
resulting in two alternatives.

At this point, all constraints are satisfied and the
problem is solved. There are two equally good and significantly different solu-
tions. When there is more than one active variable at some point in search, tex-
tures are used to select the next variable to assign values.

The search formulation described above constitutes a priority solution
Strategy, where operators can create macro objects or configurations in un-
bounded space. Textures select constraints that can be satisfied with high cer-

tainty or those most useful for simplifying search. Textures implement a fail-
first and prune-early strategy.
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- Properties of the search architecture used in WRIGHT are

® Search is monotonic. States are generated by satisfying new al-
gebraic constraints. Therefore a requirement that is satisfied can
- not be violated later.

* Disjuncts specified in the constraint graph are mutually exclusive.
Therefore it is not possible to get duplicate solutions.

* Search efficiency depends on the order constraints are satisfied.
Adding a set of constraints to the CSP in any order leads to the
same solution.

13.7.1. Texture Measures

The philosophy behind this research is to use constraints to understand the
structure of the problem space and make search efficient. The constraint graph
and texture measures help in selecting an efficient ordering of variables. An ef-
ficient ordering reduces backtracking and requires assigning values to fewer
variables before the values of all variables are determined.

Texture measures use two perspectives, a constraint perspective and a vari-
able perspective. Textures using a constraint perspective look at the attributes of
the constraint graph, such as the alternative ways of satisfying a constraint. Tex-
ture measures using a variable perspective evaluate constraints with respect to
attributes of the variable they constrain, such as the number of active constraints
on a design unit.

The heuristic implemented by textures is fail first. We try to pick a variable
which will lead to fewer alternatives and which will eliminate more values from
the domains of remaining variables. Since we are looking for all solutions, only
variable selection heuristics are useful. Value selection heuristics do not come
into play because all values of a selected variable must be tried.

The texture measures used in WRIGHT are reliance, contention and loose-
ness. Contention uses a variable perspective, and reliance and looseness use a
constraint perspective. The textures can be applied in any order and combina-
tion. They are applied lexicographically. The first texture assigns ratings to all
the active variables, and eliminates those with lower values. If only one variable
remains, there is no need to apply other textures. If there are more than one, the
next texture is applied. If after applying all textures more than one variable
remains, one is selected at random. How each texture assigns values to nodes in
the constraint graph, and how these values are combined are described below.
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Textures used in WRIGHT are

e Reliance: looks at the number of remaining values for each vari-
able. The number of values is the number of states that will be
generated at the next level if that variable is selected. This texture
selects a variable with fewer values.

e Contention: looks at design units and as yet undetermined variables.
The contention value for each design unit is the number of variables
expressing a requirement for that design unit, that are not yet as-
signed values. The contention value for a variable is the sum of the
contention values of the design units it is related to. This texture
favors variables related to design units having a large number of re-
quirements.

e ooseness: considers the location and dimension variables involved
in each search variable and averages their domain size resulting
from satisfying the relation. For example: let [/=[100, 200},
12=[150, 180}, and altl= {1 > [2. The resulting domains will be
11=[150, 2001, 12=[150, 180]. The sizes of the domains are 50 and
30, and the average is 40. Looseness values are combined by
averaging at and-nodes and taking the maximum at or-nodes.
Looseness tends to favor larger design units and spatial relations
which project tight locations.

The textures can be applied in any order and any combination. A variable is
selected dynamically at each state, rather than fixing the order of variables be-
fore search starts.

13.7.2. Testing

Nodes in the constraint graph can have one of three values satisfied, violated
or undetermined. Undetermined means that the bounds of the interval variables
are so large that the constraint can be violated or satisfied depending on deci-
sions that will be made later.

An and-node is satisfied when all of the nodes below it are satisfied. It is vio-
lated when one of the nodes below it are violated. An or-node is satisfied when
one of the nodes below it is satisfied and violated when all of the nodes below it
are violated. For example, if all nodes below an or-node are contradicted except
one which is undetermined, the status of the or-node will be undetermined.
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The structure of the constraint
root must be satisfied. Therefore
of the state needs to be changed.

The result of checking an algebraic constraint is satisfied, violated or
undetermined just as for other nodes in the constraint graph defined earlier. An
algebraic constraint is satisfied when every combination of values in the
domains of the variables satisfy the constraint. A constraint is violated if no
combination of values in the domains of the variables satisfy the constraint.
And when some combinations of values satisfy the constraint, and some don’t,
the constraint is undetermined. The conditions where a §reater-or-equal con-
straint is satisfied, violated or undetermined is given below.

A greater-or-equal constraint: (nin,, max,] = [min,, max,], is satisfied when
min; 2 max,, and violated when max, < min,. It is undetermined if max; 2 min,
and min, < max,.

An orientation constraint is violated if no combination of values in the
domains satisfy the constraint, and satisfied when all combinations of values
satisfy the constraint. For example, parallel requires two orientations to be
equal. The constraint: Orientation) parallel orientation? is satisfied when
Orientation]1={0} and orientation2={0}, undetermined when Orientationl={0,
90} and orientation2={0, 90}, and violated when Orientation]={0, 90} and
orientation2={180, 270}.

Constraint propagation removes the values that ca
from the domains of variables. Constraint propag
constraint that is satisfied transitively will
not be detected as satisfied by checking values. Selecting it and propagating
values will fail. Thus it is possible to also test constraints by propagation of

markers and checking the existence of constraint paths. This is computationally
expensive.

graph is such that every node connected to the
when one of these nodes is violated, the rating

1 not be part of any solution

13.7.3. Constraint Propagation

Constraint propagation is started by selecting a new algebraic or orientation
constraint to satisfy. The values of all variables in the constraint are made con-
sistent. When the value of any variable changes, all of the constraints incident
to it are used to propagate values to their variables. If during propagation, the
range of an orientation becomes empty, or when the lower bound of an interval
exceeds its upper bound, that means the constraint added last is inconsistent with
the previous ones. How propagation is carried out for some orientation and al-
gebraic constraints is given below.

The vI parailel v2 be an orientation constraint, and the domains of the vari-
ables be vI={0, 180} and v2={0, 90}. When the constraint is satisfied, {0, 180}
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Figure 13-14: A Configuration and its Constraint Graph Containing a Loop
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13.7.4. Adjacency Graph

Another reasoning mechanism is based on an adjacency graph representation.
The nodes of the graph are the design unit instances and the edges denote ad-
Jjacency. Edges are directed and of two types: horizontal and vertical edges.
The graph representation is created at the time the constraint graph is compiled.
When an adjacency constraint is created, its nodes are marked as vertical or
horizontal edges. This representation is useful for two types of reasoning, as
follows.

When a node corresponding to an edge is satisfied, other edges can be marked
as violated and removed from consideration, based on rules about adjacency
structures of rectangles. This is more efficient than checking constraints, and
removes some alternatives that would not be detected by other tests but only
detected during constraint propagation.

Edges have weights denoting the length of common border between the
design units. The sum of weights going in to a design unit must be equal to its
dimension, and must be equal to the sum of weights of the edges going out.
This provides the additional constraints that maintain path consistency, when
added to a configuration such as the one seen in Figure 13-14
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13.8. PERFORMANCE

WRIGHT has been tested on kitchen layout, house layout and bin-
packing/blocks problems. We have tried five kitchen layout problems that con-
tain 7 design units to be located, have 2-6 solutions and approximately 80 con-
junctive requirements. The house layout problem has 9 design units to locate,
approximately 200 solutions and about 64 conjunctive requirements. The block
problem has 6 design units, 24 and 72 solutions in its two variations, and 21 or
27 requirements.
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Figure 13-15: WRIGHT’s Solutions to Five Kitchen Layout Problems
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Adequacy of the knowledge representation and solution quality is evaluated
by looking at the solutions WRIGHT generates. Five kitchens with different
dimensions and door and window locations are selected from a kitchen design
handbook [24]. These are configured by WRIGHT using the same domain
knowledge. The solutions given by WRIGHT are compared against the solution

given in [24]. WRIGHT finds the solution in the handbook in every case. One

solution found by WRIGHT for each kitchen is seen in Figure 13-15. For the
kitchens seen at top left and bottom, WRIGHT finds three equally good solu-
tions, and for the kitchen seen at top right, it finds two. The design unit with the
diagonals is the mix center. Sink center and range center are the rectangles con-
taining the sink and range respectively.

Rather than applying all textures to all variables and combining the ratings,
we apply textures sequentially, in order to minimize the processing time as-
sociated with dynamic selection. The first texture used assigns a rating to all ac-
tive variables and removes from consideration all but the top rated ones. If more
than one variable remains, the next texture is applied only to those, or if there is
no other texture, one variable is selected at random.

The results of the experiments, as reported previously in [4, 13] are as fol-
lows:

1. A priority strategy is more efficient than an organize-by-design-
unit strategy, leading to 50% fewer search states when solving the
identical problem. Organizing by design unit forces determining
all aspects at the same time, whereas priority strategy enables a
least-commitment approach. Pursuing this strategy in WRIGHT is
possible because of the CSP representation of configurations that
enables incremental addition of constraints in any order.

2. Textures reduce search. Compared to random selection of vari-

ables, using all 3 textures reduces search states by 70% in kitchen
problems and 84% in bin-packing problem.

3. The order textures are applied in has a significant effect on search
efficiency. Since the first texture used eliminates most of the vari-
ables, it has the greatest effect. Asa result, we have tried applying
the textures in different orders and combinations. Domain size
was the most useful texture in blocks problem, looseness in house
layout, and contention in kitchen layout.

Figure 13-16 shows the number of search states required for finding all solu-

tions to five kitchen layout problems, under different combinations of texture
measures.
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The combinations tested are

® method 0:
® method 1:
® method 2:
® method 3:
e method 4:

select a constraint at random,

contention

reliance,

contention and reliance,

contention, reliance and looseness.

When a combination of measures is used, they are applied in the order: conten-

tion, reliance and looseness.

Each measure eliminates some constraints from

consideration. If more than one constraint remains after applying the texture
measure(s), specified by the method, a constraint is selected at random. The
number of states given for each problem-method combination is the average of
three runs. In the second problem, method 4 reduces search by more than 80%
compared to method 0, and in the third problem by 35%.
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Figure 13-16: Effectiveness of Texture Measures in Reducing Search

In order to compare the CHS approach with generate and test, WRIGHT is
compared with two space planning programs, DPS [21] which uses a drawin%
based representation, and LOOS [11] which uses a relational representation.

4see Section 13.2 for a discussion of these programs
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The problem used in the comparison is arranging six fixed size blocks in a box
such that no blocks overlap. Due to the simplicity of the problem, exactly the
same set of constraints can be used by all three programs. The programs are
compared in terms of the number of states and search levels generated when
finding the first solution and when finding all 24 solutions, seen in Figure 13-17;
number of search levels is the number of intermediate states on a path from the
initial state to a solution state. '

First Solution All 24 Solutions
WRIGHT 5 levels 14 states 5-6 levels 111 states
LOOS 6 levels 68 states 6 levels 232 states
DPS 6 levels 72 states (not available)

Figure 13-17: Comparison of WRIGHT, DPS and LOOS
in Terms of Search Efficiency

In DPS and LOOS, the number of search levels is always equal to the number
of objects to be located, as a result of the organize-by-design-unit strategy.
WRIGHT’S performance in terms of number of search levels and number of
search states depends on number and strength of available constraints and their
interactions. Although the constraints in this problem are not as varied as in
kitchen layout, WRIGHT performs better than DPS and LOOS. WRIGHT looks
at a smaller number of search states by selecting decisions with fewer alter-
natives, and by eliminating inferior alternatives earlier.

Performance of the system depends on available constraints. Having ad-
ditional constraints improves performance as they reduce the number of solu-
tions. Once the problem becomes overconstrained, performance degrades. In or-
der to counteract this, explicit relaxations for some constraints are given in the-
knowledge base.

In an underconstrained problem, DPS and LOOS find the first solution faster,
but there will be a large number of solutions. WRIGHT also finds the first solu-
tion faster, and will avoid generating a large number of solutions by having solu-
tions at a higher level of abstraction. In an overconstrained problem, DPS will

not be able find any solutions because it rejects a solution that fails any con- :
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straint. For LOOS, overconstrained problems pose the same difficulty as under-
constrained ones: too many states with equivalent scores. Finding the first solu-
tion will take much longer too. Overconstrained problems will cause WRIGHT
to search longer before finding the first solution. When all constraints can be
satisfied, solutions are defined by alternative ways of satisfying all constraints.
When all constraints can not be satisfied, combinations of constraints that result
in equal ratings need to be tried. By defining explicit relaxations for some
domain constraints in its knowledge base, WRIGHT avoids searching a large
number of constraint combinations.

13.9. CONCLUSION

WRIGHT defines spatial planning as a constrained optimization problem and
demonstrates the utility of textures and CHS. Advantages of its representation
are as follows:

* Topology and dimensions are solved uniformly using algebraic con-
straints, and constraint propagation.

* Design units at different levels of aggregation can be handled
uniformly by representing both inter-level and intra-level con-
straints explicitly and uniformly.

* Using constraints to guide the generation of significantly different
alternatives permits solutions at a higher level of abstraction than in
other layout systems, but enables determination of relevant aspects
at a very detailed level.

This formulation takes a least-commitment approach by

* selecting constraints to satisfy rather than locations for design units,
and

¢ removing from variable domains only those values which violate a
constraint.
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The abstraction mechanisms it makes possible are

 abstraction by aggregation, and

e abstract constraints.

The philosophy behind this approach is understanding the structure of the
search space to make search efficient. Important points about WRIGHT’s ap-
proach to search efficiency are

» Constraint propagation techniques dramatically narrow the space of
alternative solutions prior to selection/search.

¢ Properties of the constraint network, known here as fexiures, can be
used to focus attention of search (i.e., node and value selection),
thereby reducing the amount of backtracking.

* Contention selects a design unit which has a large number of
conjunctive constraints remaining.

* Reliance chooses to satisfy a constraint for which there are
fewer alternative disjunctive decisions.

* Looseness chooses to satisfy a constraint which reduces range
of variables more.

¢ Both domain independent and dependent knowledge is represented
uniformly as constraints thereby enabling the alteration of search
behavior and the solutions generated by the search alteration or ad-
dition of constraints.
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