

1

A Product Ontology

Jinxin Lin, Mark S. Fox and Taner Bilgic

Enterprise Integration Laboratory, Dept. of Mechanical & Industrial Engineering
University of Toronto, Toronto, Canada M5S 3G9

tel: +1-416-978-6823; fax: +1-416-971-2479; email: {jlin, msf, taner}@ie.utoronto.ca

Draft: 7 July 1997

A Product Ontology 2

1.0 Competency of the Ontology

We first identify the problems in the domain that the ontology is trying to address. These
problems are given in the forms of questions which the ontology is intended to answer. This
group of questions is called

competency

 of the ontology. The following are some categories
of competency questions supported by our ontology. In each category we list some typical
questions.

1. Product structure:

What are the components of a part? What features do the part has? What constraints that
the part must satisfy? Where a specific type (or class) of parts are used? What are compo-
nents of Assembly P that exceed a certain percentage of the total mass?

2. Parameter:

What is the domain of a parameter? What constraints that parameter-X of the part must
satisfy? What is the units of the parameter? What is the value of the parameter in unit X?
What is the type of the parameter? Is an equation dimensionally homegenous?

3. Requirements and constraints:

Who posted the requirement, and when it was posted? Is the requirement implicit or
explicit requirement, hard or soft requirement? Is its scope internal or external? What is
the method of verifying the requirement? What is its current status?

Is the constraint satisfied or violated? What is the strength of the constraint? Who posted
the constraint and when it was posted? Is it currently active in the constraint network?
From which requirement the constraint is decomposed?

4. Relationships of requirements and constraints to parts:

What are the requirements of a part? Does a requirement impose a constraint on the part?
On which parameter the constraint is imposed?

5. Functions:

What does this part do? What is this component for? Can we use another part instead of
this one that does the same job?

6. Version & Change:

Is this the latest version of a part? Why have they changed? Are two versions parallel ver-
sions? Does a change affect consistency of the requirements set?

Objects included in our ontology are

parts, features, parameters, requirements

 and

con-
straints

. Each of which can also have

versions

 describing the evolution of the objects. Parts
are components of the artifact or the artifact itself. Features are used to describe geometrical,
functional and other characteristics associated with a part. Both part and feature can have
parameters that define their properties such as weight, color, diameter, material, surface fin-
ish, etc. Requirements specify the properties (functional, structural, physical, etc.) of the
artifact being designed. Constraints form the leaves of the requirement decomposition tree,
and embody physical laws, equations etc.

A Product Ontology 3

Parts, features, parameters, requirements and constraints are related to each other with cor-
responding relationships, as depicted in Figure 1.

FIGURE 1. Relationship of the product object representation

2.0 Product Structure

Following the object-oriented tradition, in our ontology each object is associated with a
unique name (which can be thought of as its ID). There are two types of objects:

class

(objects) and

instance

 (objects). A class is used for representing a generalized type or cate-
gory of object, and instance for a specific member of a class. Among many others, there are
classes

called

 part, feature, parameter, requirement,

and

 constraint

 which classify the
design objects. Each of these classes can be further divided into subclasses. We denote the
subclass relationship by the predicate

subclassOf(.,.).

 For example, the following says that

spar_part

 is a subclass of the class part:

subclassOf(spar_part, part)

.

An instance and a class are related by the predicated

instanceOf(.,.)

. For example, the fol-
lowing says that a particular part,

 PRT131,

is an instance of the class

spar_part

:

instan-
ceOf(PRT131, spar_part)

.

Throughout this paper, we denote variables by lower case letters and constants by upper case
letters. We use

p, f, pa, r, c

(with or without subscripts) to denote variables of the classes
part, feature, parameter, requirement, and constraint respectively.

constraint

feature

expression_of

has_expression

constrained_by

constrains

satisfies_req

satisfied_by

has_parameter

parameter_of

has_parameter

feature_of

has_feature

parameter

part

requirement
feature

function

has_function

satisfies_fnc_req

function_of

A Product Ontology 4

2.1 Parts

A

part

 is a component of the artifact being designed. The artifact itself is also viewed as a
part. The concept of part introduced here represents a physical identity of the artifact, soft-
ware components and services.

The structure of a part is defined in terms of the hierarchy of its component parts. The rela-
tionship between a part and its components is captured by the predicate

component_of

. The

component_of

 is similar to the

subcomponent-of

and the

composed-of

 relations defined in
[9] and [16] respectively, except that the axioms are made explicitly.

Between two parts

p

 and

p', component_of(p, p')

 means that

p

 is a component (subpart) of

p'

. For example, there are three components of a desk spot lamp, namely

Heavy_base,
Small_head

 and

Short_arm

:

component_of(Heavy_base, Desk_spot_lamp).

component_of(Short_arm, Desk_spot_lamp).

component_of(Small_head, Desk_spot_lamp).

...

FIGURE 2. Components of Desk Spot Lamp

The relation

component_of

 is transitive; that is, if a part is a component of another part that
is a component of a third part then the first part is a component of the third part.

(

∀

 p

1

, p

2

, p

3

) component_of(p

1

, p

2

)

 ∧

component_of(p

2

, p

3

)

⊃

component_of(p

1

, p

3

).

The following two axioms state that a part cannot be a component of itself, and it is never
the case that a part is a component of another part which in turn is a component of the first
part. This shows that the relation

component_of

 is non-reflexive and anti-symmetric:

(

∀

p)

¬

component_of(p, p).

(

∀

 p

1

, p

2

) component_of (p

1

, p

2

)

⊃ ¬

component_of(p

2

, p

1

).

Desk_spot_lamp

Short_arm Small_headHeavy_base

component_of

........

Clip Base_cover Weight_disc

component_of

A Product Ontology 5

A part can be a (sub-)component of another part. But since each part has a unique ID (its
name), it cannot be a sub-component of two or more distinct parts:

(

∀

 p

1

, p

2

, p

3

) component_of(p

1

, p

2

)

∧

 component_of(p

1

, p

3

)

⊃

 p

2

 = p

3

.

The above four axioms guarantee that the part structure is in the form of

forest

consisting of
one or more trees of parts.

The

component_of

 relation relates objects lower in the component tree to the objects higher.
By the relation it is possible to traverse upward in the component tree. There is often a need
to traverse downward in the component tree, by introducing the relation

has_component

,
which is defined as the inverse relation of

component_of

.

(

∀

 p

1

, p

2

) has_component(p

1

, p

2) ≡ component_of(p2, p1). (1)

Parts can be made from the same model and be identical copies, and can be used as different
assemblies. Then they are treated as different instances of the same class and associated with
different ID. For example if we want to talk about two clips, say Clip1 and Clip2, are of the
same kind, we can create a class called Clip and say that Clip1 and Clip2 are instances of this
same class by the following terms:

instanceOf(Clip1, Clip),

instanceOf(Clip2, Clip).

Parts are classified into two types, depending upon the component_of relationship it has with
the other parts in the hierarchy. The two types are: primitive and composite.

• A primitive part is a part that cannot be further subdivided into components. This type of
parts exist at the lowest level of the artifact decomposition hierarchy. Therefore, a primi-
tive part cannot have sub-components.

(∀p) primitive(p) ≡ ¬ (∃ p') component_of(p', p)

Primitive parts serve as a connection between the design stage and the manufacturing
stage.

• A composite part is a composition of one or more other parts. A composite part cannot
make a leaf node in the part hierarchy; thus any part that is composite is not primitive.

(∀ p) composite(p) ≡ ¬ primitive(p).

Most composite parts are assemblies, which are composed of at least two or more parts.

(∀ p) assembly(p) ≡ (∃ p1, p2) component_of(p1, p) ∧ component_of(p2, p) ∧ p1 ≠ p2.

Sometimes a designer may need to find out the direct components of a part. A part is a direct
component of another part if there is no middle part between the two in the product hierar-
chy.

(∀ p1, p2) direct_component_of(p1, p2) ≡ component_of(p1, p2) ∧ ¬ (∃ p')
component_of(p1, p') ∧ component_of(p', p2).

A Product Ontology 6

That is, p1 is a direct component of p2 if p1 is a component of p2 and there is no p' such that
p1 is a component of p' and p' is a component of p2.

A part, either primitive or composite, is associated with the following information:

• part_description: descriptive information of the part other than its ID;

• part_creation_date: the date of the first creation;

• part_designer: the original designer of the part;

• modification_date: the date of last modification;

• last_modified_by: the agent (a person or a team) who last modified the part;

• part_owner: the agent who currently has control of the part;

• version_number: the version number of the part;

• design_document: document presenting design process, rationale, etc. Usually a file
name;

• image_name: symbology of the part; usually the name of a file (in the format e.g. gif,
bmp, etc.)

The following lists some axioms with respect to the above information of part:

(∀ p) (∃ a) agent(a) ∧ a = part_owner(p).

“There must be at least one agent who is the owner of a part.”

(∀ p, p') component_of(p', p) ⊃ part_creation_date(p’) < part_creation_date(p).

“Every component must be created earlier than its assembly.”

(∀ p, p') component_of(p', p) ⊃ modification_date(p’) < modification_date(p).

“If a component of a part is modified then the part is modified.”

A part can have many parameters presenting the physical nature of the part; this we describe
in one of later sections.

2.2 Features

There are different kinds of features associated with a part, e.g., geometrical features, func-
tional features, assembly features, mating features, physical features, etc. [3] [18]. We focus
on geometrical and functional features. Examples of geometrical features are hole, slot,
channel, groove, boss, pad, etc.; these are also called form features. Designers usually have
in mind the purposes that they want these features to serve. For example, a designer intro-
duces a hole as a feature to the arm of a desk spot lamp so that an electrical cord can run
through it. Functional features describe the functionality a part; they define what the part can
be used for.

A Product Ontology 7

A part and its features are related by the predicate feature_of(f, p), saying that f is a feature
of part p. The following term represents the fact that a hole feature, called Hole3, is intro-
duced in the short arm of the desk spot lamp:

feature_of(Hole3, Short_arm).

There can be compound features that are composed of several sub-features. For example, a
threaded hole is a feature, which can be a component of a group of threaded holes that form
a mounting feature. The term subfeature_of(f1, f2) says that feature f1 is a subfeature of f2.

Figure 3 shows the part Short_Arm and its features.

FIGURE 3. Features of Short Arm

It has the following subfeature_of terms.

subfeature_of (Ext_thread1, Threaded_bar_1).

subfeature_of (Bar_1, Threaded_bar_1).

subfeature_of (Bar_2, Threaded_bar_2).

subfeature_of (Ext_thread2, Threaded_bar_2).

The following gives the definition of compound features and atomic features:

(∀ f) compound_feature(f) ≡ (∃ f1, f2) subfeature_of(f1, f) ∧ subfeature_of(f2, f) ∧ f1 ≠ f2.

(∀f) atomic(f) ≡ ¬ (∃ f') subfeature_of(f', f).

The following axiom says that a subfeature of a feature of a part is also a feature of the part:

(∀ f1, f2, p) subfeature_of(f1, f2) ∧ feature_of(f2, p) ⊃ feature_of(f1, p).

The feature_of and subfeature_of have inverse relations has_feature and has_subfeature
defined in terms of axioms similar to (1), which we omit here.

A feature is associated with the following information:

Short_arm

Round_bend Threaded_bar_2Threaded_bar_1

subfeature_of

Bar_1Ext_thread1

subfeature_of

Ext_thread2Bar_2

feature_of

Hole3

A Product Ontology 8

• feature_description: descriptive information of the feature;

• feature_introduce_date: the date of associating the feature with the part;

• feature_type: the type of a feature, e.g. geometrical, topological features, etc.

• feature_designer: the original designer of the feature;

• feature_owner: the agent who currently has control of the feature;

• design_document: document with full detailed information of the feature;

• image_name: symbology of the feature; usually the name of a file (in the format e.g. gif,
bmp, etc.)

2.3 Parameters

Parts can have parameters that define their properties such as weight, color, diameter, mate-
rial, surface finish, etc. So can features (but the parameters must be meaningful with respect
to features), e.g. a hole feature has a parameter representing the diameter of a hole. Parame-
ters are denoted by functions in the first-order logic; for instance, the color of the Short_arm
is denoted by color(Short_arm).

The parameters such as color, money, etc. are not a physical quantity. Physical quantity, as
stated in [15], are something that can be measured by some strictly definable process. In real
world, a majority of parameters are some kinds of physical quantitiy such as mass, time,
length, volume, density, force, energy, speed, acceleration, temperature, electric current, etc.
Any physical quantity has two essential components: the magnitude of the quantity and the
unit of measurement. Magnitude, which we also call value, is not meaniful by itself for the
quantity without mentioning the unit.

A parameter is associated with the following information:

• parameter_description: descriptive information of the parameter;

• associated_object: the part or feature that the parameter is associated;

• unit: the unit of measurement, if any, of the parameter, e.g. pound, kg, liter, etc.;

• value: the actual value of the parameter;

• type of value: the type of the value of the parameter, e.g. nominal, ordinal, interval, ratio-
nal, or boolean (more on this later);

• parameter_owner: the agent who controls the parameter, i.e. the agent who has the
authority to change, delete the parameter;

• design_document: document with full detailed information of the parameter;

• image_name: symbology of the parameter.

The information is recorded by the predicates:

A Product Ontology 9

property(para_name, slot_name, slot_value),

where slot_name is one of the catogery of above information, and slot_value is the recorded
value of that catogery. For example, we have a parameter named WP11 which is the diame-
ter for the feature Hole3:

property(WP11, associated_object, Hole3),

property(WP11, unit, Centimeter),

property(WP11, value, 3),

property(WP11, parameter_owner, Design_team_4),

...

A parameter is associated with a domain defining the values that the parameter can obtain.
In our framework, we specify this by the a domain constraint discussed in a later section.

2.3.1 Units

A system of units consists of a few fundamental units, called base units, from which other
unites are derived (called derived units). In the System International (SI), some base units
are length (m), mass (kg), time (s), electric current (A), temperature (K), etc.

si_base_unit(length, metre),

si_base_unit(mass, kilogram),

si_base_unit(time, second),

si_base_unit(electric_current, ampere),

si_base_unit(temperature, kelvin),

...

Other units are defined in terms of the base units or other derived units, for example, the unit
of velocity is the unit of length divided by the unit of time which is m/s. The unit of acceler-
ation is the unit of velocity divided by the unit of time again (i.e. m/s2), and the unit of force
is the unit of mass times unit of accelaration (i.e. kg m/s2, called “Newton” denoted by N).

si_derived_unit(force, N),

si_derived_unit(stress, Pa), (Pa = N/m2)

si_derived_unit(energy, J), (J = Nm)

...

A SI unt is either a SI base unit or SI derived unit:

(∀ d, u) si_unit(d, u) ⊃ si_base_unit(d, u) ∨ si_derived_unit(d, u).

Units of the same kind in different systems can be converted to each other through the so-
called conversion factors. A conversion factor is associated with two units and one numeric
value, and stored in the predicate conversion_factor(u1, u2, factor). For example, we have

A Product Ontology 10

conversion_factor(yard, metre, 0.9144),

conversion_factor(pound, kilogram, 0.45359237).

...

(Where the first means that one yard is equal to 0.9144 metre, and the second means that one
pound is equal to 0.45359 kilogram.)

Note that the conversion factor of the same unit is always 1:

(∀ u) conversion_factor(u, u, 1) .

With the conversion factors, we can obtain the value of a parameter in any unit:

(∀ p, u, v) value(p, u, v) ≡ (∃ u', v', factor) property(p, unit, u') ∧ property(p, value, v') ∧
conversion_factor(u, u', factor) ∧ v = factor * v'.

where value(p, u, v) means that the value of a parameter p is v in unit u.

2.3.2 Dimensions

As mentioned, a phsical quantity is characterized by both its value (magnitude) and its unit.
In fact, unit plays a more important role in distinguishing one quantity from another. For
example, “12 inch” denotes a measurement of length, not a measurement of mass (we
understand this is from the unit “inch”, not from the value “12”). Note that there may be
many possible units for one quantity, e.g. a unit for length may be “inch”, “metre”, “mile”,
“foot”, etc. Massey [15] introduces the notion of dimention of a quantity to mean a unit of
the quantity without mentioning which particular unit it is. He uses symbol ‘[X]’ to denote
the dimention of a physical quantity X. The dimension of a physical quantity is usually
defined in terms of the dimensions of other physical quantities. For example, velocity of a
moving object is calculated as follows

v = l / t

where l is the length traversed by the object and t is the time spent. Hence the dimension of
velocity is [L][T]-1, where [L] represents the dimension of length and [T] represents the
dimension of time. And therefore every physical quantity has a dimension. Two quantities
are comparable if they have the same dimension:

comparable_quantities(q1, q2) ≡ [q1] = [q2].

In addtion, given any formula α, its dimension can be calculated. We also denote the dimen-
sion of α by [α].

Frequently, engineers use mathematical equations to describe the relationships among phys-
ical quantities and to express physical laws or associations. There is, therefore, a problem of
dimensional homogeneity of an equation. As defined in [15], an equation is dimensionally
homogeneous if any terms in the equation that are added, subtracted or equated must repre-

A Product Ontology 11

sent magnitudes that may be expressed in terms of the same unit. For example, it makes no
sense to add a length and a mass, or a force and a velocity. In the following we will capture
the notion of dimensional homogeneity in terms of axioms in our ontology. For that, we need
to define the validity of a formula (an equation is also treated as a formula within which
there is an equity operator “=”). We use the predicate valid(α) to means that the formula α is
valid. Then for a formula in the form of “α1+α1”, “α1- α1”, or “α1=α1”, we have:

valid(“α1+α1”) ≡ valid(α1) ∧ valid(α2) ∧ [α1] = [α2].

valid(“α1-α1”) ≡ valid(α1) ∧ valid(α2) ∧ [α1] = [α2].

valid(“α1=α1”) ≡ valid(α1) ∧ valid(α2) ∧ [α1] = [α2].

Definition of Dimensional Homogeneity: An equation α is dimensionally homogeneous
if valid(α) is true:

dimensional_homogeneous(α) ≡ valid(α).

2.3.3 Classification of Parameters

In representing parameters, five different types can be distinguished, namely, nominal, ordi-
nal, interval, rational, and boolean parameters.

FIGURE 4. Classification of Parameters

• Nominal Parameters: In nominal scales, numbers are used just as strings, like names of
things. For example, in manufacturing, a machine may be assigned a label 162314. The
number of the label is merely a substitute for the name of the machine, and it has no other
meaning1. The only operation we can do with these numbers is to count them, we cannot
add, subtract or multiply them with any other number.

1. The coding schemes are exception of this.

Parameters

Rational Boolean

Nominal Ordinal Interval

A Product Ontology 12

• Ordinal Parameters: In ordinal scales, only the ordinal properties of the numbers are
employed in measurement. Numbers have meanings according to the ordering of the
property being represented. For example, the ease of use for a machine can be repre-
sented on an ordinal scale. On a scale of 1-7, 1 may represent “most difficult to use”, and
7 may represent “easiest to use”. By looking at two numbers on this scale, we can tell
which machine is easy to use relatively.

• Rational Parameters: In ratio scales, scale values can be uniquely determined except for
an arbitrary unit of measurement. Such scales are very common; for example, once we
determine the unit of measurement for the length of a robot arm as centimeters, the value
of the length parameter can be uniquely determined. Ratio scales not only have equality
of units, but also have an absolute zero for that unit of measurement. For example, Time
has an absolute zero, and units of time are equal to each other.

• Interval Parameters: Interval parameters have their domains as an interval, and the pos-
sible value that it can take could be a subinterval, or an exact value within that interval.
An interval is a set [a, b] such that all the real numbers between a and b are included in
the set. Intervals can be operated by interval arithmetic operators and set theoretic opera-
tors. An interval of a function provides the upper and lower bounds for the range of the
function, when its arguments span an interval.

• Boolean parameters: Boolean parameters take values as TRUE or FALSE. Propositional
logic forms the basis of evaluation and analysis of boolean parameters and expressions.
For example, a parameter requirement_satisfied may be defined for each of the design
requirements for the lamp, which takes a value True, if the requirement is satisfied, and
False otherwise.

3.0 Functions

Webster dictionary define the word function as: The action for which a component is partic-
ularly fitted or employed. In accord with that definition, most of the engineering design liter-
ature take function to mean the intended behaviour of the artifact.

A function is usually defined by a verb and a noun (e.g. increase pressure, transfer torque).
In general, function of an artifact can be defined using activities, effects, goals, and con-
straints.

In the most sophisticated case, the function representation gives way to a detailed simulation
of the artifact. However, in complex systems this level of detailed representation may be
unattainable or simply undesired. It is important to put forth reasons to represent function
for a particular application.

Determining a functional representation is usually possible using a top-down approach.
First, the overall task of the artifact is identified and then the overall function corresponding
to the overall task is decomposed into sub-functions (Pahl&Beitz, 1988). The resulting
structure is called the function structure. The method of this decomposition is not clear and

A Product Ontology 13

tends to be different in one-off designs and adaptive designs. For one-off designs the basis of
a function structure is the specification and the abstract formulation of the problem. In adap-
tive design, however, the existing function structure yields a lot of information to be inter-
preted and adapted. In the former case, the main use of functional structures is simple
classification.

The level of abstraction in representing functions is important in reusing older design solu-
tions for new problems. The higher level functions should be independent of the domain as
much as possible. Domain specific functions should be introduced as higher level functions
decompose to their sub-functions. For example, a higher level goal can be as general as
‘‘deploy payload”.

3.1 Why do we need to represent functions?

There are various reasons for each application to represent functions and this necessitates
representations at different levels of abstraction. The following are some reasons to repre-
sent functions:

• classification

• finding a design solution

• design validation

In engineering design, sometimes there is a need to store artifacts with respect to what they
do. In such a case, the function representation is part of the product representation. It is
another view of the product information.

Design search space is usually traversed by function. The designer has a function in mind
and the conceptual stage of the design is dominated by searching for the right concept which
provides the right functionality.

When the aim is to validate a design concept one can take a detailed simulation approach or
simply use qualitative simulation at the generic functional level.

In TOVE, we employ the classification view of functions with the goal of viewing design
artifacts with respect to their functionality. For this purpose, we use an input/output repre-
sentation of functions.

3.2 Function as input/output

German researchers have been very active in design methodology research and during the
course of their investigation they came up with a conceptualization of function as an input/
output process. Pahl and Beitz (1988) summarizes the findings of German researchers. Our
representation is based on this conceptualization with a few extensions.

A Product Ontology 14

FIGURE 5. Function representation in TOVE

The aim of the function representation reported in (Pahl and Beitz, 1988) is to aid the novice
designer in the design process. The design process is envisioned as guided by the functions
and their decompositions (the so called function structures).

Function structures are obtained when one decomposes a high level function to its sub-func-
tions. In turn, the sub-functions are related to each other in various ways. A functional struc-
ture shows how a function is accomplished rather than a process flow. There are two main
processes when coming up with a function structure: (i) function decomposition, (ii) func-
tion allocation. In TOVE, the notion of a non-basic function serves for this purpose. Non-
basic functions are totally user definable, indexed by their names and synonyms. Related to
each other via decomposes_to relation to denote the function structure.

However, each non-basic function should (or have a parent that does) generalize to a basic
function. Basic functions are distinguished, “generally valid” functions as identified in Pahl
and Beitz (1988):

• change: The characteristic of this function is the type. The type and the outward form of
input and output differ.

• vary: The characteristic of vary is magnitude. This function is relevant when considering
energy and signals.

• connect: The characteristic of this function is the number. It connects two or more inputs.

• channel: The characteristic of channel is place. The place of the input is no more the
same once this function is performed.

function

non-basic function basic function

unary binary

vary channel store change connect

decomposes_to

generalizes_to

A Product Ontology 15

• store: The characteristic function of store is the time. Energy, material or signals are
stored for a period of time.

TABLE 1. Basic functions

4.0 Requirements

Requirements specify the properties (functional, structural, physical, etc.) of the artifact
being designed. Initial requirements often come from the customer representing his/her
wishes. These can be vague and incomplete (in some case, even inconsistent). A process in
design is then to clarify or interpret the customer’s wishes into more concrete objectives
through consultations between the designer and the customer. In this process the initial
requirements are decomposed into sub-requirements carrying greater details of the specifi-
cation of the artifact.

4.1 Decomposition of Requirements

The hierarchy of requirements is built on the relation decomposition_of. Figure 6 shows the
decomposition of the weight requirement for the desk spot lamp. (Weight factor is particu-
larly important in designing equipments for aerospace usage, where a weight requirement of
a part is often decomposed into sub-requirements on the components of the part.)

Change

Connect

Energy
Matter
Signal

Energy-energy
Matter-matter
Signal-signal

Energy-signal
Matter-energy
Matter-signal
Matter-matter
Signal-energy
Signal-matter
Signal-signal

Vary, Channel, Store

Basic function Argument(s)

A Product Ontology 16

This relation decomposition_of, like the component_of, should be transitive, anti-symmetric
and non-reflexive. These axioms are similar to that of part and we do not repeat them here.
The hierarchy is a single or multiple tree structure, with the roots of the trees being require-
ments originated from the customer. We can also talk about direct decomposition of a
requirement, and primitive requirements. The definitions are again similar to that of part,
e.g. the primitive requirements are defined as the leaf requirements in a tree of the decompo-
sition hierarchy:

(∀ r) primitive(r) ≡ ¬ (∃ r') decomposition_of(r', r).

FIGURE 6. Weight Requirement Decomposition

Every requirement is associated with an expression describing in logical form the content of
the requirement. Let req_exp(r) denote the expression of requirement r. Primitive require-
ments are detailed specifications on properties of the artifact. Their logical expressions often
involve some particular parameters of one or more parts. For example, the following defines
the requirement (of the name, say, R) “The weight of the desk spot lamp must be within 2.0
± 0.1 pound”.

req_exp(R) ≡ 1.9 ≤ weight(Desk_spot_lamp) ≤ 2.1. (2)

The expression of a high level requirement can be defined explicitly as a logical sentence
(similarly to the primitive requirements above) or defined in terms of lower level require-
ments. The latter usually occurs when a higher level requirement consists of several lower
level ones and it is simply an aggregation of requirements. For instance,

R: Motor safety requirement

consists of the following two sub-requirements:

R1: There should be an emergency switch to stop the running of the motor.

weight(Desk_spot_lamp)<2

weight(Heavy_base)<=1.3

weight(Short_arm)<0.3

weight(Small_head)<=0.4

R

R1

R2

R3

* Unit of measurement: pound

decomposition_of

A Product Ontology 17

R2: There should be a surface cover for the motor.

Then we have

 req_exp(R) ≡ req_exp(R1) ∧ req_exp(R2).

In this case, the decomposition_of relation can be understood as a simple “consist of” rela-
tion.

The decomposition process must ensure that the meaning of the original requirement be pre-
served. Suppose r1,..., rn are the direct decompositions of r. Then it must be the case that

req_exp(r1) ∧... ∧ req_exp(rn) ⊃ req_exp(r). (3)

That is, if the lower level requirements are satisfied then the higher level one is also. The
converse may not be true, i.e., it may not be the case that

req_exp(r) ⊃ req_exp(r1) ∧... ∧ req_exp(rn). (4)

This applies to all derived requirements, a notion we will formally discuss in the next sec-
tion. Figure 6 shows an example of derived requirements, where nothing in requirement R
mentions R1, R2 and R3, yet the later three are decompositions of R. In this case, we say
that R1, R2 and R3 are derived requirements (derived from R). We can see that (3) holds but
(4) does not.

If indeed both (3) and (4) are true, we say that the decomposition step is faithful, i.e., the
sub-requirements give an exact interpretation of the original requirement. The sub-require-
ments are also called faithful decompositions of the original requirement. Faithful decompo-
sition is desirable, since we want the original customer’s requirements being observed as
much as possible. However, it may be difficult to achieve.

4.2 Requirement information

A requirement is associated with the following information:

• req_description: descriptive information of the requirement;

• req_doc: the document associated with the requirement containing textual and graphical
description of a requirement;

• req_posted_by: the agent who posted the requirement;

• req_posting_time: the date or time when the requirement is posted;

• req_scope: whether the requirement is an internal one or external;

• req_strength: soft or hard requirement;

• req_category: which requirement class that the requirement belongs to, e.g. functional
requirement, cost requirement, environmental requirement, etc.;

A Product Ontology 18

• req_origin: explicit or implicit requirement;

• req_status: whether the requirement is active, suspended, or inactive;

• req_verify_method: the method and procedure of verifying the requirement;

• req_verification_status: whether the requirement has been verified as satisfied, violated,
or unknown;

• req_verification_time: the time the requirement is verified;

• req_rationale: the rationale behind the requirement.

4.3 Constraints

Constraints are statements that must be satisfied by design. Since it puts restriction on the
design, each primitive requirement is also viewed as a constraint. That is, requirements are
decomposed into constraints at the final step of the requirement decomposition process. In
addition to the constraints that decompose from requirements, there are constraints that cap-
ture various physical laws that must always be obeyed by the design. For example, if the
artifact is a geometrical object, it has to satisfy laws of geometry and topology, often
described as equations or inequalities over parameters of the artifact. The physical laws can
also be used to derive knowledge that is previously unknown to us, e.g. if two angles in a tri-
angle structure are given then the third angle can be calculated by invoking the triangle prin-
ciple. These constraints are thus also called deductive rules. The content of each constraint
is described by a logical sentence. We call it constraint expression and denote by con_exp(c)
for a constraint c. Constraint expressions are logical sentences. Since requirements have
been discussed earlier, in the next (sub)-section we list several examples of constraints that
are not (primitive) requirements.

4.3.1 Several Examples of Constraints

One interesting group of constraints are those related to, and can be inferred from, the struc-
ture of parts. The simplest one is that the weight of a part is equal to the sum of the weights
of its (direct sub-)components. Suppose p1,..., pn are direct components of part p. Then:

weight(p) = ∑ weight(pi). (5)

The cost of a part is equal to the sum of the costs of its (direct) components and the cost of
assembling the components into the part: 1

cost(p) = ∑ cost(pi) + assembly_cost(p).

We can also calculate the power consumption of a part from that of its components. The
relation, though, may not be as simple as that of weight or cost. In addition, there may be

1. There are many models of cost calculations, some of which are fairly complex, involving labor rate, recur-
ring costs, etc. Here we only demonstrate an idea of how to specify a cost model in terms of axioms.

A Product Ontology 19

several levels of power consumption, depends on the modes of the components are on, e.g.
operating mode, standby mode and resting mode, which we would not discuss the detail
here. In summary, each constraint in this group captures a relationship between α(p) and
α(p1),..., a(pn), where p1,..., pn are direct components of part p and α is a property of the
parts. The relationship is generally a function f such that

α(p) = f(α(p1),..., α(pn)).

Another group of constraints are domain constraint for parameters. Each parameter is asso-
ciated with one of the domain constraints. For example, the following is a constraint on the
parameter “weight”, which says weight of a part must be positive.

(∀ p) weight(p) > 0. (6)

“The base cover of the lamp must be built of the material either cast iron or cast steel”:

material(Base_cover) = Cast_iron ∨ material(Base_cover) = Cast_steel. (7)

‘The color of Heavy_base must be one of {blue, white, black}”:

 color(Heavy_base) = Blue ∨ color(Heavy_base) = White ∨ color(Heavy_base) =
Black. (8)

4.3.2 Relationship of Parametric Constraints and Parts

Parametric constraint is a special class of constraint; it is largely concerned in parametric
design, where an artifact is characterized by a set of parameters and a set of constraints that
limit the values of these parameters [9]. As defined, parametric constraints are constraints
whose expressions have no variables [9]. According to this definition, the constraints (7)
and (8), and that from the primitive requirement (2) are parametric constraints, while (6) and
(5) are not. In talking about the relationship of constraints and parts, we restrict ourselves on
parametric constraints, since for more general constraints the relationship is difficult to dis-
cuss due to the arbitrary form of the constraint expressions.

The relationship of constraints and parts will be brought out by the notion of domain of
parametric constraint. The domain of a (parametric) constraint is in a sense similar to the
domain of a parameter (which is the set of values that can be achieved by the parameter).
The domain can be roughly thought of as the set of objects (parameters with their parts or
features) that the constraint is concerned with. Since a constraint puts restrictions on certain
parameters, the domain can also be viewed as the set of parameters (with the parts or fea-
tures that the parameters belong to) that the constraint has restrictions on.

Let domain(cr) denote the domain of cr, where cr a constraint or a requirement.

We first define the domain of a parametric constraint. The domain of a constraint c is defined
as the set of objects of the form para(pf) that appear in con_exp(c), where para is a parame-
ter name and pf is a part or a feature. Likewise, for a primitive requirement r that is a para-

A Product Ontology 20

metric constraint, the domain is defined as the set of objects of the form para(pf) that appear
in req_exp(r).

For instance, the constraint (7) has the domain {materal(Base_cover)}, (8) has the domain
{color(Heavy_base)}, and (2) has the domain {weight(Desk_spot_lamp)}.

The domain of a non-primitive requirement is the union of the domains of its decomposi-
tions. Suppose r1, ... , rn are the direct decompositions of r. Then:

domain(r) = domain(r1) ∪ ... ∪ domain(rn).

Note that this definition of domain is a syntactical one. It might be the case that a parameter
is in the domain of a constraint (or a requirement) but the parameter is not restricted by the
constraint (or the requirement). For example, suppose we have written the following con-
straint C with the expression:

color(Heavy_base) = Blue ∨ color(Heavy_base) ≠ Blue.

Although color(Heavy_base)∈ domain(C), it is easily seen that the constraint does not has
any effect on the color of Heavy base. This kind of constraints are tautologies; they have no
meaning and should be avoided to write.

With the domain definition, the ontology can answer the following question: Does a require-
ment R impose a constraint on part P? Assuming that the requirement is decomposed into
parametric constraints, this can be answered by finding out whether there is a parameter
name para such that:

[para(P) ∈ domain(R)] ∨ (∃ f) feature_of(f, P) ∧ [para(f) ∈ domain(R)]. (9)

4.3.3 Constraint information

A constraint is associated with the following information:

• con_description: descriptive information of the constraint;

• con_doc: the document associated with the constraint containing its textual and graphical
description;

• con_exp: the mathematical or first-order description of the constraint;

• con_source: the requirement that the constraint is decomposed from, or physical law etc;

• con_posted_by: the agent who posted the constraint;

• con_posting_time: the date or time when the constraint is posted;

• con_status: whether the constraint is active, suspended, or inactive in the constraint net-
work;

• con_satisfaction_status: whether the constraint is satisfied, violated, or unknown at the
con_satisfaction_time;

A Product Ontology 21

• con_satisfaction_time: the time that the constraint has the status specified in
con_satisfaction_status;

• con_strength: whether the constraint is relaxable (can be given in a relative scale).

5.0 Version

Design is an evolutionary process during which changes occur frequently. Before reaching
its maturity each object of requirements, parts, features, and constraints may undergo many
transformations and revisions. Versions of the objects are created to record the history of the
design. Katz [12] defines version as a semantically meaningful snapshot of a design object
at some point of time. We regard each version itself to be an object, which in our case is one
of requirements, parts, features, or constraints. Version history is recorded by the predicate:
derived_from(o,o') meaning that object o (a version) is derived from object o' (another ver-
sion). Figure 7 illustrates the version history of Weight_disc.

FIGURE 7. Versions of Weight_disc

The design starts with Weight_disc_v0.1, from which derives two parallel versions
Weight_disc_v0.2a and Weight_disc_v0.2b. They in turn can have dependent versions,
Weight_disc_v1.0, Weight_disc_v0.3 and Weight_disc_v2.0 etc. The parallel versions
record design alternatives along the design process. This is typically the case in the design of
complex and one of the kind artifact—several versions of a design are pursued simulta-
neously.

The very first version in the version hierarchy is also called base version. This is the version
of the object that the design begins with. Any object in our ontology (i.e. one of require-

Weight_disc_v0.1

Weight_disc_v0.2a Weight_disc_v0.2btim
e

Weight_disc_v1.0 Weight_disc_v0.3

Weight_disc_v2.0

derived_from

derived_from

derived_from derived_from

Weight_disc version_cluster

A Product Ontology 22

ments, parts, features and constraints) is either a base version by itself or a version of
another object in the ontology. Let base_version(o) denote that object o is a base version.
Then:

(∀ o) ¬ base_version(o) ⊃ (∃ o') derived_from(o, o').

(∀ o) base_version(o) ≡ ¬ (∃ o') derived_from(o, o').

The second axiom in fact subsumes the first one and gives an definition for base_version.
For example, Weight_disc_v0.1 is a base version in Figure 7.

A version can only be a derived version of another object. It will be strange if for example
Weight_disc_v2.0 is derived from both Weight_disc_v1.0 and Weight_disc_v0.2b. Hence
we have the axiom:

(∀ o, o', o") derived_from(o, o') ∧ derived_from(o, o") ⊃ o' = o".

As mentioned, parallel versions record design alternatives and different design paths. The
formal definition of parallel version will be illustrated by the following two axioms. The first
one says that if two objects are versions of a same object then they are parallel versions:.

(∀ o, o') [(∃ o") derived_from(o, o") ∧ derived_from(o', o")] ⊃ parallel_version(o, o').

The second one defines the “transitivity” of the parallel_version relation:

(∀ o, o', o") derived_from(o, o') ∧ parallel_version(o', o") ⊃ parallel_version(o, o").

By these definitions, we have Weight_disc_v2.0 is a parallel version of Weight_disc_v0.3
and Weight_disc_v0.2b, etc. Version history and parallel versions are discussed in several
papers surveyed in [12], e.g. [13], but in those papers the axioms are not presented.

The concept of version cluster gives an important relationship among versions. A version
cluster is a set of versions related by the derived_from relationship. Each version cluster has
a unique name. For example, the versions in Figure 7 all belong to the same version cluster
Weight_disc (which is the name of the objects with the version number stripped off). A ver-
sion cluster is like an abstract class with versions in it as its instances. Hence when we talk
about Weight_disc, we mean the version objects in this class. The predicate version_of(o,
cluster) records that version o belongs to the version cluster cluster. For example, we have:

version_of(Weight_disc_v0.1, Weight_disc),

version_of(Weight_disc_v0.2a, Weight_disc),

....

Each version has a time at which the version is created. The term creation_time(o) denotes
the creation time of a version o. We can give an order over two different versions according
to their creation time. Between two versions o1 and o2, we say o1 is more recent than o2,
denoted by o2 < o1 if and only if creation_time(o2) < creation_time(o1). (We assume here
the order < over two time objects can be understood naturally without explanation.)

A Product Ontology 23

There is a constraint that if a version is derived from another, then it must be created later in
time. It will be weird if a version is derived from a version created later.

(∀ o1, o2) derived_from(o1, o2) ⊃ o2 < o1 .

The question such as “What is the most recent version of Weight_disc?” can be answered by
finding the object o such as the following holds:

version_of(o, Weight_disc) ∧ ¬ (∃ o') [version_of(o, Weight_disc) ∧ o < o'].

A tricky issue is the version of a composite object (a composite object is an object consisting
of several sub-objects, e.g. a part that has several sub-components, a requirement that con-
sists of several sub-requirements, a feature that has several sub-features). When one of the
sub-objects changed, should a new version of the composite object be created? The answer
is yes. In the following we will focus on the maintaining of links between new version of the
composite object and the sub-objects. Suppose in the desk spot lamp example, the part
Weight_disc has changed and so a new version of Weight_disc is created. As a result new
version of Heavy_base is to be created. One possible solution is to make a copy of every
sub-components of the Heavy_base so that the new version is “independent of” the old ver-
sion (Figure 8).

FIGURE 8. Version of Composite Object (1)

This method has to create versions of all sub-objects even if they are not involved in the
change, e.g. Clip and Base_over are made copies in the new version even change occurs in
Weight_disc only. This incurs substantial duplication if the composite object has many com-
ponents and the change is limited only on small number of the components. In our KAD
system, only those objects that are involved in the changes are versioned (Figure 9). Note
that Clip and Base_over are not created new versions and the link of Heavy_base_v2 points
to the old versions of them.

Heavy_base_v1

Clip_v1 Base_cover_v1 Weight_disc_v1

has_component

Heavy_base_v2

Clip_v2 Base_cover_v2 Weight_disc_v2

has_component

new version

A Product Ontology 24

FIGURE 9. Version of Composite Object (2)

6.0 References

[1] Black, J. E. AI assistance for requirements management. Concurrent Engineering:
Research and Applications (1994) 2, 255-264.

[2] Borgida, A., Greenspan, S. and Mylopoulos, J. “Knowledge Representation as the Basis
for Requirements Specification” IEEE Computer, 18:82-91, 1985.

[3] Dixon J.R., Cunningham J.J., Simmons M.K., Research in designing with features, in
Intelligent CAD I, eds. Yoshikawa H., Gossard D., Proc. IFIP TC 5/ WG 5.2 workshop
on intelligent CAD, Elsevier, 1987, 137-148.

[4] Dym, Clive L. Engineering Design: A Synthesis of Views. Cambridge University Press,
1994.

[5] Fox, M., Chionglo, J.F., and Fadel, F.G. “A Common Sense Model of the Enterprise”,
Proceedings of the 2nd Industrial Engineering Research Conference, pp. 425-429, Nor-
cross GA: Institute for Industrial Engineers. http://www.ie.utoronto.ca/EIL/papers/
abstracts/14.html

[6] Fox, M.S., Finger, S., Gardner, E., Navin chandra, D., Safier, S.A., and Shaw, M.,
“Design Fusion: An Architecture for Concurrent Design”, in Knowledge-aided Design,
Academic Press Ltd., London, UK, edited by Green, M., pp. 157-195, 1992.

[7] Fox, M.S., Salustri, F.A. “A One-Off Systems Engineering Model”, AAAI Workshop on
Artificial Intelligence and Systems Engineering, August 1994, Seattle, Washington.
http://www.ie.utoronto.ca/EIL/papers/abstracts/33.html

[8] Green, M. (Ed.) Knowledge-aided Design. London UK: Academic Press Ltd. 1992.
[9] Gruber, T. R. and Olsen, G. R. The configuration design ontologies and the VT elevator

domain theory. International Journal of Human-Computer Studies 44, 569-598, 1996.
[10]Gruninger, M., and Fox, M.S., (1994), “The Design and Evaluation of Ontologies for

Enterprise Engineering”, Workshop on Implemented Ontologies, European Conference
on Artificial Intelligence (ECAI) 1994, Amsterdam, NL. http://www.ie.utoronto.ca/EIL/
public/onto_ecai94.ps

[11]Hoffman, D. A overview of concurrent engineering. Tutorial Notes of 1994 Annual
Reliability and Maintainability Symposium, California, January 1994.

[12]Katz, R. “Towards a unified framework for version modeling in engineering databases,”
ACM Computing Surveys, pp. 375-408, 1990.

Heavy_base_v1

Clip_v1 Base_cover_v1 Weight_disc_v1

has_component

Heavy_base_v2

Weight_disc_v2

has_component

derived_from

derived_from

A Product Ontology 25

[13]Katz, R., Chang, E., and Bhateja, R. “Version modeling concepts for computer-aided
design databases”. In Proceedings of the ACM SIGMOD Conference, pp. 379-386,
1986.

[14]Kott, A. and Peasant, J. L. Representation and management of requirements: The
RAPID-WS project. Concurrent Engineering: Research and Applications. Vol. No. 2.
Pages 93-106. June 1995.

[15]Massey, B.S. Measures in Science and Engineering: Their Expression, Relation and
Interpretation. Ellis Horwood Limited, England. 1986.

[16]Product Data Representation and Exchange- Part 44 - Integrated Resources: Product
Structure Configuration, ISO 10303-44, 1992.

[17]Roman, G.-C. A taxonomy of current issues in requirement engineering. IEEE Com-
puter, pp. 14-21, April 1985.

[18]Salomons O.W., Houten F.J.A.M. van, Kals H.J.J., Review of research in feature-based
design, Journal of Manufacturing Systems, Vol.12, No. 2, 1993, 113-132.

