
This article was downloaded by: [University of Toronto Libraries]
On: 11 November 2011, At: 07:05
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Production
Research
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tprs20

Combining RFID with ontologies to
create smart objects
Michael Grüninger a , Steven Shapiro b , Mark S. Fox a & Harald
Weppner c
a Department of Mechanical and Industrial Engineering, University
of Toronto, Toronto, Ontario, Canada
b Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada
c SAP Research, SAP Labs LLC, Palo Alto, CA, USA

Available online: 18 Mar 2010

To cite this article: Michael Grüninger, Steven Shapiro, Mark S. Fox & Harald Weppner (2010):
Combining RFID with ontologies to create smart objects, International Journal of Production
Research, 48:9, 2633-2654

To link to this article: http://dx.doi.org/10.1080/00207540903564975

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tprs20
http://dx.doi.org/10.1080/00207540903564975
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

International Journal of Production Research
Vol. 48, No. 9, 1 May 2010, 2633–2654

RESEARCH ARTICLE

Combining RFID with ontologies to create smart objects

Michael Grüningera*, Steven Shapirob, Mark S. Foxa and Harald Weppnerc

aDepartment of Mechanical and Industrial Engineering, University of Toronto, Toronto,
Ontario, Canada; bDepartment of Computer Science, University of Toronto, Toronto, Ontario,

Canada; cSAP Research, SAP Labs LLC, Palo Alto, CA, USA

(Revision received November 2009)

Radio frequency identification (RFID) technology has long been known for its
ability to uniquely identify objects. Recent years have witnessed a significant
increase in storage capacity on the tag, which is giving rise to a new set of
application scenarios. As the tag itself can carry relevant context information,
processes can be managed locally rather than relying on a centralised system
infrastructure. This in turn results in a massive interoperability challenge.
We propose to solve this problem by combining RFID technology with ontologies
to create smart objects in the context of manufacturing process control. The idea is
to store information originating from an SAP ERP system using the PSL
Ontology (ISO 18629) for representing processes and time directly on the RFID
tags. As an item flows through a manufacturing process, information about the
item can be stored on its tag. This information, along with the PSL axioms, can be
used to make inferences about the manufacturing process and the item in
particular. In this paper, we discuss our formalisation of an ontology for the SAP
data model and show an example of translating data from an SAP ERP system
into PSL axioms, and answering queries about a manufacturing process.

Keywords: RFID; smart objects; manufacturing; ontologies; process specification
language; automated reasoning

1. Introduction

In today’s global economy, manufacturing enterprises must employ increasingly effective
and efficient information systems. Such systems should result in the seamless integration of
manufacturing applications and exchange of manufacturing process information between
applications within and across enterprise boundaries. A new approach to achieve this
integration has been the notion of proactive computing, in which information systems act
in anticipation of future problems, needs, or changes of the user.

To be proactive, a computer system must understand the user’s context and how it
changes over time. Within manufacturing enterprises, this can be facilitated by the
recording of process constraints associated with a particular resource as it passes through
the set of activities performed within the supply chain.

In these enterprises, RFID (radio frequency identification) technology is used to
capture, retain, and transmit data about an object. An RFID tag is a device that can serve as
a means of identifying objects using radio transmissions; data can be written and retrieved
using readers that are in close proximity to the tag. Some companies have used active or

*Corresponding author. Email: gruninger@mie.utoronto.ca

ISSN 0020–7543 print/ISSN 1366–588X online

� 2010 Taylor & Francis

DOI: 10.1080/00207540903564975

http://www.informaworld.com

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

passive RFID tags to record a detailed history of the steps and conditions as each object or
batch of objects goes through the manufacturing process. While RFID tags originally held
only 32–128 bits of information, the current generation of passive tags already hold 32
kilobytes while active tags hold up to 4 megabytes of data or more. The memory size is
expected to increase in the future. Some companies write manufacturing instructions to the
tag, which can then be recalled at each step of the manufacturing process. In all of these
cases, the idea is to create smart objects by deploying RFID technologies throughout the
supply network. By analysing data and events in real time, objects become self-directing,
processes become self-managing, and the supply chain becomes self-correcting.

Nevertheless, current deployments of RFID have not fully achieved this vision. One
problem has been that the information being encoded on the tags has often been
represented in an informal and ad hoc fashion. As a result, it has been difficult to provide
any automated dynamic decision support. In particular, truly proactive systems need to be
able to predict possible future behaviours. For example, if we can identify the subsequent
activities that may possibly occur so that the complete set of constraints will be satisfied,
then the set of predictions can be used to dynamically determine the routing of the
resource and prevent the occurrences of any activities that are inconsistent with the set of
process constraints.

Even in cases where the appropriate information is encoded on the RFID tags, an
approach known as ‘data-on-tag’, enterprises must provide access to the information by
people, software applications, and business processes, anytime and anywhere.
Unfortunately, different applications and databases ascribe disparate meanings to the
same terms or use distinct terms to convey the same meaning. This clash over the meaning
of the terms prevents the seamless exchange of information among the applications.

The objective of this paper is to specify a set of theories in first-order logic which can
support the design and implementation of smart objects that are able to predict their
possible future behaviours by deduction from their history and background manufacturing
process knowledge. The emphasis is on the following issues:

. specifying the manufacturing process knowledge that is to be encoded on RFID
tags;

. performing automated reasoning with the knowledge encoded on RFID tags; and

. integrating this knowledge with the enterprise’s manufacturing software systems
(e.g. process modelling, process planning, scheduling, production planners, and
workflow management systems).

The representation of the process knowledge must be generic and reusable, so that it
can be used in multiple manufacturing scenarios. It needs to be expressive enough to
capture process plans and their properties, as well as the potential queries related to future
behaviours. Finally, it must be powerful enough to deduce the solutions to queries from
the axioms of the theory alone, rather than use extralogical mechanisms, since the process
knowledge is specified declaratively on the RFID tags independently of domain-specific
algorithms.

2. Related work

Diekmann et al. (2007) compare two approaches on how object-related data and processes
are managed. In the ‘data-on-network’ approach, only identifying information is stored on

2634 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

the RFID tag while related data and processes are managed centrally. In the ‘data-on-tag’
approach, information is held on the tag, at least initially. Advantages and disadvantages
of each approach are discussed and it is concluded that they should be seen as
complementary. Melski et al. (2007) further explore the specific benefits of ‘data-on-tag’ in
comparison to ‘data-on-network’ applications. They identify a lack of standards, which
are required to allow reading and writing data-rich tags across company boundaries.
Through case studies they identify four general functions that ‘data-on-tag’ applications
specifically provide: informational, documentational, temporary storage and a control
function. The control function results in increased flexibility and adaptability, a clear
advantage of decentralised over centralised process controlling. Guenther and Tribowski
(2009) identify the future interoperability and integration problems for ‘data-on-tag’
applications whenever syntax and semantic are not agreed upon by collaborating
enterprises. They highlight the lack of a standard for storing object-related data on RFID
tags and raise this as a significant issue for a wider spread adoption. ISO standard 13584 is
explored to address the informational function, i.e. deliver additional information on the
object. Ruta et al. (2007) have shown the possibilities of organising the tag memory and
enhancing the current standard data exchange protocol in a compatible fashion.

3. Manufacturing process scenario

3.1 Dynamic process routing

The storyboard in Figure 1 motivates queries related to dynamic self-routing of objects
through the various process plans within the set of manufacturing processes. Each product
is associated with a set of process plans, which are partially ordered sequences of
manufacturing processes. In more general scenarios, such process plans may also be

Production
order

released

1

Translated
to PSL &
stored on
RFID tag

2

Production
order

Which activities
must occur?

3 What’s next?

What
happened?

5

4

Feeding back the
activities that

occurred

6
Confirmation

Figure 1. Manufacturing process scenario.

International Journal of Production Research 2635

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

non-deterministic (that is, involve different choices of sequences of manufacturing
processes). Objects ‘flow’ through the sequence of processes. At any point in a process
plan, there are multiple activities that can possibly occur next.

Furthermore, different process plans may have manufacturing processes in common, so
that an object may participate in an activity that is part of multiple process plans. In
Figure 2(a) and (b), we see two different process plans, and their combination in Figure 2(c).

Each manufacturing process imposes constraints on the objects that participate in the
process. State constraints require that the objects satisfy specific properties before the
process can occur. If the object does not satisfy the state constraints, then additional
activities may occur so that the necessary state properties for the object can be achieved.

The state constraints on manufacturing processes also influence possible routings of
objects – the next activity that occurs may depend on the properties of the object.
Temporal constraints require that different processes occur before specified deadlines. In
such cases, an object may be routed to different manufacturing processes.

The history of an object is the set of activity occurrences in which an object participates
as well as the order in which the activities occurred, and the times at which the activities
occurred. All of the dynamic process routing queries are answered relative to the set of
process plans that could possibly be occurring, which is the set of process plans whose
initial sequences of subactivity occurrences are consistent with the history of the object.

3.2 Queries

All of the dynamic process routing queries focus on the choices that the object has at
different points in a process. Since no decisions need to be made where there are no
choices, we need to first identify the choicepoints in a process plan, that is, the set of
subactivities in the process plan after which we have a choice over what activity occurs
next. The object then needs to determine the nature of the choices, and the impact of the
choice on future decisions. The following informal queries capture these intuitions.

Query 3.1: Is the object currently at a choicepoint?

Query 3.2: Is this a choice of which activities occur, or a choice of the ordering in which
to perform activities?

1 2 3

4

5

6 1 4 7

1 2 3

4

5

6

7

(a) (b)

(c)

Figure 2. Process plans.

2636 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

Query 3.3: Given that the object is at a choicepoint, determine which activities can
possibly occur next.

Query 3.4: Given that the object is at a choicepoint, can the choice to perform some
activity be postponed until later in the process? If not, then it must occur next (even if
other activities can possibly occur next).

Query 3.5: Which activities must not occur next, that is, which activities must occur
later?

Query 3.6: Which activities must occur in the same ordering, for any occurrence of the
process?

Query 3.7: Is there a point in the process after which the same activities occur? If such a
point exists, then all of the remaining choices will simply be over the order in which the
activities occur.

Query 3.8: Is there a point in the process after which the order of the activities is the same
for all occurrences of the process? After such a point, we cannot make any choices about
the order in which the activities occur.

The dynamic process routing queries are also related to process verification. Process
plans specify the set of activities that are intended to occur, while the object history records
the set of activities that actually occurred. If any activity occurred which should not have
occurred or an activity occurrence violated an ordering constraint, then the object history
will not correspond to the occurrence of any process plan.

3.3 Inferences

The dynamic process routing queries are answered using the following sets of sentences,
which are written on the RFID tag for the object:

. object history

. all possible process plans

. manufacturing process ontology

In the following sections, we will consider each of these aspects.

4. Ontology for manufacturing processes

The key component in the representation of the knowledge written on the RFID tag is the
manufacturing process ontology, which specifies the semantics of concepts such as process
plans, activity occurrences, and ordering constraints. In this section, we give an overview
of the ontology. We begin by considering why ontologies are needed in the first place.

4.1 The need for ontologies

Ontologies address two major challenges with respect to the sharability and reusability of
knowledge. The first challenge is a lack of interoperability among the various applications
that the enterprises use. Interoperability is hindered because different applications may use
different terminology and representations of the domain. Even when applications use the

International Journal of Production Research 2637

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

same terminology, they often associate different semantics with the terms. This clash over
the meaning of the terms prevents the seamless exchange of information among the
applications. Typically, point-to-point translation programs are written to enable
communication from one specific application to another. However, as the number of
applications has increased and the information has become more complex, it has been
more difficult for software developers to provide translators between every pair of
applications that must cooperate. What is needed is some way of explicitly specifying the
terminology of the applications in an unambiguous fashion.

The second problem faced by enterprises today is a lack of reusability. The knowledge
bases that capture the domain knowledge of engineering applications are often tailored to
specific tasks and projects. When the application is deployed in a different domain, it does
not perform as expected, often because assumptions are implicitly made about the
concepts in the application, and these assumptions are not generic across domains. For
example, machine models are often designed specifically about a particular set of
properties about specific machines rather than characterising generic properties of
machines, such as reusability, setup activities, and operating conditions.

To address these challenges, various groups within industry, academia, and govern-
ment have been developing sharable and reusable models known as ontologies. All
ontologies consist of a vocabulary along with some specification of the meaning or
semantics of the terminology within the vocabulary. In doing so, ontologies support
interoperability by providing a common vocabulary with a shared semantics. Rather than
develop point-to-point translators for every pair of applications, one simply needs to write
one translator between the application’s terminology and the common ontology. Similarly,
ontologies support reusability by providing a shared understanding of generic concepts
that span across multiple projects, tasks and environments.

The various ontologies that have been developed can be distinguished by their degree
of formality in the specification of meaning. With informal ontologies, the definitions are
expressed loosely in natural language. Semi-formal ontologies provide weak constraints,
such as taxonomies, of the terminology. Formal ontologies use languages based on
mathematical logic. Informal and semi-formal ontologies can serve as a framework for
shared understanding among people, but they are often insufficient to support
interoperability, since any ambiguity can lead to inconsistent interpretations and hence
hinder integration. Thus, simply sharing terminology is insufficient to support interoper-
ability – the applications must share their semantics as well.

4.2 Process specification language

The Process Specification Language (PSL) (Schlenoff et al. 1999, Grüninger and Menzel
2003, Grüninger 2004, Bock and Grüninger 2005) has been designed to facilitate correct
and complete exchange of process information.1 The primary purpose of PSL is to enable
the semantic interoperability of manufacturing process descriptions between manufactur-
ing engineering and business software applications such as process planning, scheduling,
workflow, and project management. Additional applications of PSL include business
process design and analysis, the implementation of business processes as web services, and
enterprise modelling.

The PSL Ontology is a modular set of theories in the language of first-order logic. All
core theories within the ontology are consistent extensions of a theory referred to as

2638 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

PSL-Core, which introduces the basic ontological commitment to a domain of activities,
activity occurrences, timepoints, and objects that participate in activities. Additional core
theories capture the basic intuitions for the composition of activities, and the relationship
between the occurrence of a complex activity and occurrences of its subactivities.

In order to formally specify a broad variety of properties and constraints on complex
activities, we need to explicitly describe and quantify over complex activities and their
occurrences. Within the PSL Ontology, complex activities and occurrences of activities are
elements of the domain and the occurrence_of relation is used to capture the relationship
between different occurrences of the same activity.

A second requirement for formalising queries is to specify the composition of activities
and occurrences. The PSL Ontology uses the subactivity relation to capture the basic
intuitions for the composition of activities. Complex activities are composed of sets of
atomic activities, which in turn are either primitive (i.e. they have no proper subactivities)
or they are concurrent combinations of primitive activities.

Corresponding to the composition relation over activities, subactivity_occurrence is the
composition relation over activity occurrences. Given an occurrence of a complex activity,
subactivity occurrences are occurrences of subactivities of the complex activity.

Finally, we need some way to specify ordering constraints over the subactivity
occurrences of a complex activity. The PSL Ontology uses the min_precedes(s1, s2, a)
relation to denote that subactivity occurrence s1 precedes the subactivity occurrence s2 in
occurrences of the complex activity a. Note that there could be other subactivity
occurrences between s1 and s2. We use next_subocc(s1, s2, a) to denote that s2 is the next
subactivity occurrence after s1 in occurrences of the complex activity a.

A fundamental structure within the models of the axioms of the PSL Ontology is the
occurrence tree, whose branches are equivalent to all discrete sequences of occurrences of
atomic activities in the domain. Elements of the occurrence tree are referred to as arboreal
occurrences.

Although occurrence trees characterise all sequences of activity occurrences, not all
of these sequences will intuitively be physically possible within a given domain. We
therefore consider the subtree of the occurrence tree that consists only of possible
sequences of activity occurrences, which we refer to as the legal occurrence tree. The
legal(o) relation specifies that the atomic activity occurrence o is an element of the legal
occurrence tree.

The basic structure that characterises occurrences of complex activities within models
of the ontology is the activity tree, which is a subtree of the legal occurrence tree that
consists of all possible sequences of atomic subactivity occurrences of an activity; the
relation root(s, a) denotes that the subactivity occurrence s is the root of an activity tree for
a. Elements of the tree are ordered by the min_precedes relation; each branch of an activity
tree is a linearly ordered set of occurrences of subactivities of the complex activity. In
addition, there is a one-to-one correspondence between occurrences of complex activities
and branches of the associated activity trees.

In a sense, an activity tree is a microcosm of the occurrence tree, in which we consider
all of the ways in which the world unfolds in the context of an occurrence of the complex
activity. Different subactivities may occur on different branches of the activity tree –
different occurrences of an activity may have different subactivity occurrences or
different orderings on the same subactivity occurrences (see the examples in Figure 3).
This distinction plays a key role in the specification of the reasoning problems in this
paper.

International Journal of Production Research 2639

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

4.3 Ontology of process plans

There have been many proposals for the representation of process plans (Cho and Wysk
1995, Sormaz and Khoshnevis 2003), particularly with respect to structures such as AND/
OR graphs. Nevertheless, such approaches are not directly suitable for the task at hand,
since the intended semantics of the process plans is implicit in the algorithms used to
interpret the AND/OR graphs. As a result, automated reasoning through theorem provers
with declarative specifications of processes is inhibited.

The ontology of process plans discussed in this paper is a theory within the PSL
Ontology containing axioms for classes of activities whose activity trees are defined with
respect to partial orderings over their subactivity occurrences. In particular, the set of
axioms in the PSL Ontology captures all of the intuitions of the graph-theoretic
representation of process plans.

In this paper we also introduce two new consistent extensions of the PSL Ontology
which are used to capture the notion of process plan composition and intuitions specific to
the issue of choicepoints within a process plan.

4.3.1 Process plans

The fundamental intuition in the ontology of process plans is the notion of a partial
ordering that is embedded within the activity trees of a complex activity. Different classes
of process plans are defined by characterising the relationship between the partial ordering
and the set of possible occurrences of a process plan.

Three new relations are introduced to specify the relationship between the partial
ordering (referred to as the subactivity occurrence ordering) and the activity tree. The
relation soo(s, a) denotes that the activity occurrence s is an element of the subactivity
occurrence ordering for the activity a. The relation soo_precedes(s1, s2, a) captures
the ordering over the elements. For example, the partial ordering in Figure 3(a) can be
defined by2

sooðs11, aÞ ^ sooðs22, aÞ, sooðs
3
3, aÞ ^ sooðs44, aÞ ^ sooðs55, aÞ

^ soo precedesðs11, s
2
2, aÞ ^ soo precedesðs11, s

3
3, aÞ ^ soo precedesðs22, s

4
4, aÞ

^ soo precedesðs22, s
5
5, aÞ ^ soo precedesðs33, s

4
4, aÞ ^ soo precedesðs33, s

5
5, aÞ:

The activity trees in Figure 3(b), (c), (d) and (e) can all be mapped to the partial ordering in
Figure 3(a).

The relation mono(s1, s2, a) indicates that s1 and s2 are occurrences of the same
subactivity on different branches of the activity tree for a. In the activity tree in Figure 3(c)
we have

monoðs22, s
2
7, aÞ ^monoðs33, s

3
6, aÞ ^monoðs44, s

4
9, aÞ ^monoðs44, s

4
10, aÞ ^monoðs44, s

4
13, aÞ

^monoðs55, s
5
8, aÞ ^monoðs55, s

5
11, aÞ ^monoðs55, s

5
12, aÞ:

There are three basic classes of process plans, each of which imposes different
occurrence constraints on the elements of the partial ordering:

. strong poset activities

. choice poset activities

. complex poset activities

2640 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

For strong poset activities, there is a one-to-one correspondence between branches of

the activity tree and the linear extensions of the partial ordering. The partial ordering in

Figure 3(a) has four linear extensions:

s11s
2
2s

3
3s

4
4s

5
5, s11s

2
2s

3
3s

5
5s

4
4, s11s

3
3s

2
2s

4
4s

5
5, s11s

3
3s

2
2s

5
5s

4
4,

which correspond to the branches of the strong poset activity tree in Figure 3(c).
For choice poset activities, there is a one-to-one correspondence between branches of

the activity tree and the maximal chains in the partial ordering. The partial ordering in

Figure 3(a) has four maximal chains:

s11s
2
2s

4
4, s11s

2
2s

5
5, s11s

3
3s

4
4, s11s

3
3s

5
5,

which correspond to the branches of the choice poset activity tree in Figure 3(b).

Figure 3. Classes of poset activities.

International Journal of Production Research 2641

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

A complex poset activity is the union of the strong poset activities corresponding to a
set of linear extensions for suborderings of the partial ordering.

For example, given the partial ordering in Figure 3(a), the activity tree in Figure 3(b) is
a choice poset activity, the activity tree in Figure 3(c) is a strong poset activity, and the
activity trees in Figure 3(d) and (e) are complex poset activities.

For a strong or choice poset activity, there exists a unique activity tree corresponding
to the partially ordered set. For complex poset activities, the relationship between the
activity tree and the partial ordering is a little more complicated, since there can be
multiple possible activity trees corresponding to the same partial ordering. The key is to
consider the role of the incomparable elements in the partial ordering. In strong poset
activities, incomparable elements in the partial ordering correspond to subactivities that
occur in any order. In choice poset activities, incomparable elements in the partial ordering
correspond to subactivities that never occur on the same branch of the activity tree.

Two relations are introduced in the PSL Ontology that allow one to specify whether or
not two incomparable elements in the partial ordering correspond to subactivities that
occur in any order or whether they are subactivities that never occur on the same branch of
the activity tree. The same_bag relation is used to specify suborderings whose linear
extensions are contained in branches of the activity tree. The alternate relation is used to
specify the sets of subactivity occurrences that can never be elements of the same branch of
the activity tree; this is equivalent to specifying the suborderings whose chains are
contained in branches of the activity tree.

For example, consider the partial ordering in Figure 3(a), in which s22 and s33 are
incomparable, as are s44 and s55. The choice poset activity tree in Figure 3(b) can be
described by

alternateðs22, s
3
3, aÞ ^ alternateðs44, s

5
5, aÞ:

Note that, for choice posets, all incomparable elements in the ordering are alternate with
respect to each other. On the other hand, for strong posets, all incomparable elements in
the ordering are in the same_bag, so that the strong poset activity tree in Figure 3(c) is
described by

same bagðs22, s
3
3, aÞ ^ same bagðs44, s

5
5, aÞ:

For complex posets, we use both relations; for example, the complex poset activity tree in
Figure 3(d) is specified by

same bagðs22, s
3
3, aÞ ^ alternateðs44, s

5
5, aÞ,

because every linear extension of s22 and s33 is contained in the branches and every chain in
the subordering defined by s44 and s55 is contained in the branches of the activity tree.

4.3.2 Composition of process plans

In order to represent the problem of identifying the set of process plans that could possibly
be occurring, given the object history, we will consider the complex activity that consists of
all possible process plans as subactivities. This approach allows us to explicitly represent
the set of all possible activity occurrences; choices are made with respect to this set.

Since an activity tree represents all possible sequences of subactivity occurrences
corresponding to occurrences of the activity, the composition of a set of process plans is

2642 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

equivalent to the union of the activity trees for those process plans. The activity that
contains all possible process plans as subactivities is the maximum activity, and it can be
proven that such an activity is unique for a given set of process plans. Finally, we want to
restrict the composition to the set of process plans, rather than consider the composition of
all possible primitive activities; on the other hand, the transitivity of the subactivity relation
means that the primitive activities are also subactivities of the maximum activity. For this
reason, we introduce the notion of a maximal subactivity to allow us to distinguish between
subactivities of the maximum activity that are process plans and subactivities that are
primitive activities.

Figure 4 shows the axioms (called Tmax) that extend the PSL Ontology to specify the
composition of process plans.

4.3.3 Properties of activity trees

Finally, we need two additional relations that characterise structural properties of activity
trees that are relevant to the intuition of making a choice at some point of a process plan.
For example, consider the activity tree in Figure 3(c). After the element s11, either activity
a2 or a3 may occur next, although both subactivities occur on every branch of the
activity tree; the only choice in this case is selecting the order in which to perform a2 and
a3. On the other hand, after the element s33, a choice must be made to either perform a4 or
a5 next.

A maximum activity is one that contains all process plans as subactivities

(∀a) maximum(a) ≡ ((∀a1) activity(a1) ⊃ subactivity(a1, a)). (10)

The activity a1 is a maximal subactivity of the activity a2 if there is no other activity
that is a subactivity of a2 that is not already a subactivity of a1

(∀a1, a2) maximal sub(a1, a2) ≡ subactivity(a1, a2)

∧ ((∀a3) subactivity(a1, a3) ∧ subactivity(a3, a2) ⊃ ((a3 = a1) ∨ (a3 = a2))). (11)

There exists a maximum activity

(∃a) maximum(a). (12)

All maximal subactivities of the maximum activity are process plans

(∀a1, a2) maximum(a2) ∧ maximal sub(a1, a2)

⊃ ((strong poset(a1) ∨ choice poset(a1) ∨ complex poset(a1)). (13)

The maximum activity is the composition of the process plans, that is, the activity trees
for the maximum activity is the union of the activity trees for the process plans that are
subactivities

(∀a) maximum(a) ⊃
((∀s1, s2) min precedes(s1, s2, a) ≡ (∃a1) maximal sub(a1, a) ∧ min precedes(s1, s2, a1).

(14)

Figure 4. Tmax: axioms for maximum activities.

International Journal of Production Research 2643

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

The choicepoint relation captures the idea that there are multiple possible subactivities
that may occur next. In Figure 3(c), s33 and s27 are both choicepoints. The weak_choicepoint
relation captures the intuition that the choice involved is with respect to determining the
ordering in which to perform the following subactivities. In Figure 3(c), s11 is a weak
choicepoint. The axioms defining these relations (called Tchoicepoint) are given in Figure 5;
these axioms are a consistent extension of the PSL Ontology.

4.4 Formalisation of process constraints

In addition to the ontology of process plans, we also need to specify classes of sentences
that capture the constraints of the particular domain; intuitively, this corresponds to the
knowledge about instances of classes of objects and processes.

4.4.1 Object history

The history of an object is the set of activity occurrences in which an object participates as
well as the order in which the activities occurred, and the times at which the activities
occurred. This is formalised as the following class of sentences, which is parameterised by
an object, K.

Definition 4.1: �history(K) is a sentence of the form

ð9o1, . . . , on, o, aÞoccurrence of ðo1,A1Þ ^ . . . ^ occurrence of ðon,AmÞ

^ actual ðo1Þ ^ . . . ^ actual ðonÞ

^ participates inðK, o1,T1Þ ^ . . . ^ participates inðK, on,TnÞ

^ beforeðT1,T2Þ ^ . . . ^ beforeðTn�1,TnÞ ^ rootðo1, aÞ

^min precedesðo1, o2, aÞ ^ . . . ^min precedesðon�1, on, aÞ

^maximumðaÞ ^ occurrence of ðo, aÞ:

The object history is rewritten on the object’s RFID tag after each activity occurrence.
After each activity occurs, this sentence is augmented with the corresponding information

The subactivity occurrence s is a choicepoint in an activity tree for the activity a if it
has multiple distinct successors in the activity tree

(∀s, a) choicepoint(s, a) ≡
((∀s1) mono(s, s1, a) ⊃ (∃s2, s3) next subocc(s1, s2, a)

∧ next subocc(s1, s3, a) ∧ (s2 �= s3)). (15)

The subactivity occurrence s is a weak choicepoint in an activity tree for the activity a
if all of its successors in the activity tree occur on each branch

(∀s, a) weak choicepoint(s, a) ≡
(∀s1, s2) next subocc(s, s1, a) ∧ next subocc(s, s2, a)

⊃ (∃s3) next subocc(s1, s3, a) ∧ mono(s2, s3, a). (16)

Figure 5. Tchoicepoint: Axioms for properties of activity trees.

2644 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

about which activity occurred and the time at which it occurred.3 Ordering information is
captured by the before and min_precedes literals.

The object history sentence also asserts the existence of an occurrence of a maximum
activity that contains all activity occurrences in the object history for the object K as
subactivity occurrences. This additional condition allows us to characterise the dynamic
process routing queries with respect to properties of the activity trees of the maximum
activity.

4.4.2 Process descriptions

A process description is an axiom schema that can be used to specify the occurrence and
ordering constraints on an instance of a process plan in some class. For example, a strong
poset activity a has a process description of the form

8o:occurrence of ðo, aÞ �

9s1, . . . , sn:occurrence of ðs1, a1Þ ^ . . . ^ occurrence of ðsn, anÞ

^ subactivity occurrenceðs1, oÞ ^ . . . ^ subactivity occurrenceðsn, oÞ

^min precedesðsi1 , sj1 , aÞ ^ . . . ^min precedesðsik , sjk , aÞ,

ð1Þ

where i1, . . . , ik, j1, . . . , jk2 {1, . . . , n}.
This schema says that for any occurrence o of activity a there is a set of occurrences

s1, . . . , sn that are occurrences of activities a1. . . an, respectively, and they are subactivity
occurrences of o. The min_precedes literals (partially) constrain the order in which the
subactivity occurrences occur. This is an axiom schema because a, a1, . . . , an are unbound.
Here a is the activity corresponding to the strong poset activity, and a1, . . . , an are atomic
subactivities of a. In an instantiation of the schema, these unbound variables are replaced
with appropriate activity terms to describe a particular strong poset activity. The axioms
for the process plans will be denoted by �pd.

4.4.3 Antecedents for the reasoning problems

In summary, every reasoning problem has the following sets of sentences in the antecedent:

Tpsl [Tmax [Tchoicepoint [�historyðKÞ [�pd:

If this set of sentences is inconsistent, then either an unexpected activity has occurred at
some point in the object history, or an activity occurrence in the object history has violated
an ordering constraint.

4.5 Formalisation of queries

The dynamic process routing queries characterise properties of the activity trees of the
maximum activity. Using the ontology of manufacturing processes, we can formalise the
informal queries from Section 2.2 as the following sentences.

. Is the current subactivity occurrence a choice point?

ð9s, aÞmaximumðaÞ ^ choicepointðs, aÞ ^ occurrence of ðs, a1Þ: ð2Þ

International Journal of Production Research 2645

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

. Is the current subactivity occurrence a weak choice point?

ð9s, aÞmaximumðaÞ ^ weak choicepointðs, aÞ ^ occurrence of ðs, a1Þ: ð3Þ

. Which subactivities can possibly occur next after an occurrence of a1?

ð9aÞmaximumðaÞ

^ ðð8s1Þoccurrence of ðs1, a1Þ � ð9a2, s2Þsubactivityða2, aÞ

^ occurrence of ðs2, a2Þ ^ next suboccðs1, s2, aÞÞÞ:

ð4Þ

. Does there exist a subactivity that must occur next after an occurrence of a1?

ð9aÞmaximumðaÞ

^ ðð8o, s1Þoccurrence of ðs1, a1Þ ^ occurrence of ðo, aÞ

occurrence of ðs2, a2Þ ^ subactivity occurrenceðs2, oÞ

^ next suboccðs1, s2, aÞÞ:

ð5Þ

. Which subactivities must occur later after an occurrence of a1?

ð9aÞmaximumðaÞ ^ ðð8o, s1Þoccurrence of ðs1, a1Þ ^ occurrence of ðo, aÞ

^ subactivity occurrenceðs1, oÞ � ð9a2, s2Þoccurrence of ðs2, a2Þ

^min precedesðs1, s2, aÞ ^ subactivity occurrenceðs2, oÞÞ:

ð6Þ

. Which activities must occur in the same order?

ð9a1, a2, aÞmaximumðaÞ ^ subactivityða1, aÞ ^ subactivityða2, aÞ

^ ðð8s, s1, s2, s3, s4Þmonoðs1, s3, aÞ ^monoðs2, s4, aÞ ^ occurrence of ðs1, a1Þ

^ occurrence of ðs2, a2Þ ^ occurrence of ðs3, a1Þ ^ occurrence of ðs4, a2Þ

^min precedesðs, s3, aÞ ^ rootðs, aÞ ^min precedesðs1, s2, aÞ

^min precedesðs, s4, aÞ � :min precedesðs4, s3, aÞÞ:

ð7Þ

. Does there exist a point in an activity tree a after which the same

subactivities occur? (After this point, there will be no choice about which

activities occur.)

ð9a, a1, s1ÞmaximumðaÞ ^ subactivityða1, aÞ ^ occurrence of ðs1, a1Þ

^ ðð8o1, o2Þoccurrence of ðo1, aÞ ^ occurrence of ðo2, aÞ

^ subactivity occurrenceðs1, o1Þ ^ subactivity occurrenceðs1, o2Þ

^min precedesðs1, s2, aÞ

� ð9s3Þsubactivity occurrenceðs3, o2Þ ^min precedesðs1, s3, aÞ ^monoðs2, s3, aÞ:

ð8Þ

. Does there exist a point in each activity tree for a after which the ordering over the

subactivities a1 and a2 is the same? (After this point, there will be no choice about

2646 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

the ordering in which the activities occur.)

ð9a, a1ÞmaximumðaÞ ^ subactivityða1, aÞ ^ occurrence of ðs, a1Þ

^ ðð8s0, s1, s2, s3, s4Þrootðs
0, aÞ ^min precedesðs0, s, aÞ ^min precedesðs, s1, aÞ

^min precedesðs, s2, aÞ ^monoðs1, s3, aÞ ^monoðs2, s4, aÞ

^min precedesðs, s3, aÞ ^min precedesðs, s4, aÞ ^ occurrence of ðs1, a1Þ

^ occurrence of ðs2, a2Þ ^ occurrence of ðs3, a1Þ ^ occurrence of ðs4, a2Þ

� ððmin precedesðs1, s2, aÞ � min precedesðs3, s4, aÞÞÞ:

ð9Þ

5. Semantic integration with SAP ERP

As an example of the application of these ideas, we formalised a fragment of the SAP ERP
data model for discrete manufacturing processes in PSL, which we call the SAP Ontology.
We then wrote a program which translates a production order exported from SAP ERP
into the SAP Ontology. Once the production order was represented in this form, we could
use an automated theorem prover to answer queries about the production order. With the
addition of axioms about the history of the item being produced (which, in this example, is
a pump) as it flows through the manufacturing process, we can also use the theorem prover
to answer queries about the item as it is being manufactured.

5.1 Formalising the SAP data model

The central construct in the SAP Ontology is the SAP production order. A production
order can contain multiple ‘sequences’ of operations. The sequences can be of three types:
simple sequence, alternate sequence or parallel sequence. A simple sequence is a finite,
linearly ordered sequence of operations. Each production order has a main simple
sequence called the standard sequence. Branching off from the standard sequence can be
parallel or alternate sequences. Each parallel or alternate sequence is also a simple
sequence, but it also has start and end branch points to indicate the subsequence of the
standard sequence that it is parallel to or alternates with. Parallel sequences occur in
parallel with the corresponding standard subsequence, but alternate sequences, if they are
chosen for execution, will occur instead of the corresponding subsequence of the main
sequence. The definitions of the classes of process plans in the SAP Ontology can be found
in Figure 6.

There are tags and values associated with a production order, sequence, and operation.
For example, each production order has a material number and quantity associated with
it. The production order will produce that quantity of the material. There are also tags to
specify a name for the material, the sequences, and the operations, as well as various start
and end times and dates, e.g. earliest and latest scheduled start and end times, processing
times, wait times, etc. An operation can also have components associated with it; these are
the components that are consumed as part of the operation.

The full SAP Ontology includes definitions for concepts such as production orders, as
well as temporal relations, such as the earliest and latest start and finish times of an
operation. Other objects, such as the items being manufactured and their components, are
modelled as PSL objects.

International Journal of Production Research 2647

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

5.2 Formalisation of the manufacturing process control scenario

In this section, we discuss the formalisation and results of a manufacturing process control

scenario. Our example is of a pump manufacturing process. The process plan for the

production order (60004907) is shown in Figure 7.
The operation numbers (as assigned by the SAP ERP system) are shown in parentheses.

Note that the final assembly is accomplished in two operations (0040 and 0040-2) which are

performed in parallel. Here, steps 1–3 are done sequentially, following which, steps 4 and 5

are done in parallel, and then steps 6 and 7 are done sequentially. The standard sequence

for this production order is the sequence of operations: 0010, 0020, 0030, 0040, 0050, 0060.

There is also a parallel sequence that consists only of the operation 0040-2 and is in

parallel with the standard subsequence consisting of the single operation 0040.

An activity is a simple sequence if each of its activity trees has a unique branch

(∀a) simple sequence(a) ≡
((∀s1, s2, s3) min precedes(s1, s2, a) ∧ min precedes(s1, s3, a) ⊃
(min precedes(s2, s3, a) ∨ min precedes(s3, s2, a) ∨ (s2 = s3)). (17)

An activity a1 is a standard sequence for an activity a2 if it is a simple sequence that
contains subactivity occurrences that correspond to the choicepoints in activity trees for
a2

(∀a1, a2) standard sequence(a1, a2) ≡
((simple sequence(a1) ∧ subactivity(a1, a2)

∧ ((∀s1) choicepoint(s1, a2) ⊃ (∃s2) soo(s2, a1) ∧ mono(s1, s2, a2)). (18)

An activity is an SAP process plan if it is a poset activity tree that contains a standard
sequence

(∀a) sap process plan(a) ≡
((∃a′) standard sequence(a′, a)

∧ (choice poset(a) ∨ strong poset(a) ∨ complex poset(a))). (19)

An activity is a parallel sequence if it is a simple sequence such that all of its subactivity
occurrences are in the same bag with respect to the standard sequence of the process
plan

(∀a) parallel sequence(a) ≡ simple sequence(a)

∧ ((∀a1, a2, s1, s2) sap process plan(a1) ∧ subactivity(a, a1) ∧ standard sequence(a2, a1)

∧ soo(s1, a) ∧ soo(s2, a2) ⊃ same bag(s1, s2, a1)). (20)

An activity is an alternate sequence if it is a simple sequence such that all of its subactivity
occurrences are alternate with respect to the standard sequence of the process plan

(∀a) alternate sequence(a) ≡ simple sequence(a)

∧ ((∀a1, a2, s1, s2) sap process plan(a1) ∧ subactivity(a, a1) ∧ standard sequence(a2, a1)

∧ soo(s1, a) ∧ soo(s2, a2) ⊃ alternate(s1, s2, a1)). (21)

Figure 6. Axioms for SAP process plans.

2648 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

This production order was created using the SAP ERP system and exported into a

custom format with IDOC4 tags and values that are embedded in a LISP list structure. An

excerpt of an example of an exported IDOC file is shown in Figure 8.
This output is then read into a LISP program which translates the IDOC tags into a set

of PSL axioms that capture the production order using the PSL and SAP ontologies. This

representation of the production order, along with the PSL axioms and axioms for the

SAP ontology, are then input into Otter (McCune 2003), a first-order logic theorem

prover. Otter can then be used to answer queries about the manufacturing process.
We now present the output of our translation program after we ran it on the IDOC file

excerpted in Figure 8. The first axiom declares 60004907 to be an SAP production order

sap production orderð60004907Þ:

The production order number was generated by the SAP ERP system and is taken directly

from the IDOC file. The axioms for the SAP ontology state that SAP production orders

are activities.
Next, we specify the standard sequence for the production order. To do this a new

symbol G1263 is generated and is declared to be a simple sequence. This is the standard

sequence for the production order

simple sequenceðG1263Þ:

The name G1263 (and all other symbols beginning with ‘G’) was generated by the

translation program.

0010 0020 0030 0040

0040-2

0050 0060

[1.] Retrieval of items on the picking list (0010)

[2.] Assembly according to the component drawing (0020)

[3.] Coat and paint (0030)

[4.] Final assembly (0040)

[5.] Final assembly (0040-2)

[6.] Inspect (0050)

[7.] Deliver to storage (0060)

Figure 7. Motivating scenario: operations for production order 60004907.

(E1AFKOL (AUFNR "60004907")(APRIO)(APROZ "0.00") (AUART "PP01")
(AUFLD "20070831")(AUTYP "10") (BAUMNG "0.000")(BMEINS "PCE")
(BMENGE "10.000") (CY_SEQNR "00000000000000")(DISPO "101")
(FEVOR "101") (FHORI "001")(FLG_MLTPS)(FREIZ "005")
(FTRMI "20070815") (FTRMS"20070903")(GAMNG "10.000")
(GASMG "0.000") (GETRI "00000000")(GEUZI "000000")
(GLTRI "00000000") (GLTRP "20070914")(GLTRS "20070912")
(GLUZP "000000") (GLUZS "150000")(GMEIN "PCE")
(GSTRI "00000000") (GSTRP "20070906")(GSTRS "20070910")...

Figure 8. Excerpt of an exported IDOC file.

International Journal of Production Research 2649

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

G1263 is declared to be a subactivity of 60004907

subactivityðG1263, 60004907Þ:

Then 0010 is declared to be an SAP operation in the production order 60004907 and a
subactivity of G1263

sap operationð0010, 60004907Þ

subactivityð0010,G1263Þ:

This is repeated for all the other operations in the standard sequence, but we omit the
axioms here. Recall that parallel sequences consist of a simple subsequence of the standard
sequence in parallel with one or more other simple sequences. In this case we have only one
parallel sequence where operation 0040-2 is in parallel with 0040 of the standard sequence.
We declare G1266 and G1264 to be simple sequences with 0040 and 0040-2 (respectively)
as subactivities

simple sequenceðG1266Þ

subactivityð0040,G1266Þ

simple sequenceðG1264Þ

subactivityð0040-2,G1264Þ:

Then, we say that G1265 is a parallel sequence, it is a subactivity of 60004907, and it
has two subactivities: G1266 and G1264

parallel sequenceðG1265Þ

subactivityðG1265, 60004907Þ

subactivityðG1266,G1265Þ

subactivityðG1264,G1265Þ:

Finally, we have an axiom that specifies the order among the subactivity occurrences of
the production order. It says that for any occurrence of the activity 60004907, there must
be occurrences of the operations in Figure 7 and they must occur in the order shown in the
figure

8occpo:occurrence of ðoccpo, 60004907Þ

� 9occ10, occ20, occ30, occ40, occ50, occ60, occ40-2:

occurrence of ðocc10, 0010Þ ^ occurrence of ðocc20, 0020Þ

^ occurrence of ðocc30, 0030Þ ^ occurrence of ðocc40, 0040Þ

^ occurrence of ðocc50, 0050Þ ^ occurrence of ðocc60, 0060Þ

^ occurrence of ðocc40-2, 0040-2Þ ^ subactivity occurrenceðocc10, occpoÞ

^ subactivity occurrenceðocc20, occpoÞ ^ subactivity occurrenceðocc30, occpoÞ

^ subactivity occurrenceðocc40, occpoÞ ^ subactivity occurrenceðocc50, occpoÞ

^ subactivity occurrenceðocc60, occpoÞ ^ subactivity occurrenceðocc40-2, occpoÞ

^min precedesðocc10, occ20, 60004907Þ ^min precedesðocc20, occ30, 60004907Þ

^min precedesðocc30, occ40, 60004907Þ ^min precedesðocc40, occ50, 60004907Þ

2650 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

^min precedesðocc50, occ60, 60004907Þ ^min precedesðocc30, occ40-2, 60004907Þ

^min precedesðocc40-2, occ50, 60004907Þ:

We also have unique names axioms for the activities, but we omit them here.
The RFID tags attached to items in the manufacturing process can record

information about what happens to them at different stages during manufacturing.

This information could be stored directly in the form of PSL axioms on a tag and then

used as further input to the theorem prover. To simulate this process, we added some

axioms that describe some simple information about an object, PUMP1, that is being

produced in this example production order. The axioms say that PUMP1 is an object and

it participates in the operations 0010 and 0040-2. The idea is that once each of these

operations is completed, the corresponding axioms could be written directly on the

RFID tag for PUMP1

objectðPUMP1Þ

9o:occurrence of ðo, 0010Þ ^ actual ðoÞ ^ participates inðPUMP1, o, beginofðoÞÞ

9o:occurrence of ðo, 0040-2Þ ^ actual ðoÞ ^ participates inðPUMP1, o, beginofðoÞÞ,

where beginof(o) denotes the start time of the activity occurrence o.
The above axioms, along with the axioms for PSL and the SAP ontology, can be input

into a theorem prover, which can then answer questions about the process of

manufacturing the pump. We now show the queries that were correctly answered by the

Otter theorem prover.
What are the simple sequences that are subactivities of the production order?

9a1:simple sequenceða1Þ ^ sap production orderð60004907Þ

^ subactivityða1, 60004907Þ:

What are the subactivities of any parallel sequences that are subactivities of the production

order?

9a1, a2:parallel sequenceða1Þ ^ sap production orderð60004907Þ

^ subactivityða1, 60004907Þ ^ subactivityða2, a1Þ:

Which activities must occur in the production order?

9a1:subactivityða1, 60004907Þ ^ a1 6¼ 60004907

^8occ:occurrence of ðocc, 60004907Þ

� 9s:occurrence of ðs, a1Þ ^ subactivity occurrenceðs, occÞ:

Does some activity a1 always occur before some activity a2 in the production order?

8o:occurrence of ðo, 60004907Þ

� 9s1, s2, a1, a2:

occurrence of ðs1, a1Þ ^ occurrence of ðs2, a2Þ

^ subactivity occurrenceðs1, oÞ ^ subactivity occurrenceðs2, oÞ

^min precedesðs1, s2, 60004907Þ:

International Journal of Production Research 2651

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

Which subactivities occur before activity 0030 in the production order?

9a1:subactivityða1, 60004907Þ

^ 8o:occurrence of ðo, 60004907Þ

� 9s1, s2:occurrence of ðs1, a1Þ ^ occurrence of ðs2, 0030Þ

^ subactivity occurrenceðs1, oÞ ^ subactivity occurrenceðs2, oÞ

^min precedesðs1, s2, 60004907Þ:

What process steps did the pump object go through?

9o, t, a:participates inðPUMP1, o, tÞ ^ occurrence of ðo, aÞ

^ actual ðoÞ ^ subactivityða, 60004907Þ:

Did the pump object participate in a parallel sequence in a process plan?

9o, a1, t, a2:participates inðPUMP1, o, tÞ ^ occurrence of ðo, a1Þ^

actual ðoÞ ^ parallel sequenceða2Þ ^ subactivityða1, a2Þ:

These queries were successfully proven by Otter, and Otter can also output the bindings
for the existentially quantified variables in its proofs, if desired.

We now summarise the steps in the process just described. A production order
representing a manufacturing process is created and released in the SAP ERP system.
This production order is then exported into the SAP IDOC format. The IDOC file is
input into our translation program, which outputs an axiomatisation of the
manufacturing process in PSL. These axioms, along with the axioms for PSL, the
SAP ontology and the axioms on the RFID tags are input into the Otter theorem prover
to answer queries about the manufacturing process. Ideally, at this point, the answers to
the queries could be translated back into the appropriate SAP IDOC format and input
to the SAP ERP system, e.g. as a production order confirmation. However, we reserve
this step for future work.

6. Summary

While analysing the reasons for a lack of integration between applications within and
across enterprise boundaries we identified the clash over the meaning of terms by different
applications as a leading cause. We outlined a manufacturing process control scenario and
identified a number of questions an ideal system should provide answers to. This scenario
illustrated and motivated the need for ontologies, which led to the introduction of PSL and
its primary purpose to enable the semantic interoperability of manufacturing process
descriptions between manufacturing, engineering and business software applications. We
further covered extensions to PSL and transformed the informal questions into their
formal representations. We then explored this approach by integrating a particular
business software application, SAP ERP, and formalised a relevant subset of the SAP data
model by building an extension to the ontology that made the implicit semantics of the
application’s concepts explicit. We covered the translation process for the key concept in
this subset, the SAP production order, and illustrated how a theorem prover can now
provide answers to the questions posed.

2652 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

Given the increasing capability to store information on an RFID tag the outcome is
that the physical flow of goods can become fully aligned with the corresponding
information flow. Accurate, individual product information becomes available when and
where needed and other software applications can interoperate with relative ease because
the semantics of concepts are clearly defined. The deductive capabilities of this system were
also highlighted as answers to queries were found that were well beyond the scope it was
initially designed for.

Further research is needed into solving a broader range of queries for dynamic process
control. The queries in this paper have focussed on the ordering constraint over
subactivities; in general, we will also need to incorporate state and temporal constraints, as
well as reason about the preconditions and effects of activities within a process plan.
This will also enable the solution of queries related to quality management and activity-
based costing.

A second area of future work is to demonstrate provably correct semantic integration.
Although ontologies can support the semantic integration of software applications, we are
faced with the additional challenge that few applications have an explicitly axiomatised
ontology. In this paper, we have used an ontology that formalises the data model of one
such application; nevertheless, we need to prove that the ontology is the correct ontology
for that application. Furthermore, a general methodology for attribution and evaluation of
ontologies for software systems is required.

One limitation of this ontology-based approach arises from the intractability of
automated reasoning with first-order logic theories. There are cases where automated
theorem provers such as Otter are unable to find a proof for a particular query, even
though the query sentence is in fact entailed by the axioms of the ontology and process
description. Even in cases where solutions are found, some queries take minutes to
solve, whereas the dynamic environment of a factory floor requires decisions to be
made within seconds. We are actively pursuing several strategies to address this issue.
The first is to identify tractable subsets of the ontology which are required for the
range of possible queries. Another idea is to specify additional sentences which are
consequences of the ontology and which can be used to more efficiently find proofs.
The third approach is to identify subclasses of process plans for which the solutions of
queries are tractable.

Before concluding we would like to highlight some of the key potential business
benefits that can be expected from adopting the outlined approach.

. Improved local decisions that observe constraints of or even improve central
schedules.

. Better business insight, e.g. determining an actual cost at item level.

. Greater responsiveness to changes and disruptions such as late configuration
changes or machine breakdowns.

. Ability to dynamically reroute work in process while managing production
process constraints.

. Immediate identification and notification of quality problems.

. Increased coordination among business partners across the the supply
network.

Overall, we believe this that utilisation of RFID can lead to lower manufacturing costs,
higher product quality and a greatly increased agility within the manufacturing enterprise
and across its supply network.

International Journal of Production Research 2653

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

Notes

1. PSL has been published as an International Standard (ISO 18629) within the International
Organisation of Standardisation. The full set of axioms (which we call Tpsl) in the Common
Logic Interchange Format is available at http://www.mel.nist.gov/psl/ontology.html

2. Each activity occurrence is an occurrence of a unique activity but activities can have multiple
occurrences, so we label activity occurrences using the following convention: for activity
occurrence s ji , i is a unique label for the occurrence and j denotes the activity of which it is an
occurrence. For example, s11 and s12 are two occurrences of the activity a1.

3. The actual relation is used to distinguish activity occurrences that have actually occurred, as
distinct from activity occurrences that are possible within the activity tree

4. IDOC is a data interchange format for SAP programs.

References

Bock, C. and Grüninger, M., 2005. PSL: A semantic domain for flow models. Software and Systems
Modeling Journal, 2 (2), 209–231.

Cho, H. and Wysk, R., 1995. Intelligent workstation controller for computer-integrated

manufacturing: Problems and models. Journal of Manufacturing Systems, 14 (4), 252–263.
Diekmann, T., Melski, A., and Schumann, M., 2007. Data-on-network vs. data-on-tag: Managing

data in complex RFID environments. Waikoloa, USA, January.

Grüninger, M., 2004. Ontology of the Process Specification Language. In: S. Staab and R. Studer,
eds. Handbook of ontologies in information systems. Berlin: Springer.

Grüninger, M. and Menzel, C., 2003. Process Specification Language: Principles and applications.
AI Magazine, 24 (3), 63–74.

Guenther, O. and Tribowski, C., 2009. Storing data on RFID tags: A standards-based approach.
Verona, Italy, June. To be published.

McCune, W., 2003. OTTER 3.3 Reference manual. Technical memorandum No. 263, Argonne

National Laboratory ANL/MCS-TM-263.
Melski, A., et al., 2007. Beyond EPC – Insights from multiple RFID case studies on the storage of

additional data on tag. Chicago, August, 281–286.

Ruta, M., et al., 2007. Semantic-enhanced EPCglobal Radio-Frequency Identification. In:
G. Semeraro, et al., eds. Proceedings of SWAP 2007, the 4th Italian Semantic Web
Workshop, 18–20 December 2007, Bari, Italy. Available from: http://ceur-ws.org/Vol-314/
56.pdf

Schlenoff, C., Grüninger, M., and Ciociou, M., 1999. The essence of the Process Specification
Language. Transactions of the Society for Computer Simulation, 16 (4), 204–216.

Sormaz, D. and Khoshnevis, B., 2003. Generation of alternative process plans in integrated

manufacturing systems. Journal of Intelligent Manufacturing, 14 (6), 509–526.

2654 M. Grüninger et al.

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ity
 o

f
T

or
on

to
 L

ib
ra

ri
es

]
at

 0
7:

05
 1

1
N

ov
em

be
r

20
11

