A Resource ontology for Enterprise Modelling
Masters of Applied Science 1994
Fadi George Fadel
Department of Industrial Engineering

University of Toronto

ABSTRACT

The role of computing has become an essential function in any enterprise hoping
to achieve a competitive advantage. How effectively the enterprise functions does
not depend only on labour, management and capital, but also on the availability of
information needed for decision making. Accordingly, information systems are
playing an increasingly central role in the day to day operations of organizations.
A critical component of an information system is the data model used to represent
the organization: its activities, resources, organization units, people, etc. With the
advent of distributed information systems, the availability of a shared model that
enables different units of the enterprise (human or machine) to understand each

other has also increased in importance.

The research focuses on defining a generic and well defined set of terms required
for modelling resources and required in integrating enterprise functions. The need
for a resource ontology arises out of activities such as planning, scheduling (etc.)

whose fundamental decision processes revolve around the allocation resources.

e

Acknowledgment

My thanks to everyone who contributed to the presented thesis, in form of dis-
cussions and proof reading efforts. I am specially grateful to Professor Mark S.
Fox for his most valuable and helpful supervision. Furthermore I want to express
my appreciation for putting up with me in my graduate studies period and his
discussions regarding the research. I express my appreciation for Professor
Chelliah Sriskandarajah for his time and valuable comments. My gratitude is
also due to Professor Joseph C. Paradi for accepting to be member on the exami-

nation committee.

I wish also to express my thanks to Henry Kim, Hyame Fadel, John Blake, John
Chionglo, K. Donald Tham, Michael Grunninger, Roula Haddad and Ziad Had-
dad for their effort in proof reading the different chapters of the thesis.

Furthermore, 1 am also thankful for all members of the Enterprise Engineering

Laboratory for their support and beneficial comments.

Last but not least, my thanks are also due to my family for their valuable moral

support especially during time of frustration.

This research is supported, in part, by the Natural Science and Engineering
Research Council, Digital Equipment Corp., Micro Electronics and Computer

Research Corp., and Spar Aerospace.

To my parents: George and Josephine Fadel

Table of Contents

CHAPTER 1

Introduction 1

CHAPTER 2

1.1
1.2
1.3
14
1.5

Introduction

The need for resource modelling framework

Evaluation/Design Criteria for ontology
TOVE testbed
Overview of the approach in this document

T B W N -

Related Research 6

2.1
2.2
23

Introduction
Data Modelling of an Enterprise - IWI

Computer Integrated Manufacturing - Open System Architecture

(CIM-0SA) 11
2.3.1CIM-OSA modelling frameworkccccviivnin v 11
2.3.2CIM-0OSA Reference ArchiteCture cococcevvieeicenciee i 12
2.3.3Levels of MOENG cooeiecicie 12
2.3.4The CIM-OSA VIBWS ..oceri it setee et s s 12
FUNCHON VIBW .veeeeeetiiee et crercnineseevresssenessinvesessraresssbnne s sansnsns 12
INFOrMAtioN VIBWcvviiiiir ettt e e en e s aarane s 13
Organization VIBWcocvuiveiriininiiivece et 13

Contents

RESOUICE VIBW ...oovveevriverrretenesressvessrassesssn s sesessineessnessneesessenanes 13
2.4 Purdue Enterprise Reference Architecture (PERA) wecrvverennnenns 17
2.4.1 Purdue Modelling framework —cocoiiiiii i 17
2.5 Resource modelling in Al .21
25 A8IPE oo e s e e e 21
25.2KRBSL oottt e e e e s 22
2.5.30PIS Framework for Modelling Manufacturing Systems 25
254GEITY oottt e e e 29
2.5 BCYC i et s et et s e e e e 31
2.6 Summary 33
2.7 Conclusion 35
CHAPTER 3 Ontologies for Enterprise Integration [TOVE] 36
3.1 Introduction 36
3.1.1 Requirements for an Ontology of Activity and Time 37
3.2 Time 38
3.2.1Time Points and INtervals cccooccieveireer e 38
3.3 Activities and States 38
3.3.1States 39
3.3.2Activities 41
3.3.3Duration 41
3.4 Aggregation and Abstraction of Activities 41
3.5 TOVE Factory 42
3.6 Conclusion 45
CHAPTER 4 Resource Ontology 46
4.1 Introduction: 46
4.2 Resource OntolOgY «..ccevvivrinriivimniniinnnieiee e e 50
4.2.1 Resource-known: rknown(R) ccccevvnne vt rne e 52
4.2.2Resource role: role(R, A, ROIE) oo 53
B23MOUIEY ooooveeeeeeceee et eec et e 54
MODIIE RESOUICEc.vveiecevee ettt e e e s e 54
Stationary BESOUICEoveeveviierierieervie e s esrenaesiessnens 55
4.2.4Division of: ~_division_of(R2, R)ccovenirr i eeeecerineren e 55
4.2.5Divisibility of a resource: ~_divisible(R, A) ..o 56

4.2.6 Unit of measurement: unit_of_measurement(R,UNIT ID, Unit, A)

vi

Contents

4.3

4.4

... 59
4.2.7 Measured by: measured_by(R, Unit_ID, A).ccoiiiiiiinins 61
4.2.8 Resource requirements specification for activities 62

Consumption specification: consumption_spec(R, A, Ti, Q, Rate,

UNIE) e e s 62

Use specification: use_spec(R, A, Ti, Q, Rate, Unit)c.......... 63

Production specification: produce_spec(R, A, Ti, Q, Rate, Unit) .. 64
Release specification: release_specification(R, A, Ti, Q, Rate, Unit)

... 66
4.2.9Continuous vs. diSCrete rBSOUNCE ..oouvvveiievinniiene e 67
4.2.10Component_of: ~_component_of(R1, R2, A, Type)cccceeene. 68
4.2 11RESOUICE POINE oot et et e 70

Resource point at Time T: rp(R, Q, Tp, U) oeveiivieiieneree, 70

Resource point at Location L at time Tp: rpi(R, Q, Tp, L, Unit) 71
4.2.12Encapsulation of resource points ..o enen e 72
4.2.13RESOUICE BXISE: ..iieveeeeiererceieerrteresertreasesvrr e et e e e nassesaeeeens 74

Resource exist at time & rexist(R, TP) oo 74

Resource exist in a location: rexisti(R, Tp, L) ..cccvvvvvirrviiinennnnn, 75
4.2.14Usage Mode: usage_mode(R, A, Result) ..., 76
4.2.15Simultaneous Use Restriction: simultaneous_use_restriction(A1,

A2, R) oottt ettt ns s 77
4.2.16Resource configuration: resource_configuration(R, C, A). 78
4.2.17Committed to: committed_to(R, A, S, Ti, Amount_committed,

UNID oot e s e s e s e 79
4.2.18Total Committed: total_committed(R, TQ, Tp, Unit)cc......... 80
4.2.19Set up time constraint: set_up(R, A1, A2, Dur, Unit) c........ 82
4.2.20Capacity reCognition PrOCESS: woooceeevveecverirer e esireesneresraeeseens 84

Has current activity: has_current_activity(R, Act_list, Tp)oove.e. 85

Availability for a set of activities: available_for(R, [A], T, Capacity) 87
Available Capacity: available_capacity(R, Tp, Amount_Available,

UNIY ettt sv st s sess s sasn s e cs st ns s csanen 94
4.2.21Trend: trend(R, Tp, Result) .ooovvvivimiei e 96
4.2.22Activity history: activity_history(R, Act_List, Tp) .ccocrreecvmervercnnans 99
4.2.23Alternative resource: alternative_resource(R, A, List) 100
Relation of the resource ontology with that of the activity-state.. 102
4.3.1 Enabling states: enabling_state(State_ID, Tp, Status) 103
4.3.2release state: release_state(State_ID, Tp, Status).ccce....... 106
4.3.3 produce status: produce_state(State_ID, Tp, Status) 109
Conclusion 112

vii

Contents

CHAPTER 5 Capacity Recognition 113
1.1 Introduction 113
5.2 Background and notations 114
5.3 Units of Capacity .115
5.3.1GEOMEMIC UNILS oottt et 116
5.3.2Relational UNitScccvceririiecer e et s 116
5.4 Indicative vs. Non-indicative level of recognition ceoeveennees 117
5.5 Homogenous vs. Heterogenous activities 119
5.6 Integer Programming Formulation 120
5.6.1 For HOmMOgenous activitieS coevvveeeievviie e 121
5.6.2For Heterogenous activitiesS cccoccvvveevviesvie e 124
5.7 Heuristic approach 126
B.7.THEUNSHC oo e v 126
5.8 Problem generation 130
5.9 Computational results 131
5.9.1Testing against set Adataccccoeeeeeerecceceee e 132
5.9.2Testing against set Bdata ..o, 133
5.9.3Integer programming approachcccceceveeeveenriieneceeseeeeee, 134
5.10 Conclusion .. 135
CHAPTER 6 Competency Questions 136
6.1 Introduction 136
6.2 A scenario of inter-disciplinary COMMUNICAtION wueeesveuesesseseesensenns 136
6.2.1 Resource Manger iNQUINES ..occoovvveieveeeeiicer e 146
B.2.2FO0r futUre WOTK ..o 149
6.3 Conclusion 150
CHAPTER 7 Conclusion 151
APPENDIX A Ontology in other models A-1
A.1 Ontology in the other efforts A-1

viii

Contents

APPENDIX B Capacitated temporal constraint propagation B-1

B.1 Introduction B-1

B.2 About the heUriStIC et eassesssse s crsssnasssnsen B-1
APPENDIX C Code listing c.1

C.1 Sequencing heuristic . C.1

C.2 Sample data file c.18
APPENDIX D Experimental results of the sequencing heuristic p.1

D.1 About the test cases D.1
APPENDIX E Activity-state , temporal axioms and data E.1

E.1 Temporal axioms and data E.1
APPENDIX F FOL formulations of resource ontology F.1

Contents

LIST OF FIGURES

FIGURE 1 Operation assignment function in Scheer ...eenees 7
FIGURE 2 ERM of part, structure and part Sub-types ..o 8
FIGURE 3 General attributes for Part and Structure entities 9
FIGURE 4 Atributes for “Tool”, Personnel”, “Equipment” and
“Equipment group” entities 10
FIGURE 5 Inventory Accounting 10
FIGURE 6 Overview of the architecture Framework - CIM-OSA
cube 1
FIGURE 7 Relationships in the function view . 13
FIGURE 8 Logical Cell vs. Organizational Cell grouping 14
FIGURE 9 Resource constructs and its relation with function,
information and organization view16
FIGURE 10Business process definition 16
FIGURE 11 Definition of the Task Module 18
FIGURE 12Purdue Reference Architecture: Information, Manufac-
turing and Human Streams .. 18
FIGURE 13 Definition and examples of Task Module ... 20
FIGURE 14 Resource frame in KRSL 23
FIGURE 15Resource records in KRSL .24
FIGURE 16Unit type in KRSL ... 24
FIGURE 17Resource frame definition in OPIS .eervecrenvcnnns 26
FIGURE 18Hierarchial representation of a work-cell - OPIS ..26
FIGURE 19resource requirement specification definition - OPIS
28
FIGURE 20Taxonomy of resources in OPIS based mobility
characteristics 29
FIGURE 21Example of a class and a pool - GeITY eevverennsinasne 30
FIGURE 22Resource history - Gerry .. 30
FIGURE 23Dedicated vs. Non-dedicated resources - Gerry ... 31
FIGURE 24 Taxonomy of Ontology - Cyc 32
FIGURE 25Taxonomy of Ontology cont’d - CYC wmmeneccssesennns 32
FIGURE 26 Activity-State Model 39

Contents

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

27 Activity-State Cluster 39
28 State Taxonomy 39
29 Activity Abstraction 42
30Instances of the activity cluster 42
31 plug_on_wire activity cluster 44
32subclass_of 48
33 Assemble_clip_reading_lamp clusteroeoveeuens 49
34 Resource ontology 51
35 Resource ontology cont’d 52
36 Taxonomy of roles 53
37 Types of “division of” 55
38 Temporal divisibility - an example .vmrecsmnereseersenns 57
39 Taxonomy of unit 0S MEASUrEMENE wvvvsererersserssnrsssnnens 59
40unit of measurement - block(2, 7, _, meters) ... 60
41resource point at a specific time point eeveseesnns 70
42resource point at a time point and location ... 71
43 Capacity recognition process 88
44 Trend - time horizon 97
45 assemble clip base . 102
46 States properties 102
47 Taxonomy of Units of measurement - capacity recog-
nition perspective . 116
48 Pizza oven example 118
49 Indicative vs. Non-indicative levels of recognition. 119
50 Usage of the oven by Homogenous activities ... 119
51 Taxonomy of Capacity Recognitioneeeeseenss 120
S2ZMIIESIONE cosrerssnmsnsessesmsssenssssssnsssmsesssssssessssssssssssasssasess 128
53 Sequencing Heuristic: Phase 1 129
54 Sequencing Heuristic: Phase 2 130
55 Sequencing Heuristic: Phase 3 130
56 Sequencing Heuristic: Phase 4 130
57 An example of inter-disciplinary communication.... 137

xi

Contents

LIST OF TABLES

FIGURE 58activity cluster: fabricate short shaft .reusesenn, 139
FIGURE 59 activity cluster: fabricate short shaft cont’d ... 140
FIGURE 60The used methodology - .. 152
FIGURE B.1 CTCP - phase 1 B.3
FIGURE B.2 CTCP - Phase 2 usremmssensssssessssessemsessessssssnsssssossens B3

TABLE 1 Resource components in the Implementation Descrip-

tion Level 15
TABLE 2 List of Variables 121
TABLE 3 NOtALONS cceseerrsssrmssesssmsesessssssssssssnnscssessmresssssessssssssssees 121
TABLE 4 List of Variables ... 125
TABLE 5 NOLAUONS wosssrersussosmserssssseessssssssssasssssssecessssssssssssesssmsssen 125
TABLE 6 Four versions of the heuristic 132
TABLE 7 Performance of the four versions with respect to set

A 132
TABLE 8 Performance of the four versions with respect to set

B 133
TABLE 9 Solution times of the four heuristic oo 133
TABLE 10 1P solution vs. ESP heuristic Version ..o 134
TABLE 11 Competency guestions: short shaft redesign scenario

[questions are highlighted] 141
TABLE A.1Resource ontology in other efforts ..o A-1
TABLE D.1Four versions of the sequencing heuristic ... D.2
TABLE D.2Experimental results SET A D.3
TABLE D.3Experimental results SET A - cont’d eoveeveeeeovevennen D.4
TABLE D.4Experimental results SET A - cont’d oeeeeovessnnnns D5
TABLE D.5Experimental results SET A - cont’d v, D.6
TABLE D.6Experimental results - SET B D7
TABLE D.7Experimental results SET B - cont’d v, D8

TABLE D.8Experimental results SET B - cont’d oo, D9

xif

Contents

TABLE D.9 Experimental results SET B - cont’d
TABLE D.10Experimental result SET B -cont’d
TABLE D.11Experimental results SET B -cont’d

xiii

CHAPTER 1 Introduction

For an enterprise to remain competitive computing must be seen as an essential
Sfunction. The effectiveness of an enterprise depends not only on labour,
management and capital, but also on the availability of information needed for
decision making actions that can be shared among different applications.
Throughout the coming chapters the ontology for modelling one of the most
basic enterprise components, resources, is presented.

1.1 Introduction

“It has become apparent that a competitive and efficient enterprise does not solely
depend on capital and management, but also depends on the accessibility of infor-
mation and the ability to coordinate both decisions and actions” [Fox 1992]. Orga-
nizations are striving towards efficient collaboration between organizational units,
however this effort is often hampered especially in large organizations. The prob-
lem arises because of the inability of organizational units to share information and
coordinate actions. Efficient communication among different organizational enter-
prise units exists if and only if there exists a common understanding what is being
communicated. This research is concerned with defining a generic representation
of one of the most basic components of an enterprise - a resource. The enterprise
resource ontology focuses on defining a generic set of terms, in machine and human
readable form, required for modelling resources. This enables the interaction of
different enterprise units by providing a standard common language needed for the
representation of information about a specific domain of an enterprise.

The goal of the research is to create a resource ontology for use in manufacturing
enterprises. An ontology is defined as a set of terms and meanings that enable two
agents to exchange knowledge for some purposes in some domain [Tenenbaum
92]. An ontology is comprised of data model composed of objects, attributes and
relations and the formal definitions of constraints and terms in the data model, in
first order logic. Resource ontology is defined by defining:

Fadi George Fadel: M.A.Sc Thesis 1

CHAPTER 1: Introduction

The span of the model, by a set of competency questionsl.

A sharable ontology.
The definition of each term in the ontology First Order Logic (FOL).
An implementation of the definitions as axioms in Prolog.

Wb =

Our approach to developing ontologies has several benefits:
1. The range of application supported by the ontology are defined clearly
by competency questions.
The semantics of each term in the ontology is clearly defined in FOL.

3. Common sense reasoning is supported by implementing the definitions
in prolog and using the axioms for deductive query processing.

1.2 The need for resource modelling framework

Knowledge based systems are currently described as being isolated monoliths®.
These systems are characterized by having domain dependent terminology, facts,
axioms etc. [Gruber 1991]. Because of this, these monolithic systems are con-
strained by an inability to intercommunicate which leads to the inability to reuse
or share the domain knowledge base and tools. This has also led to different repre-
sentations of the same knowledge defined with inadequate semantic definitions,
which results in inconsistent and different intex?retations of the same knowledge.
Furthermore, these representations are passive” and do not support reasoning at
various levels of abstraction. This has made it difficult to integrate different and
independent software. The key to integrating different functional software and
sharing domain knowledge and tools, is to have the knowledge expressed with
minimum assumptions of the application.

All enterprises are activity oriented to achieve a number of business objectives.
These objectives can be fulfilled only if the needed resources are available. Con-
sider the case where a scheduling software/agent tries to communicate with an
inventory management software/agent about the availability of a resource. It is evi-
dent that a clear and common understanding should exist between the two agents
about the nature of the specified resource. Similarly, among other enterprise func-

1. Defined later
2. That s true for all software systems

3. “For example, if the representation contains a “works-for' relation and it is explicitly represented that Joe
~works-for' Fred, and that Fred “works-for' John, then the obvious deduction that Joe “works-for' John (indi-
rectly) cannot be made within the representation system” [Fox 92].

Evaluation/Design Criteria for ontology

tions such as engineering, purchasing, accounting and sales, there should be a
common understanding of resources. Therefore, the aim of the resource ontology
is to act as a coupling between different enterprise functions and their respective
knowledge and tools. In other words, the ontology acts as knowledge-level proto-
col for input, output and communication [Fox & Tenenbaum 91] [Gruber 91].

1.3 Evaluation/Design Criteria for ontology

Though there exists a number of efforts seeking to create sharable representation
of enterprise knowledge - CIM-OSA [Esprit 90], ICAM [Martin 83], IWI [Scheer
89], PERA [Williams 91)- little comparative analysis has been performed.
Recently, two sets of evaluation criteria have been proposed. Fox & Tenenbaum
have proposed the following criteria as a basis for evaluating an ontology:

* Generality: The representation should be as general as possible so that
it could be shared by different activities and be used by different appli-
cations.

e Competence: How well does the model support problem solving?

e (Consistency: Consistency of the approach towards the enterprise activ-
ities (Uniformity of approach). '

* Perspicuity: The model should have an adequate, understandable and
simple descriptive methodology.

e Granularity: Can the representation be used for supporting reasoning
at different levels of abstraction?

* Transferability: Can the model be transformed to be used for a spe-
cific application (Industry)?

e Efficiency: Measured in terms of space and inference.

 Scalability: Can the model be used for large scale applications?

* Extensibility: The model should have the ability to be extended with-
out major changes.

The competency criterion has been chosen to evaluate the ontology. Competency
questions define the types of queries available to support a task. The creation of the
competency questions and the ontology is an iterative process; the competency
questions drive the ontology which in turn results in the modification of the com-
petency questions.

The obvious way to demonstrate competence is to show how a set of questions can
be answered by the ontology. If no inference capability is to be assumed, then

Fadi George Fadel: M.A.Sc Thesis 3

CHAPTER 1: Introduction

question answering is strictly reducible to “looking up” an answer that is repre-
sented explicitly. In defining a shared representation, a key question then becomes:
should we be restricted to just a terminology? Should the terminology assume an
inheritance mechanism? Or should we assume that some type of theorem proving
capability is provided, say, in a logic programming language with axioms
restricted to Horne clauses (i.e., Prolog)? What is the deductive capability that is to
be assumed by an ontology? We propose that for each category of knowledge, a set
of questions be defined that the ontology can answer. Given a representation and
an accompanying theorem prover (perhaps Prolog), questions can be posed in the
form of queries to be answered by the theorem prover. Given that a theorem prover
is the deduction mechanism used to answer questions, the efficiency of a represen-
tation can be defined by the number of LIPS (Logical Inferences Per Second)
required to answer a query [Fox 92].

As discussed, the competence criterion focuses on how well the model supports
various tasks. We define a model’s level of competence by a set of questions it
should be able to answer either directly or through deduction. Following are a sub-
set of questions we have considered in the creation of the TOVE model.

* Quantity: How much of the resource exists at time t?

* Consumption: Is the resource consumed by the activity? If so, how
much?

* Divisibility: Can the resource be divided and still be usable? Can two
or more activities use the resource at the same time?

* Structure: What are the subparts of resource R?

* Capacity: Can the resource be shared with other activities?

* Location: Where is resource R?

* Commitment: What activities is the resource committed to at time ¢?

* Trend: What is the capacity trend of a resource based on the machine
usage history?

1.4 TOVE testbed

This research is being undertaken as part of the TOVE! project The TOVE Project
includes two major undertakings: the development of an Enterprise Ontology, and
a testbed. The TOVE Enterprise Ontology provides a generic, reusable ontology
for modelling enterprises. The TOVE ontology currently spans knowledge of

1. TOronto Virmal Enterprise

Overview of the approach in this document

activity, state, time, causality, resources, cost and quality. The ontology’s data
model is implemented on top of C++ using the Carnegie Group’s ROCK knowl-
edge representation tool and the axioms are implemented in Quintus Prolog.

The TOVE Testbed provides an environment for analyzing enterprise ontologies.
The Testbed provides a model of an enterprise - a lamp manufacturing plant -, and
tools for browsing, visualization, simulation and deductive queries.

1.5 Overview of the approach in this document

In this document, resource related terms that have already been defined in previous
research will be merged with some new terms to reach a generic reusable ontology
describing a resource. The terms are formally and rigorously defined in the form of
First Order Logic axioms.

The flow in this document is as follows:

* chapter two presents a review of related research.
Three reference models are reviewed: IWI, CIM-OSA, Purdue. More-
over five endeavors from Al domain are also reviewed.

® chapter three contains an overview of the activity-state ontology
defined in TOVE.

* chapter four presents the ontology of resources. This chapter presents
the semantic requirement for modelling resources.

* chapter five presents the capacity recognition process incorporated with
the resource ontology.

® chapter six presents the competency questions.
* chapter seven contains the conclusion.

Fadi George Fadel: M.A.Sc Thesis 5

CHAPTER 2 Related Research

In the literature, there exist a number of attempts to define an enterprise model
that provides an integrated modelling framework. In this chapter, an overview of
three models - IWI, CIM-OSA and PERA - is presented. Some endeavors from the
Al discipline are also presented: SIPE, KRSL, OPIS, Gerry and Cyc.

2.1

introduction

Defining a manufacturing data model, with a definition of each object and its cor-
responding attributes, has been the focus of a number of efforts since the 1960’s.
IBM’s COPIC’s Manufacturing Resource Planning system (MRP), for example,
has a shared database with an integrating data model. Recently, there has been
efforts for providing more generic data model and modelling framework of enter-
prise knowledge. These efforts claim also to provide a sharable and reusable model
of enterprise knowledge. From the surveyed efforts, three models are presented in
this chapter because they are the most advanced and complete models available.
The reviewed enterprise reference models are:

* IWI [Scheer 89]

* CIM-OSA [ESPRIT 91a]} :
* Purdue Enterprise Reference Architecture [PERA 91]

Furthermore, efforts form the Al literature are also reviewed: SIPE [Wilkins 88],
KRSL [Allen et al 92], OPIS [Smith 90], Gerry [Zweben et al 93] and Cyc [Guha
et al 90] projects. Some of the efforts aim to present generic ontology for planning
and scheduling purposes.

The focus of this chapter will be directed towards identifying how resources are
modelled in these systems.

Fadi George Fadel: M.A.Sc Thesis 6

Data Modelling of an Enterprise - IWI

2.2 Data Modelling of an Enterprise - IWI'

The IWI data model is function-specific data model developed in the Institue fiir
Wirtschinformatik, Universitat des Saarlandes. The IWI data model presents a data
dictionary of objects and their relationships that are required for modelling func-
tions in a manufacturing enterprise. IWI presents a data processing solutions/mod-
els of different enterprise functions such as: production, engineering, purchasing,
sales, personnel, accounting, administration etc.

Resource, functions, time etc. are represented as data objects. For example the
function Operation Assignment is modelled in IWI context as a relation between
Operation and Equipment Group entities. In other words “operation assignment”
assigns an operation/activity to a resource (Equipment group). In this case, the
“operation assignment” function uses a certain resource denoted by equipment
group number. Accordingly the operation assignment have will have an attribute
denoting to the equipment group.

Figure 1 presents the context in which an entity is considered as a resource. It
shows the an “equipment group” is a resource. “Tool”, “personnel” and “equip-
ment” are other entities that are considered as resources.

Legend

PNO: Part number

WSNO: Work schedule number
PRNO: Process number

EGNO: Equipment group number

Equipment
Group * WSNO, PRNO

EGNO Operation 1

Operation
assignment

(EGNO, WSNo, PRNO)

Part and structure constitute the basic data structure for bills of material. A struc-
ture is an object that consists more than one object (part). A part (component) in a
structure could also be a structure. The data structure for both part and structure
entities are presented in figure 3.

There are three sub-types of part:

* bought-in parts are purchased material and assemblies

1. [Scheer 89]

Fadi George Fadel: M.A.Sc Thesis 7

CHAPTER 2: Related Research

* in-house parts are parts that involve at least one production or assembly
operation
* sales parts consists of saleable parts: end products, spare parts

FIGURE 2 ERM of part, structure and part sub-types

Part

Bought-in In-house Sales
parts parts parts

As mentioned the IWI model presents typical attributes needed for part and struc-
ture description. Part is described through defining a number of attributes that
specify identification, classification, status, cost data, technical-physical variables
and cost data. Similarly, IWI defines the needed attributes for structures and sub-
type definition (figure 3). The defined attributes address a number of resource per-
spectives. Classification attributes are defined specifying part type, part value,
requirement and planning data. Status data specify the utilization and production
state of a part. Technical-physical variables are also defined specifying technical/
physical dimensions, unit of measure, quantity of a resource. Finally, different cost
data are defined.

Data Modelling of an Enterprise - IWI

General atiributes for Part and Structure entities

For part For sub- f nti
Identification Data: Type: Bought-in part:
Part number: Ordering policy:

Drawing number:

Limiting values:

Number is sales catalog: Safety factor:

Part description: Type: In-house part:
Classification Data: Lot size:

Part type: Throughput time:

\l;?alxlrl\?\:ing level Work schedule:

) : Requirement :
Requirement type: Pla?ming typefype
Planning type: Type: Sales part:

Statupsg:ta; to: Sales price:
U;il' uct'],jtron ft? e Discount classification:
A izaion siate: Minimal packing sizes:
mendment date:
Technical-physical variables: .
Dimension: Eor structure entity
Color: Quantity:
Weight: Reject rate:
Space-requirement: Lead time:
?Aeieig?éen?gnélumt: Operation assignment:
nventory level. Date of validity
Plangu'ggr?:tafb o Date of phase out:
Cost Data: g ’ Type of bill of materials:
Amendment date: Variant information:

Batch costs:
Inventory units cost rate:
Cost accounting results:

Similar to “part” and “structure”, the IWI model defines typical data attributes for
defining “equipment group”, “equipment”, “tool” and “personnel” entities as pre-
sented in figure 4. Equipments, tools, personnel and parts/structures are the data
objects that are considered as resources. “Equipment group” specifies an aggrega-
tion of equipment. The attributes defined for the “equipment group” specify infor-
mation such as waiting time, set-up time, load level of the group. “Equipment”
entity contains attributes specifying the amendment date, maintenance policy, and
the equipment group to which the equipment belongs to. Finally, the “personnel”
entity contains attributes specifying performance evaluation policy, appointment

date, qualification, title and the overtime payment.

In “equipment group” and “tool” entities contain attributes for defining capacity.

In “tool” entity “capacity in assembly hours” attribute is used for defining the
capacity of the tool. Moreover the capacity of an “equipment group” is also
described in hours. However, no attributes indicate which operation(s) (activities)
can use the equipment group nor specify which equipment, in the equipment
group, that can support more than one operation.

Fadi George Fadel: M.A.Sc Thesis 9

CHAPTER 2: Related Research

FIGURE 4 Attributes for “Tool”, Personnel”®, "Equipment” and “"Equipment group” entities

For equipment group entity ‘ For equipment entity
Equipment Group Number [EGNQO]: Equipment Group Number [EGNO]
Cost Center: Equipment Number [EQNOJ:
Type of workplace: Acquisition date:
Location: Planning date:
Foreman: Period capacity of the equipment
Planning data: in hours:

Number of working days per week:
Number of shifts per working day:
Maximum number of shifts per working day:
Number of hours per shift:

Maximum hours overtime:

Utilization level:

Performance time rate:

Waiting time for the equipment group:
Set-up time:

Load levelling:

Hourly machine rate:

Personnel number [PERSPNOJ:
Appointment date:

Previous employer:
Qualification:

Title:

Date of last assessment:
Assessment evaluation:
Date of next evaluation:
Performance evaluation:
Standard evaluation:
Overtime Payments:

Date of the next preventive
maintenance:

Duration of the preventive
maintenance:

Number if maintenance order
just completed:

Depreciation date:

TNO:
Purchase date:
Capacity in assembly hours:

As for taking account of what is produced in the factory and which activities are
responsible for the act of production, the production planning and control data
model has a link with the inventory accounting data model for the purpose of
recording the consumption and production of parts. This is achieved through defin-
ing an account in inventory accounting that is set up for each type of material
(part). As shown in figure 5, each “part” is connected to “account” entity where the
addition or subtraction of any amount of the resource is recorded.

FIGURE 5 Inventory Accounting

Account f-----e--e-e- Cost Center

Equipment

Group Part

dneasuremenp

Reference
Variable

Computer Integrated Manufacturing - Open System Architecture (CIM-

2.3 Computer Integrated Manufactunng Open System
Architecture (CIM-OSA)

CIM-OSA is a project being developed by the AMICE? group in ESPRIT>. The
objective of this project is to define an Open System Architecture for the manufac-
turing industry in general and discrete manufacturing industry in specific. The
modelling methodology consists of a set of constructs (building blocks) which are
to be used for structured description of business requirements and for CIM system

design and implementation.

2.3.1 CIM-OSA modelling framework
The basis of the framework is a Reference architecture from which a Particular
architecture is developed. The framework is represented in what is known as CIM-
OSA Cube as shown in figure 6. The framework also provides a structure which
elucidates the relations between the information technology, manufacturing tech-
nology and the applications tools which are needed to operate the enterprise.
FIGURE 6 Overview of the architecture Framework - CIM-OSA cube
/ Orgamzan%/ Urgamza%/ Organizafio
Stepw1se Resource Resource Resource
Generation View
/ /In ormau%/ Iny Omt%/ln ormation
View dimension -
gunctzon f’.;l:’"wmon {‘,’_uncnon
. . ew lew
Qenenc:' - Genernic Partial Particular i
dimension Requirements Requirements Requirements | Requirement definition
Life cycle Definition Definition Definition _
dimension Model Model
v G ; Pariicul
?g;g’ilwat' ?‘éﬁfﬁf D‘:’gzgin o Design specification ~
ectfication i 1ol
Modd g || e | >)
e} Partial 4 ficula i inti
eneric wtation | Inplementation | Implementation \™plementation Description
Descr tion Descr;ptlon Descrlapnon
| Model’ Mode Mode
T "
CIM-OSA Reference CIM-OSA Particular
Architecture Architecture

1. [ESPRIT 91a]
2. AMICE: European Computer Integrated Manufacturing Architecture.
3. ESPRIT: European Strategic Program for Research and Development in Information Technology.

Fadi George Fadel: M.A.Sc Thesis

11

CHAPTER 2: Related Research

2.3.2

2.3.3

2.3.4

2.3.4.1

CIM-OSA Reference Architecture

CIM-OSA reference architecture consists of a set generic building blocks, partial
model and guidelines for the three modelling levels as presented in the CIM-OSA
cube (figure 6).

Levels of modelling

Modelling levels in CIM-OSA represent the three different stages of developing an
enterprise model. These levels are:

1. Requirement Definition Modelling Level: The level describes what is
to be performed in order to achieve enterprise goals.

2. Design Specification Modelling Level: This level optimizes and struc-
tures the business requirements defined in the previous level, based on
different constraints.

3. Implementation Description Modelling Level: states explicitly an inte-
grated set of components (H/W, S/W) required for effective realization
of enterprise operations.

The CIM-OSA views

CIM-OSA has defined four views with which it is intended to model different
aspects of an enterprise. These views are: function view, information view, organi-
zation view and resource view.

Function view

This view is used to define the structure and content of the whole enterprise or
part/section of it, which is called Domain. Two of the most basic constructs in the
function view are the domain and the enterprise function (figure 7). A Domain is a
construct that specifies the part or parts of an enterprise required to achieve an
enterprise objective. The Enterprise Function, represents what tasks! required to
achieve a specific enterprise objectives.

1. Task is a general term that points to either to Domain Process, Business process or Enterprise Activity.

Computer Integrated Manufacturing - Open System Architecture (CIM-

FIGURE 7 Relationships in the function view

2.3.4.2

2.3.43

2.3.4.4

consists of

/+\ contains

A contains
Enterprise b _occurs as Enterprise Occurs as Business
Activity % Function N Process

Information View

The information view defines a system for modelling, storing, processing informa-
tion across diverse and heterogenous applications [Beeckman 90]. Similar to the
function view, the information view is defined over the three different modelling

levels.

Organization view

This view contains information on the different responsibilities within an enter-
prise. It is hierarchically structured using the concept of ‘cells/groups’ for group-
ing the organizational responsibility. At the Requirement Definition Modelling Level,
responsibilities for manipulating human and machine decision making processes,
are defined. At the Design Specification Level, an optimized version, of the require-
ments set in the requirement level, is defined. Finally the basic contribution of the
organization view at the Implementation Modelling Level is defining the configura-
tion of the physical system.

Resource view
Resources are modelled in CIM-OSA’s framework through the resource view

which contains all the related information concerning the enterprise resources. To
date no detailed description of constructs have yet been developed [ESPRIT 91a].
The view is hierarchically structured based on the logical resource cell grouping
which is dependent on the requirements of the enterprise operations. The resource
view is accomplished over the three modelling levels: requirement, design and
implementation.

At the Requirement Definition Modelling Level: The resource view at the Require-
ment Definition Modelling Level has not been formally developed yet [ESPRIT 91a]
[ESPRIT 91b]. However as previously mentioned this level provides what has to
be done within the enterprise - in this case in terms of resource requirements.

At the Design Specification Modelling Level: A set of optimized and balanced
resources, required to support a set of Enterprise Activities, are defined. The

Fadi George Fadel: M.A.Sc Thesis 13

CHAPTER 2: Related Research

resource set is included in the Logical Cell building block. A “Logical Cell” is a
building block construct in which logically structured resources are grouped. The
aim of this building block is to identify a number of equipments and resources
which are candidates for having a “high degree of integration because they support
groups of functions which require close or frequent interaction (job-oriented/pro-
cess-oriented).” [ESPRIT 91a). That logical grouping may reflect a job-oriented
structure or process-oriented onel(ﬁ gure 8).

Resources in the resource view are grouped in “logical cells”. The logical cell
structure of a resource - LC - collects resource objects required for the implemen-
tation of enterprise activities (EA). The resource objects could be: human beings,
machines, data storage and processing capabilities etc. A similar cell is also
defined in this level and that is the “Organizational Cell”%. The “Organizational
Cell” structures the resources according to their provision or their identified
responsibilities.

FIGURE 8 Logical Cell vs. Organizational Cell grouping
BP: Business Process ,/ Enctional
EA: Enterprise Integration

LC: Logical Cell :
OC: Organizational Cell %,

~ammmerr’

f
L 8t:'rganizational
ucture

Two resource related constructs are defined in this level:

e Alternative resources construct specifies the set of resources that are
candidate to support an activity.

 Specified resources construct is derived from the alternative resources
construct by optimization and specifies which resource(s) that is to sup-
port that activity.

1. In the organizational view there exist a similar notion - Organizational Cell - which groups the resources
according to their provision or their identified responsibilities.

2. Defined in the organization view.

Computer integrated Manufacturing - Open System Architecture (CiM-

* Specified Capabilities is a result of choosing a resource(s) in the speci-
fied resources construct specifying the capability of the resource. Still it
is not defined how that is accomplished.

At the Implementation Description Modelling Level: At this level, the view repre-
sents the realization of the above two levels by defining the physical system/equip-
ment which includes machines, people and application programs. In this level a
description of resources is presented in terms of all the tangible components used
in its CIM system. These components are presented in TABLE 1.

TABLE 1 Resource components in the Implementation Description Level

Human Manufacturing Information

Resources Resources Technology

Work plans Machine programs | Enterprise Engineering | Enterprise Operation
Software Software

Human skills | Control programs Integrating infrastructure

People Machines Basic data processing services
Data processing devices

Two resource related constructs are defined in this level:

* Implemented Resources construct specifies the resources which are
derived from specified resources construct defined at the design specifi-
cation level. In other words it is just the assertion of which resource is
chosen at the implementation level to support the activity

* Implemented Capabilities construct specifies the capabilities provided
as a result of a certain resource choice.

Figure 9 presents the relationships between the different resource constructs
defined over the four views.

Fadi George Fadel: M.A.Sc Thesis ‘15

CHAPTER 2: Related Research

FIGURE 9 Resource constructs and its relation with function, information and organization view

.
.
I
+

t

v
]
'
]
‘
'
]
.
‘
'
+
1
1]
’

e O E DL LDttty - -
Function view !/ Resource view

14
’

derived from (&RD8ientset)

i(Gmputs & outputs) (_TequITed Capabites Yt
‘ A A

44444

are : f(mplemented capabilitieg C specnf:edlresource)
are Implemented Tuncuony; \ installed as

(“object view)—-(_enterprise objects)

2

:

! H

hav 7] . L H

p |have “_ match or exceed optimized to :
»(enterprise function) . H
’

;

:

:

;

¢

4

\ [\ [i

Information view

e o e -

FIGURE 10 Business process definition [ESPRIT 91b}

Business Process: BP-3.7

Type: Small Batch Machining

Identifier: BP-3.7

Name: Drive Shaft Milling

Part description:

Design Authority: Manufacturing
Obijective:

Constraint:

Declarative Rule:

Description:

Function Input: Drive Shaft Batch Material
Function Output: Drive Shaft Batch Material
Control input:

Control Output:

Resource Input: Milling Machine
Resource Output: Milling Machine

Ending Status:

Comprises:

Procedural Rule

Since the resource view is not yet described in detail, there is no clear definition of
what a resource is. However from the “function” and “business process” [ESPRIT
91b p. 145] definition, a reusable resource is considered as a “resource input”
while a consumable one is considered as a “function input” (figure 10). Reference
to “resource components in the implementation description level” table (TABLE
1) all mentioned resources are reusable ones. Machines, software, human skills are
examples of such resources. Resource capabilities are modelled through the related
resource constructs defined over the modelling levels. These constructs are speci-
fied capabilities and implemented capabilities. It is not clear how the capabilities are
defined. An example of the definition of “human capability is as follows: under-
stand: reports events, judge: accept failure, decide: start of “Update Shop Capac-
ity”. Furthermore, an example of “machine capability” is as follows: X-length in
[200,500], Y-length in [100, 300}, Z-length in [200, 350], accuracy < 0.005.

Purdue Enterprise Reference Architecture (PERA)

2.4 Purdue Enterprise Reference Architecture (PERA)

2.4.1

The Purdue Enterprise Reference Architecture! is being developed in the Labora-
tory for Applied Industrial Control at Purdue University. PERA was initially
developed for CIM systems, but the architecture has been extended to cover mod-
elling of any enterprise in any industry.

Purdue Modelling framework

The history of integrating an enterprise is covered by the so-called PERA’s skele-
ton (figure 12). The skeleton is just a graphical description of the modelling frame-
work which in turn is subdivided into layers/levels of modelling specifying
different stages of modelling. These levels are: identification of the CIM business
entity, concept layer, definition layer, specification layer, detailed design layer,
manifestation layer and operations layer.

PERA also has two views of the architecture:

1. Functional view (definition layer): This view deals only with how the
different tasks are performed.

2. Implementation view: Also addressed as the physical view and is a col-
lection of the human organization, hardware and software needed to
perform a function.

Purdue architecture contains two basics constructs: task, function. A fask is the
lowest construct that is considered when performing functional decomposition of a
business entity or even an enterprise. A task is a transformation process that takes
inputs and produces outputs. A function is a collection of tasks having a common
objective. Any task and/or function is classified as either informational or manu-
facturing2 tasks. An informational task takes informational inputs and produces
output(s). A manufacturing task, on the other hand, takes material and/or energy
inputs and transforms these into outputs. Both tasks and functions are enabled by
ceratin parameters depending on which stream is being performed - informational
or manufacturing.

1. [PERA 91]
2. Also addressed as either a physical or a customer service task

Fadi George Fadel: M.A.Sc Thesis : 17

CHAPTER 2: Related Research

FIGURE 11 Definition of the Task Module

Enabling *parameters

Input(s) =

Process ' * Ourput(s) OR

Transformation Result(s)
Product(s)

FIGURE 12

Function View
AL

Implementation view
e N

Manufacturing (physical) S
Planning, scheduling, Control PhysicaI&ProductiQn
and data management requirements requirements (operations)
Task an& functional Unit Operations
modules modules
lnformatjin functional Manufacturing
network functional network

Implementation View
Information Architecture &\\'\\N Mﬁnufu{ur‘mg Architecture
Human & organizational.
Architecture

N\
N

Information Systems
Architecture (Automated)
Human component
of the information
architecture

Automability
Manufacturing Equipment
Architecture (Mechanized)

architecture

| ___Automability
Human component
of the information

.

ARAAALAALRALLAY \

ARARARLLELRLN

Purdue Reference Architecture: Information, Manufacturing and Human Streams

Identification of the
CIM business entity

Concept layer

Definition Layer

Specification layer

Detailed design layer

Manifestation layer

Operations layer

The first modelling level, in the function view context, is the setting of both the
informational and manufacturing requirements. These requirements tackle issues,
from the informational perspective, such as planning, scheduling, control and data
management while in the manufacturing stream perspectives operational require-
ments are set. These functional requirements are transformed into a set of modular
tasks which are eventually interconnected to form a network. In the informational
tasks, a network represents the data flow between connected function while in the

manufacturing context, a network represents a process network.

Purdue Enterprise Reference Architecture (PERA)

At the Implementation view: Up to this point, the only modelling streams consid-
ered were: informational and manufacturing (physical), but in the implementation
view new stream is considered - human/organization architecture (figure 12). Both
the informational and manufacturing streams contain tasks that are to be carried
out utilizing human skills which, accordingly, needs to be modeled. If the process
modelled involves no human skill then only the informational and manufacturing
streams are only considered. The degree of human skill involvement in a process is
called Automability (or Humanizability) as shown in (figure 12).

Resources in PERA:

PERA employs a bottom up modelling approach. Accordingly the endeavor has
included a generic task and function module. These modules represent a transfor-
mation process(es) in a manufacturing environment. These transformations are:

e informational (data) transformation,
* physical (material, energy-based).

Modules can be connected by the flow of material/energy and/or information
(data) and/or commands. It is mentioned that the modelling framework of PERA
involves modelling of three streams: informational, physical (manufacturing/ser-
vice) and human/organizational. Accordingly, the definition of what is a resource
depends on the stream considered.

Fadi George Fadel: M.A.Sc Thesis 19

CHAPTER 2: Related Research

FIGURE 13 Definition and examples of Task Module

Enabling parameters

Transformation
Process

Compuied outputs Transformed material Oral, written or physical
or energy outputs
E £ 5
% > “— [=
[> o -t -]
g wE 2 =
5 £_ 58 E = g
LY B @ E; 8 '2 a e
g E ga 23 = S w
g FE g3 = & Z 8
Q. P ,5 .E S — £ § £ — s §
- =R - % -1 a, ; -~
9 ES SR 2 o
i ~ B o =]
3 b 24 9 g a
g & =g = 31 E
= = 6.0 '§ =3 =
z - 2 8 =
g 5
= =
s :
Data or information Material and/or Requirements, specifications,

inputs including

time inputs energy inputs available data inputs

Figure 13 provides the transformation (task) process definition. It includes the def-
inition of the task with its input(s), output(s) and enabling states as modelled in
informational, manufacturing and human transformation processes. Information
tasks have only informational inputs and outputs. Manufacturing tasks, on the
other hand, serve as sources and sinks for information to and from the information
tasks. The information needed can be operational, state, commands etc. However
in this case data might not be considered as a resource as data is considered as one
of the enabling parameters. So resources could be: material, energy, time etc. The
human tasks are tasks that require human skills. So the resources considered in the
human stream are: employees, requirements, specifications, available data.

Resource modelling in Al

2.5 Resource modelling in Al

251 SIPE!

SIPE (System for Interactive Planning and Execution Monitoring) was developed
in the eighties with the objective of extending the classical planning2 paradigm by
using causal theories, permitting general constraints and performing replanning.
SIPE was developed with the intention of having a domain independent methodol-
ogy for describing a specific domain at different levels of abstraction. A domain
includes both performable actions and achievable goals. SIPE contains a resource
modelling methodology that allows reasoning about resources. It is “viewed as a
powerful tool that can be employed by the user to represent domain-specific
knowledge concerning the behavior of actions”. In SIPE’s representation, variables
associated with actions are resources..

Resources are classified by being either reusable or consumable. Reusable
resources are used to describe omnipresent resources. The rational behind the
implementation of reusable resources is to detect resource conflicts. If an object is
defined as reusable resource then no parallel action will be allowed to use the
resource simultaneously. Parallel interactions are detected by a resource critic and
the conflict is resolved through using a system defined heuristic>.

Consumable resources are used for providing a mechanism for declaring consump-
tion and production of resources. Reasoning about consumable resources is per-
formed through the use of predicates such as: level, produce and consume. Level is
used for the representation of numerical quantities and is calculated automatically
by the system from the predicates describing the production and consumption of
quantities. The level predicate occur at certain points (time points) in a plan. It is
defined having two arguments: one specifying the object (i.e the resource) and the
other specifying the numerical value that is being produced or consumed.

So the two main distinction between reusable and consumable resources in SIPE’s
context are:

1. [Wilkins 88]
2. The classical planning is defined as being state based (i.e taking snapshots of the real world at different time
instances.

3. SIPE detects resource conflicts when in parallel actions an object is declared as a resource. When a conflict
is detected by the resource critic it is treated similar to treating harmful parallel action. In general the conflict is
resolved through the addition of ordering constraints. For details check [Wilkins 88], chapter 8.

Fadi George Fadel: M.A.Sc Thesis 21

CHAPTER 2: Related Research

1.

The numerical quantity (level) of a consumable resource is either dec-
remented or incremented after the completion of an activity. The level
predicate is not used for reusable resources since a reusable resource
can only support one activity at a time.

A reusable resource can not be used by more than one action simulta-
neously while it is possible for the case of consumable resources.
Accordingly if an object is declared as a reusable resource, with respect
to an action, then no parallel action would be allowed to use the same
object.

SIPE also specifies that an object could be explicitly defined as being a shared
resource allowing the object to be assigned to parallel actions.

25.2 KRSL

KRSL! (Knowledge Representation Sharing Language) is being developed by
Knowledge Representation and Architecture Issue Work group in DARP/RL plan-
ning and scheduling initiative. The project focuses on the building a sharable and
reusable knowledge base. In KRSL’s context, a common ontology is “an explicit
specification of the ontological commitment of a set of programs” [Fikes et al 92].
The resource ontology has not been fully developed get. The existing ontology is
based on reproduction of previous modelling projects”.

A resource, according to KRSL, “is an abstract structure defining the capabilities
and capacity of various objects and activities”.

Resource Types: defines the general properties of a resource such as:

e usage type - is the resource consumed or used?

is the resource sharable?

There are four types of resources:

1.

consumable resources such as fuel that will not available after being
allocated and the resource capacity is only increased through replenish-
ment of the resource.

reusable/non-sharable resources that are made available after being

allocated. Non-sharable resources are the ones the must be fully allo-
cated to a single activity.

1. [Allen et al 92].
2. The project includes modelling of cargo planes.

Resource modelling in Al

3. reusable/synchronized-sharable are reusable resources that constitute
capacity that can support multiple activities simultaneously but “only a
temporally synchronized manner”. A cargo ship can simultaneously
support multiple activities (customers) in condition that the cargo is to
be in the ship before a certain time (i.e activities/customers are to use
the ship over the “same” interval).

4. reusable/independently-synchronized are reusable resource that can be
simultaneously allocated to multiple activities without synchronization.
Parking is an example of this type where parking activities are per-
formed independent of time.

FIGURE 14 Resource frame in KRSL

(define (resource-type <resource-type name>)
<resource-type description>)

<resource-type description>::=
[:is-a (<resource-type>*)]
[-unit-type <unit-type>]
[:measured-by <list-of-object-attributes>]
[:allocation-events (<event-rule description>*)]
[:de-allocation-events (<event-rule description>*)]
[:productdon-events (<event-rule description>*))}

Figure 14 presents the KRSL resource frame and following is the description of
the attached slots.

:unit-type is a default measurement of the resource. It is defined as a “count”,
“size” or “weight”.

:measured-by describes the attributes by which the resource it described. For exam-
ple a runway may have the attributes runway-length and runway-quality.

:allocation-events, de-allocation-events, production-events contain a set of events-
rules describing how the resource is allocated, de-allocated and produced.

Resource Records defines the provided, required and produced resources by activ-
ities. These notions are:

* provided-resource: records specify the type and maximum or minimum
amount of the resource provided. This record is created relative to a
provider object.

Fadi George Fadei: M.A.Sc Thesis 23

CHAPTER 2: Related Research

* required-resource: records are defined relative to a consumer, and the
record specifies the type and amount of the resource required/con-
sumed.

* produced-resource: records are defined for produced resources specify-
ing the type and maximum or minimum amount of the resource that is
producible.

Resource Usage Records contain knowledge about the current resource usage.
There are three types of resource records: provider-usage, consumer-usage and
producer-usage records. These descriptions are presented in figure 15.

FIGURE 15 Resource records in KRSL - source [Allen et al 92]

Provider usage:
Resource: a record identifying the resource type
Provider: actual provider of the resource
Available capacity: amount of the resource available
Time: time over which that amount is available
Consumer list: consumers of the resource
Producer list: contributors in the production of the resource.

Consumer usage:
Resource: a record identifying the resource type
Consumer: of the resource
Amount consumed: by the consumer
Time: ime over which the resource is consumed
Provider list: providers of the resource

Producer usage:
Resource: a record identifying the resource type
Producer: of the resource
Amount produced: by the producer
Time: time over which the resource is produced
Provider list: providers list of producers.

Measurement Primitives in KRSL are:

* unit-type defines the unit of measure of quantities. The unit could
either in terms of a qualitative set - {large, medium, small}- or in terms
of a quantitative type.

FIGURE 16 Unit type in KRSL

@oun Measureme@

Cualitative uanttative
Measurement easurement

Resource modelling in Al

* a quantity is represented in terms of unit-type and a minimum and/or
maximum bound.

* unit-relation define the conversions between unit-types.

2.5.3 OPIS Framework for Modelling Manufacturing Systems

opIs! presents a framework for modelling manufacturing systems to be used in
knowledge-based simulation and scheduling of manufacturing industries. The
model has four basic types of entities: operations, resources, products, demand.

* Operation entities are description of activities that are performed in a
manufacturing environment.

* Resource entities are description of resources that are required to per-
form manufacturing activities.

* Product entities are description of materials that are manufactured by a
system.

* Demand entities are description of the commitment of a manufacturing
industry to deliver products.

OPIS contains a hierarchial description of resources. Moreover, the modeling
framework contains a representation of various resource related constraints that
affect resource allocation. Figure 17 contains the resource frame as defined in
OPIS.

1. [Smith 90]

Fadi George Fadel: M.A.Sc Thesis 25

CHAPTER 2: Related Research

FIGURE 17 Resource frame definition in OPIS
{{resource

IS-A: physical-object
TYPE:

range (OR disjoint-aggregation overlapping-aggregation atomic)
SUB-RESQURCES:
SUB-RESOURCE-OF:
OVERLAPPING-SUB-RESOURCE:
OVERLAPPING-SUB-RESOURCE-OF:
GROUPED-SUB-RESOURCE:
GROUPED-IN:
OVERLAPS-WITH:
CAPACITY:
AVAILABLE-CAPACITY:

range (SET (TYPE instance capacity-interval))
BREAKDOWN-SPEC:

range (TYPE instance breakdown-spec)
REPAIR-LAW:

range (TYPE is-a repair-operations)
STATISTICS:

range (TYPE instance resource-stats-report)
SCHEDULING-LEVEL:

range (ORt nil)
SIMULATION-LEVEL:

range (tnil)
DESCRIPTIONS:}}

The hierarchial modelling of resources is achieved through using these relations:

* sub-resources/sub-resource-of: Are the backbone of the hierarchial
resource description. They are used to associate aggregate resources
with their constituent resources (and vice versa) under the assumption
of mutually exclusive hierarchial decompositionl.

FIGURE 18 Hierarchial representation of a work-cell - OPIS

A-cell-group B-ce*group
maclﬁ/:‘rhchme-AZ machine-B1

* overlapping-sub-resources/overlapping-sub-resource-of: These rela-
tions are used to express overlapping capabilities of resources. This is
used to tackle the case where the allocation of a resource to a “work
area” is constraint by the type of product produced. For example, with
reference to figure 18, let us assume that a product family [P] can only
be allocated to “machine-A1” and “machine-B2” in “work-area-1".

1. Figure 18 presents an example of hierarchial representation in OPIS.

Product Detail Page 2 of 2

Enjoy your order from <Site Name>!
<URL>

http://clientzone.projects.novator.com/shopping_cart_oct2002/5_confirmation htm! 22/10/2002

Product Detail

AoPEe Y Ll i e

Thank you for shopping with <Company Name> online!

We've received your order, and will be processing it shortly.

Please take a moment to review your order details. If you have any comments or questlons

regardmg your order, please don't hesitate to contact us at -

Your Receipt
Billing Address Credit Card Information

Credit Card Number: xxxx xxxx xxxx 1111
Credit Card Type: visa

Helen Johnson

3 Wood St. . -

Toronto Credit Card Expiry: January 2003
ON M5B 3H6

Recipient Details Product Details

John Smith

444 Richmond St. Product Name

Toronto Sku Options $7.99 $3.99 $3.00
ON M5B 3H6 Quantity: 3

ORDER NUMBER
yyvy/mm/dd/XXXX

Helen Johnson

3 Wood St.
ON M5B 3H6 roduct Name
N M5B 3 Sku Options $7.99 $3.99 $3.00
ORDER NUMBER Quantity: 3
yyyy/mm/dd/XXXX

$32.99

It will take 1-2 weeks to deliver to this location using

$32.99

it will take 1-2 weeks to deliver to this location using

Order Subtotal: $39.89
Shipping: $14.96

GST:
PST:

5.00
$4.00

Total: $56.12

Once again, thanks for shopping with us! Wwe look forward to serving you again
s00n.

http://clientzone.proj ects.novator.com/shopping_cart_oct2002/ 5 confirmation.html

rage 1 vi <

22/10/2002

Resource modelling in Al

Accordingly, “machine-A1” and “machine-B2” have overlapping capa-
bilities by being able to support the production of product family [P].
“overlapping-sub-resources/overlapping-sub-resource-of” are related
to the smallest disjoint aggregation the contains a resource (and vice
versa).

group-sub-resources/grouped-in: are also used to define overlapping
capabilities. “group-sub-resources/grouped-in” represent an overlap-
ping aggregating which is related to its constituents (and vice versa).
That is to say that machines from different cell-groups are grouped
because of their similar capabilities.

overlaps-with: “An overlapping aggregation is related to the overlap-
ping aggregations with which it shares constituents via the relation™.

Reasoning about resource allocation implies partial allocation of the resource to
activities, accordingly OPIS includes capacity-related attributes in the resource
modelling framework. These attributes are:

capacity: is defined as to be the number of items that a resource can
process simultaneously.

batch-size: specifies the manner in which a resource is allocated!. This
is used, for example, when a “wash” operation is required to be per-
formed on a “semi-conductors” where they are dipped in a chemical
bath for a time interval. The bath could support 50 wafers but if the
bath is allocated to a production unit, then no other production unit can
use the bath, regardless of the number of wafers already in the bath.

current-capacity: is used in the case when the allocation of resources is
done in strictly time ordered manner (i.e in the process of a forward
simulation) with no future anticipations.

capacity-interval: is a time interval in which available capacity of a
resource is described.

available-capacity: is used when future demand and plans are incorpo-
rated, then the representation depicts the evolution of each resource’s
available capacity over a future time horizon. The available capacity is
expressed in terms of ordered sequence of capacity-intervals

Requirements of manufacturing activities (operations) in OPIS are defined through
resource-requirement-spec. The specification is defined with two attributes:

1. i.e a constraint on the allocation of the resource to an activity

Fadi George Fadel: M.A.Sc Thesis 27

CHAPTER 2: Related Research

* required-resource-fun which specifies the resource sub-pool (an aggre-
gate resource).

* required-quantity-fun which defines the amount of the resource’s
capacity required.

FIGURE 19 resource requirement specification definition - OPIS

{{resource-requirement-spec
IS-A: conceptual-object
REQUIRED-RESOURCE-FUN:
REQUIREED-QUANTITY-FUN:}}

Resource setup constraints are also modelled in OPIS through the use of a setup
matrix which specifies the setup duration constraint. The setup time related
attributes are:

* setup-matrix: specifies the setup duration constraints.

* config-dependent-setup-matrix: specifies the setup durations in terms
of the time needed to change the resource’s configuration from the that
imposed by the previous operation to the configuration imposed by the
current operation.

* location-dependent-setup-matrix: is similar to config-dependent-setup-
matrix with the addition of the time to move the resource form one
location to another.

Modelling of work shift’s specification is done through defining time periods
through which the resources are operational. This is defined using work-shift-spec
which in essence provide a solution of representing a time varying constraints. The
work shift constraint is defined over a delineation of time intervals over a specific
time horizon!.

Another attribute of a resource defined specifies the breakdown characteristics.
These characteristics are: time to next failure and amount of capacity lost. These
characteristics are represented through using breakdown-spec. A related attribute
is the repair-law attribute the specifying the repair specification using repair-oper-
ations.

1. A work shift specification is defined as calender intervals containing description of work shifts. A shift is
defined as an hours-of-day-interval, associated with a work-week which in turn is defined as days-of-week-
interval.

Resource modelling in Al

In OPIS, resources are delineated to being either stationary or mobile ones. The
taxonomy is presented in figure 20.

FIGURE 20 Taxonomy of resources in OPIS based mobility characteristics

resource
mobile-resource Glationary resourced

Uman-resource> ansport-resourca tool-resource cell-group < work-cell >
operator parallel-cell-group serial-cell-group

254

Finally, the last attributes in the resource frame - figure 17 - that have not been
described yet are:

* statistics which a repository for resource utilization statistics,

* scheduling-level and simulation-level are ‘markers’ to indicate the level
of precision.

A related entity to resource modelling is the product entity. A product refers to an
object internally manufactured by a system, either as finished or semi-finished
objects. Similar to resource modelling framework, products are hierarchial model.
This is done through defining a product family to represent a collection of products
whose manufacturing process is the same. Defining the assembly/subassembly and
aggregate/disaggregate relationships, of a product, is achieved through the use of
material-requirements/material-requirement-for relationships. In the of material-
requirement-for relationship a meta-information is attached to it, quantity-spec,
specifying the amount of material that is required for the production of an object. It
also specifies the number of sub-components needed for the production of a com-
posite product.

Gerry

Gerry1 is a scheduling and rescheduling system that uses constraint based iterative
repair to produce schedules that does not violate resource and state constraints.
Gerry is used by NASA in managing Space Shuttle processing. Gerry contains a
constraint modelling language. These constraints are: temporal/milestone, resource
and state constraints.

1. [Zweben et al 93}

Fadi George Fadel: M.A.Sc¢ Thesis 29

CHAPTER 2: Related Research

Gerry models resource constraints in terms of classes and pools. “A class repre-
sents a type of resource consisting of a set of resource pools. A pool represents a
collection of indistinguishable resources”. Figure 21 shows an example, from the
Space Shuttle domain, of the use of classes and pools: heavy-equipment class con-
tains the pools crane-crew and high-crew. Each pool is initially defined with maxi-
mum amount of the resource that is available. The availability of the resource is
maintained through maintaining the history for each pool.

FIGURE 21 Example of a class and a pool - Gerry
cl heavy-equipment
Pool

Instance (crane-crew_c1) (crane-crew_c2

FIGURE 22 Resource history - Gerry

2
R
g 3

tpytpp 9 () 3
21
S o Time
B -eo 2 10 15 -0

(- 23() (8 10 -1 (Tt T2)) (15 +0 3 ()

(2 8 1(T1)) (10 15 1 (T2)

The history of resource pools is defined as a tuple; the arguments of the tuple are:
the starting time of the tuple (tp1), the end time of the tuple (tp2), the quantity of
the pool available in the specified time period (q) and the list if activities supported
by the resource (Tje)

Figure 22 presents an example of the application of resource history. For example,
the second history tuple specifies that the resource for time two to eight had only
one unit and that the resource supported one task - T1. Through the use of the
activity history, capacity violation is detected similar to the presented example
where the capacity constraint is violated from eight to ten time points. Moreover
the “resource pool quantity” is incremented and decremented in discrete manner
while linear change is not supported.

Tasks requirements specify a minimum set of resources associated with amount
needed. Each resource requirement consists of type and quantity and is represented
as a tuple that spans a task. As an example:

Resource modelling in Al

* (T; 2 Ry Tp; Tpy) specifies that task T requires two of Ry resource
from that start-time (Tp;) to the end-time (Tp;) of the task.

A resource could also be described as being dedicated or non-dedicated. A resource
is said to be dedicated to a task, when the resource can not be allocated to a second
task even if the resource has the capacity.

FIGURE 23 Dedicated vs. Non-dedicated resources - Gerry

pool's quantity

[[1

ity

=y B OEEy § vy Y Ry
i1 M M [

tume ume

2.5.5

e g

Dedicated resource Non-dedicated resource

[C] Thetime slot that the resource is available for other tasks

Resource’s quantity is decremented/incremented in discrete manner, over the time
period of the task, in case the resource is consumed. Gerry presents two options of
decrementing/incrementing the resource’s quantity:

* starting from the start-time of the task to infinity,
* starting from the end-time of the task

State constraints model attributes that change over time and might have several
possible values. Similar to what is discussed in resource modelling, each task spec-
ifies state requirements designating the state required. For instance, a task may
require that the value of attribute of Power-button be ON for its start to end times.
The state requirement could also be the position of left-payload-bay-door of the
shuttle or the configuration of a certain tool.

CYC

cyClisa project whose aim is to build a knowledge base to support natural lan-
guage understanding and machine learning. A goal of the project is to provide Cyc
with enough common-sense knowledge to enable it to read and understand an
encyclopedia article. The ontology defined in Cyc is basically organized around
categories of things in the world. The categories are arranged in a generalization/
specialization delineation having “thing” as the root- figure 24 & 25.

1. {Guha et al 90}

Fadi George Fadel: M.A.Sc Thesis 31

CHAPTER 2: Related Research

FIGURE 24 Taxonomy of Ontology - Cyc
Thing

Collecfion
individual Static Objects
Substance namic-Process
Tangible Intangible
FIGURE 25 Taxonomy of Ontology cont'd - Cyc
in
Individual- Ob]ect Intanglble /Bepresented-ﬂ'\ing
Intangnble-Object Collechon /
Reiat@hip
Event Intangrble -Stuff Slot
Internal-Machine-Thing Attn*)ute

Process Atfribuje-Value

Somethmg- urring
namnc -Process
Somethi g~Exismjg\

/ Tangible-Object
nielligence

Absolute-Attribute-Value
Relative-Attribute-Value
Qualitative-Attribute-Value

Non-Physical-Attribute-Value

Composite-Tangible-&-Intangible-Object Physical-Perceivable-Attribute-Value

Tangible-Stuff

“Thing” is used for modelling the world by being partitioned in three ways:

* Represented-Thing vs. Internal-Machine-Thing
* Individual-Object vs. Collection

* Intangible vs. Tangible-Object vs. Composite-Tangible- &-Intangxble—
Object.

Substance (stuff) vs. Individual-Object: Substances are things that when divided,
will result in a number of things similar to the original object. Wood and water are
examples of a substance. Instances of wood and water would inherit their intrinsic
properties. Individual objects on the other hand are objects when divided will not
result multiple copies of the objects. A monitor and an axe are examples of indi-
vidual objects. “Substance” and “Individual-Objects” are in turn instances of
“Substance-Type” and “Object-Type” restrictively.

Events vs. Processes: An event is a set of things with temporal relationships
(before, after etc.). A process is an event with the difference that a temporal slice
of the process is still a process while a temporal slice of an event is not the same
event anymore. Playing two games of tennis is not a process but it is an event

Summary

while playing tennis is a process. Similar to the approach in “substance” and “indi-
vidual-object”, an “event” and a “process” are instances of “event- -type” and *“pro-
cess-type” respectively.

Quantity: The approach used to describe quantities is interval-based. Example of
such intervals are “around 180 pounds™. The specified interval could be an open-
ended one -“more than 180 pounds™. To deal with the accuracy of representation of
the interval, another interval is specified in which it is believed the actual length of
a unit exist (10 plus or minus 0.5).

Agents: An agent is a sub-set of “Composite-Tangible-&- -Intangible-Object” and it
represents units that are capable of taking decision making actions, controlling and
changing situations. Agents include people, computer programs etc. Moreover
agents can be collective such as organization and institutions. In order for the
agents to be performed they need to “own” resources.

Resource: “A resource is anything that can be a tender in some transaction.” In
other words the term resource represent that an object is owned by an agent. An
example of a context in which a resource is represented in is: “In transaction T1,
there are agents Al and A2 and there is some resource R such that there is a
change in the relationship Q between R and A2 after T1.

resource-transfered(T1, R) A instance-of(T1, C) A from-agen(T1, A1) A to-agent(T1, A2)
A transfer-type (T, Q) — Q(A2, R))”

So agents require resources. These resources could be information, time, effort,
space, energy (etc.) {Blair et al 92].

Structure: Any tangible object is structured if it could be broken down to sub-
parts. In much the same way, an action is structured if it has sub-events.

2.6 Summary

Among the enterprise reference models considered - IWI, CIM- OSA, PERA - W1
is the most developed from a resource modelling perspective. Equipment, tools,
personnel and parts/structures are considered as resources in the IWI model. The
IWI model has defined attributes describing different resource perspectives such as
cost, technical-physical, classification, state, planning and maintenance data.
Moreover, the IWI model has defined attributes to represent a parts/structures,
equipment group, equipment, tool and personnel. Capacity is represented as an

Fadi George Fadel: M.A.Sc Thesis ‘ 33

CHAPTER 2: Related Research

attribute in both the “equipment” and “tool” entities. Equipment’s capacity is
defined in terms of periods (time) of capacity before being phased out. This
implies that an equipment in IWI has the capacity of supporting one job at a time.
Capacity is defined in terms of hours of usage of the resource. Similarly, tool’s
capacity is modelled in terms of hours of assembly. As for the personnel entity, no
attribute is defined that portrays the respective employee’s capacity.

A resource in CIM-OSA’s context is a reusable one while a consumable resource is
defined as a function input. CIM-OSA has the intention of defining a “resource
view” however that has not been done yet. Still CIM-OSA has defined several con-
structs in the different modelling levels that specify the alternative, specified and
implemented resources in an application. More over, CIM-OSA has defined two
grouping constructs, logical and organizational cell, that serve as a resource pool.
Resource’s capabilities are modelled through the related resource constructs
defined over the modelling levels. These constructs are specified and implemented
capabilities. However, it is not mentioned the means of describing these capabili-
ties.

As for PERA, its resource model is embedded in the framework but lacks a data
model. PERA's task and function modules are similar to that defined in IDEF, for-
malism where each task/function requires inputs (i.e requires resources) and some
enabling parameters to be performed. It has been shown that the inputs and the
enabling parameters depend on the context in which it is considered (i.e informa-
tional, manufacturing or organizational/human).

Among the endeavors surveyed from the AI domain, OPIS is the most developed
one. Also OPIS has defined resource aggregation relations that are used to define
overlapping capabilities. Moreover, OPIS contains breakdown, set-up time and
resource requirement specifications. A resource could either be mobile or station-
ary. Capacity is modelled in OPIS through the “capacity” and “available capacity”
attributes in the resource frame. Capacity is modelled as a function of the
resource’s capacity constraints. Some resources are defined having the ability to
support multiple jobsI simultaneously.

Gerry and Sipe were built to perform scheduling and planning activities. Both
endeavors have defined a resource as being either a reusable or consumable. Reus-
able resources in Gerry can not support multiple jobs. The same is true in SIPE
were a reusable resource can not support parallel actions.s As a matter of fact,
resource conflicts are detected if a resource is assigned to parallel actions?. Gerry

1. i.e “production units” as defined in OPIS.

Conclusion

has further defined the notion of “resource history™ for a reusable resource specify-
ing the resource quantity and the activity’s that are supported over a specified time
interval. Finally a resource in Gerry is defined as wither being dedicated or non-
dedicated with respect to a task.

In KRSL, a resource “is an abstract structure defining the capabilities and capacity
of various objects and activities”. A resource is defined as being consumable, reus-
able/non-sharable, reusable/synchronized-sharable or reusable/independently-syn-
chronized. A resource frame is defined in KRSL which specifies the type of
resource, unit of measurement, rules of allocation and de-allocation. KRSL has the
notion of having a reusable and sharable resource however no modelling frame-
work is presented.

Finally Cyc’s domain is general knowledge understanding and not manufacturing
one and hence did not define the required ontology needed to perform manufactur-
ing activities. Still Cyc has defined that in order for “agents” to performed they
have to own “resources”. “A resource is anything that can be a tender in some
transaction”. However no explicit definition of resources and their attributes is
defined.

2.7 Conclusion

What is needed is to incorporate a generic resource ontology (model) in the con-
text of manufacturing enterprise so that the ontology could be used by different
manufacturing, design, accounting, sales (etc.) activities. This is to be done
through merging concepts (terms), already defined in the reviewed research, with
some new ones to reach to a generic resource model.

Terms should have a well formalized and rigorous definition (in the form of axi-
oms) to limit ambiguities. The model should also support the ability to deductively
capability to answer simple questions so that to turn the resource reasoning into an
open deductive process as opposed to specialized code embedded in an applica-
tion, thereby making it shareable/reusable. That is, for the generic model to be
sharable, not only ontology should be provided but also the reasoning processes
associated with it.

2. unless the resource is explicitly defined as a “shared resource”

Fadi George Fadel: M.A.Sc Thesis 35

CHAPTER 3 Ontologies for Enterprise

Integration [TOVE]

This chapter presents a logical framework for representing activities/processes,
states, and time in an enterprise integration architecture. This framework
provides the basis for integrated supply chain management and enterprise
engineering in the Toronto Virtual Enterprise project at the University of
Toronto.

1. This chapter is a reprint from [TOVE 94].

3.1

Introduction

Enterprise modelling is an essential component in defining the tasks and function-
ality of the various components of an enterprise.The goal of our enterprise model-
ling research is to create a generic, reusable representations of Enterprise
Knowledge that can be reused across a variety of enterprises. Towards this end, we
have been developing the TOVE (Toronto Virtual Enterprise) ontology [Fox et al
93a] and applying this ontology to enterprise engineering [Fox et al 94], enterprise
integration, and integrated supply chain management. An ontology is a formal
description of entities and their properties; it forms a shared terminology for the
objects of interest in the domain, along with definitions for the meaning of each of
the terms. TOVE provides a rich and precise representation of generic knowledge,
such as, activities, processes, resources, time, and causality, and of more enterprise
oriented knowledge such as cost, quality and organization structure.

The basic entities in our model are represented as objects with specific properties
and relations. Objects are structured into taxonomies. Definitions of objects,
attributes and relations are specified in first-order logic, where possible. We then
define an ontology in the following way. We first identify the objects in our domain
of discourse; these will be represented by constants and variables in our language.
We then identify the properties of these objects and the relations that exist over
these objects; these will be represented by predicates in our language.

Fadi George Fadel: M.A.Sc Thesis 36

3.1.1

We next define a set of axioms in first-order logic to represent the constraints over
the objects and predicates in the ontology. This set of axioms constitutes a micro-
theory ([Guha et al 90]) and provides a declarative specification for the various
tasks we wish to model.

Intuitively, the axioms in the microtheory enable the model to deduce answers to
questions that one would normally assume can be answered if one has a “common-
sense” understanding of the enterprise. To formalize this intuition we also need to
prove results about the properties of our micro-theories in order to provide a char-
acterization and justification for our approach; this enables us to understand the
scope and limitations of the approach. We use a set of problems, which we call
competency questions, that serve to characterize the various ontologies and micro-
theories in our enterprise model. The micro-theories must contain a necessary and
sufficient set of axioms to represent and solve these questions. It is in this sense
that we can claim to have an adequate microtheory appropriate for a given task,
and it is this rigour that is lacking in previous approaches to enterprise engineering
and integrated supply chain management.

Requirements for an Ontology of Activity and Time
Each of the following requirements provides a set of competency questions.

* We need to evaluate the truth value of a proposition at some point in
time in the future. We therefore need to define axioms that express how
the truth of a proposition changes over time. In particular, we need to
express the properties and relations that change or do not change as the
result of an activity.

° We must define the notion of a state of the world, that is, define what is
true of the world before and after performing different activities. This is
necessary to express the causal relationship between the preconditions
and effects of an activity.

* The interval over which the state has a certain status is bounded by the
times at which the appropriate actions that change status occur. This
interval defines the duration of a state if the status is enabled.

¢ We want a uniform hierarchical representation for activities (aggrega-
tion). Plans and processes are constructed by combining activities. We
must precisely define how activities are combined to form new ones.
The representation of these combined activities should be the same as
the representation of the sub-activities. Thus aggregate activities (sets
of activities or processes) should themselves be represented as activi-
ties.

Fadi George Fadel: M.A.Sc Thesis 37

CHAPTER 3: Ontologies for Enterprise Integration [TOVE]

e The causal and temporal structure of states and sub-activities of an
activity should be explicit in the representation of the activity.

3.2 Time

3.21

In this section we define the ontology of time that is used in this work. This
includes defining the objects in the domain and relations over these objects, as well
as defining the relationship between time and actions, which will be used through-
out the remainder of the paper.

Time Points and Intervals

We represent time as a continuous line; on this line we define time points and time
periods (intervals) as the domain of discourse. '

We define a relation < over time points with the intended interpretation that ¢ < #'iff
t is earlier than ¢'. We represent uncertainty by defining the following predicate:

time_point(t, min, max) = min < t < max

The functions SP(t) and EP(t) denote the start and end points of the interval ¢,
respectively. Using the relation < and these functions, we can define relations over
intervals based on the temporal ordering of the endpoints of these intervals extend-
ing the relations of [Allen 83]. For example, we can define the relations

(V £,¢,p1.pp.p1'p2) strictly_before(t,f) =
time_point(EP(t), p1,pp) A time_point(SP(t), p1'.p2') 2 p2 <py’
(Y £.1,p1.p2.p1 P2) possibly_before(tt) =

time_point(EP(1), p1.,p2) A time_point(SP(t'), p1',p2’) 2 pp> p1' Apl <py’

3.3 Activities and States

At the heart of the TOVE Enterprise Model lies the representation of an activity
and its corresponding enabling and caused states. An activity is the basic transfor-
mational action primitive with which processes and operations can be represented;
it specifies how the world is changed. An enabling state defines what has to be true
of the world in order for the activity to be performed. A caused state defines what
is true of the world once the activity has been completed. We will begin by pre-

Activities and States

senting states, and then define how properties of activities are defined in terms of
these states.

FIGURE 26 Activity-State Model

Enables Causes
State @ State

3.3.1 States

An activity, along with its enabling and caused states, is called an activity cluster.
The state tree linked by an enables relation to an activity specifies what has to be
true in order for the activity to be performed. The state tree linked to an activity by
a causes relation defines what is true of the world once the activity has been com-
pleted. Intermediate states of an activity can be defined by elaborating the activity
into an activity network as we will define later in the paper.

FIGURE 27 Activity-State Cluster

. enables : causes
.. fabricate fabricate,
activity D?lsx’g On_WIrE »plug_on_wirg

conjuncts

state 1
consrre | | OBug | |inject mold iy on wirg |inject mold

There are two types of states: terminal and non-terminal. In Figure 2, es_fabri-
cate_plug on_wire is the non-terminal enabling state for the activity
fabricate_plug_on_wire and pro_fabricate_plug_on_wire is the caused state for
the activity. The terminal substates of es_fabricate_plug_on_wire are con-
sume_wire, consume_plug, and use_inject_mold; the terminal states of pro_fab-
ricate_plug_on_wire are produce_plug_on_wire and release_inject_mold.

FIGURE 28 State Taxonomy

State
‘Té?ﬁ/// \\Nonﬁ(erminal
State State

- ¥ e 1

Use

Consume {| Release |! Produce Conjunct || Disjunct |{Exclusive]] Not

Fadi George Fadel: M.A.Sc Thesis 39

CHAPTER 3: Ontologies for Enterprise Integration [TOVE]

At present we recognize four terminal states represented by the following predi-
cates:

use(s,a), consume(s,a), release(s,a), produce(s,a)

These predicates relate the state with the resource required by the activity. Intu-
itively, a resource is used and released by an activity if none of the properties of a
resource are changed when the activity is successfully terminated and the resource
is released. A resource is consumed or produced if some property of the resource is
changed after termination of the activity; this includes the existence and quantity
of the resource, or some arbitrary property such as color. Thus consume(s,a) signi-
fies that a resource is to be used up by the activity and will not exist once the activ-
ity is completed, and produce(s,a) signifies that a resource, that did not exist prior
to the performance of the activity, has been created by the activity. We define use
and consume states to be enabling states since the preconditions for activities refer
to the properties of these states, while we define release and produce states to be
caused states, since their properties are the result of the activity. We will later show
how the state predicates can be formally defined in terms of the effect axioms for
actions in the theory.

Terminal states are also used to represent the amount of a resource that is required
for a state to be enabled. For this purpose, we introduce the predicate quanti-
ty(s,,q), where s is a state, r is the associated resource, and q is the amount of
resource r that is required. Thus if s is a consume state, then q is the amount of
resource consumed by the activity; if s is a produce state, then g is the amount of
resource produced.

We assign values to states to capture the notion of status. We define a new sort for
the domain of the status of a state with the following set of constants:

[possible, committed, enabled, completed, disenabled, reenabled]

Non-terminal states enable the boolean combination of states. We will consider
four non-terminal states:

conjunctive, disjunctive, exclusive, not

Disjunctive states are used to formalize the intuition of a resource pool. We may
have a set of resources, such as machines or operators, that can possibly be used by
an activity. The activity only requires one of these resources, so the activity only
needs to non-deterministically choose one of the alternative resources in the pool.
Thus, the status of the disjunctive state changes if one of the resources has been
selected and its status has been changed.

Aggregation and Abstraction of Activities

3.3.2

3.3.3

The occurrence of an action for a conjunctive state is equivalent to the occurrence
of the action for all of its substates. The occurrence of an action for an exclusive
state is equivalent to the occurrence of the action for exactly one of the substates.
The occurrence of an action for a not state is equivalent to the non-occurrence of
the action for its substate.

Activities
An activity specifies a transformation on the world. There are several primitive
pieces of knowledge associated with it. The following enumerates the attributes of
an activity:

We define a new sort for the domain of the status of an activity with the following
set of constants:

[dormant, executing, suspended, reExecuting, terminated]

The status of an activity is defined by the status of its enabling and caused states.
The complete logical definitions for the status of activities and states can be found
in [TOVE 94]. In this thesis, the predicate activity(a, status, tp) is used to denote the
status of activity a at time point #p.

Duration

By combining the ontology of time with the ontology of states of activities, we
arrive at the notion of duration. The duration of a state is defined as the time period
beginning at the time that the state is enabled and ending at the time that the state is
completed., Similarly, the duration of an activity is defined as the time period
beginning at the time that activity begins the status of executing and ending at the
time that the activity begins the status of terminated. The duration of a state is rep-
resented by the predicate state_duration(s, d), while the duration of an activity is
represented by the predicate activity_duration(a, d).

3.4 Aggregation and Abstraction of Activities

An important requirement for an ontology for activities is the ability to aggregate a
set of activities to form a new activity. Activity clusters may be also aggregated to
form multiple levels of abstraction. “An activity is elaborated to an aggregate
activity (an activity network), which then has activities” [Sathi et al 85]. These
activities are sub-activities of the aggregate activity (see FIGURE 29).

Fadi George Fadel: M.A.Sc Thesis 41

CHAPTER 3: Ontologies for Enterprise integration [TOVE]

FIGURE 29 Activity Abstraction

level 1

level 2 untxa]__acuvrty

next_subactivity

The enabling and caused states are omitted from this diagram but they do exist.
Just as activities can be abstracted, states can be abstracted in a similar manner. We
can similarly define classes of activities and instances of activities in these classes:

FIGURE 30 Instances of the activity cluster .
Generic Plan State Causes State
T InstanceOf T InstanceOf
Spgg ford | State State

We introduce the predicate subactivity(a, a’) to denote that activity a’ is a sub-activ-
ity of activity a. In the same way that we defined the temporal relations over the
substates of a non-terminal state, we define temporal relations over the sub-activi-
ties of an aggregate activity. The formalization of these relations remains for future
work.

3.5 TOVE Factory

A “virtual factory”, called TOVE, has been defined using the ontologies in this
paper. We now present an example to illustrate the modelling of two activities and
their abstraction. The two activities are fabricate plug_on_wire and assemble2
wire_switch. We have already introduced the activity cluster for fabricate
plug_on_wire (see Figure 27) and the abstraction of fabricate plug_on_wire and
assemble2 wire_switch without the corresponding states (see Figure 29). The
activity clusters, their abstraction, and corresponding states are now illustrated in
Figure 31.

fabricate plug_on_wire is enabled by the consumption of plug (consume plug)
and the use of inject_mold (use inject_mold). This activity causes the production
of plug_on_wire (produce plug_on_wire) and the release of the used resource

TOVE Factory

(release inject_mold). The enabling state of fabricate plug_on_wire (es_fabricate
plug_on_wire) is a subclass of a conjunct state since all three resources must be
present for the activity to occur. Similarly, the cause state of fabricate
plug_on_wire (pro_fabricate plug_on_wire) is a subclass of a conjunct state.

assemble2 wire_switch is enabled by the consumption of plug_on_wire (con-
sume plug_on_wire) and the use of an assembly area (use asmbly_area). This
activity causes the production of wire_switch (produce wire_switch) and the
release of the used resource (release asmbly_area). The enabling and caused
states of assemble2 wire_switch are also subclasses of the conjunct state.

Fadi George Fadel: M.A.Sc Thesis 43

CHAPTER 3: Ontologies for Enterprise Integration [TOVE]

plug_on_wire activity cluster

FIGURE 31

UOIIRIAI 91BIS-AJIAIIOR e
"<AJADIR> SPUS <3IBIS> ‘<INEIS> PUD JOU SI0P <ANAROR> ‘AI0JRIY |, ‘TeAJouI sung s ANAnoe

Ue JO 181} 0} Paje]al S1 [eAIIIUT SWIN §,3JE1S B MOY SARNSN|[I UNEISeIp ST UT SUONLJU WD 1y - Spua
E3

uoneal feaodury

Prarena v iqme a0 Sl prom oofin tayd ena
wn{jquee Snd ana
STV

- ofqmotesTs0

14 281

1 9] _

assemble wire switch

n_wire and es2

plug o
aggregation. pro_fabricate plug_on_wire and

aggregation. es_fabricate

are substates of enable ws

fabricate plug_on_wire and assemble2 wire_switch are sub-activities of assem-

ble_ws

ro_ws aggregation.

substates of p

o_assemble wire_switch are

pro_

Conclusion

3.6 Conclusion

This chapter presented a logical framework for representing activities/processes,
states, and time in an enterprise integration architecture. This framework provides
the basis for integrated supply chain management and enterprise engineering in the
Toronto Virtual Enterprise project at the University of Toronto.

Reasoning about the activities/states and their status can not be achieved unless a
resource reasoning framework is available. The complexity of planning and sched-
uling is determined by the degree to which activities contend for resources. Alloca-
tion of resources, defining the resource’s capacity are examples of such reasoning
processes. What is presented in the coming chapter is the formalization of ontol-
ogy required to model enterprise resources that enables a system to reason about
the status of activity and its resources.

Fadi George Fadel: M.A.Sc Thesis 45

CHAPTER 4 Resource Ontology

The purpose of this chapter is to define the required resource for the use in
planning and scheduling. The ontology is defined using first order logic and then
implemented in Prolog to give the ontology the capability of deductively
answering queries.

4.1 Introduction:

In this chapter an ontology for modeling and representing resources is presented.
The ontology is generic and applicable to many domains. Furthermore most terms
are defined in first order logic (FOL). FOL is used because of its expressive and
declarative capability. With the ontology defined in FOL and implemented in a the-
orem prover, the ontology would have the deductive capability to answer queries.
Accordingly, the ontology provides a general descriptive language with which rea-
soning about the world is performed.

The competency of the ontology is defined by a set of quc:stions1 that the represen-
tation should be able to answer. The competency of an ontology represents the
extent to which it supports problem solving. These questions represent the basic
accesses a problem solver would make to the representation. However the compe-
tency questions do not only represent simple retrievals from a knowledge base, but
also entail deduction. The deduction operation uses Prolog version of the FOL def-
inition of each ontological term. Recall from chapter one, examples of competency
questions are:

¢ Quantity: How much of the resource exists at time t?

1. defined in chapter six.

Fadi George Fadel: M.A.Sc Thesis 46

Consumption: Is the resource consumed by the activity? If so, how
much?

Divisibility: Can the resource be divided and still be usable? Can two
Or more activities use the resource at the same time?

Structure: What are the subparts of resource R?

Capacity: Can the resource be shared with other activities?
Location: Where is resource R?

Commitment: What activities is the resource committed to at time 7

Trend: What is the capacity trend of a resource based on the machine
usage history?

In chapter two, various endeavors from the reference models/manufacturing
domain and AI domain are presented. Most of the requirement found in these mod-
els are integrated in the ontology.

Resources are:

Generally speaking, a resource is an object which has to be available at the time of
action of an activity. In TOVE, a resource denotes a role of an entity/object in an
activity rather than just being as subclass of an entity - resource. Therefore an
object is not considered as a resource if it is not associated with an activity. The
properties of a resource are determined by the role in an activity.

Accordingly, resources could be:

machines such as milling machines, when associated when associated
with milling activities

materials such as raw material, semi finished products consumed in an
assembly or manufacturing activity

tools such fixtures, cranes, chairs used by an activity

human skill that is needed to perform an activity,

floor space that is used by an activity,

electricity when consumed by an activity,

capital when consumed of an activity,

information communicated between enterprise units.

The resource ontology defined in this chapter, is built on TOVE’s existing activity-
state and time ontologyl. In turn the activity-state and time ontology are based on
object oriented representation with objects organized into taxonomies. “subclass

Fadi George Fadel: M.A.Sc Thesis 47

CHAPTER 4: Resource Ontology

of” and “instance of” are primitive relations. “subclass of” defines a subclass/
superclass relationship. A subclass is a specialization of the superclass and hence
the subclass inherits the superclass attributes. The subclass_of predicate is defined

as a binary ground term with the following parameters:

* R: Resource name.
® Y: The parent class.

subclass of (R, Y). (PRO 1)
FIGURE 32 subclass_of
subclass
gbelass o illing Machine
subclass_of (milling machine, discrete_machine) . (PRO 2)
A milling_machine is subclass of a discrete machine. -
subclass_of (vehicle, transportation_resource). (PRO 3)

Resource vehicle is subclass of a transportation_resource.

“instance of” relation (instance_of(x, y)) specifies a real object.

As previously mentioned, the resource ontology is based on the activity/state ontol-
ogy, which is the heart of the TOVE representation, and is composed of activity
and its corresponding enabling and caused states. Throughout this chapter, ontol-

ogy of activity-state and time will be used!.

1. as defined in chapter three
1. See appendix E for time points and periods relations and data base.

Assemble_clip_reading_lamp cluster [TOVE 1992}

FIGURE 33

32IN083I

maﬁimcﬁmﬁlnE

A

¢ esre” A[qmesse

ﬂco.albpaomw“

dwe suipear mﬁﬂ 3
“drpoo1d gare” A

urpear drpo 10}
1quuasse” 10~ o1d

nfu

due] auipear dro
~10] vore” A]qmIasse” 107 S

omanla:o_

dwey Bupear dipp
~10j TOIRTLIONS” 9WINSUod

dwe] guipear dIpo
—10] peay J[emsomnsuoo

due] Suipeas
~dipoTepqmesse”0xd

sasneD)

dwe] 3uipeal dijo
~Ioj eseq”dyo ewnsuod

dwre; 3urpeas
—dijoTsrquasse”se

49

Fadi George Fadel: M.A.Sc Thesis

CHAPTER 4: Resource Ontology

The activity ‘assemble_clip_reading_lamp’, figure 33, will be used as an example
throughout this chapter. State I represents the requirement(s) of the activity which
sets what has to be true for the activity to be performed while state 2 specifies that
assembly_area_1 will be released and clip_reading_lamp will be produced after the
completion if assemble_clip_reading_lamp activity.

Legend:

* R: Identification name [ID] of resource R.

¢ A:ID of activity A.

* U, Unit: unit of measurement

* time_point(Time_point_ID, Min, Max)
A time point (tp) is the most basic time representation. It consists of
identification name of the time point, minimum and maximin time.

* time_period(Time_interval_ID, ST, ET, MinDur, Dur, Max Dur)
A time period (pd)is a time construct that consists of two time points,
representing the start and end time of an activity. A time interval/period
also contains the minimum and maximin duration of the activity.

* ST: Starting time point of an activity.

* ET: End time point of an activity.

® Dur: Duration of the activity.

* MinDur: Minimum duration of the activity.

* MaxDur: Maximum duration of the activity.

* Tp, tp: Tp is a non instantiated time point while # is instantiated to
specific time point ID.

* Tij, ti: 7i is a non instantiated time period (interval) while 4 is instanti-
ated to specific time period ID.

4.2 Resource Ontology

What is presented in this section is the ontology for the representation of enterprise
resources. The ontology is stratified in a sense that the definition of a term is based
on the definition of previously defined resource (or activity-state) terms. The ontol-
ogy first contains a number of assertions, also addressed as “ground terms”, which
form the basis or the core of the ontology. Examples of such terms are: knowledge
of a resource (rknown), role, motility and division of each resource. Based on these
terms more complex terms are defined such as: physical divisibility, physical com-

Resource Ontology

ponent of, or the nature of the resource (continuos or discrete) a resource with
respect to an activity. Fmally, terms defining the capacity and the capacity trend of
a resource are defined!. The resource is linked to the activity-state ontology as
defined section 4.3.

Terms are defined in first order logic, whenever possible, and implemented in Pro-
log. The FOL formulation will be printed in tilted characters and tagged with (FOL
#) while the Prolog formulation will be printed in courier fonts and is tagged with

(PRO #).
FIGURE 34 Resource ontology
Resource ontology
\d Y lY Y
specifies Knowledge of Role Division of Measurements
resourie
through rknown ro*e functional_division_of physical_division_of unit of g1easured
measure Dy
Resource ontology cont'd
Y Y L \J
specifies Nature of the resource Divisibility componentof
- (} , i /D\ ' t:physical component
continuous discrete sical nctiona .

through giv)i/sibl = divisible functional component

Resource ontlology cont'd
 /
e confi uratxon
specifies Specification con sg
through use)/\
specmgg?gaﬁm use res urceb
consume produc constraints onfiguration

specification specification

1. Figures 34 & 35 presents on overview of the ontology

Fadi George Fadel: M.A.Sc Thesis 51

CHAPTER 4: Resource Ontology

FIGURE 35 Resource ontology cont'd

Resource ontology cont'd
\ l A M
specifies Commitment quantity Discrete/continuous
/\ A/;\A neage
; resource resource resource ‘
through ctzgmmltted E;%tri’mitted point ointt. at encapsulation Usage mode
ocation

Resource ontology cont'd
|

Y \ \n \
i gpﬁvity capacity {ggn%téve trend
sedties 8 i
r,w avallable avallable has current Alternative tre*vd
through ﬁ'Cstglrt)),' for capacity activity resource

4.2.1 Resource-known: rknown(R)
Definition:
This is the most basic term in the ontology. It specifies knowledge of a resource as
opposed to its physical existence. The importance of this definition lies in the fact

that the ability to reason about a resource depends on it being known. This assumes
that Prolog data base is consistent with the ‘Rock’ knowledge base.

Semantics and Implementation:

It is defined as a ground term. It is known if asserted in the Prolog database.
rknown (R) . (PRO 4)

If rknown is not asserted in Prolog data base, then the Rock knowledge base! is

checked.

rknown({R) : - kb_FRAME_ID(R). (PRO 5)
Example:

The following resources are asserted as being known for the use in the remainder
of the chapter.

rknown (clip base) . EXD
rknown (agsembly area_1). (EX2)

1. ROCK is a knowledge representation tool from Camegie Group, Inc. Eventually all the knowledge base
will be represented in ROCK and the axioms, in Prolog, will be calling ROCK functions, as shown in (PRO 5).
However, throughout this chapter, it is assumed that the media of implementation is Prolog (Quintus Prolog).

Resource Ontology

rknown (widget No_1). (EX 3)
rknown (short arm) . (EX 9
rknown (v_spring) . (EX 5)
rknown (wooden_chair) . (EX 6)
rknown (vehicle_1). EXT)

4.2.2 Resource role: role(R, A, Role)
Definition:
According to webster a role is “an identifier attached to an index term to show

functional relationships between terms”. In TOVE, a resource has a role with
respect to an activity.

FIGURE 36 Taxonomy of roles
Object Resource

Role Raw material Product Facility Tool Operator Space

Examples of roles include:

* Raw material: specify objects that are suitable for manufacture,

* Product: specifies that the role of the object with respect to an activity
1s as a manufactured object,

* Facility: specifies objects that facilitates an activity such as machines,
* Tool: specifies an instrument that is used or worked by hand,
* Operator: is the person who performs an activity,
* Space: specifies that a resource is a work area.
Semantics:
The term is defined as a tertiary ground term with three arguments:

* R:resource ID
* A:activity ID
* Role: is the argument denoting to the role of the resource with respect
t0 an activity.
role(R, A, Role). (PRO 6)
This entails that when a resource is defined as having a role with respect to an

activity, then the resource can not have any other role with respect to the same
activity.

Fadi George Fadel: M.A.Sc Thesis 53

CHAPTER 4: Resource Ontology

(V 1, a, roley, role)) role(r, a, roley) A roley # roley © - role(r, a, roley) (FOL 1)
Example:

In figure 33, the role of the “short arm” resource with respect to “assemble clip
reading lamp™ activity is as a “raw material” while the role of the “assembly area
17 is a “facility”.

role(clip_reading_ lamp, assemble clip reading lamp,

4.2.3 Motility:

4.2.3.1

product) . (EX 8)
role(short_arm, assemble_ clip reading lamp,
raw_material). EX9)
role (assembly area_1, assemble clip reading lamp,
facility). (EX 10)
role(leg, fuel a_fire, raw_material) (EX 11)
role(wooden_chair, fuel a fire, raw_material). (EX 12)
role(multiplex lines, facility). (EX 13)
role(clip_reading lamp, assemble_ clip reading lamp,
product) . (EX 14)
role(clip_base, assemble_clip reading_ lamp,
raw_material) . (EX 15)
Definition:

This notion specifies the ability of the resource to move, or be moved, from one
position to another!.

Mobile Resource:
Definition:

A resource is mobile if the activity requires it to be.
Semantics and Implementation:
It is defined as a ground term with the following arguments:

¢ R:resource ID,
® A: activity with which the resource is mobile
mobile (R, A) (PRO7)
Example:

1. OPIS [Smith 89] has categorized a resource as being either a mobile or a stationary resource. A resource is
stationary if it is either a cell-group or a work cell. A resource is mobile if the resource is either a human or a
ransport or a tool resource.

Resource Ontology

mobile(vehicle_1, transprt_1). (EX 16)

4.2.3.2 Stationary Resource:
Definition:

A resource is stationary if the role of the resource with an activity requires it.
Semantics and Implementation:
It is defined as a ground term with the following arguments:

* R:resource ID,
* A:activity with which the resource is mobile

stationary (R, A) (PRO 8)

Example:

stationary (hammer_ 1, assemble_clip reading lamp) . (PRO 9)

4.2.4 Division of: ~_division_of(R2, R)
Definition:

This term specifies that a resource can be divided and one of the divisions is R2.
There are two types of divisions: physical and functional.

FIGURE 37 Types of “division of”

Division of
Type Physical Functional

“Physical division of” specifies a division that is neither mental, moral or imagi-
nary but is related to the division of the body of an object; “functional division of”
specifies a division affecting the function and not structure. !

Semantics and Implementation:
The “division of” terms are defined as ground terms with the following arguments:

¢ R2: the ID of the sub-division of the resource,
® R: the ID of the resource,

® A:the ID of the activity with which this classification is applicable.
As mentioned there are four “division of” declarations:

1. implying that the resource is sharable

Fadi George Fadel: M.A.Sc Thesis 55

CHAPTER 4: Resource Ontology

4.2.5

physical_division of {(R2, R, A). (PRO 10)
functional_ division of (R2, R, A). (PRO 11)

The implications of the division of terms are:
(Y rp, 1, a) physical_division_of(ry, r, a) © - functional_division_of(r;, r, a) (FOL 2)
Example:

functional_division_of (rectangle, oven). EX 17

The above term specifies that the resource oven has a functional division of type
rectangle. This term will be used in the capacity recognition process chapter five. A
resource’s capacity will be defined in terms of the number of its divisions. An
oven’s surface area could be defined in terms of a series of rectangular object with
specific dimension. The clip reading lamp has a physical division which is clip
base.

physical_division of (clip_base, clip reading lamp). (EX18)

Divisibility of a resource: ~_divisible(R, A)
Definition:

This term specifies that a resource is divisible with respect to an activity without
affecting its role. Similar to the delineation presented for the “division of” term,
divisibility has three types: physical, functional and temporal divisibility.

A resource is physically divisible if the act of physically dividing the resource does
not affect its role in the activity. In other words, the resource is physically divisible
if each division can be used or consumed by an activity. That property is useful for
planner/scheduler when deciding whether a portion of resource could support an
activity. Functional divisibility of a resource, with respect to an activity, specifies
that each division of the resource affects the functionality and not the structure of
the resource. A “motor car” has a functional and physical division (e.g crank shaft)
but the “motor” is neither functionally nor physically divisible with respect to
“driving the car” activity. Finally, a resource is said to be temporal divisible if the
use of a resource over time does not affect the future usability of the resource as in
the case of the multiplex lines when associated with communication activities. This
allows the system to reason about the nature of usage of the resource by an activity.

Semantics:

“A resource is physically divisible with respect to an activity if each physical divi-
sion of the resource has the same role”.

Y (r, a) physical_divisible(r, a) = V(r1, ro) rknown(r) A physical_division_of(ry, r) A
role(ry, a, roy) = role(r, a, roy) (FOL 3)

Resource Ontology

“A resource is functionally divisible with respect to an activity if each functional
division of the resource has the same role”.

V(r, a) functional_divisible(r, a) =
V(ry,roprknown(r) Afunctional_division_of(ry,r) Arole(ry,a,ro1)=role(r,a,ro1)(FOL 4)

“A resource is temporally divisible with respect to an activity A1 if there exists a
time period in which two activities, including A1, were executing with the condi-
tion that the first activity (A1) was either suspended or completed and the resource
had the same role with both activities. Moreover, both activities were not execut-
ing simultaneously (i.e overlapping constraint).”

FIGURE 38 Temporal divisibility - an example
i i

V(r, a) temporal_divisible(r, a) = 3 (ti, ti}, iy, tpy, p), ay, ay, s1, 57) rknown(r) A
(uses(sy, r) v consumes(sy, r)) A (uses(sy, r) V consumes(sy, r)) A
is_related(ay, s1)' A is_related(ay, s3) A
time_bound(sy, tiy) A time_bound(sy, tiy) A
activity(ay, executing, tp1) A period_contains(tiy, tp1) A
((activity(ay, suspended, tp_end) A tp_end = EP(ti})) v
((activity(aj, completed, tp_end) A tp_end = EP(ti1)) A

activity(ay, executing, tpp) A period_contains(tiy, tpy) A - overlaps(tiy,tip) A
contains(ti, ti1) A contains(ti, tip) A role(r, ay, role) A role(r, ap, role) (FOL 5)

Implementation:

physical divisible(R, A):-

1. is a term defined in the activity-state ontology that finds an activity is linked (related) to a state.

Fadi George Fadel: M.A.Sc Thesis 57

CHAPTER 4: Resource Ontology

rknown (R},
physical_division of(R1, R),

role(R, A, Role), role(R1l, A, Role). (PRO 12)

functional_divisible(R, A):~-

rknown (R) ,

functional_division of (R1, R),

role(R, A, Role), role(R1l, A, Role). (PRO 13)

temporal_divisible(R, A):-

Example:

rknown (R) ,

(uses (S1, R); consumes(S1, R));

(uses (S2, R); consumes(S2, R));

is _related(Al, S1), is_related (A2, S2),

time_bound(S1, Til), time bound(S2, ti2},

activity(Al, executing, Tpl), period contains(Til, Tpl),
((activity(al, suspended, Tp_end), Tp_end = EP(Til));
{(activity(Al, completed, Tp_end), Tp_end = EP(Til)),
activity (A2, executing, Tp2), period_contains(Ti2, Tp2),
contains (Ti, Til), contains(Ti, Ti2),

\+overlaps (Til, Ti2),

role(R, Al, ROLE), role(R, A2, ROLE). (PRO 14)

A wooden chair basically consists of:

four legs.
seat back part.
seat part.

So, if the activity is to sit on the chair, accordingly the chair can not be considered
physically divisible as the act of dividing the chair will result in the inability to
perform the activity. While, on the other hand, if the activity is to fuel_a_fire by
putting wood in the fire place, then the chair is considered physically divisible.!

1. This is because there exist a physical division assertion, (EX 18), and the role of the division is the same as
the “wooden chair” resource, (EX 12) & (EX 11).

Resource Ontology

4.2.6

?- physical_divisible(wooden_chair, fuel _a_ fire). (EX 19)

Moreover, the resource short_arm is not physically divisible for the activity assem-
ble_clip_reading _lamp as it is not asserted that the resource has a physical division.

?- functional divisible{oven, bake). (EX20)

An oven is functionally divisible as the resource has a functional division with
respect to bake activity and each division shares the same resource as that of the
original resource (oven).

Unit of measurement: unit_of_measurement(R,UNIT ID, Unit, A)
Definition:

This predicate specifies a default measurement unit for a resource, when associated
with activity. Accordingly, resource quantity or capacity is to be measured using
the specified unit of measurement. This term is used for specifying both the quali-
tative and quantitative units of measurement. Qualitative units of measurement
consist of an ordered set such as {large, medium small}. Qualitative units can be
also used as a measure of quality: {good, bad}. Quantitative units are: numerical,
geometric and relational units. Geometric units, used to represent area/volume, are
for example used in the capacity recognition of a resource!l. The relational units
are units the specify the rate or percentage of usage. Quantitative units are used to
specify attributes such as weight, length, capacity®.

FIGURE 39 Taxonomy of unit of measurement

Unit of measurement

Quantitative Qualitative

%ﬁelaﬁonm sometric S'et
meter kg metér/secon etc.Nrea/v\cmtc. {good, bad} {large, miedium, small}

Percentage Rate

Semantics and Implementation:

In this context the predicate is defined as a ground term with three functional
parameters:

® R:is the resource ID.

I. described in the capacity chapter

2. KRSL project [Allen et al 92] includes a similar delineation of unit of measurement. KRSL has defined
unit-types as either being qualitative or quantitative. Chapter three contains more information concerning the
subject.

Fadi George Fadel: M.A.Sc Thesis 59

CHAPTER 4: Resource Ontology

e Unit-1ID: the ID of the unit of measurement. It specifies for example
whether the weight, length, volume (etc.) is going to be measured.

¢ Unit: is the measurement unit.

* A:is the ID of the activity with which the unit of measurement is asso-
ciated.

unit_of measurement (R, Unit_ID, Unit, A). (PRO 15)

The parameter Unit could be instantiated tol:

* a weight measuring unit - ton,
* length measuring unit - kilometer,

* capacity measuring unit, as described in the capacity recognition chap-
ter.

A constraint on the “unit of measurement” is that there should be a corresponding
“measured_by” assertion?.

Example:

unit_of_measurement (sand, weight, kilogram,
concrete_mix) . (EX 2D

This assertion states that the weight of the object sand is measured in terms of kilo-
grams when the activity is concrete mix. Consider the case of defining the unit of
measurement for the capacity recognition process. The resource oven has block 1 as
its unit of measure.

unit_of_ measurement (oven_1, capacity, block_1,
bake small_pizza). (EX 22)

FIGURE 40 unit of measurement - block(2, 7, _, meters)

3 -t

¥
object(block_1,2,7, _meter) [] 2meters

P—
7 meters

As for the qualitative unit of measurement, the unit of measurement is represented
as an ordered list with fixed number and types of elements.

unit_of_ measurement (runway, quality, gualitative,
plane_landing) . (EX 23)

1. These units are predefined units
2. defined in next section

Resource Ontology

4.2.7

A runway has qualitative as a unit of measure’.
Measured by: measured_by(R, Unit_ID, A).

Definition:

“Measured by” defines the objects by which a resource is measured with respect to
an activity. This term acts as a constraint on the “unit of measurement” term. Each

unit of measure must have a corresponding “measured by” assertion. For example,
a runway is measured in terms of runway-length and runway—-qualityz.

Semantics and Implementation:
Defined as a ground term with the following parameters:

¢ R:resource ID,
® Unit: unit ID of the measurement unit3,
* A:the activity associated with the units of measurement.

measured_by (R, Unit_id, A). (PRO 16)

As mentioned constraint on the “unit of measurement” is that there should be a
corresponding measured by assertion:

(V r, unit_id, a) measured_by(r, unit_id, a) >

(3 u) unit_of_measurement(r, unit_id, u, a) (FOL 6)

Example:
measured by (runway, length, plane_landing). (EX 24)
measured_ by (runway, quality, plane_landing). (EX 25)

The resource runway is measured in terms of its length and quality when the
resource is associated with plane landing activities. The “measured by” assertion
should be coupled with the assertions of “unit of measurement”. That is to say to
couple with:

unit_of_measurement: (runway, length, meter,
plane_landing) . (EX 26)

1. object(qualitative, [accepted, not_accepted],_,).
2. KRSL project [Allen et al 92] has also defined the concept of measured by.
3. aconstant

Fadi George Fadel: M.A.Sc Thesis 61

CHAPTER 4: Resource Ontology

4.2.8

4.2.8.1

Resource requirements specification for activities

The predicates in this section are defined for notational convenience. The consump-
tion, use, produce and release specifications specify the amounts of the resource to
be consumed, used, produced or released respectively over a time interval, as well
as the unit of measurement. The information included in these specifications! are
already defined in the activity state ontology.

Consumption specification: consumption_spec(R, A, Ti, Q, Rate, Unit)
Definition:

This predicate specifies for an activity the amount of a resource is to be consumed
during a specified time interval and unit of measurement. The amount specified in
this term is the total amount that is to be consumed after the completion of an
activity. That is to say, if the amount of consumption is in terms of rate the amount
would state the total amounts consumed.

Semantics and Implementation:

The predicate is defined as a ground term with the following arguments:
* R:the resource ID.
* A:activity using the resource.
* Ti: time interval ID of the activity.

® Q: the total amount required to be consumed by the activity.

* Rate: is used to define whether the resource will be consumed on con-
tinuos or discrete basis?.

¢ Unit: unit of measurement.

consumption_ spec (R, A, Ti, Q, Rate, Unit). (PRO 17)

The consumption specification concatenates the specification into one term as
defined in the following FOL formulation:

(3 a, g, 4, rate, unit) (Vr) consumption_spec(r, a, t, q, rate, unit) = (3 s, s, unit_id)

enabling(s, a) A is_related(a, $7) A consumes(sy, r) A quantity(sy, g) A time_bound(sy, ti) A

unit_of measurement(r, unit_id, unit, a) A measured_by(r, unit_id, a) (FOL7)

“The consumption specification term entails that the resource amount will be dec-
remented after the completion of the activity”. 3

1. i.e the arguments of each term
2. defined in the Usage mode section 4.2.14.

Resource Ontology

(Vr, 4, s, & q’, rate, unit) consumption_spect(r, a, 4, ¢’, rate, unit) = (V s, 1, a, g, p,tp’)
rp(r; g, tp, unit_id) A ((is_related(a, s) A consumes(s, r)) A

tp = SP(ti) A tp’ = EP(ti)A enabling_state(s, tp, enabled)
2rp(r, q-q’, tp', unit) (FOL 8)
Example:

consumption_spec (clip base, assemble clip_reading lamp,
pdl, 1, 1, object). (EX27)

The term specifies that activity assemble_clip_reading_lamp requires one clip_base,
objects, resource over time interval pdl to be consumed.

4.2.8.2 Use specification: use_spec(R, A, Ti, Q, Rate, Unit)
Definition:

This predicate specifies the requirement of an activity to use a resource at a speci-
fied time.
Semantics and Implementation:
Semantically, the predicate is defined as a ground term with parameters:
® R:the resource ID.
® A:activity using the resource.
* Ti: the time interval ID of the activity.
* Q: specifies the portion of the resource to be used.

* Rate: is used to define whether the resource will be used on continuos
or discrete basis!.

¢ Unit: Unit of measurement
use_spec(R, A, Ti, Q, Rate, Unit). (PRO 18)

The use specification concatenates the specification into one term as defined in the
following FOL formulation:

(3 a, g, 4, rate, unit) (vr) use_spec{r, a, ti, g, rate, unity = (I s, $9, unit_id) enabling(s, a) A

is_related(a, s5) A uses(s), r) A quantity(sy, q) A time_bound(sy, ti) A

unit_of_measurement(r, unit_id, unit, a) A measured_by(r, unit_id, a) (FOL9)

3. In TOVE, this axiom is called an effect axioms which links the resource ontology with the causal theory of
activity [TOVE 94].

1. defined in the Usage mode section 4.2.14.

Fadi George Fadel: M.A.Sc Thesis 63

CHAPTER 4: Resource Ontology

4.2.8.3

“The use specification term entails that the resource amount will remain constant,
if the resource is being used” !

(V1, 4, s, 4, ¢, rate, unit) use_spec(;, a, s, ti, q’, rate, unit) = (¥ s, 1, a, g, i, tp, p’)
p(7; g, tp, unit_id) A (is_related(a, s) A uses(s, r) A

tp =SP({ti) A tp’ = EP(fi) A enabling_state(s, tp, enabled)
=2rp(r, g, p', unit) (FOL 10)
Example:

use_spec (assembly area 1, assemble_clip_reading clamp,
pdl., 90, 90, block_1). (EX 28)

The above term specifies that assemble_clip_reading_clamp uses assembly_area_1
resource over time interval pdl. The activity will occupy 90 block_12.

use_spec (assembly area_1, assemble_hand, pdl, 30, 30,
block 1). (EX 29)

The above term specifies that assemble_hand uses the assembly_area_1 resource
over time interval pd! with a portion of usage of thirty units of capacity.
use_spec (hammer_1, assemble_hand, pdl, 1, 1, object) . (EX 30)

use_spec (hammer_1, assemble base, pd2, 1, 1,

object) . (EX 3D
use_spec (assembly area_2, assemble_base, pd2, 1, 1,
object) . (EX 32)
Production specification: produce_spec(R, A, Ti, Q, Rate, Unit)
Definition:

A produce state “signifies that a resource which did not exist prior to the perfor-
mance of an activity, has been created by the activity” [Tove 92]. ‘produce spec’,
which is a result of a scheduling/planning activities, specifies that amount that is to
be produced by an activity. Moreover the term specifies when the production is
going to be achieved.

Semantics and Implementation:

1. In TOVE, this axiom is called an effect axioms which links the resource ontology with the causal theory of
activity [TOVE 94].

2. object(block_1, 10, 10, _, cm) is the unit of measurement and it is a capacity unit of measurement.

Resource Ontology

Similar to use and consume specification the “produce spec” term is defined as
ground term with six arguments:

¢ R:ID of the produced resource.

* A:ID of the activity producing the resource.

* Ti: time period at the end of which the production activity will be over.
* Q: total quantity produced after the completion of the activity.

* Rate: is used to define whether the resource will be produced on con-

tinuos or discrete basis!.

® Unit: unit of measurement of the resource.
produce_spec (R, A, Ti, Q, Rate, Unit). (PRO 19)

The produce specification concatenates the specification into one term as defined
in the following FOL formulation:

(3 a, g, ti, rate, unit) (Vr) produce_spec(r, a, ti, g, rate, unit) = (3 s, 9, unit_id) causes(s, a) A

produces(sy, r) A is_related(a, §2) A quantity(s, g) A time_bound(s, ti) A

unit_of_measurement(r, unit_id, unit, a) A measured_by(r, unit_id, a) (FOL 11)

“The produce specification term entails that the resource amount will increase by a
constant, if the resource is being used” 2

(V1 &, 3, 4, ¢, rate, unit) use_spec(r, a, s, ti, ¢, rate, unit)= (V s, 1, a, g, ti, tp, tp’)
rp(r, g, tp, unit_id) A (is_related(a, s) A produces(s, r)) A

tp = SP(ti) A tp’ = EP(ti) A enabling_state(s, tp, enabled)
2rp(r, g + @, tp', unit) (FOL 12)
Example:

produce spec (short_arm, assemble_short_arm, pd3, 1, 1,
object) . (EX 33)

The above specifies that the “assemble short arm” is producing one unit of “short
arm” resource at the end time of pd1 time period.

1. defined in the Usage mode section 4.2.14.

2. In TOVE, this axiom is called an effect axioms which links the resource ontology with the causal theory of
activity [TOVE 94].

Fadi George Fadel: M.A.S¢ Thesis © 65

CHAPTER 4: Resource Ontology

4.2.8.4 Release specification: release_specification(R, A, Ti, Q, Rate, Unit)
Definition:

A release state “signifies that a resource, which has been designated as being used
is now available for use/consumption elsewhere” [TOVE 92]. ‘Release spec’,
which is a result of a scheduling/planning activities, specifies that amount that is to
be released by an activity. Moreover the term specifies when the release action is
going to be achieved.

Semantics and Implementation:

Similar to use and consume specification the “release spec” term is defined as
ground term with five arguments:
¢ R:ID of the released resource.
A: ID of the activity releasing the resource.
* Ti: time period at the end of which the release will be achieved.

* Q: total quantity released.

* Rate: is used to define whether the resource will be released on contin-
uos or discrete basis!.

¢ Unit: unit of measurement of the resource.
release spec(R, A, Ti, Q, Rate, Unit). (PRO 20y

The release specification concatenates the specification into one term as defined in
the following FOL formulation:

(3 a, g, 4, rate, unit) (Vr) release_spec(r, a, i, q, rate, unit) = (3 s, 59, unit_id) causes(s, a) A

releases(sy, r) A is_related(a, $) A quantity(s, q) A time_bound(s, ti) A
unit_of measurement(r, unit_id, unit, a) measured_by(r, unit_id, a) (FOL 13)
A constraint on the release specification is the quantity parameter (Q) defined in
the use and release specification are equal. Moreover the starting time of the time

interval in the release specification should be after the starting time of the starting
of the time interval defined in the use specification.

(3 q q, i, tiy, rate_1, rate_2, unit) (Vr) release_spec(r, a, ti, g, rate_1, unit) >
(use_spec(r, a, tiy, g, rate_2, unit) A before(SP(ti5), SP(ti)) (FOL 14)

Example:

1. defined in the Usage mode section 4.2.14.

Resource Ontology

release spec (assembly area_2, assemble base, pd3, 1, 1,
cbject) . (EX 34)

The above specifies that the assembly area 2 resource will be releases by assemble
base activity at the end time of pd3 time period.

4.2.9 Continuous vs. discrete resource
Definition:
A continuous resource indicates a resource whose physical divisions are uncount-
able. These resources are marked by uninterrupted extension in volume. Discrete

resources on the other hand specify that a resource is a countable one. Both terms
are defined relative to an activity!.

Semantics:
Both terms are defined as a ground term with two arguments:

® R:ID of the resource

* A:ID of the activity with which the resource is either continuous or dis-
crete.

(V 1, a) continuous(r, a) = physical_divisible(r, a) (FOL 15)

(V r, a) discrete(r, a) = - continuous{r, a) (FOL 16)

If the resource is discrete then the consumption or the use specification is in terms
of integer amountsZ.

(consumption_spec(r, a, ti, g, rate, u) V use_spec(r, a, ti, g, rate, u)) A discrete(r, a) >

integer(q) (FOL 17)
Implementation:
continuous (R, A):-
physical_divisible(R, A). (PRO 21)
discrete(R, A):-
\+ continuous (R, A). (PRO 22)
Example:
continuous (water, drinking). (EX 35)

1. Hayes [Hayes 90] has presented an ontology for liquid in the context of naive physics defined in first order
logic. Liquid was chosen because it has no definite shape, merge and split in mysterious ways. Hayes specify
that “spatio-temporal continuity is the criterion of determining the identity of complex assemblies”. Included
in the endeavor is ontology on describing geometry, change, shape and time.

2. integer(q) is used specifying that q is an integer

Fadi George Fadel: M.A.Sc Thesis 67

CHAPTER 4: Resource Ontology

discrete(clip_base, assemble _clip base). (EX 36)

discrete (short_arm, assemble_clip readin_lamp) . (EX 37)

4.2.10 Component_of: ~.component_of(R1, R2, A, Type)
Definition:

“Component of” specifies a resource as being a sub division of another resource
and that the division does not share the same role with the original resource. A
resource can be a physical or functional component of another resource with
respect to an activity. This term is used for example in the bills of material explo-
sion of pansl.

Semantics:

“A resource R2 is a physical component of resource R if R2 is a physical division
of the RI and both resources do not share the same role with respect to an activ-
ityz”.
(Vry,rp) physical_component__of(rz, r,a)=v,r,ro Y physical__divisian_of(rg, ryA
role(ry, a, roy) A role(ry, a, roy). (FOL 18)

“A resource R2 is a functional component of resource R1 if R2 is a functional divi-
sion of the RI and both resources do not share the same role with respect to an
activity”.

(V' r1, rp) functional_component_of(ry, ry, a)= ¥/ (; ry, roy) functional_division_of(ry, r1) A
role(ry, a, ro1) A —:role(rl, a,roy). (FOL 19)

Implementation:

component_ of (R2, R1, A, Type):-

rknown (R) ,

physical___component__of (R2, R1, A, Type);
functional_component_of (R2, R1, A, Type). (PRO 23)
physical_component__of (R2, R1, A, Type):-

rknown (R) , physical division_of (R2, R1),

1. OPIS [Smith 89] includes a similar definition equivalent to physical component of by using the sub-resource
relation. This relation is the basis of the hierarchial resource description that is used in OPIS modelling frame-
work.

2. But the division has a role never the less with respect 1o the activity.

Resource Ontology

role(R2, A, Role2),
\+role{R1l, A, Role2),
Type = physical. (PRO 24)
functional_ component_of (R2, R1, A, Type) : -
rknown (R), functional_division_of (R2, R1),
role(R2, A, Role2),
\+role(R1, A, Role2),
Type = functional. (PRO 25)
Example:
The clip reading lamp consists of three components:
® clip_base.
* short_arm.
®* small_head.
physical___division__of (clip_base, clip__reading__lamp) . (EX38)

physical division_of (short_arm, clip_reading lamp). (EX 39)

physical_division_of (small head, clip_reading lamp) .(EX 40)

Furthermore, clip_base resource consists of the following parts:

¢ v_spring.

®* round_nut.

* bolt_4

¢ v_pad
physical__division__of (v_spring, clip base). (EX 41
physical_division__of {(round_nut, clip base). (EX 42)
physical__division__of (bolt_4, clip base). (EX 43)
physical_division of (v_pad, clip base). (EX 4)

Now, based on the above physical division assertions, if the following query is
checked:

?- component_of (short_arm, clip_reading__lamp,
assemble__clip__reading__lamp, Type) . (EX 45)

the variable Type having the value of physical as short arm has a physical division
of clip reading lamp but they don’t share the same role, (EX 8) & (EX 9).

?-component_of (crank_shaft,motor .driving a_car,Type) .(EX 46)

Fadi George Fadel: M.A.Sc Thesis 69

CHAPTER 4: Resource Ontology

the variable Type having the value of functional & physical as crank shaft has a
“functional and physical division of” motor but the division does not share the
same role with that of motor.

4.2.11 Resource point:

Reasoning about activities and processes requires a good representation of quanti-
ties, because processes/activities generally are initiated and terminated when the
value or ordering of quantities change [Forbus 84]. Quantities are specified
through the use of the resource point predicate. This predicate is used to represent
the resource’s quantity at a certain point of time. Resource point specifies the
amount of a resource that 1physically exists. The specified amount may or may not
be committed to activities”.

4.2.11.1 Resource point at Time T: rp(R, Q, Tp, U)
Definition:

A resource point is a predicate specifying the resource quantity at a specific time
point. Resource points are defined with respect to a specific unit of measurement.

FIGURE 41 resource point at a specific time point
!

5 4
4-
3 4
2
1 -

Resource Point

13345678 9 meborison

Semantics and Implementation:
rp defines that resource R exists in quantity Q at time point Tp in units U. Resource
point is a ground term with three arguments:

* R:resource ID.

* Q: quantity at the specified time point.

® Tp: Time point ID at which check is done.

® U:is the unit of measurement.

rp(R, Q, Tp, U). (PRO 26)

1. In qualitative (naive) physics domain, Forbus [Forbus 84] uses (M Q1) which defines the value Q at time t.

Resource Ontology

Example:

rp(v_spring, 100, tp3, object). EX 47)

This predicate states that there exists a resource point, for resource v_spring at time
point #p3, with quantity of 100 objects.

4.2.11.2 Resource point at Location L at time Tp: rpl(R, Q, Tp, L, Unit)
Definition:
Resource point is now extended to differentiate quantities at different locations.

Semantics:

It is defined as a ground term with the following parameters:

¢ R:resource ID.

* Q: quantity.

¢ Tp: time point ID. ,

L: location’s ID of the resource.

Unit: is the unit of measurement.

rpl(R, Q, Tp, L, Unit). (PRO 27)
FIGURE 42 resource point at a time point and location

rp(Unit)

5

4 —

3 —

2

1 - |EDIH DD L 2 DH@

“ N R = =T
i } 3 4 s ' s ‘e

Now with this definition of the resource point at a location and time - pl(R, Q, T,
L, U), resource point at time T - rp(R, Q, Tp, U) could be further defined as the
sumnllation of all resource points of a resource at time point (Tp) over all loca-
tions”.

1. i.e for a fixed set of locations

Fadi George Fadel: M.A.Sc Thesis 71

CHAPTER 4: Resource Ontology

(V@ Q, tp, unit) rp(r, Q, tp, unit) = (3 ql, g2, q3......... qn, sil, si2,......... sin)
rknown(r) A rpl(r, q1, tp, s11, unit) A pl(r, q2, 1p, s12, unit) A rpl(r, q3, tp, 513, unit)
A Tpl(r, gn, tp, sIn, unit) A Q =ql + g2 + q3 qn (FOL 20)
Implementation:

In Prolog, the definition is:

rp(R, Q, Tp, Unit):-
rknown (R) ,unit_of_ measurement (R, Unit_id, Unit, A),
measured by (R, Unit_id, a),
findall(QQ, rpl(R, QQ, Tp, L, U), List),

sum rp(List, 0, QQ). (PRO 28)

sum_rp(List, Q, Q).

sum_var ([H|T], Q1, Q):-
Q2 is Q1 + H,
sum_rp(T, Q2, Q). (PRO 29)

When rp axiom is used, the total quantity of resource R will be returned, in terms
of the specified unit of measurement, at a time point Tp over all locations.

Example:

First, the rpl(R, Q, Tp, L, Unit) predicates are defined.
rpl (clip base, 4, tpl, s2, object) . (EX 48)
rpl (v_spring, 100, tp3, s1, object) . (EX 49)
rpl(v_spring, 125, tp3, 82, object) . (EX 50)
rpl (v_spring, 10, tp6, s3, object) . (EX 51)

The last ground term, for example, specifies that the resource point of the resource
v_spring is 10 objects at time point #p6 in location s3. Now, rp(R, Q, Tp, U) is used
to get the total quantity of the resource v_spring at a specific time point by using:

?- rp(v_spring, Q, tp3, object). ‘ (EX 52)

which will return the total quantity of the resource v_spring at time point #p3 which
is equal to 225. This done by satisfying the goals rp(R, Q, Tp, U) axiom((PRO 28)
using rpl(R, Q, Tp, L, U) assertions ((EX 49),(EX 50)).

4.2.12 Encapsulation of resource points
Definition:

Resource Ontology

Resource point encapsulation transforms a resource point from one unit of mea-
surement to another. Encapsulation in general is a transformation of a application
specific data into a form that is in agreement to a common knowledge representa-
tion [Gruber et al 92]. Sometimes different activities require different units of mea-
surement of the same resource. Accordingly, whenever a resource point is required
in a specific unit of measurement, and a resource point is asserted in a different
unit of measurement, resource point encapsulation is to be used!.

Semantics:
“A resource has a resource point in terms of Unitl if there exists Unit2 for which
(R, Qq, Tp, Unit2) and transformation(Unit1, Unit2, R) exist”.

(V' r) 3 g, tp, unitl) rp(r, g, tp, unitl) = unit2, q2) rp(r, 2, tp, unit2) A
transformation(q2, q, unitl, unit2, r)) (FOL 21)

Implementation:
rp(R, Q, Tp, Unitl):-
rknown (R} ,
({(\+measured by (R, unit_id, unitl, A),
Q = can_not_measure_with_this unit);
measured_by (R, unit_id, unitl, A)
rpl (R, Q2, Tp, L, Unit2),
transformation(Q2, Q, Unitl, Unit2, R). (PRO 30)
transformation(Q2, Q, Unitl, Unit2, R):-
(((Unit2 == object, Unitl == pair_objectz), Q is Qq/2);

({(Unit2 == cbject, Unitl == lot), Q is Qg/10)) (PRO 31)

Example:

Assuming the assertion of the resource point of air_port_run_way resource is 1000
meter. How ever if the needed resource point is in different unit of measure, lot for
example, then using:

?- rplairport_run _way, Q, tp6, cm). EX 53

1. KRSL [Allen et al 92] uses unit relation as the means of converting between unit of measurements.
2. These transformation are defined just for the sake of clarification.

Fadi George Fadel: M.A.Sc Thesis 73

CHAPTER 4: Resource Ontology

would return the variable Q instantiated to 1000,00 (cm) after performing the trans-
formation process.

4.2.13 Resource exist:

4.2.13.1

We define the predicate resource-exist (rexist) as specifying the physical existence
of a resource. That is to say, this term does neither specify the knowledge of a
resource nor the existence of the “notion/concept™ of the resource/object. The
predicate is used to specify/check the physical existence of the resource in the past,
present and future. A resource could physically exist but that does not indicate that
it could be used or consumed by an activity. The existence predicate only specifies
that thle resource could be physically located. Again the predicate is defined at two
levels®.

Resource exist at time t: rexist(R, Tp)
Definition:

“rexist” is true if the quantity of the resource at time Tp is greater than zero.
Semantics:

The resource has to be known and the resource has to have a resource point with
quantity greater than zero at a specified time point.

(V') @) rexist(r, ip) = rknown(r) A (31, g, w) rpl(r, g, 1, L, u) A (g > 0) (FOL22)
Implementation:

The predicate is defined having two arguments:

* R:resource ID.

Tp: time point ID at which existence is checked.

rexist (R, Tp):-

rknown(R), rpl(R, Q, Tp, L, U), (Q > 0). (PRO 32)

When the resource point is used to check the existence of a resource, both the loca-
tion and the unit arguments in the resource point predicate are neglected?.

Example:

1. Hirst [Hirst 89] on the other hand defines existence as being both physical and non-physical. “Everything
exists™. This includes specifying the existence of the notion “a squared circle”.

2. defined as anonymous variables.

Resource Ontology

If we need to check the physical existence of the resource v_spring, at a specific
time point #p3, the resource v_spring should be known and the resource should
have a resource point with quantity which is greater than zero.

?- rexist(v_spring, tp3). (EX 54
The use of the above predicate would return Yes as an answer because the goals of

rexist axiom were satisfied by the ground term assertions of rknown(v_spring) and
iR, Q, Tp, L, Unit) (EX 49),(EX 50)).

However if the following predicate is used to check the physical existence of the
resource v_spring at time point tp5:
?- rexist(v_spring, tp5). (EX 55)

No would be returned as the second goal of rexist axiom could not be satisfied as
no resource point for the resource v_spring is asserted at time point 5.

4.2.13.2 Resource exist in a location: rexisti(R, Tp, L)
Definition:

This predicate specifies the physical existence of the resource at a specific location
at a specific time.

Semantics:

For a resource to exist in a location at a specific time, the resource should be
known, should have a resource point (rpl(R, Q, Tp, L, U)) and a quantity which is
greater than zero.

(v 1)@ tp,) rexistl(r, tp, I) = rknown(r) A 3 g, u) rpl(r, q, 1p, I, u) A (g > 0)(FOL 23)
Implementation:

The term is defined with three arguments:

rexistl (R, Tp, L):~
rknown(R), rpl(R, Q, Tp, L, Unit), (Q > 0). (PRO 33)
Example:

If we need to check the physical existence of the resource v_spring, at a specific
time point and place, the resource v_spring should be known and the resource
should have a resource point - rpl(R, Q, T, L, Unit) with quantity greater than zero.

?- rexistl(v_spring, tp3, L). (EX 56)

The use of the above predicate will return the variable L equal to s/ and s2 indicat-
ing the physical existence of the resource v_spring at locations s/ and s2. This is

Fadi George Fadel: M.A.Sc Thesis 75

CHAPTER 4: Resource Ontology

done by satisfying goals of rexistl axiom by the use of the ground term assertions
of rknown(v_spring) and rpl(R, Q, Tp, L, Unit) ((EX 49),(EX 50)).

4.2.14 Usage Mode: usage_mode(R, A, Resuit)
Definition:

Usage mode axiom returns whether a resource supports an activity on a discrete or
continuous basis. The term does not imply that the activity is discrete or continu-
ous. The mode of usage is depended on the activity that uses/consumes the
resource.

Semantics:
“The mode of usage is achieved through checking the use/consume/produce speci-
fication term. If the quantity term (Q) is equal to the rate term (Rate) in the specifi-

cation, then the process is discrete otherwise the process is continuous with a rate
which is equal to the rate parameter”

(V 1, a) continuous_mode(r, a) = (3 g, unit, rate, ti) (rknown(r)

(use_spec(r, a, 4, g, rate, unit) V consumption_spec(r, a, ti, q, rate, unit) V
produce_spec(r, a, ti, g, rate, unit)) Aq * rate (FOL 24)

(Y 1, a) discrete_mode(r, a) = (3 q, u, rate, unit) (

(use_spec(r, a, i, q, g, unit) V consumption_spec(r, a, ti, q, g, unit) V
produce_spec(r, a, 4, q, q, unit)) (FOL 25)

If a usage mode of a resource is continuous with respect to an activity, that implies
that the resource is continuous.

(VY 1,) continuous_mode(r, a) = continuous{r, a) (FOL 26)
Implementation:
usage_mode (R, A, Result):-

rknown (R) ,

continuous (R, A, Result) |

discrete(R, A, Result). (PRO 34)

continuos_mode (R, A, Result):-

Resource Ontology

{(use_spec(R, A, Ti, Q, Rate, U);
consumption_spec(R, A, Ti, Q, Rate, U);
produce_spec{R, A, Ti, Q, Rate, U}),

Q \== Rate,

Result =~ continuous. (PRO 35)

discrete mode (R, A, Result):-

(use_spec(R, A, Ti, Q, Q, U);

consumption spec(R, A, Ti, Q, Q, U);

produce_spec(R, A, Ti, Q, Q, U)),

Result = discrete. (PRO 36)
Example:

?- usage_mode (assembly area_ 2, assemble base,
Result) . (EX 57)

use_spec(assembly_area_2, assemble_base, pd2, 1, 1, object)

The use of the usage_mode axiom, with the resource assembly_area_2 and activity
assemble_base, would return Result = discrete. This is because the Q and Rate
parameters are equal (EX 28).

4.2.15 Simultaneous Use Restriction: simultaneous_use_restriction(A1, A2,
R)
Definition:
Simultaneous use restriction prohibits the use/consumption of a resource by two

activities simultaneously. For example when two activities require the same oven

but at different temperatures or because one activity negatively interacts with

another!.

Semantics and Implementation:
The predicate is defined as ground term with the following parameters:

° Al: activity ID of the first activity using a resource.
® A2: activity ID of the second activity using a resource.

1. A reusable resource in SIPE [Wilkins 88] is defined as being able to support only one activity at a time, s0
each activity has a simultaneous use restriction with any other when requiring the same resource.

Fadi George Fadel: M.A.Sc Thesis 77

CHAPTER 4: Resource Ontology

* R:ID of the resource to be used.

simultaneous_use_restriction(Al, A2, R). (PRO 37)

This term specifies that activities AI and A2 can not be supported by resource R at
the same time. Accordingly, entailing that both activities can not commit the
resource over two overlapping intervals.

(V al, a2, r) simultaneous_use_restriction(al, a2, r) = (V s, s2, r, a, a2) (— 3ip) use(s, a) A uses(s,
r) A use(s2, a2) A uses(s2,r)

D enabling_state(s, tp, enabled) A enabling_state(s), tp, enabled) (FOL 27)
Example:

A constraint is set to restrict the simultaneous usage of assembly_area_1 resource
by assemble_clip_reading_lamp and assemble_hand activities.

simultaneous_use restriction/(

assemble clip reading lamp, assemble_ hand,

assembly area 1). (EX 58)
simultaneous_use_restriction(bake anchovie pizza,
bake_pepporoni_pizza, oven_1). (EX 59)

4.2.16 Resource configuration: resource_configuration(R, C, A).
Definition:
This term specifies the configuration of a resource with respect to an activity. This
term implies that the resource must have the specified configuration for the activ-

ity. Moreover, after the completion of the activity, C is going to be the configura-
tion of the resource unless changed.

Semantics and Implementation:
This term is a ground term with three arguments:

* R:resource ID
* C: ID specifying the configuration of the resource
® A:activity with which the resource has C configuration
resource configuration(R, C, A). (PRO 38)
This implies that if activities a; and a, require a resource and both activities
requires different configuration implying that the resource can not be committed to

both activities simultaneously (i.e there exist a simultaneous use restriction con-
straint). '

(Val, a2, r) 3 ql, g2, til, 12, cl, c2, rate, rate_2, unit)

Resource Ontology

(use_spec(r, al, til, ql, rate, unit) v consumption_spec(r, al, til, q1, rate, unit)) A
(use_spec(r, a2, ti2, q2, rate_2, unit) v consumption_spec(r, a2, i2, q2, rate_2, unit)) A

resource_configuration(r, cl, al) A - resource_configuration(r, cl, a2) ©

simultaneous_use_restriction(ay, ap, r) (FOL 28)
Example:
resource_configuration(injection_molder, cl, A) . (EX 60)

The above assertion specifies that the injection molder resource must have cl con-
figuration when associated with activity A.

4.2.17 Committed to: committed_to(R, A, S, Ti, Amount_committed, Unit)
Definition:
This predicate specifies the commitment of a resource to an activity thereby mak-

ing the resource partly/fully unusable/inconsumable by any other activity. A
resource is committed to an activity as a result of a scheduling activity.

Semantics and Implementation:
Committed_to is defined as a ground term with the following parameters:

* R:ID of the resource to be used/consumed.
* A:ID of the activity to use/consume the resource.

* S: the ID of the state that is satisfied by the assertion of the committed
term.

* Ti: the ID of the time interval of the activity.

* Amount_committed: amount of the resource that is committed to an
activity.

® Unit: unit of measurement.

committed to(R, A, S, Ti, Amount_committed, Unit). (PRO39)

where the variable Amount_Committed represents:

* the number of resource’s objects if the resource is being consumed.

* the number of capacity units being committed if the resource is being
used.

“A constraint on the committed to term is that the time interval of commitment
should either be equal or greater than that is defined in the specification”.

(Vr, a, s, 4, iy, g, q’, rate, unit) committed_to(r, a, s, ti, q’, unit) A

Fadi George Fadel: M.A.Sc Thesis 79

CHAPTER 4: Resource Ontology

(consumption_spec(r, a, ti), q, rate, unit) v use_spec(r, a, tiy, g, rate, unit)) 2
(contains(ti, tiy) v equal(ti, tiy)) (FOL 29)
Example:
If used to specify the commitment of a resources, being consumed by an activity:

committed_to(clip_base, fabricate_clip,
consume_clip base for clip, pdi, 1, object). (EX 61)

One clip_base resource is committed to be consumed by fabricate_base activity at
time interval pdl.

committed to(clip_base, fabricate socket_ seat,
consume_clip base for socket sear, pdl, 1, object). (EX62)

One clip_base resource is committed to be consumed by fabricate_socket_seat
activity at time interval pdI.

If used to specify the commitment of a resources being used by an activity:

committed to(assembly area_1l1,assemble_hand,
use assembly area_1 forassemble _hand ,pd1,20,block 1) .(EX63)

Twenty unit capacity of the assembly_area_1 resource is committed to be used by
the activity assemble_hand at time interval pdl.

committed_ to{(hammer_ 1, assemble hand, use_hammer_1_ for_
assemble hand,pdl, 1, object). (EX 64)

committed_to (hammer_1l, assemble _base,
use assembly area_1_ for assemble _base,pd2, 1, object) .(EX 65)

committed_ to(assembly area_ 2, assemble base,
use assembly area_ 2 for__ assemble base,pdz 20,0bject) .(EX 66)

4.2.18 Total Committed: total_committed(R, TQ, Tp, Unit)
Definition:

This predicate specifies the total amount committed of a resource to all activities at
a specified time point.

Semantics:

The total commitment of a resource is defined to be the summation of all amount
committed of resources to all activities at time point t. The first order logic would
be in the form of:

(V' r, tp, u) (3 TQ) total_committed(r, TQ, tp, u) = 3 pdl, pd2 ... pdn, ay, a ... ap, 91,92 --- qp)
rknown(r) a

committed_to(r, ay, pdl, ql, u) A period_contains(ti, pdl) A

Resource Ontology

(committed_to(r, ap, pd2, qp, u) A A committed_to(r, ay, pdn, qp u) A
TQ=q1+qz+...+qn (FOL 30)

“An effect of a resource being committed is that after the completion of the activity
the total amount committed will be decremented”!.

(Vs,ra,q q, 8 tp,tp’, u)
((use(s, a) A uses(s, r)) v (consumef(s, a) A consumes(s, TI)A total_committed(r, q’, tp, u) A
enabling_state(s, tp, possible) A (tp = SP(ti)) A
(p’ = EP(ti)) > total_committed(r, q-9’1tp’, u) (FOL 31)
Implementation:

The term is defined with four arguments:

* R:ID of the resource being checked

* TQ: variable through which the total amount committed of the
resource, to different activities, is returned.

* Tp: ID of the time point of commitment.
* Unit: unit of measurement.

total committed(R, TQ, Tp, Unit):-

unit_of measurement (R, Unit_id, Unit, Aa),

measured_by (R, Unit_id, a),

committed to(R, A2, 8, Ti, Amount_Com, Unit),

period_contains(Ti, Tp),

tmp_var (TT), TQl is TT + Amount_Com,

retract (tmp_var (TT)),assert (tmp_var (TQ1)),

fail. (PRO 40)

total committed(R, TQ, Tp, Unit):- tmp_var (TQ) . (PRO 41
Example:
Total committed axiom calculates the total commitment of a resource by different
activities that are simultaneously using/consuming the resource. The predicate

could be used to check the total commitment of a resource clip_base, being con-
sumed at time point zpl with the use of:

1. In TOVE, this axiom is called an effect axioms which links the resource ontology with the causal theory of
activity [Fadel et al 94].

Fadi George Fadel: M.A.Sc Thesis 81

CHAPTER 4: Resource Ontology

?- total committed(clip base, TQ, tpl, object) . (EX 67)

the above predicate would return the total commitment of the resource through the
variable TQ with a value of 2. This is done by satisfying the goals of defined axiom
in ((PRO 40), (PRO 41)) and by checking the commitment of the resource to dif-
ferent activities (i.e through checking the committed to ground terms (EX 61) and
(EX 62)).

The predicate is used to check the total commitment of a resource assembi-
y.area_l, being used at time point tp] with the use of:

?- total committed(assembly area_1, TQ, tpl,
block_1}. (EX 68)

the above predicate, would return the total commitment of the resource through the
variable TQ with a value of 10 signifying that 10 units of capacity of the resource,
block_l, is committed to other activities. This is done by satisfying the goals of the
total committed axiom ((PRO 40), (PRO 41)) and by checking the commitment of
the resource to different activities (i.e through checking the committed to ground
term).

4.2.19 Set up time constraint: set_up(R, A1, A2, Dur, Unit)
Definition:

Set-up term specifies the duration required to set-up a resource for usage by an
activity. The set-up time is defined with regards to pair of activities. The set-up
time includes configuration and location dependent time. In the configuration set-
up time, the specified duration as a function of the time required to change the
resource’s configuration state, as result of the last activity supported, to that
implied by the activity requiring the resource. As for the location set-up time, it
specifies the duration required for the resource to transport or be transported from
one location to another!.

Semantics:

“Set up time is equal to the time required to change the resource’s configuration. If
the resource needs to be relocated, then the set up time also includes the time of
transportation”

(V'r,ay, I, dur, u) set_up(r, ap, by, dur, u) = (B ay, 4, g, ¢, tp1, I}, ct, I, up, s1)

1. OPIS [Smith 89] includes the notion of defining a set up constraint which is defined in terms of location
and/or configuration dependent set up times.

Resource Ontology

committed_to(r, ay, sy, i, g, u) A

tp = EP(ti) A resource_configuration(r, c, a) Arpl(r, g, tp1, 11, u) A
(config_set up(r, a 1> @, ¢t up) Aloc_set_up(r, 1 plyluy) Andur=ct+1ty (FOL 32

The set-up duration is the summation of the configuration and location dependent
set-up times. If the resource is not to be moved from a location!, then the set up
time is only the time needed to re-configure the resource.

Configuration set-up time (config_set_up) is defined as a ground term with these
arguments:
¢ R:resource ID

® ALl the activity that caused the last configuration change of the
resource

* AZ2: activity requiring the change in the configuration of the resource
* CT: configuration dependent set-up time
* Unit: temporal unit of measurement
config_set_ up(R, Al, A2, CT, Unit) . (PRO 42)

Location set-up time (loc_set_up(R, A, L1, L2, CL, Unit)) is defined as a ground
term with six arguments:

* R:resource ID

* L1I: the location from which the resource is to be relocated

® L2: destination of the resource

* LT: location dependent set-up time

® Unit: temporal unit of measurement

loc_set_up(R, L1, L2, LT, Unit). (PRO 43)

Implementation:
The “set up” term is defined with six arguments:
* R: the resource ID

® Al:the activity requiring the present configuration that is to be changed

® A2:is the activity that requires the resource and requires a new config-
uration

1. i.e already in the location required by the activity

Fadi George Fadel: M.A.Sc Thesis ~ 83

CHAPTER 4: Resource Ontology

® L2: the location in which the resource is going to used
® Dur: set-up time duration
* U: temporal unit of the duration

set_up(R, A2, L2, Dur, U):-

rknown (R},
find_current_resource_config_and_location(R, Al, L1),
((config set_up(R, Al, a2, cT, u),
loc_set up(R, L1, L2, cCL, U),
Dur = CT + CL});
((config_set_up(R, A1, a2, crT, U)., Dur =~ CT);
(loc_set_up(RrR, L1, L2, CL, U), Dur = CL))). (PRO 44)
find_currenp_resource_config_and_location(R, Al, L1):-
findall (Tp, committed to(R, Al, S, Ti, Q, U), List),
find max(List, Tp_max),
resource configuration(R, C, A1),
findall(Tp., rpl(R, Q, Tp., L1, U), List),
find max{(List, Tp_max),
rpl(R, Q, Tp_max, L1, U). (PRO 45)
Example:
When the following is queried:

?- set_up(injection_molder, fabricateﬁplug_on_wire, .
Dur, minute). (EX 69)

the variable Dur will be instantiated to 60 minutes. This set-up time corresponds to
the required time to change the configuration of the resource to suite the configura-
tion required by fabricate plug on wire activity.

config_set_up(injection_molder, fabricate wire,
fabricate_plug~on_wire, €0, minute). (EX 70)

Since the resource is a stationary resource therefore no “location set up” is not
asserted for the resource with respect to the activity.

4.2.20 Capacity recognition process:

Capacity is defined to be the maximum set of activities that can simultaneously
use/consume a resource at a specific time. In the case where the resource is func-

Resource Ontology

4.2.20.1

tionally indivisible then the capacity denotes an activity that could use/consume
the resource. On the other hand if the resource is functionally divisible!, capacity
represents the number of activities that a resource can support simultaneously.

The complexity of the process of determining the capacity of a resource depends
on the activities requiring the resource and the activities already supported by the
resource. The capacity recognition process is solvable in polynomial time in the
case where the activities using/consuming the resource are homogenous. Homoge-
neity implies that activities require equivalent amounts of the resource or process-
ing time or integral multiples thereof?. Accordingly the output of the capacity
recognition process is reducible to a number which represents the number of activ-
ities that the resource could be allocated to. The process becomes complex in the
case where the activities requiring the resource are heterogenous. Finding the max-
imum set of activities is reducible to a single machine scheduling problem which is
NP-hard. If the resource is functionally divisible, then the process becomes NP-
hard in the strongest sense as the resource can support multiple activities simulta-
neously. What is required is a sequencing heuristic for activities that use or con-
sume a resource in a predetermined time window. The sequencing heuristic is to be
defined for a certain objective such as to lessen the number of tardy activities. The
issue of defining a heuristic is dealt with in the capacity recognition chapter. The
sequencing heuristics have been defined and implemented using C programming
language. The implementation takes an input, a set of activities with their respec-
tive starting times, due dates, processing times and resource capacity requirement.
The output of the code is the sequence of activities that are to use or consume the
resource and hence defining the maximum set of activities that can be simulta-
neously supported by a resource.

In the ontology, three axioms are defined for usage in the capacity recognition pro-
cess:

1. has current activity

2. available for

3. available capacity

Has current activity: has_current_activity(R, Act_list, Tp)
Definition:

1. implying having the ability being shared by multiple activities.

2. in this thesis, homogenous activities are considered as occurring over the same time period and require
equivalent resource amounts.

Fadi George Fadel: M.A.Sc Thesis 85

CHAPTER 4: Resource Ontology

“has current activity” predicate specifies the activity(ies) supported! by a resource
at the specified time point Tp. If the resource is sharable then has_current activity
would return a list of activities the are using/consuming the resource.

Semantics:

“An activity is supported by a resource if the resource is committed to the activity
for a time interval that includes the time point of the check and if the enabling state
of the activity has enabled status”

(V1) 3 act_list, tp)has_current_activity(r, act_list, p) =
d(t, s, q, u, a) (committed_to(r, a, s, H, g, u) A (period_contains(ti, p)

A enabling_state(s, tp, enabled). (FOL 33)
Implementation:

This predicate is defined with three arguments:

* R:ID of the resource being checked.

® Act_List: List of activities using or consuming the resource

® Tp: ID of the specified time point at which the resource is being
checked.

has_current_activity(Rr, Act_List, Tp):-
setof (A, check_commitment (R, A, Tp), Act_List). (PRO 46)

check_commitment (R, A, Tp) : -
committed to(R, A, S, Ti, Q, U) .

period_contains (Ti, Tp) . enabling state(s, Tp,
enabled) . (PRO 47)

Example:
has__current_.activity(assembly__area__z, Act List, tp2).(EX 71

When the resource assembly_area_2 is checked whether it supports any activities?
Or not at time point 2, the variable Act list will be returned with a value,

assemble_base, as this activity uses the resource at the specified time point.

has_current__activity(assembly__area_z, Act List, tp4) .(EX 72)

L. i.e activity to which the activity is committed to
2. i.e activities to which the resource is committed to

Resource Ontology

When the resource assembly_area_2 is checked whether it supports any activities
Or not at time point #p4. No will be returned as no committed to predicate is asserted
that indicates that no activity is using/consuming the resource at time point ip4.

4.2.20.2 Availability for a set of activities: available_for(R, [A], T, Capacity)
Definition:

The availability for predicate checks whether a resource could support a set of
activities or not. The output of the predicate is the maximum set of activities that
could be supported by a resource.

Semantics:

“A resource is available to a set of ordered activities if the resource has the capac-
ity to support them and there is no simultaneity constraint among the set of activi-
ties requiring the resource and the ones already supported by the resource”

For a fixed set of activities [a], available Jor is defined in the form of:
(Vr) 3a, &) available_for(r, [a],) =
(Vip € 8) (3 unit_id, u, ami_required, tq, g, amount|, amount) ... amount, ratey, rate; ... ratep)
{consumption_spec(r, ay, b, amounty, ratey, unit) v use_spec(r, a [:A amounty, rate 1 unit)) A

(consumption_spec(r, ap, 4, amounty, ratep, unit) v use_spectr, ay, i, amounty, ratey, unith) A
A

(consumption_spec(r, ay, 8, amount,,, ratey, unit) v use_spec(r, a, ti, amounty, ratey, unit)) A
ami_required = amount| +amount) + +amount, A
(period_contains(ti, p) A (total_committed(r, tg, tp, unit)) A unit_of measurement(r, unit_id, u, a) A

measured_by(r, unit_id, a) A rp(r, q,Ip, unit) A (amt_required > g-1g) A
((Vay € a) no_restricition(r, a, ay, 1)) (FOL 34)

no_restricition(r, a, ay,) = (committed_to(r, Ay, S, tis, g, u) A
(@+ay) A period_overlaps(ti, tih) A -u(simultaneaus__usgresbiction(a, ay, J)}IFOL 35)
The above definition is based on the underlying assumption that the geometry of

the resource does not have a role in defining its capacity. This is also the assump-
tion on which the sequencing heuristic is based on, as defined in chapter five.

Implementation:

Fadj George Fadel: M.A.Sc Thesis 87

CHAPTER 4: Resource Ontology

The implementation of the availability term is different from the first order logic
formulation as the implementation returns the maximum set of activities that can
be supported by a resource. On the other hand, the FOL formulation specifies only
whether a resource can support an ordered set of activities or not.

If a resource is required by a set of homogenous activities, then available for
homogenous axiom is called. This is because in the homogenous case, the capacity
recognition process is reducible to a number denoting the maximum number of
activities that could be supported by a resource. However, in the case when having
heterogenous activities, then the capacity recognition process is reducible to a sin-
gle machine scheduling problem. The scheduling heuristic is implemented in C
programming environment and called from Prolog.

The respective pseudo-code for available for axiom is:
Find the number of activities requiring the resource
If the number = 1, invoke available for activity axiom
Else

If (the activities requiring the resource and the activities already sup-
ported by the resource homogenous) & (no simultaneous use restriction
exists)

Then invoke available for homogenous axiom

Else invoke one machine scheduling heuristic.

FIGURE 43 Capacity recognition process

Find the number of activities
requiring the resource

A set
of activities?

Heterogenous
activities

Resource Ontology

The requirement/need of an activity is checked using either the consumption_spec
or the use_spec predicates. The available capacity is calculated through deducting
the total ‘amount’ committed of the resource from the resource point of the
resource over the whole specified time interval 7i. Moreover the simultaneous_us-
e_constraint is used to check if there exist a constraint on two activities to use/con-
sume a resource simultaneously.

The term is defined with the following arguments:

R: resource that is required to be used or consumed
At the activity or activities requiring the resource
Ti: resource time window

Capacity: the variable the returns that activities that could be supported
by the resource.

The implementation of the above pseudo code in Prolog is as follows:

available_for(R, A, Ti, Capacity) : -

rknown (R) ,

length(A, Len), % Calculate the length of the A’s list
(

((Len == 1), available_for_activity(R, A, Ti));
({Len \= 1), (
homogenous_or_heterogenous(R,A,Ti,Well),

% homogenous/heterogenocug case?

(

(Well == homogenous,

time_period(Ti, ST, ET, MinDUr, Dur, MaxDur),
time_point (ST, StMin, StMax),

time_point (ET, EtMin, EtMax),

Counter is StMin, Stop is EtMax-1,

available_for~homogenous(R, A, Ti, Len, Counter, Stop,
Needed Capacity, Tmp3),

printf(A,1, Tmp3, Result)$% print all supported activities
)i
(Well == heterogenous,

Printf('Activities_are_not_homogenous’),

Fadi George Fadel: M.A.Sc Thesis 89

CHAPTER 4: Resource Ontology

Printf ('Use_sequencing heuristic’),
1)) (PRO 48)
homogenous_or_heterogenous (R,A,Ti,Well) :~

time_period(Ti, ST, .,_.,_._).

% if the resource isn’t supporting any activities then
% check homogeneity among the A list

{((\+ has_current_activity(R,_,ST,Act_list),
(compare_list(R,A,Ti,Well);

(\+ compare_list(R, A, Ti, Well),

Well = heterogenous)),!);
(has_current_activity(R,_,S8T,Act_list),

(compare (R, A,Act _list,Ti) -> Well = homogenous;

Well = heterogenous)
y). (PRO 49)

compare_list(R, [], Ti, Well). % Stopping criterion

compare_list (R, [H2]|T2], Ti, Well):-

compare_tail (R, H2, T2, Ti, Well),Well =
homogenous. (PRO 50)

compare_tail (R, H2, [], Ti, Well).

compare_tail(R, H2, [H3|T3], Ti, Well):-
(use_spec (R,H2,Ti, Amt_Required2,Rate,U);
consumption_spec(R,H2,Ti, Amt_Required2,Rate,U)),
(use_spec(R,H3,Ti,Amt Required3, Rate,U};
consumption_ spec (R,H3,Ti, Amt_Required3,Rate,U)),
Amt_Required2 == Amt Required3,
no_restricition(R, H2, H3, Ti),

compare_tail (R, H2, T3, Ti, Well). (PRO 51)

compare (R, [],Act_list,Ti). %Stopping criterion

compare (R, [H|T],Act_list,Ti):~

Resource Ontology

over_all supported As(R,H,Act_list,Ti),

compare(R,T,Act_list,Ti). (PRO 52)

over_ all supported As(R,H, [],Ti). %$Stopping criterion

over_all_supported As(R,H, [Head2|Taill2],Ti):-

committed_ to(R,Head2,Ti2,Amt,_), overlaps(Ti,Ti2),
(use_spec (R,H,Ti,Amt_Required, ,U) |
consumption_spec(R,H,Ti, Amt Required,_ ,U)),

Amt == Amt Required,

over_all supported As(R,H,Tail2,Ti). (PRO 53)

available_for homo (R, [H|T],Ti, Len, Counter, Stop, Needed -

Capacity, Tmp3):-
time_point (Tp, Counter,_),
(use_spec(R,H,Ti,Amt_Required,_ ,U);
consumption_ spec(R,H,Ti,Amt_Required, ,U)),
{({var (Tmp3), Needed Capacity is Len*Amt_ Required);
Needed_Capacity is (Len-Tmp3)*Amt Required),
clear_rp, rp(R,Q,Tp,U),
clear_com, ((\+ total Com(R,TQ,Tpl,U) -> TQ is 0);
(clear_com, total_Com(R,TQ,Tp.U))).
Tmpl is Q - Needed Capacity - TQ,
(Tmpl >= 0 -> Result = [H|T];
(Available is Q-TQ, Afford is Available div Amt_Reguired,
Not_supported is Len-Afford,
retractall(dum(_)), assert{dum(Not_ supported)))),
Dummy is Counter +1,
((var (Not_supported), \+ var(Tmp3),Tmp is Tmp3);
var (Not_supported), var(Tmp3), Tmp is Len);
(\+ var(Tmp3), \+ var(Not_supported), dum(X), Tmp is X,
available for_ homo(R, [H|T}, Ti,Len, Dummy, Stop, Y,
Tmp)) ;

Fadi George Fadel: M.A.Sc Thesis 91

CHAPTER 4: Resource Ontology

(dum(X), Tmp3 is X)),
((Counter == Stop -> !}

available_for_ homo(R, [H|T], Ti,Len, Dummy, Stop, Y,
Tmp3)) . (PRO 54)

printf (A, ST, Tmp3, Result) : -ST>Tmp3, Result=A. %Stopping Crite-
rion
printf (A, ST, Tmp3, Result) : -

Dum is 1+ST,del_item(A,FF),

printf (FF, Dum, Tmp3, Result). (PRO 55)

del_item({Head|Rest], Rest).

del(List, ST, Tmp3, Rest):-
del_item(List,Rest),
((ST == Tmp3 -> !); Dum is 1+S8ST, del(List,Dum, Tmp3,Rest),

AA = [H|T],AA = Rest). (PRO 56)

Example:
“available for” axiom could be used to check the availability of a resource:
* o an activity

* {0 a set of activities

* 1o a set of activities with different application types. That is to say the
resource would be partly consumed by a number of activities.

If one activity requires a resource:

When the predicate is used to check the availability of the resource clip_base for
activity assemble_clip_base over time interval pdl:

?- available for(clip_base, [assemble clip base], pdl,
Capacity) . (EX 73)

the above will return the variable Capacity instantiated to [assemble_clip_base]
indicating that the resource clip_base is available for activity assemble_clip_base

Resource Ontology

over the time period pdl. This is done through satisfying the goals of axioms (PRO
48) by checking:

* resource point of the resource at the specified time, (EX 48), specifying
that it is equal to four units.

* consumption specification of the activity, (EX 27), which specifies that
the activity needs one unit of the resource,

¢ the total amount committed of the resource, through using
total_committed axiom. In this case the total commitment of the
resource is equal to two units of the resource as two units are commit-
ted to activities fabricate_clip and fabricate_socket_seat.

When the predicate is used to check the availability of the resource assembly area 1
for activity assemble_clip_base at time interval pdl:

?- available_ for (assembly area 1, [assemble_clip base 2],
pdl, Capacity). (EX74)

the above will return No indicating that the resource assembly_area_1 is not avail-
able for activity assemble_clip_base over the time period pdI because of the lack of
sufficient units of capacity over the whole time period dpl. This is done through
satisfying the goals of available_for axiom by checking:

* the resource point of the resource specifying that the amount is one
hundred,

* use specification of the activity, (EX 28), which specifies that the activ-
ity requires ninety unit capacity.

* the total amount committed of the resource. The total amount commit-
ted is equal to twenty unit capacity, as the resource is committed to
activity assemble_hand.

If there exist a simultaneous use constraint for two activities requiring a resource:

?- available_ for (assembly area_1, [assemble hand], pd1l,
Capacity) . (EX 715)

If the above predicate is used to check of resource assembly_area_1I is available for
activity assemble_hand at time interval pdl, the returned value will be No as activ-
ity assemble_clip_reading lamp uses the activity at the same time interval and there
is a simultaneous use restriction of the two activities .

Fadj George Fadel: M.A.Sc Thesis 93

CHAPTER 4: Resource Ontology

If multiple activities require a resource simultaneously:

‘available for’ could also check the availability of a resource for multiple activities
characterized by having different application types: use and consume. Consider
having two activities:

® heat up water, using a solar water heater (SWH), that uses water stored
in the SWH tank.

* flush_water that consumes the water in the SWH tank.

The activities require the same resource (water) at the same time but both activities
are constrained to operate with minimum amount of water that should be available
in the tank. Assuming that no water is being added to the tank during the execution
of the two activities, then the support of the resource (water) to any of the activities
depends on having the capacity to fulfill the requirements.

?- available_for(water, [heat_up, flush water], pd3,
Capacity) . (EX 76)

Both activities are homogenous because they require same amount of the resource.

use_spec (water, heat_up, pd3, 3, 1, rate 1)! (EXT7)
consumption_ spec (water, flush, pd3, 3, 1, rate 1) (EX 78)

available for would return Capacity = [heat_up, flush_water] specifying that the
resource can support both activities simultaneously.

In the case of heterogenous activities, the user will be prompted to use the
sequencing heuristic defined in the capacity chapter.

4.2.20.3 Available Capacity: available_capacity(R, Tp, Amount_Available, Unit)
Definition:

The predicate available capacity is defined as the amount of a resource that physi-
cally exists and it is not committed to any other activity at a specific time point.
Furthermore in the case where a resource is divisible and continuous then available
capacity denotes to the portion of the resource that could be used/consumed. On
the other hand in the case where a resource is indivisible then the available capacity
denotes if the resource is occupied or not.

This predicate, available capacity, specifies the available amount of a resource by
calculating the uncommitted amount at the specified time point.

1. object(rate_1, 1, L, minute)

Resource Ontology

Semantics:

“To check availability, the resource has to be known with a resource point defined
at a specified time point. The available amount is calculated from the difference of
the resource point and the amount committed of the resource at the specified time
point”.

(v r) 3r, tp amount, u) available_capacity(r; tp, amount, u) = (v a)(3 1, g, unit_id) rknown(r) A

rp(r g, tp u) A

total_committed(r, tq, tp, u) A unit_of measurement(r, unit_id, u,a A
measured_by(r, unit_id, a) A amount > q-tg (FOL 36)
Implementation:

available capacity(R, Tp, Amount Available, Unit):-

{rknown (R},

rp(R, Q, Tp, Unit),
total_committed (R, TQ, Tp, Unit),
Amount_Available is Q - TQ,

assert (ad (Amount_Available)), fail. (PRO 57)
available capacity(R,Ti, Amount_ Available, Unit):-

ad (Amount_Available) . (PRO 58)
Example:

When the predicate is used to check the availability of the resource clip_base at
time point tpl:

?- available___capacity(clip_base, tpl, Amount_Available,
Unit) . (EX 79)

will return the value of 2 which represents the available amount (not committed) of
the resource clip_base at time point 12 through satisfying the goals of available
capacity axiom. The goals are satisfied using the assertion of the resource point of
clip base, declared in (EX 48), and the committed to assertions declared in (EX 61)
and (EX 62).

When the predicate is used to check the availability of the resource assembi-
y_area_l at time point tpl:

?- available__capacity(assenbly_area__l, tpl,
Amount_ Available, Unit). (EX 80)

Fadi George Fadel: M.A.Sc Thesis 95

CHAPTER 4: Resource Ontology

will return the value of 80 which indicates that eighty units of the resource assem-
bly_area_l is available (not committed) at time point pl through satisfying the
goals of available capacity axiom.

4.2.21 Trend: trend(R, Tp, Result)
Definition:

Trend predicate indicates whether the capacity of a resource is decreasing, increas-

ing or at a steady statel.

Semantics:
The capacity trend of a resource, at a specific time point, is determined by calculat-

ing the rate of change of the resource point over a time interval preceding the time
point of check.

dit rp(R. Q. Tp, Unir)

The capacity trend of a resource could be either:
* decreasing,
® increasing,

* or steady

The capacity of a resource could be decreasing:

¢ if the rate of change of the resource point is decreasing over a time
period before the specified time point.

(V r) 3 tp) trend(r, tp, decreasing) =
(Va drate) (rp_at_last_tps(r, a, tp, rate) A (rate < 0.00)) (FOL 37)

The capacity of a resource could be increasing:

1. Qualitative physics research presents means to make programs that interact with the world as well as people
do. Efforts such as [Forbus 84] and [Kuipers 84] strive to define a methodology for describing complex sys-
tems. Forbus defines an ontology for the transfer of causality. Kuipers’ research, on the other hand, is con-
cerned with “qualitative simulation of physical systems whose descriptions are stated in terms of continuously
varying parameters”.

Resource Ontology

* if the rate of change of the resource point is increasing over a time
period before the specified time point.

(V r) (3 tp) trend(r, tp, increasing) =
(Va drate) (rp_at_last_tps(r, a, tp, rate) A (rate > 0.00)) (FOL 38)

The capacity of a resource could be steady:

* if the rate of change of the resource point is steady over a time period

before the specified time pointl.

* the resource was not committed in the previous time points

(Y r) (@ p) trend(r, tp, steady) =

(VA) (3 amount, unit) (rp_at_last_tps(, a, tp, rate) A (rate = 0.00)) v
-1(committed_to(r, a, s, ti, amount, unit) A period_contains(ti, tp)) (FOL 39)

rp_at_last_tps(r, a, tp, rate) = (3 91 92 21, tp?)
1P(7;), tp, unit_id) A rp(r, q1, tpy, unit_id) A (rate = (q1-q3)/((p1 - tpy)) (FOL 40)

FIGURE 44 Trend - time horizon

Activities

using/consuming { | RS RTAOT o |

a resource /™ . .
F : $ + ¢ ! Time Horizon
1 2 3 4 5 6
2 IJ.T

Time of check
Implementation:

The respective pseudo code for the trend axiom is:
Find the resource point of the resource (7py) at first time point tp
Find the resource point of the resource (rp5) at second time point ()

Find the rate of usage drp/dt = (rpy -1pp)/(t] - tp)

1. The choice of the two time point (fp] & #p)) are arbitrary and the issue of selecting these time points
depends on the granularity the user requires.

Fadi George Fadel: M.A.Sc Thesis 97

CHAPTER 4: Resource Ontology

Case:
(Rate > 0.00) Then the TREND is increasing
(Rate < 0.00) Then the TREND is decreasing

(Rate = 0.00) If the resource was not committed over the ti interval
bounded by the two time points Then the TREND is steady ‘

The implementation of the above pseudo-code in Prolog is as follows:

trend (R, Tp, Result):-

rknown (R),

time_point (Tp, StMin, StMax),

time period(Ti, ST, ET, MinDur, Dur, MaxDur),
StMinl is StMin -1, StMin2 is StMin -2,

time point (Tpl, StMinl, _),

{(StMinl == 0 -> Result = undetermined,!);
(\+ committed to(R, A, S, Ti, Q, U),

period contains(Ti, StMinl),

\+ committed_to(R, A, S, Ti, Q, U), period contains(Ti,
StMin2), Result = steady,!);

rp(R, Q1, Tpl, Unit),

retractall {quan(_)), assert(guan(Q1l))},
time point(Tp2, StMin2, _),

rp{(R, Q2, Tp2, Unit),

assert (quan(Q2)),

Drp is Q1 - Q2, Dt is StMinl - StMin2,
Rate is Drp/Dt,

(({Rate > 0.000), Result = increasing),!|

((Rate < 0.000), Result = decreasing), !;

’

({Rate == 0.000), Result = steady,!))). (PRO 59)
Example:

So, two predicates could be used for finding out the trend of the capacity if the
resource. One predicate (strong_trend) gives a stronger indication, of the trend,
than the trend predicate. If the trend predicate is used and indicated that a resource

Resource Ontology

has a steady trend, there is no guarantee that the use of the strong_trend predicate
would give the same an indication.

rp(oven, bake_large pizza, tp2, 60, block_1). (EX81)
rp(oven, bake_large pizza, tpl, 60, block_1). (EX 82)
rp(oven, bake medium pizza, tp7, 40, block 1). (EX 83)
rp(oven, bake medium_pizza, tp8, 60, block_1). (EX 84)
rp (pepperoni, 40, tp8, object). (EX 85)
rp(pepperoni, 60, tp7, object). (EX 86)
?- trend(oven, tp3, Result). (EX 87)

The use of the above will return the variable Result with an instantiated value
which is steady. This is done through satisfying the goals of trend axiom (PRO 59)
with use of the rp predicate specified in (EX 81) and (EX 82).

?- trend(oven, tp9%, Result). (EX 88)

The use of the above will return the variable Result with an instantiated value
which is increasing. This is done through satisfying the goals of trend axiom (PRO
59) with use of the rp predicate specified in (EX 83) and (EX 84).

?- trend(pepperoni, tp9, Result). (EX 89)

The use of the above will return the variable Result with an instantiated value
which is decreasing. This is done through satisfying the goals of trend axiom (PRO
59) with use of the resource point predicate specified in (EX 85) and (EX 86). The
resource point predicates specify that the resource pepperoni has forty and sixty
units at the last previous time points which makes the resource to have a decreas-
ing trend.

4.2.22 Activity history: activity_history(R, Act_List, Tp)
Definition:
This predicate specifies the history of usage or consumption of a resource before a

specified time point. A list of activities that were supported by the resource will be
returned.

Semantics:

“An activity will be included in the list of activities, that were supported by the
resource, if the resource was committed to the activity for a time period with end
time less or equal than the specified time point”.

Fadi George Fadel: M.A.Sc Thesis ' 99

CHAPTER 4: Resource Ontology

(¥ r) Gact_list, tp) activity_history(r, act_list, tp) = (V a€ act_list)(34, q, u, a, 5)

(committed_to(r; a, 5, 4, q, u) A period_before(ti, tp) A enabling_state(s, p,
completed) (FOL 4D

Implementation:
This predicate is defined with three predicates:

* R:ID of the resource being checked.
* Act_List: List of activities that used or consumed the resource
* Tp: ID of the specified time point at which the resource is being

checked.
activity history(Rr, Act_List, Tp):-

setof (A, check_past_commitment (R, A, Tp), Act_List). (PRO60)

check commitment (R, A, Tp):-
committed to(R, A, S, Ti, Q, U), period before(Ti, Tp),

enabling state(S, tp, completed). (PRO 61)

Example:

?~ activity history (assembly area_1, Ac t_List, tp2).(EX90)
When the activity history of resource assembly_area_1 is queried at time point tp2,
the variable Act_list will be returned with a value equal to [assemble_clip_read-

ing lamp, assemble_hand], specifying the activities that used the resource prior to
time point 2.

4.2.23 Alternative resource: alternative_resource(R, A, List)
Definition:

This term specifies an alternative resource(s) to be used or consumed by an activ-
ity. This is useful in the case when an alternative resource is required because of a
machine breakdown or unavailability of a resource.

Semantics:
“A resource (R2) is an alternative resource for an activity, if the resource is related
to a disjunct state that is related to the activity”

(V 1, a) (3 list) alternative_resource(r, a, list) = (3 s, s, disjunct_state) uses(sp, r) A is_related(sy, s) A

Resource Ontology

subclass_off(s, disjunct_state) (FOL 42)

Implementation:

The term is defined with three arguments:

* R:resource to which a replacement is required

* A:the activity that requires a resource replacement
* List: list of alternatives

alternative resource(R,A2,List):-

uses (S2,R), is_related(S2,8),
subclass_of (S, disjunct_state), disjuncts (S, Listl),

all_states(R,S2,Listl,List2),

get_res(List2,Result),!. (PRO 62)
all states(R,S2,Tmp_list,List2):-

uses (S2,R), member_of (S2,Tmp_list),

del_rep(S2,Tmp_list,List2). (PRO 63)

del_rep(X, [X|Tail]l, Tail). % Stop if X is the Head of List

del_rep (X, [Y|Taill, [Y}Taili]):-

del_rep(X, Tail, Taill). (PRO 64)
get_res([],Result):- % Stop if List is empty

write(’Result = ') .print (Result), ttynl. (PRO 65)
get_res([X|{Taill, List):-

uses(X,R), add(R,List,Result),get res(Tail,Result). (PRO 66)

add (R, List, [R|List]).

Example:

Fadi George Fadel: M.A.Sc Thesis 161

CHAPTER 4: Resource Ontology

FIGURE 45 assemble clip base

es_clip_base | Enables h asszmble_clip_ Causes caused state
jconm‘\‘

es_&_conusme les_or_assembly_area
for clip_base for_clip base
hju disj

consume consume use use
v_sprin round_nut assembly area_1 assembly area 2 assembly area 3

! ,
[/v_spn'ng “/round_nut l [gsembly__area_ll assembly_area_Z! assembly_area_3

Reference to figure 45, “assemble clip base™ activity can either use “assembly area
17 or “assembly area 2” or “assembly area 3”. If an alternative resource for
“assembly area” is required through using:

alternative _resource (assembly area_1, assemble_clip base,
List). EX9

the variable List will be bounded to [assembly_area_2, assembly_area_3] specify-
ing two alternative resources.

4.3 Relation of the resource ontology with that of the activity-
state

This sections presents axioms that define how the activity-state ontology is linked
to the resource ontology. Most state’s status are defined in terms of resource prop-
erties (i.e ontology). These status’ definitions are presented in the coming section.
[see figure 46]

FIGURE 46 States properties

Object Resource
Stgtes Use Consume Produce Release
// M‘_”
/ .

Status all status®” possible not possxble committed enabled completed

Relation of the resource ontology with that of the activity-state

4.3.1 Enabling states: enabling_state(State_ID, Tp, Status)

Definition:

An enabling state specifies what has to be true in order for an activity to be per-
formed. For example in figure 33, there are two terminal enabling states. A con-
sume state specifies that a resource will not available (at least in the same form or
properties) after the completion of an activity. The use state on the other hand
specifies that resource will available in the form and properties after the comple-
tion of an activity.

The use of the predicate would return the status of the use/states state which in turn
is dependent on the status of the resource. Recall that there are five status that a
state could have:

* enabled: when the resource is being used or consumed®.
¢ committed: when the resource is committed to be used or consumed.

* completed: when the resource is no longer being used or consumed by
an activity.

* possible: when the resource may be used or consumed as it is available
for the activity.

* not_possible: the resource can not be used or consumed because of the
unavailability of the resource to the activity.
Semantics:

The enabling state is completed if:
* the activity is in the activity history of the resource.
(V state_id) (3 tp) completed(state_id, tp) = (3 r, a, act_list)
((consume(state_id, a) A consumes(state_id, r)) v

(use(state_id, a) A uses(state_id, r))) A
activity_history(r, act_list, tp) A member_of(a, act_list) (FOL 43)

The enabling state is enabled if:

® the activity is in the has current activity list of the resource.
(V state_id) (3 tp) enabled(state_id, tp) = (3, a, act_list)

((consume(state_id, a) A consumes (state_id, r)) v

1. not included in this section since its definition is not dependent the resource ontology

Fadi George Fadel: M.A.Sc Thesis 163

CHAPTER 4: Resource Ontology

(use(state_id, a) A uses(state_id, r))) A
has_current_activity(r, act_list, tp) A member_of(a, act_list) (FOL 44)
The enabling state is possible if:

* the resource is available for the activity and
* the resource has not been committed yet to the activity and
¢ the activity is not executing.

(V state_id) (3 tp) possible(state_id, tp) = (3 r, a, 8, unit) (consume(state_id, a) v consumes(state_id,
r)) Vv (use(state_id, a) v uses(state_id, r)) A

available_for(r, a, ti) A ~committed_to(r, a, state_id, ti, amount, unit) A period_contains(t, p) A
~activity(a, executing, tp) (FOL 45)
The enabling state is not possible if:

® the resource is not available for the activity and
* the resource has not been committed yet to the activity and
¢ the activity is not executing.

(V state_id) (3 tp) not_possible(state_id, tp) = (3 1, a, 1i)
((consume(state_id, a) A consumes(state_id, r)) v (use(state_id, a)A uses(state_id, r))) A

—available_for(r, a, ti) A ~committed_to(r, a, state_id, ti, amount, unit) A period_contains(ti, tp} A
- activity(a, executing, tp) (FOL 46)

The enabling state is committed if:

¢ the resource is committed to the resource and
® the activity is not executing1 and
¢ the activity is not ccmpletedz.

(V state_id) (3 tp) committed (state_id, tp) = (3 1, a, ti)
((consume(state_id, a) A consumes(state_id, r)) v (use(state_id, a)A uses(state_id, r))) A
committed_to(r, a, s, ti, amount, unit) A period_contains(ti, m) A

has_current_activity(r, act_list, tp) A ~member_of(a, act_list) A

1. i.e notincluded in the “has current activity”
2. i.enotincluded in the “activity history”

Relation of the resource ontology with that of the activity-state

activity _history(r, list, tp) A ~member_of(a, list) (FOL 47)
Implementation:

The term is defined having three arguments:

* State_ID: specifies the ID of the state
* Tp: specifies time point of the check
* Status: is the argument through which the status is returned.

enabling state(State_ ID, Tp, Status):-

((use (State_ID, A), uses(State ID, R))};

consume (State ID, A); consumes(State_ ID, R)),
(completed (State_ID, R, A, Tp, Re_status),!);
{enabled (State_ID, R, A, Tp, Re_status),!);
(possible(State_ID, R, A, Tp, Re_status),!);
(not_possible(State_ID, R, A, Tp, Re_status),!);
(committed(State ID, R, A, Tp, Re_status),!);

(suspended (State ID, R, A, Tp, Re_status),!). (PRO 67)
completed (State ID, R, A, Tp, Status):-

activity history(R, Act_List, Tp),
member of (A, Act_List),

Status = completed. (PRO 68)
enabled (State ID, R, A, Tp, Re_status):-

((consume (State_id, A), consumes{State_id, R)),

(use (State_id, A), uses(State_id, R})),

activity_ history(R, Act_list, Tp),

member of (A, Act_list). (PRO 69)
possible (State ID, R, A, Tp, Re_status):-

available for (R, A, Ti),
\+committed to(R, A, S, Ti, Amount, Unit),

activity (A, Tp, Status),

Status \= executing, period_contains(Ti, Tp). (PRO 70)

not_possible(State ID, R, A, Tp, Re_status):-

Fadi George Fadel: M.A.Sc Thesis 105

CHAPTER 4: Resource Ontology

43.2

\+available_for(R, A, Ti),
\+committed_to(R, A, S, Ti, Amount, Unit),
activity (A, Tp, Status),

Status \= executing, period contains(Ti, Tp). (PROTD)
committed(State_ID, R, A, Tp, Re_status):-

committed(R, A, §, Ti, Amount, Unit),

period contains(Ti, Tp)},

has_current_activity(R, Act_list, Tp),

\+member_of (A, Act_list),

activity history(R, List, Tp), \+member of (A, List).(PRO72)
Example:

?- enabling_state(assembly area_1, assemble_hand, tp3,
Status) . (EX 92)

The use of the above query returns the status of the state as being completed as the

activity “assemble hand” has already been performed (i.e included in the “activity

history” of the resource!.

?- use(assembly_area_l, assemble_hand, tp2, Status).(EX93)

Now if the same state is checked at tp2, the status is returned as being enabled as
the activity would be currently being performed.

release state: release_state(State_ID, Tp, Status).
Definition:
In TOVE a release state specifies that a resource which has been designated for
usage, by an activity, is available. The release axiom would return the status of the
release state. Recall there are three possible status:

¢ completed: when the resource has already been released.

* committed: when the resource is committed to be released.

* not_possible: when the act of releasing the resource is not possible at
the specified time point.
Semantics:

The release state is completed if:

i. i.e the activity was committed in a period that ended before tp3.

Relation of the resource ontology with that of the activity-state

* the activity that causes the release state is included in the activity his-
tory of the resource.

(V 1, @) (3 1p) release_completed(r, a, tp) = (3 act_list) (activity_history(r, act_list, tp) A

member_of(a, act_list)) (FOL 48)
The release state is committed if:
* the activity causing the release state is in the resource current activity
list!.

(V 1, @) 3 p) release_committed(r, a, tp) = (V act_list) has_current_activity(r, act_list, tp) A
member_of(a, act_List) (FOL 49)

The release state is pot_possible if:
* if the resource is not committed to the activity the releases it OR
* if the resource is not currently supporting the activity.

(V 1, @) (3 1p) release_not_possible(r, a, tp) = (Istate, act_list, 4, q, u)

((period_before(ti, tp) v period_contains(ti, tp)) > ~ committed_to(r, a, state, ti, g uvV
(has_current_activity(r, tp, act_list) A - member(a, act_list)) (FOL 50)
Implementation:
The term is defined with three arguments:
¢ State_ID: specifies the ID of the state
¢ Tp: specifies time point of the check
* Status: is the argument through which the status is returned.

release_state(State_ID, Tp, Status):-

((release(State_ID, A); releases(State_ID, R)),
(release completed(R, A, Tp, Status),!);
(release_committed(R, A, Tp, Status),!);

(release_possible(R, A, Tp, Status),!);

(release_not_possible(R, A, Tp, Status),!). (PRO 73)

release completed(R, A, Tp, Status):-

I. i.e the enabling state of the activity has enabled or committed as status

Fadi George Fadel: M.A.Sc Thesis 167

CHAPTER 4: Resource Ontology

activity history(R, Act_List, Tp), member (A, Act List),
Status = completed. (PRO 74)
release_committed(R, A, Tp, Status):-
has_current_activity (R, Tp, Act_list),
member of (A, Act_list),
Status = committed. (PRO 75)
release_not_possible(R, A, Tp, Status):-
(\+ in_commitment (R, A, Tp, Status);
\+ in_current_activity(R, A, Tp, Status):
Status = not_possible. (PRO 76)
in_commitment (R, A, Tp, Status):-
committed to(R, A, S8, Ti, Q, U). (PRO 7T
in_current_activity(R, A, Tp, Status):-
has_current_activity(R, A, Tp, Act_list),
member_ of (A, Act_list). (PRO 78)
Example:
The use of (EX 94) when we need to check what is the status of the release action
by assemble_hand activity on assembly_area_1 resource:
?- release__state(pro_pssemble_hand, tp3, Status). (EX 94)
would return the variable Status = completed. That is due to the fact that the

resource ‘assembly area 1’ was committed to the activity in a period, pdl, which
occurs prior to the time of the check, 3.

On the other, if the same state is checked about the release action status at a differ-
ent time point, tp2, by using:

?- release state(pro_assemble_hand, tp2, Status). (EX 95)
would return the variable Status = committed. This is due to the resource still

being committed to the activity at the time of the check. In other words, the activ-
ity assemble hand is in the current activity list of assembly area I resource’.

1. by satisfying the goal of has_current_activity axiom (PRO 46).

Relation of the resource ontology with that of the activity-state

4.3.3 produce status: produce_state(State_ID, Tp, Status)
Definition:
A produce state in TOVE specifies that a resource, that did not exist prior to the
performance of an activity, has been produced. The produce axiom would return
the status of the produce state. Recall there are five possible status:
* completed: signifies that the resource has already been created.

* not_possible: signifies that a resource could not be produced because
the conditions of the activity’s enabling state could not be satisfied!.

* possible: signifies that a resource could be produced because the condi-
tions of the activity’s enabling state could be satisfied?.

* committed: signifies that a resource is committed to be produced. This
implies that the conditions of the activity’s enabling state are met but
the activity producing the resource is scheduled to start later.

* enabled: signifies that the resource is currently being produced by the
activity.
Semantics:

The produce state is completed if:
* the resource is in the resource’s activity history list.

(VY r,) @ 1p) produce_completed(r, a, tp) = (3state, act_list) activity_history(a, act_list, tp) A
member_of(a, act_list) (FOL 51)

The produce state is not_possible if:
* the use or consume enabling states of the activity are not possible.
(V' 1, @) 3 tp) produce(r, a, tp) = 3(s, s3)

((use(sp, a) A uses(sy, r) A enabling_state(s», tp, not_possible)) v
(consume(s3, a) A consumes(sy, r) A enabling_state(s3, tp, not_possible))) (FOL 52)

The produce state is possible if:

* the use and consume enabling states of the activity are possible.

(V r, a) (3 tp) produce_possible(r, a, tp) = Vsy Vsy

1. not included as the definition does not depend on resource ontology
2. similar footnote 1.

Fadi George Fadel: M.A.Sc Thesis 109

CHAPTER 4: Resource Ontology

((use(s), a) A uses(sy, r) O enabling_state(s, tp, possible)) A
(consume(s3, a) A consumes(s3, r) O enabling_state(s3, possible))) (FOL 53)

The produce state is committed if:

* the activity causing the produce state is committed,
¢ Tpis before Ti and
* the activity is not executing.

(V r, a) (3 tp) produce_committed(r, a, tp) = (3state, ti, g, u, act_list)

(committed_to(r, a, s, ti, g, u) A after(ti, tp) A
has_current_activity(r, act_list, tp) A~ member_of(a, act_list) (FOL 54)
The produce state is gpabled if:

* if the activity causing the produce state is committed and
¢ the activity is in the resource’s current activity list!.

(Y 1, a) (3 tp) produce_enabled(r, a, tp) = (3 state, act_list) has_current_activity(r; tp, act_list) A
member_of{(a, act_list) (FOL 55)
Implementation:
The term is defined with three arguments:
¢ State_ID: specifies the ID of the state
* Tp: specifies time point of the check
* Status: is the argument through which the status is returned.

produce_state(State_ID, Tp, Status):-
(produce (A, State_ID), produces(State_ID, R)),
(produce_completed(R, A, Tp, Status),!);
(produce_committed (R, A, Tp, Status),!);
(produce_enabled (R, A, Tp, Status),!);
(produce possible(R, A, Tp, Status),!);

(produce_not_possible(R, A, Tp, Status),!). (PRO 79)

produce completed(R, A, Tp, Status):-

1. i.e the activity is executing

Relation of the resource ontology with that of the activity-state

activity history(R, Act_list, Tp),

member_ of (A, Act_list). (PRO 80)
produce not_possible(R, A, Tp, Status):-

({use (82, A), uses(S2, R),
enabling state(S2, Tp, not_possible)) |
(consume (S, A), consumes(S3, R),

enabling state(S3, Tp, not_possible)),

Status = not possible, fail. (PRO 81)
produce_possible(R, A, Tp, Status):-

((use(S2, A), uses(S2, R),
enabling state(S2, Tp, possible)) |
(consume (83, A), consumes(S3, R),

enabling state(S3, Tp, not_possible)),

Status = possible, fail. (PRO 82)
produce committed(R, A, Tp, Status):-

committed to(R, A, S, Ti, Q, U),
time period(Ti, ST, ET, Min, Dur, Max), Tp <= ST,

Status = committed, \+activity_executing(R, A, TP),

fail. (PRO 83)
activity_ executing(R, A, Tp):-

has_current_activity (R, Act_list, Tp),

member_ of (A, Act_list). (PRO 84)
enabled(R, A, Tp, Status):-

has_current_activity(R, A, Tp, Act_list),

member of (A, Act_list),

Status = enabled, fail. (PRO 85)
Example:

The use of produce axiom when we need to check what is the status of the produce
action by assemble_hand activity on assembly_area_1I resource:

?- produce_state(pro_assemble hand, tp3, Status). (EX 96)

Fadi George Fadel: M.A.Sc Thesis 111

CHAPTER 4: Resource Ontology

would return the variable Status = completed. That is because the goals of produce
completed axiom are satisfied. This is because the assemble_hand activity was com-
mitted at the time of the check (Tp) and is after the time of commitment of the
activity, which produces the hand_assembly.

4.4 Conclusion

What is presented in this chapter is ontological terms required for modelling enter-
prise resources in a manufacturing environment. These terms have the characteris-
tics of being generic and sharable across different enterprise applications. Hence
enabling the share of information and coordination of activities.

The approach to accomplish sharability and reusability, is first to define a set of
terms (ontology) using first order logic (FOL) and implemented in Prologl. The
ontology is stratified where the definition of each term is dependent on the defini-
tion of previous ones. The ontology consists of a number of ground terms (asser-
tion) on top of which more complex terms are defined. First order logic is used
because of its expressive and declarative capability. The rationale behind that
approach is that with the ontology defined in FOL and applied in a theorem prover,
the ontology could have the deductive capability to answer queries. Achieving that
would give the model a common sense reasoning about the behavior of a world.
Accordingly, the ontology provides a general descriptive language reason about
the world.

The complexity of planning and scheduling is determined by the degree to which
activities contend for resources. Planning involves selecting and sequencing activ-
ities to achieve a goal while scheduling involves assigning resources to activities
over a time interval so that to obey temporal constraints and capacity constraints of
shared resources. Accordingly, reasoning about resources is a critical component
of the functionality of such systems. Ultimately, planning and scheduling systems
have to be able to reason about availability and allocation of shared resources to
activities which requires the ability to reason about the properties of resources
when used or consumed by an activity.

1. Refer to Goal and Objectives in chapter 1.

CHAPTER 5 Capacity Recognition

This chapter discusses the capacity recognition process in TOVE. This process
includes a capacity recognition process that mainly addresses the issue of
defining the capacity of a resource at a certain time point. Computational results
are also presented.

5.1

Introduction

It is evident that constraints play an important role in scheduling activities; specifi-
cally, capacity constraint(s)/condition(s) should be the cornerstone of any schedul-
ing activity since an activity (job)can use or consume a resource if the resource is
available and can satisfy the requirement of the job. In other words the execution
of an activity depends on the resource having the required capacity to fullfil the
activity’s requirement.

In TOVE, capacity is state dependent implying it is dependent on the activities
already or wanting to use/consume the resource. As mentioned before!, capacity in
TOVE is defined as being the maximum set of activities that can simultaneously
use or consume a resource at a specific time. Given a set of activities that require a
resource, the capacity of the resource is defined in terms of a set of activities that
can be supported by the resource without violating any of the capacity constraints.
In the case where the activities requiring and using/consuming the resource are
homogenous then capacity of a resource is reducible to a number indicating the
number of activities that the resource can support (could be allocated to). However
in heterogenous activities case, the problem is reducible to a single machine

1. in chapter four
2. i.erequire same amount over the same time period

Fadi George Fadel: M.A.Sc Thesis 113

CHAPTER 5: Capacity Recognition

sequencing problem where the machine can support multiple activities simulta-
neously.

What is presented in this chapter is the:

* definition of the different units of capacity,

* definition of the different categories of the capacity recognition pro-
cess,

* definition of when activities are considered homogenous and when they
are not.

* the formulation of the problem in Integer Programming to compare the
output with the output resulted from applying the defined heuristic.

* definition of the sequencing heuristic that could be applied for the dif-
ferent categories.

* experimental results

5.2 Background and notations

Scheduling and sequencing problems in general are NP-complete/hard problems.
For instance (n/3/F/ Cmax) problem is NP-complete/hard [French 87]. A rudi-
mentary problem in scheduling is the sequencing of n jobs using a single resource
(facility) with the objective of minimizing the number of tardy jobs. An activity is
described in terms of:

® earliest starting time (st;): the earliest time point at which the activity
can start (i.e ready time),

® processing time (p;): amount of processing time required,

® due date (dj): the completion time of the activity (i.e latest end time),

® capacity requirements (c;) of each activity.

The above characteristics are all represented as integer numbers. Activities are per-
formed when they are ready (i.e time 2 st;) without allowing preemption of activi-
ties that are currently in progress. An activity is considered tardy (late) when it
finishes at a time which is greater than its due date, while an activity is considered
on time if it finishes at a time less than or equal to its due date. Tardy activities
(jobs) are assumed to have equal penalties. Furthermore no precedence is assumed
between different activities.

1. Three machine, n-jobs, flow-shop problem where the aim is minimize the make-span

Units of Capacity

Each machine (resource), on the other hand, is described in terms of the total num-
ber of capacity units it contains!. Accordingly a resource can be used/consumed by
more than one job depending on the number of capacity units it contains and the
requirements of different activities that are to use/consume the resource. A
resource can be used by an activity when ever the activity is ready and the resource
has the capacity.

The problem is represented in the literature as (n/ 1/, pj, ¢;/ £ Ui)2 with the
objective of minimizing the number of tardy jobs. A special case of this problem is
when the value of ¢; is restricted to 13,1/1/ r;, pj/ LU;. This special case is proven
to be an NP-Hard problem as shown by [Lenstra et al 77] and [Graham et al 79].
Accordingly the n/1/r, p;, ¢ /Z U; is NP-hard too.

Furthermore there exist other references proving other instances to be NP-hard
[Baker 74] [Garey et al 79]:

® Sequencing to minimize tardy jobs with release times (ready times) and
deadlines for a one machine is NP-hard.

* Sequencing to minimize tardy jobs for a one machine is NP-Hard. Jobs
are characterized by having a due date and ready time.

There exists an algorithm due to Moore [Moore 68] that finds the solution of n/1/
/ X U; in polynomial time. In other words the problem is solvable in polynomial
time in the case where all jobs have equal ready (release) times and jobs can be
processed one at a time. Activities in Moore’s algorithm are sequenced in ascend-
ing order due to their respective due dates and if the addition of job j results in a
job being late, the scheduled job with the largest processing time is marked as late
and removed from the sequence.

5.3 Units of Capacity

Before getting into the capacity recognition process, units of capacity applied to
different resources are defined.

1. That is in the capacity recognition context. In chapter three a general frame work of resource description is
presented.

2. single machine, n-jobs problem with different ready and processing times. The aim is minimize the number
of tardy jobs.

3. hence making the a single machine and one job problem

Fadi George Fadel: M.A.Sc Thesis ‘ 115

CHAPTER 5: Capacity Recognition

FIGURE 47 Taxonomy of Units of measurement - capacity recognition perspective’

5.3.1

5.3.2

/ (énits of measuremenb

Quantitative

Relational

(Surface Are@ (Volume

In chapter four an overall taxonomy of unit of measurement is presented.
Figure 47 presents a portion of the taxonomy showing the “quantitative” units used
in capacity recognition process. There are basically two classifications of capacity
units, with sub types, that will be used as a means of measurement: geometric and
relational units.

Percentage

Geometric units:

These are units with which the capacity of a resource could be solely described.
These units utilize rectilinear or curvilinear motifs. This class is further classified
1nto:
1. Surface Area: By sub dividing the surface area of a resource to num-
ber of equal unit rectangles, in inch? for example.
2. Volume: The resource is divided into an equal number of unit blocks,
say in inch3.
3. Level: The means of measurement in this case is the physical level of
the resource.

Relational units:
This class of unit of capacity is used when the capacity is to be described in terms
of geometric unit measurements. For example:

1. Rate of consumption: It is the rate by which an activity consumes a
resource.

1. Reference to the units of taxonomy in chapter four

Indicative vs. Non-indicative level of recognition

2. Percentage: It is the percentage of usage/consumption of a resource by
an activity.

The rate of consumption and the percentage of usage/consumption could be
defined in terms of volume, level or surface area units of capacity (amount descrip-
tion units). The choice of using the above units not only depends on the resource
but also on the activity or activities using/consuming the resource.

5.4 Indicative vs. Non-indicative level of recognition

In TOVE there are two scenarios of capacity descriptionlz

1. Indicative level of recognition: where the capacity of a resource is
solely determined through one unit of capacity.

2. Non-indicative level of recognition: where the capacity is determined
through a number of units and/or other related factors such as the
resources’s layout.

Before explaining the application of the levels of capacity recognition, let us con-
sider these two cases:

Pizza Oven case:

The unit of capacity in a pizza oven could be surface area, or rectangles, as the pri-
mary aim is to check whether a pizza could fit into the oven. For example there are
three types of activities that could use the resource ‘oven’.

1. ‘Bake Large Pizza’.

2. ‘Bake Medium Pizza’.
3. ‘Bake Small Pizza’.

Each of the above activities requires different capacity, surface area, of the oven
depending on the size of the pizza. Accordingly, the oven could support an activity
if the number of unoccupied units and adjacent rectangles will satisfy the activity’s
requirement.

Water Tank case:

The unit of capacity in the water tank case could be the rate of consumption of the
resource “water” by different activities at a specific time period.

1. Figure49.

Fadi George Fadel: M.A.Sc Thesis 117

CHAPTER 5: Capacity Recognition

The difference between the two cases is that in the water tank case, the capacity is
primarily defined in terms of the rate of consumption of water in the tank. How-
ever, in the pizza oven problem, the capacity of the resource is not solely defined
by the number of unoccupied unit rectangles, which is a non-indicative capacity
unit, but also by the layout of pizzas in the oven. On the other hand, the two cases
are similar in the fact that the capacity of each resource is variable in a sense that
the capacity is dependent on the activities supported by the resource. In the pizza
oven case the capacity of the oven is dependent on the number and type of pizzas
already supported by the oven. Similarly, the capacity recognition of water tank is
dependent on the supported activities. The phenomenon of the capacity of a
resource being state dependent is referred to as a variable capacity case.

FIGURE 48 Pizza oven example

-

Medium
Small

/\ N

Small Small Small

] Unoccupied
\ / & units of capacity

In figure 48 a top view of a pizza oven shows that five activities are currently using
the oven occupying a number of unit rectangles. In this example a small pizza
occupies nine unit rectangles while the medium one occupies sixteen unit rectan-
gles. The unoccupied unit rectangles in the oven is eleven rectangles which could
accommodate another small pizza. However this can not happen due to the layout
restriction. The current layout of the unoccupied blocks does not permit another
pizza to be accommodated into the oven.

Accordingly, the capacity of the pizza oven is not solely defined through the num-
ber of unoccupied unit rectangles but also with other levels such as the layout of
the unoccupied unit rectangles. This is different from the case of the water tank
capacity recognition where the capacity could be determined through only using
the rate of usage by different activities. That is to say, the layout is not a factor in
the water tank case as obviously liquids lack form.

Homogenous vs. Heterogenous activities

FIGURE 49 Indicative vs. Non-indicative levels of recognition
/ (Levels of Capacity recognition)
(Indicative level) (Non‘lndicative Ievel)
determinefs capacity detepeffines ¢ city
through ? thfough
(Unit of capacity) (Unit of capacity) & Unit of capacity

5.5 Homogenous vs. Heterogenous activities

Consider the case where a resource, such as the pizza oven example, that has a
number of non-indicative levels of capacity recognition. A unit rectangle is non-
indicative in capacity recognition, but the same unit could become indicative in the
case where all activities using/consuming the resource are homogenous, as shown
in figure 50.

FIGURE 50 Usage of the oven by Homogenous activities

MHNNN \
é

N

4

Small mall

NZANZA\ NN
/

Small Small Small ;
] Unoccupied
\ / units of capacity

Activities (jobs) could be homogenous if they require equivalent amounts of the
resource or processing or integral multiple thereof. In the pizza oven case, homo-
geneity specifies that each activity occupies the same space requirements (i.e unit
rectangles). In this case, the capacity recognition is reducible to a number which
represents the number of activities the resource can support. Here the layout of the
oven is not a factor any more, in contrast to the case shown in figure 48, as the
maximum number of activities the resource can support is predetermined. On the
other hand heterogenous activities are characterized by having dissimilar require-

Fadi George Fadel: M.A.Sc Thesis 11¢

CHAPTER 5: Capacity Recognition

ments which increases the complexity of the problem making it NP-Hard. In this
case, the capacity recognition process is reducible to a sequencing problem with an
objective that could be to minimize the number of tardy jobs, average tardiness,
average waiting time etc.

As shown in the figure 51 the capacity recognition process depends on whether the
activities, requiring and supported by a resource, are homogenous or heterogenous.

FIGURE 51 Taxonomy of Capacity Recognition

(If the activity(ies) reguiring the resource
&
the activity(ies) supported by the resource

Homogenous Heterogenous
Capacity recognition process is Capacity recognition process is
reducible to a number representing reducible to a single machine
the number of activities that could scheduling problem.

be supported by the resource

The homogenous case is addressed in chapter four and implemented in the Prolog
environment. The heterogenous case is addressed by defining a heuristic for the
sequencing of independent activities on a single machine. The output of the heuris-
tic is a sequence of activities that could be supported by the resource.

5.6 Integer Programming Formulation

Efforts to solve a resource constraint scheduling problem using an integer pro-
gramming formulation have been described in number of papers. Some of the
attempts were to solve non-preemptive scheduling such as [Talbot 82] and [Patter-
son 74] or preemptive scheduling such as [Welglarz 77]. Other efforts were
directed towards preemptive scheduling where activities are described by continu-
ous performance speed-resource functions and discrete time-resource functions
[Slowinski 80].

The capacity problem is viewed as being reducible to the non-preemptive schedul-
ing for activities (jobs) with release times and due dates in a specified resource
time window. The integer programming formulation is applied to the pizza oven
problem for both the homogenous and heterogenous cases with the objective func-

Integer Programming Formulation

tion being to minimize the number of tardy jobs in the time window. Three types of
activities are to use the resource. Moreover, the time window (horizon) will be
divided into discrete time slots to which jobs can be assigned to.

5.6.1 For Homogenous activities

TABLE 2 List of Variables
Variable Description
Xjt = 1; if job j is scheduled to start in time interval £
= (; otherwise
Yjt = 1; if job j is still being processed in time interval
= (; otherwise.

a. time horizon is divided on discrete basis

TABLE 3 Notations
I Notation Description
N number of jobs (activities)
T resource time window
st earliest starting time of job j (release time)
ety latest ending time for job j (due date)
Pj processing time of job j
C total capacity of the resource
] job numberj =1..N
t time intervals t = 0....T%

a. time interval 0, for example, represents a time
interval occurring between [0...1] time points.

Objective function:

As defined in table 2, xj, specifies what is the time slot to which each job is
assigned to start. The objective is to minimize the number of tardy jobs. This is
achieved by maximizing the number of scheduled jobs in the specified time win-
dow.

T N
Maximizez ij, EQ)

1=0j=1

Fadi George Fadel: M.A.Sc Thesis 121

CHAPTER 5: Capacity Recognition

Subject to:

A job has at most one start time.

N
ij, <1 (EQ2)

j=1
for j = 1..N

Each job can not be scheduled before the relative release time.

stj -1

Y x =0 EQ3)
t=0

for j=1..N

Each job can not be scheduled after the latest start time!.

)N (EQ4)

t=etj-pi+1l
for j = 1..N

In the case of homogenous jobs (activities) the capacity is reducible to a number
which indicates the number of jobs that can simultaneously use the pizza oven.
Accordingly, the maximum capacity denoted by C, indicates that the number of
jobs that could start at a specific time point and the number of jobs that can still be
using/consuming a resource are less than or equal to C.

N
Z (x+yp s C (EQ5)

j=1
for 1= 1. T

1. latest start time = etj - pj

integer Programming Formulation

The problem has been defined as being a non-preemptive one. Hence continuity of
the processing times of the activities, supported by a resource, should be ensured
and that is done through the continuity constraints. As defined before yjt denotes
that job j is still in process at that time. The continuity issue is ensured through
defining a series of constraints as specified in equation (EQ 6) through (EQ 7).
The number of these constraints depends on the processing time of the job,
denoted by pj.

Yj(t+1) - Xt =0 EQ6)
[2
®

[]
Yj(t + (pj-1)) "Xt = 0 EQ7)

Hence, the series of constraints for each job must be repeated over all possible
starting times of the job.

for t= st (et;-p)

The series of equations (EQ 6) through (EQ 7) are to be formulated for each job.
forj=1.N

Objective function revisited:

With the current problem formulation, yji variables that are not included in the con-
tinuity constraints will not be constrained to be assigned the value of zero. One
solution is to add more constraints to the formulation or to add all ¥jt variables in
the objective function!.

T N
Maximizez Z (X5~ 0.1 EQY)

t=0j=1

yj variables are placed in the objective function with a negative sign in order to
force all unnecessary Yjt's to zero. A multiplier of 0.1 is used so that the weight it
is reduced in the objective function and will not cancel out the weight of - With-
out the use of the multiplier, the problem solver will neglect solving for Yje as the
objective function is not affected by them, for the case where the processing time
of the job is two time units. This is due to the presence of the continuity constraint

T
1 ie Z Yp = 0 forj = 1.. N congtraints will not be included. The number of these
constraintgs-equal to the number of ¥jt variables that are included in the objective function.

Fadi George Fadel: M.A.Sc Thesis 1zZ3

CHAPTER 5: Capacity Recognition

5.6.2

(¥je+1) - X5t = 0) which will cancel the effect of the corresponding x;; variable in the
objective function. In the case were the processing time of a job is greater than two
time units, then the job will not be scheduled as for each Xy variable there will be at
least two corresponding ¥jt variables hence decreasing the value of the objective
function.

Xjp Yy Integers EQY
0<x,<1 (EQ 10)
o<y, <1 (EQ 1D
-0 <SS 0o (EQ12)
-~ < etj< oo (EQ13)
o S N oo (EQ 14)
~00 < T< o0 (EQ 15)

For Heterogenous activities

In the heterogenous case, the unit rectangles capacity approach will be used. In
other words, the surface area of the oven will be divided into unit rectangles and
each job (activity) will have a requirement in terms of number of unit rectangles
needed. Hence the capacity constraint, (EQ 5), will have to be reformulated but
the rest of the formulation of the homogenous case will be used as is. Accordingly
each activity of the pizza baking activities will have a predefined capacity require-
ments specified in terms of unit of rectangles. Reference to the pizza oven exam-

ple:
* baking a small pizza will require nine units rectangle of capacity.
* baking a medium pizza will require sixteen units rectangle of capacity.
* baking a large pizza will require twenty unit rectangle of capacity.

Integer Programming Formulation

The main issue here is how to divide the surface area of the oven in such a way that
the situation expressed in figure 48 would be avoided.

TABLE 4 List of Variables
Variable Descri;;tion
Xjt = 1, if job j is scheduled to start in time interval ¢
= (; otherwise
Yt = 1, if job j is still being processed in time interval ¢
= (; otherwise.
TABLE 5 Notations
Notation Description
N number of jobs (activities)
T resource time window
st earliest starting time of job j (release time)
et; latest ending time for job j (due date)
Pj processing time of job j
1 requirements of job j in terms of unit rectangles
C capacity of the resource in terms of unit rectangles.
It is the total number of sub divisions
] job numberj=1.N
t time points t = 0....T*

a. time interval O, for example, represents a time
interval occurring between [0...1] time points.

In this formulation a new notation is added, Tis which specifies the needed unit
rectangles for job j. Hence (EQ 5) will have to be changed to add the new notation.

N

er(xj,+ Yo s € (EQ16)

j=1
Jor t = 1. T

Fadi George Fadel: M.A.Sc Thesis 125

CHAPTER 5: Capacity Recognition

5.7 Heuristic approach

5.7.1

Sequencing theory for a single machine has been addressed by a number of
research. For instance, Moore has devised an algorithm for sequencing indepen-
dent jobs on a single machine [French 87] [Nahmias 89]. Also, Fisher and Jaikmar
[Fisher 78] used the same approach to derive a scheduling algorithm for the space
shuttle. The common dominator between the two is that the objective is to mini-
mize the number of tardy jobs and all tardy jobs have equal penalties no matter
how late each job is.

It has already been mentioned that capacity recognition in TOVE varies according
to two cases:

* homogenous activities using/consuming the resource and in that case
the process is reducible to a number which represents the number of
activities that can use/consume the resource at a specified time point.

* heterogenous activities using the resource and in that case the process
is reducible to a scheduling (sequencing) problem of all activities that
requires the resource at a specific time point.

As a demonstration, the pizza oven problem is going to be solved with three types
of activities that require the oven (resource):

1. ‘Bake Large Pizza’.
2. ‘Bake Medium Pizza’.
3. ‘Bake Small Pizza’.

Each activity requires different capacity (surface area) requirements, ready times,
processing times and due dates. The objective is to minimize the number of tardy
jobs as all tardy jobs have equal tardy penalties. The underlying assumption in the
heuristic! is that the total units of capacity of the oven is configured in a way that
no situation could occur were the layout of the pizzas in the oven is an element in
the capacity recognition process (i.e the situation described in figure 48).

Heuristic:

The starting point of the heuristic is borrowed from Moore’s algorithm. Activities
in Moore’s algorithm are sequenced in ascending order due to their respective due
dates and if the addition of job j results in a job being late, the scheduled job with

1. The same as the underlying assumption in the Integer Programming formulation.

Heuristic approach

the largest processing time is marked as late and removed from the sequence. In
the proposed heuristic, activities that could cause any of the constraint violations,
are temporarily considered tardy.

The applied approach is first to build an initial sequence that could contain capac-
ity violations (phase 1), then incrementally enhance the sequence so that a capacity
violation-free sequence could be produce (phase 2-4).

Phase 1: (see figure 53)

The objective of this phase is to build an initial sequence without checking for
capacity violation. Second, find the jobs that are candidates for being the cause of
capacity violations and temporarily discard them from the EDD job sequence.

1.

Find all activities that are to use a resource in a specified resource time
window.

Sequence the activities (jobs) according to a criterion. This criterion
could be: Earliest Due Date (EDD), Shortest Processing Time (SPT),
Critical Ratio (CR) etc. depending on the objective. Since the objective
is to minimize the number of tardy jobs, therefore the used criterion is
EDD.

Select the first job in the sequence.

Schedule the chosen job without checking for capacity violation. The
job is scheduled according to its earliest starting time to according to its
latest start time.

Update the job sequence (EDD sequence)l.

Is that the last job in the sequence? If NO go to step 3 otherwise con-
tinue.

For each time point in the resource time window, check the capacity
constraint.

Any capacity constraint violation? If NO go to step 12 in phase 2, oth-
erwise continue.

Find the first capacity violation.

. Choose a job in the current sequence and temporarily discard it from

the current sequence. The choice criteria is:
the job with the highest capacity requirements OR

the job with the longest processing time AND the job with the highest
capacity requirement52 OR

1. i.e remove the scheduled job from the sequence

Fadi George Fadel: M.A.Sc Thesis 127

CHAPTER 5: Capacity Recognition

* among the jobs currently occupying the resource, discard the job with
the longest processing time.

11. Gotostep 7.

Phase 2: (see figure 54)

The objective of this phase is to try to schedule the jobs, that were discarded from
phase 1, so that to meet their respective due date.
12. Any discarded jobs? If NO then go to step 22, otherwise continue.

13. Find the end time of the last scheduled job in phase 1 (milestone).
(figure 52)
14. For all discarded jobs calculate the Critical Ratio (CR), where

CR = Pj / (etj - milestone) EQ1D
pj — Processing time of job j

et ~ end time of job j
In other words, CR is just the ratio between the processing time and the available
time for the job before being tardy.
15. Sequence the jobs with 0 < CR <= 1, in descending order according to
the CR value.
16. Choose the first job from the sequence, and try to schedule it starting
from the milestone.
17. Any more jobs in the CR sequence? If Yes go to 16, otherwise continue
to phase 3.

FIGURE 52 Milestone

New resource time window
IR O

[I T T] 1 Resource
]Tixpe

|Last scheduled job]»f Window

in level 1

i.e milestone

Phase 3: (see figure 55)

2. Jobs are discarded according to their respective processing time. Jobs with the longest processing times are
the ones that are discarded. The highest capacity requirement criterion is used whenever ties occur in terms of
jobs to be discarded.

Heuristic approach

For the jobs with CR <=0 and CR > 1, try to schedule them before the milestone
so that they could meet their respective due date.
18. Any unscheduled jobs? If No then go to END, otherwise continue.

19. Try to schedule the job fulfilling both the capacity and temporal con-
straints.

Phase 4: (see figure 56)

If there are any jobs unscheduled, then these jobs are going to be scheduled, as
tardy jobs after the scheduled job in the sequence.

20. No unscheduled jobs? If Yes go to 22, otherwise continue.

21. schedule the jobs after the last scheduled jobs.

22. END.

FIGURE 53 Sequencing Heuristic: Phase 1

Find all jobs
Sequencing Criterion
Y ~
Sequence according to _ m
a criterion ‘—_"—.

- Select first &ob in the Assignment Criterion
- séquence e

* early start time "

Assxg n the job to a time
slot &ccording to a criteria

late start time /

Tt job?
Yes

Check the capacity over
all resource time window

Violates
capacity constraint?

Choice Criterion

Yes
Highest Capac1ty
Find first capacity requ ement
constraint violation Longest processmg
Discard a job from the
sequence according to s Longest
* a criterion & processmg ume
Highest Capacity
requirement

Fadi George Fadel: M.A.Sc Thesis 129

CHAPTER 5: Capacity Recognition

FIGURE 54 Sequencing Heuristic: Phase 2

Any discarded
jobs?

Yes

For jobs with0 < CR <= 1
Try to schedule starting
the milestone

FIGURE 55 Sequencing Heuristic: Phase 3

Any unscheduled
jobs?

Try to schedule to meet

the capacity and temporal
constraints

Last checked
jobs?

FIGURE 56 Sequencing Heuristic: Phase 4

i

Schedule the rest of jobs
jobs after the last End
scheduledob.

5.8 Probiem generation

The four versions of the heuristic were tested over two sets of data; in the first set
(Set A), the starting times were based on Poisson distribution. Two values of
lambda [;] (inter-arrival times between jobs) were used: 3.75 and 7.5 minutes.

Computational results

These values are based on actual data from McDonald’s corporate store located in
Scarboroughl. Lambda = 3.75 minutes is for the dinner period (5:30 pm to 8:00
pm) while lambda = 7.5 minutes is for the lunch period (11:30 am to 2:30 pm). The
processing times, end times and the capacity requirements of each job are assumed
to be independent of the starting times and were drawn from a uniform distribu-
tion.

The second set (Set B) of data consists of 110 test problems which were specially
designed to explore the performance of the heuristic by varying the problem size
and the capacity requirements while keeping the starting processing time constant.
Seven of these test problems have a known optimal solution obtained through
using CPLEX mixed-integer programming optimizer. The rest of the test problems
are used to compare the four versions of the heuristic.

5.9 Computational results

Four versions of the heuristic were tested against the two sets of data. The four
heuristics are compared on the basis of the number of best solutions generated (i.e
the number of times that each heuristic generated the least number of tardy jobs). If
a tie occurred between more than one version, then each tied version is counted as
the generator of the best solution. The average solution times are presented for the
second set of data only as the number of jobs is controlled while for the first set,
the number of jobs can not be controlled; this is because the data generated is
based on a Poisson distribution. The heuristic was implemented in the C program-
ming language.

Four versions of the heuristic were tested for the purpose of experimenting on the
different choice criteria in the heuristic. In the first phase of the heuristic, the
assignment of jobs to time slots is based on their:

* earliest start time

* latest start time

Moreover in the case when having capacity violations, the job’s discarding crite-
rion could be either:

® highest capacity requirement among the activities at the time of viola-
tion or

1. Reference to Yan, Gary, Corporate store manager, McDonald’s

Fadi George Fadel: M.A.Sc Thesis 131

CHAPTER 5: Capacity Recognition

® highest capacity requirement and the longest processing time among
the activities at the time of violation.

The four versions of the heuristic are presented in table 6.

TABLE 6 Four versions of the heuristic

Version Assignment of jobs Criteria of discarding jobs
ESP Earliest start time Longest processing time
ESPR Earliest start time Longest processing time

&

Highest capacity requirement
LSP Latest start time Longest processing time
LSPR Latest start time Longest processing time

&

Highest capacity requirement

5.9.1 Testing against set A data

Table 7 presents the results of comparing the four versions of the heuristic based
on the number of time each heuristic generated the best solution. This set con-
tained 65 test problems.

TABLE 7 Performance of the four versions with respect to set A
Frequency of generating best
Heuristic solutions
ESPR 58
ESP 1
LSPR 63
LSP 0

The above table shows that the LSPR version generated the best solutions, then
followed by the ESPR version.

Computational results

5.9.2 Testing against set B data
Results of testing against 110 problems are:

TABLE 8 Performance of the four versions with respect to set B
Frequency of generating best
Heuristic solutions
ESPR 23
ESP 41
LSPR 62
LSP 39

Accordingly, LSPR version generated the highest number of best solutions. As for
the solution times, they are almost equal as presented in the following table.

TABLE 9 Solution times of the four heuristic
Solution times in seconds
Heuristic for 93 jobs for 136 jobs
ESPR I 0.3 0.7
ESP 0.6 0.9
LSPR 0.3 0.6
LSP 0.5 0.8

Moreover, the four versions were first tested against problems with known optimal
solution (see appendix D). For these seven test problems, LSP and LSPR! versions
generated the corresponding optimal solution.

Based on the above results, the different versions sorted by the number of tardy
jobs they generate, starting with the version with the least number of tardy jobs,

are:

bl o M

LSPR
ESPR
ESP
LSP

1. LSPR version did not generate the optima solution only in one problem out of the seven problems tested.

Fadi George Fadel: M.A.Sc Thesis \ 133

CHAPTER 5: Capacity Recognition

The preferable heuristic sequences the jobs according to latest start time, and dis-
cards jobs with the longest processing time and with the highest capacity require-
ment. Jobs with the longest processing time are discarded at time instances were
capacity violations occur. Furthermore ties are broken by discarding the job that
requires the highest capacity of the resource.

5.9.3 Integer programming approach
The integer programming formalism was also tested for three problems for prob-
lem sizes of 10, 20 and 40 jobs. It should be mentioned that problems with size 20
and 40 were created a duplicate of the 10 jobs probleml. That is to say, the 20 jobs
problem is created from two problems of size 10°. The formulation was tested
using CPLEX mixed integer optimizer developed by CPLEX Optimization Inc.
The same three problems were tested using ESP heuristic and the results are repre-
sented in table 10.
TABLE 10 1.P solution vs. ESP heuristic version
CPU Tardy Solution Tardy
Jobs Time (sec) | Jobs time (sec) | Jobs
10 0.28 1 0.0 3
20 22.63 2 0.0 6
40 464478 @ 4 0.1 12

a. actually it took more than 10 hours real
time.

From the results, it is clear that the heuristic does not generate the optimal solution
in these test cases. In the 10 job size problem the difference between the two
approaches is two tardy jobs. However, the difference keeps on increasing linearly
and that is mainly because of the way the 20 and 40 jobs problem were set up. As
mentioned these problems are just a concatenation of a number of 10 size jobs
problem. As expected the solution time of the IP increases exponentially while the
heuristic solution time does not. For the 40 jobs problem, it was solved in 0.1 sec-
onds, on average, using the heuristic while it took around an hour CPU time to
solve the same problem in CPLEX. Actually it took around ten hours real time to
solve the 40 jobs problem.

1. this approach is only used for the testing of the IP.

2. i.e the starting times of the 10 jobs size problem are incremented by a factor then appended to the original
10 jobs problem. The time horizon of the appended jobs overlaps with that of the original 10 jobs.

Conclusion

5.10 Conclusion

What is presented in this chapter is the capacity recognition process. The purpose
of including this process is to give the TOVE the ability to set a capacitated sched-
ule. In Tove, capacity of a resource is the maximum set of activities that a resource
can support which makes the resource dependent on the activities being supported
and the ones requiring the resource. The tackled problem is proved to be NP-hard
in the strongest sense.

A capacitated modelling approach and a heuristic for resource allocation are pre-
sented. The capacity recognition process is reducible to a number in the case where
all activities requiring and supported by the resource are homogenous. On the
other hand, if the activities are heterogenous then the process is reducible to a sin-
gle machine scheduling problem. A scheduling heuristic is suggested for the appli-
cation in the heterogenous case and its performance is compared to that of LP
formalism.

With the capacity recognition process, that includes the resource ontology defined
in chapter four, a planner/scheduler is able to reason about allocation of shared
resources. That is achieved through reasoning whether a resource can support mul-
tiple activities or not, through use of resource ontologyl, and then the activities
that require the resource are sequenced with the objective of minimizing the num-
ber of tardy jobs.

1. e.g functional/physical divisible

Fadi George Fadel: M.A.Sc Thesis i35

CHAPTER 6 Competency Questions

This chapter presents a set of competency questions that should be answered by
any manufacturing reference model. These questions are stratified so that each
level refers to functionality supported by previous levels. Through the
redesigning of the short shaft scenario, a list of competency questions is
presented to demonstrate the use of the ontology in inter-disciplinary
communication.

6.1

Introduction

In chapter one a number of criteria for the design and evaluation of an ontology are
introduced: generality, competency, consistency, perspicuity, granularity, trans-
formability, efficiencyc scalability and extensibility. The competency criterion is
chosen as it defines the functional requirements of the model. The competency
questions included in this chapter integrate questions that are addressed by the
enterprise models and planning/scheduling efforts reviewed in chapter two in addi-
tion to new set of questions. As in [Fadel & Fox 94] the obvious way to demon-
strate competency is to define a set of questions that can be answered by the
ontology. The set of questions represents the basic accesses a problem solver
makes to the representation.

Section 6.2 presents a scenario demonstrating the use of the ontology in answering
queries in a collaborative engineering environment. It also contains questions
required by the resource manager in the Integrated Supply Chain Management envi-
ronment.

6.2 A scenario of inter-disciplinary communication

In this chapter a scenario in which communication among a product development
team 1is presented as an example of competency questions that could be asked
using the resource ontology. Team members are assumed to be from different dis-

Fadi George Fadel: M.A.Sc Thesis 136

A scenario of inter-disciplinary communication

ciplines working on the development of a product and hence need to coordinate
their actions.

The scenario presented herein deals with the design of a clip reading lamp as pre-
sented in TOVE testbed. The specific case involves the process of redesigning a
part of the clip reading lamp - short shaft. The clip base is assumed to be no longer
available from supplier, hence the choice of a new clip base initiates a set of design
changes in the short shaft design.

The outline of the scenario presented in figure 57, specifies that the scenario is ini-
tiated when the purchasing manager (PM) sends a message to the resource man-
ager (RM) informing him of the unavailability of the needed clip base; purchase
manager (PM) indicates that a similar item is available. The RM in turn sends a
message to the design manager (DM) informing him of the changes, upon which
the design of the short shaft is altered. The resulting modified design and the pro-
cess plan of the shaft is returned to the RM. The RM asks the scheduling manager
(SM) about the possibility of scheduling the production of the clip reading lamp
with the modified short shaft design. Finally the SM informs the RM that produc-
tion can be scheduled and a message to buy the clip base is relayed to the purchase
manager.

FIGURE 57 An example of inter-disciplinary communication

Design Manager Scheduling Manager

| (DM) (SM) :
\ s T
Here is the new process
plan. /
Here is the new
schedule
Schedule the
new order
/
Any design
changes?
/
New Short Arm _ Resource Manager
- Buy Short Arm (RM)
Purchasing Manager

(PM)

The scenario presented in table 11 shows:

Fadi George Fadel: M.A.Sc Thesis 137

CHAPTER 6: Competency Questions

¢ the sender of the message
® the receiver, if any,
* message sent.

The presented scenario focuses on the manufacturing of the short shaft only and
the respective activity cluster is presented in figure 58 and figure 591,

1. It is assumed that TOVE factory has an order of two clip reading lamp and that the scenario is going to be
on producing two modified short shaft.

A scenario of inter-disciplinary communication

activity cluster: fabricate short shaft

FIGURE 58

7 eamT A[quase

1 eore” Ajquese

Zplow

ipjom

* yeys uoys

7 vare T Ajqumuesse”osn

1 vareA[quose osn

Zpiowasn

Iplow T asn

syounfst

Yeys T LoYsTI0) eare |quosse” 10 $?

yeys uoys ereouqej oid |-

sosned

sounfsip

YeysTLoys 10J yeys T Hoys pjow 10759

1JBYS HoYs ™ 10) T 1Jeys T LIoyS ownsuod

syounfuod

sa[qeud

1JByST MoysTa1BdUqR] S8

139

Fadi George Fadel: M.A.Sc Thesis

CHAPTER 6: Competency Questions

FIGURE 59 activity cluster: fabricate short shaft cont'd

abricate_shox_ causes
shaft »

pro_fabricate_short_shaft

cgAjuncts

pro_or_assembl_area_for_
short_shaft

disjuncts

release_asembly_area_1

release_assembly_area_2

pro_or_mold_short_shaft_
pro_short_shaft for_short_shaft
disjunct
release_mold2 release_mold2

'

short_shaft

[/ mold1

|| mola2

| ey

asembly_area_2

Based on the scenario presented in figure 57, the highlight of the communication
between departments is presented in table 11. This shows where the ontology is
used in the process of sharing information between different departments.

A scenario of inter-disciplinary communication

Competency questions: short shaft redesign scenario [questions are highlighted}

TABLE 11

v 71
d | T
N
ooccco AN
aL
]

¢ eoreT {jqmosse
017 PARIUWIOD LIAsSE o' % 1 eare~Ajquesse ‘zpjow ‘Iplow Junuos WS

LG4
TV 10} 9[qejIeAe s 7 eare” Ajquiasse $aK ‘evl ‘I ®are” Alquiosse)io) "o[qelreas & WS

L
'1V 10} s|qeieAe st [“eare”A|quiasse sax ‘[1v] ‘1" eareA1quiasse)ioy ~siqerreae -; WS
‘2liqowr are gpjou ‘I pjows 2 (zp1ownepiqow (1 pjow)syiqous -; WS
6CLL 1B TV 10} jqejreae s1 zpjow 594 ‘(T'T1L “[ev] “[prow)ioy~sjqeqreae -4 WS

Suiseaou;
'7d], Joye urseanur sy Aypoedes s, Iplow = Jjnsay "(msay ‘zd L, ‘jpjowr)pusn -; WS
'7d], 1e s1s1%3 Zpjow 834 (zdL “1zprowpsixar -; WS
Ananoe 1y Auo 1o} sjqe[reae st [pjow [1v] ‘14 Tev*1v] “Ipiownoy~aqereat - WS
'1d.1 18 s181%3 [pjow S9X o (141 “ypromysixan -; WS
(PRINPAYdS aq Japlo mau oy ue)) WS Wi
210j3q paonpoxd j0u sem og1oads ags yim
Wwal sty se g™ yeys Hoys aonpoid 0) osey ON .Amst«:mltoﬁvcaoﬁu - Wa
ued ssacod Suimoyjog aip Jum sat WY Wa
¢PsT 3q 11 Ued *a5eq dijo maN Wa WY
oseq dipp maN WY Wd
JudWwo) Jamsue abessay || ianjacey lopuag
8,Waysg

141

Fadi George Fadel: M.A.Sc Thesis

CHAPTER 6: Competency Questions

Table 11 presents the queries required to fulfill the order of the clip reading lamp
while the coming section presents examples of such communication showing how
the query is answered by the use of other ontology. For each query, the Prolog
axiom presented This is followed by a list of terms and axioms required to
answer the query.

s= == How much of the resource short_shaftt is available now? (What is the
available capacity of resource short_shaft at time tp1?)

j2- available_capacity(short_shaft, tpl, Amount, Unit).
Requires

_ . lCalculating the I
—# |?- rp(short_shaft, tpl, Q, object). stock level
. Requires

L> |?- rpl(short_shaft, tpl, Q, L, object).

Q = 12
L = 231; 12 objects are available
Q =2 at location 231 & 2 objects
L = 323: are available at location
no 323

Q = 14

Unit = object;
no

- | 7~ total committed (short_shaft, TQ,tpl, object).

Calculating the
Requires total commitment

L» |?- committed_to(short_shaft,A,S,Q,TP,object).
A = fabricate short_ shaft 2
S = es_fabricate_short_shaft 2

Q = 2
Tp = tpl;
no
TQ = 2;
no
Amount = 12 l12 are the uncommitted objectsl
Unit = object; of the resource

no

The hub of planning and a scheduling activities is to be able to reason about the
availability of the resource. Reasoning about the availability can not be performed

1. A query in Prolog is proceeded by “?-”, A variable is represented as a capital letters.

A scenario of inter-disciplinary communication

unless there exists a representation of the requirements, nature of usage, commit-
ment, constraints and resource amounts.
5% 5% [s there enough capacity for the performance of “fabricate_short_shaft_1”
and “fabricate_short_shaft_2” activities on the “moldl” resource in the next
hour? (Given a number of activities requiring the resource moldl, what is the
capacity of the resource during a time period?)!

}?- available_ for (moldl, [fabricate_short_shaft_1,
fabricate_short_shaft_ 2], pd3, Result).

1. available_for requires the availability of the following terms: functional divisible, physical divisible, unit of
measurement, has current activity, consumption and use specification, total committed, resource point, simul-
taneous use restriction and time ontology.

Fadi George Fadel: M.A.Sc Thesis 143

CHAPTER 6: Competency Questions

Requires
division of is used
to reason about the
sharability of the
resource. (i.e used in
divisible term)

| ?- functional division_of (R, moldl).
no.

Lk physical_division_ of (R2, moldl).

R2 = rectangle_1;
no

| - unit_of measurement (moldl,Uni t_ID,U,
fabricate_short_shaft_1).

Unit_ID = rectangle_ 1

U = rectangle_1;

no

] 2 - functional_divisible(moldl,fabricate_short_shaft_l).

yes

| 2~ use_specification(moldl,fabricate_short_shaft_l, pd1l,
30,30, recatngle_1).

Q = 30;

no

| 7~ has_current_activity(moldl, List, tp).

has_current activity is used to
to find out if the activities
requiring and supported by the
resource are homogenous/
heterogenous

Requires

|?- committed to{(moldl, A, s, -+ tpP, rectangle 1).
A = fabricate short_shaft 2

S = es_fabricate_short_shaft_2;

no

I?*enabling_state(fabricate_short_shaft_Z,tp,Status).
Status = enabled;
no

List = assemble clip reading lamp, assemble hand;

no
| ?~ total committed (moldl, TQ, tp, rectangle 1) .

TQ = 30;

no

| - rpl(moldl, Q, tp2, rectangle 1).
Q = 150;
no

Ho-| 2~ simultaneous*use_restriction(fabricate_shirt_shaft_l,
A2, moldl).
no.

simultaneous use restriction is used so that
ne two confliction activities can use the
resource gimultaneously

g CEmMporal ontology (e.g before, after)

A scenario of inter-disciplinary communication

Result = [fabricate short_shaft_1];

no the resource has the capacity to only support
fabricate short shaft 1 activity

Assignment of resources (or alternative resources) is a crucial function in a manu-
facturing environment. This is used in case of resource unavailability, for example,
due to a machine breakdown or delay in a shipment.

s & Can resource mo1d2 be used instead of resource mo141? (Is mold2 an alter-
native resource of mold1 for activity fabricate_short_shaft?)

|?- alternative resource(moldl, fabricate short_shaft, List),

member_ of (mold2, List).

Requires

activity state ontology.

}?- role(R2, fabricate short_ shaft_ 1, tool).
yes the alternative resources has to have I

same role

List = [mold2];

no mold2 is an alternative resource for the
activity fabricate short shaft 1

A smooth production requires the availability of resources at the time of produc-
tions. Resources should be replenished whenever before the stock reaches a certain

limit.
= = Is the stock for short_shaft in danger of being depleted
between now and the end of the week?!
|?- rp(short shaft, Q, Tp). Tp > now, Tp < tp333, Q < 20.
Q = 15
Tp = tp23;
Q = 10
Tp = tp200;

no

1. i.e will the resource point fall below then a certain value

Fadi George Fadel: M.A.Sc Thesis 145

CHAPTER 6: Competency Questions

Another important function in planning is to be able to explode the bill of material
of a resource.

s¥ & What are the components of resource clip_reading lamp? (What

are the physical component of the resource?)

| 2~ physical component_of (R, clip reading lamp, A, Type).
Requires

t::|?~ physical_division_of (R2, clip reading lamp).
|?- role(R2, fabricate_short shaft_ 1, tool).

each physical division should not share the
same role with the original resource

R = clip_base

A = assemble clip_reading_lamp
Type = physical;

R = short_arm

A = assemble_clip reading lamp
Type = physical;

R = small_ head

A = assemble clip reading lamp
Type = physical;

no

6.2.1 Resource Manger inquiries

This section contains further examples of some queries that are asked by the
resource manager as described in the Integrated Supply Chain Management project
(ISCM) developed in the Enterprise Integration Laboratory (EIL). The project is
being developed for the purpose of evolving the next generation of supply chain
integrating functions such as scheduling, production planning, order entry, fore-
cast, inventory management. These functions span needed steps for the fulfilling
an order, from the order receival to order shipment. The resource manager answers
queries regarding resource availability, loading level, alternative resources and
storage related queries. Here some more examples of such queries.

* What are the inactive resources?’

1. i.e which resource has not been used or consumed by any activity in a certain duration

A scenario of inter-disciplinary communication

[?- \+ committed_to(R, A, _, Ti,_,_)., EP(ti) > 20.
A = mold spacerl;
A = mold_socket seat 2;
no
* Any material shortfall?!
}?- rp(v_spring, Q, tpl), Q < 0.
no

* Which components/parts is assigned to activity A to produce resource
R??
|?- consumption_spec(clip base, assemble_clip base,

+_+«_), physical component_of (R2, clip_base), produce(S,

assemble clip base), produces (S, clip_base).
R = v_spring
R2 = clip_ base
8 = produce_state_for clip base
A = assemble clip base;
R = round nut
R2 = clip base
S = produce state_for clip base
A = assemble clip base;
R = bolt4
R2 = clip base
8 = produce_state for clip base
A = assemble clip_base;
R = v_pad
R2 = clip base
S = produce_state_ for clip_base
A =~ assemble_clip_ base;
* Whatis R used for?

1. i.e negative inventory
2. the resource produced in this case is the clip base

Fadi George Fadel: M.A.Sc Thesis 147

CHAPTER 6: Competency Questions

|2~ (use_specification(clip base, A, _,_, ,_): consump-
tion_spec(clip_base, A, _,_.,_,_)). role(clip base, A,
Role)) .

A = asgemble clip_base
Role = raw material;
no
¢ Is the incoming resource to be sent to storage or to be processed?
|?- to_storage(R, Tp, Result) .?
Result = to_ storage;
no
* Where can R be stored?
}?- use_spec(v_spring, store v_spring, _, _, _}.
use_spec (Area, store v_spring, _, _, _),
subclass_of (Area, work_cell).
Area = locl;
Area = Loc4;
no
* Can R be stored in S over time interval #?
* Can R be stored in different location?

* What is the capacity trend of resource R? Is it increasing, decreasing,
steady or undetermined?

}?- trend{oven, tp9% Result).
Result = increasing:;
ves
¢ IfIuse M of X now, canI also use N of R later?
|?- available_ for(water, [heat_upl., pd3,),
available for(water, [heat_up]l, pd4,_).
ves
® What is the load profile of resource R at time point tp1 and tp3?

|?- has_current_activity({oven_1, Act_listl, tpl),

1. to_storage(R, TP, Result):-
committed_to(R, A, S, Ti, Q,U),
((before(Tp, Ti), Result = to_storage,!); Result = to_be_processed,!).

A scenario of inter-disciplinary communication

has_current_activity(oven_1, Act_list2,tp3).
Listl = [bake_small_pizza, bake_large_pizza]
List2 = bake_large pizza;

no

What is the activity history of resource R?

[?- activity history(assemlby area_ 1, Act_list, tp2).
Act_list = [assemble clip reading lamp, assemble_ hand];
no

Is the resource R used/consumed by activity A on continuous or dis-
crete basis?!

| ?2- usage_mode (assembly_area_1, assemble hand, Type).
Type = discrete;

no

| ?- usage mode (water, drinking, Type).

Type = continuous;

no

6.2.2 For future work

This section contains resource related competency questions that are more applica-
tion dependent; cost accounting, quality are examples of such applications. Such
efforts are being developed in TOVE and they include the definition of cost and
quality ontology/axioms.

Is resource R above loading limits?

Which resources have exceeded their loading limit?
From which stock(s) activity A is covered?

Who are the suppliers for resource R?

What is the priority of purchasing of resource R?

Is there a constraint for moving R from a to b?

What is the reject rate for resource R (part/structure)?

What is the lead time for arrival time for resource R (part/structure)?-
sportation assist for resource R?

1. Updating the resource point requires the ability to reason about the mode of usage. The term specifies
whether the resource is consumed or used on discrete or continuous basis. The usage mode requires the nature
of usage and unit of measure terms.

Fadi George Fadel: M.A.Sc Thesis ' 149

CHAPTER 6: Competency Questions

* Which resource/part to replace resource/part R in structure S?
* What is the breakdown specification of resource R?

* Isresource R out of order?

* Which resource is out of order?

®* What is the cause of failure for resource R?

®* What is the history of failure of resource R?

* What is the average repair time for resource R?

* What is the expected time for next breakdown of resource R?

* What is the expected time left for resource R to be phased out? (date of
validity)

* When is the next replacing cycle for resource (machine/tool) R?

* What is the reject rate for resource R (part/structure)?

* What is the lead time for arrival time for resource R (part/structure)?
* To which order the resource R belongs to?

* Ifresource R is delayed/breaks down/... which other activities that will
be affected?

® What is the inventory unit cost rate for part A or structure S?
* What is the cost accounting results for part A or structure S?

6.3 Conclusion

This chapter presented a set of competency questions that should be answered by
any manufacturing reference model. Defining enterprise reference models has
been the focus of a number of efforts. However these efforts have provided mini-
mal means of evaluating the models. Out of the evaluation criteria defined in chap-
ter one, the competency criterion checks how well a model support problem
solving by its ability to answer a set of pre-defined questions. Through the rede-
signing of the short shaft scenario, a list of competency questions are presented to
demonstrate the use of the ontology in inter-disciplinary communication. It also
defines the range of tasks supported by the ontology. The chapter also presented
some application dependent competency questions that should be addressed by
future work.

CHAPTER 7 Conclusion

Planning involves selecting and sequencing activities to achieve a goal while
scheduling involves assigning resources to activities over a time interval so that
they obey temporal constraints and capacity limitations of shared resources. The
complexity of planning and scheduling is determined by the degree to which activ-
ities contend for resources. These systems have to be able to reason about avail-
ability and allocation of shared resources to activities and that requires the ability
to reason about the properties of resources when used or consumed by an activity.

In our attempt to define generic ontologies, including a resource ontology, we have
faced the following technical problems:

The first problem that we have faced is that there is no agreed on meth-
odology for ontology definition. There is no crisp set of steps and
requirements to be followed. This has led us to develop the methodol-
ogy, adopted in this thesis, which links ontology development with the
competency questions. Moreover not much research has focussed on
how to evaluate and validate such efforts.

We are striving towards defining a “generic” resource ontology to be
reusable by different applications in “any enterprise”; however this has
proven to be difficult and problematic. The scope is too abstract and
unbounded resulting in the definition of numerous terms in the ontol-
ogy with no definite vision of their usefulness. Based on this, the focus
of formalization has changed from a general enterprise to a manufac-
turing enterprise. The goal has become the definition of a generic

Fadi George Fadel: M.A.Sc Thesis 151

CHAPTER 7: Conclusion

resource ontology applicable in a manufacturing environment. In other
words, we must define an ontology to be used by planning and schedul-
ing activities to reason about shared resources.

* With the focus changing to manufacturing, the question becomes what
to represent. What is the minimal and most critical information
required to represent a resource? How is this information going to be
represented? Are they going to be represented as assertions or as axi-
oms? Addressing the issue of what to represent we have integrated
terms available in existing modelling, planning and scheduling efforts
with new ideas. In this way, we ensure that the resource ontology will
be able to represent problems addressed by other efforts.

In our methodology, we have chosen the competency requirement as the focal
point of the effort. Competency questions represent the starting point of the ontol-
ogy development, as well as defining the types of tasks that the representation can
be used in. The driving element in the ontology creation is the definition of a set of
stratified questions, which in turn initiates the process of defining a simple and
primitive ontologies. Based on such ontologies, more complex terms are defined.
Hence, the process becomes a continuous iterative process between the ontology
and competency modifications [figure 60].

FIGURE 60 The used methodology

Simple &
A> ontology
C & ;! 4

Competency
E questions g

As mentioned, evaluation and validation of such efforts is problematic. Through
the development of the resource ontology, we think we have fulfilled these require-
ments:

More
Ontology

* generality is satisfied as the ontology is used by a number of different
ontological efforts: planning, scheduling, cost accountancyl, quality2
and purchasing3 ontology.

1. Currently being developed in TOVE environment [Tham & Fox 94]
2. An on going endeavor within TOVE is to create quality ontology [Kim & Fox 94]

3. Nothing has been applied in this domain through the laboratory however there is an on-going research at
IBM 1o develop purchasing ontology [Grosof 92].

competency is satisfied through the definition of questions that has to
addressed by the model.

granularity is satisfied through the implementation of the definitions
and constraint in Prolog.

perspicuity is satisfied with the availability of the descriptive method-
ology.

The resource ontology, together with the activity-state, time and causality ontolo-
gies constitute the basis or the core ontology for on-going projects in the Enter-
prise Integration Laboratory; efforts such as: formalization of quality, cost, time-
based competition ontology. Finally, it has furnished similar efforts with the meth-
odology that is described before.

I have presented a synopsis of my accomplishments in my attempt to present a
generic resource ontology that are sharable and reusable across various enterprise
domains ranging from cost accounting to scheduling. In the next section I will be
presenting recommendations for future related work.

Recommendation for future work:

Continuous appraisal:

Continuous appraisal of the ontology as a result of the development of
application dependent ones is a must. (ie the inclusion of application
dependent ontology in the generic model if these ontologies are shared
by a number of activities)

Genericity of the model:

The 1ssue that is raised is concerning how generic the ontology is? The
test of genericity is determined only by the consistent use of the ontol-
ogy in a variety of applications. This is achieved through the use of the
Integrated Supply Chain Management environment (ISCM). “The sup-
ply chain is a set of activities that span enterprise functions from the
ordering and receipt of raw materials through the manufacturing of
products through the distribution and delivery to the customer” [Fox et
al 93b]. The goal of this project is to create an integrated environment
between different enterprise functions in order to operate efficiently
and effectively and to increase the market response time. Different
agents require different information regarding resources. The “schedul-
ing agent” requires information about resource availability; “design

Fadi George Fadel: M.A.Sc Thesis 153

CHAPTER 7: Conclusion

agent” requires information on design dimension; “resource agent”
requires information concerning bills of material explosion informa-
tion.

Also the attention should be directed towards the Design In the Large
(DIL) project to represent its requirements. Although number of the
described terms are applicable to DIL environment, but not much work
has been done in this area. One of the issues addressed in the “DIL”
context is detailed part description for example; this could have infor-
mation that might be included in the generic resource ontology.
Capacity recognition process:

The process includes a sequencing heuristic for one machine that sup-
ports multiple activities/jobs. The heuristic is used for independent
activities. Future work related to the heuristic should include the capac-
ity heuristic in a temporal constraint propagation algorithm. Initial
research on the subject is presented in appendix B.

Aggregation of resources:

The notion of aggregation/grouping of resources, on the basis of over
lapping capacity for example, is not considered in this endeavour. This
is because grouping in such manner is application dependent and
should be defined by different applications (agents). However, again if
it turns out that there exist a number of resource aggregation(s) that is
generic, then they should be added. The same is true for hierarchial
classification of resources. The “logistics agent” might define an
“industrial plant” as consisting of a group of “work areas” which in
turn consist of “work cells”; a “work cell” has “machines” and “tools”
as constituents.

Evaluation of the model with respect to the rest of the criteria:

The resource ontology was not tested against: transformability, scal-
ability, extensibility, and efficiency criteria. Therefore future work
should be directed towards testing these criteria. Transformability, scal-
ability and extensibility criteria can only be evaluated through the con-
sistent use of the representation in a variety of applications. The
efficiency criterion is problematic as it has been shown that there is
more than one way to represent the same knowledge and each way does

not have the same complexity to answer queries. This is an area which
requires the focus of more future work.

Fadi George Fadel: M.A.Sc Thesis 155

APPENDIX A Ontology in other models

This appendix compares the three reference models: IWI, CIM-OSA and PERA,
with respect with the evaluation criteria defined in chapter one. Moreover the
reviewed literature, are checked whether they contain the defined ontology in
this thesis, or whether they contain similar notions.

A.1 Ontology in the other efforts

TABLE A.l

Legend:

X Not available

v/ Available

5= See table footnote

& Could be available if added to the model

@ Difficult to achieve

Could not be checked

Resource ontology in other efforts

Ontology Wl 32‘& PERA® || SIPE || CYC || KRSL || OPIS || Gerry
Resowrceknown |V | X | X v |v | X X X
Taxonomic classifica- v v v 4 v v 4 v
tion =C

Role b 4 x x X) 4) 4) 4 x
Physical Divisionof ||/ | | ¢/ v v v v v
Functional Division of || X x x } 4 } 4 b 4 b 4 X
Temporal Divisionof || X) 4 X b 4 b 4 b 4 b 4 b 4

TABLE A.l Resource ontology in other efforts

Legend:

X Not available

¢ Available

55 See table footnote

% Could be available if added to the model
@ Difficult to achieve

&= Could not be checked

CiM-
Ontology Wi OSA®? || PERA® || SIPE || CYC || KRSL || OPIS || Gerry
Mobile resource X b 4 b 4 b 4 X v v b 4
I e
Stationary resource b 4 x x b 4 b 4 Xw=e | v b 4
Alternative resource v v x x x X v v
Temporal divisible = b 4 x b 4 X x X x
Physical divisible X '4 4 X x Xt | x X
Functional divisible x b 4 x b 4 b 4 X v X
Physical component of || ¢/ v v v v v v v
=8 s h
Functional component f| X x b 4 x v b 4
of
Unit of measurement 4 v v v v Vi | 4
i
Measured by X v Xk | X b 4 v 4 v
Nature of usage b 4 b 4 x X b 4 X b 4 b 4
Resource point v v Xm | o v v v v
! [B © e P
Resource point encap- || X v Xw=i | X X v v v
sulation T
Usage mode b 4 X X v x X b 4 X
= 8
Resource exist Il X X x b 4 4 X x X
Consumption specifica- || ¥/ v X' | v b 4 v 4 4
tion et wu = W =X
Use specification v v X | g/ X v v v
==Y =2 o ab EFae
Fadi George Fadel: M.A.Sc Thesis A-2

Ontology in the other efforts

TABLE A.l

Legend:

X Not available

v Available

¥ See table footnote

% Could be available if added to the model

@ Difficult to achieve
= Could not be checked

Resource ontology in other efforts

am

CIM- :
Ontology " Wi OSA®? || PERA® || SIPE || CYC || KRSL || OPIS || Gerry
Production specifica- v v x v x v v v
tion
Release specification b 4 X b 4 x x x X x
Resource configuration || ¢/ X b 4 X) 4 b 4 v v
Simultaneous use x = b 4 v b 4 v X v
restriction s ad sae
Committed to 4 =) 4 v) 4 i |y 4
B af

Total committed X | = b 4 v x X |V v
Has current activity) 4 XS | X AN X v X v

= ah (e ai =)
Available for activities || X x X x x v b ¢ x

ek
Available capacity x x x b 4 x v ; v x
=
il

Trend recognition u b 4 x b 4 x x x X x
Activity history X X~ | X v b 4 x b 4 v

=

a. Although a detailed resource view is not included in any of the
references, similar ontology are abstracted from constructs in
the function and information view. The resource behind not
including the resource view in any of the AMICE documents is
because up to date the resource view and it constructs have not
yet been developed [CIM-OSA 91a]

b. Purdue [PERA 91] & [IFAC/IFIP 93] does not contain neither
a resource modelling methodology nor a resource model. Pur-
due’s architecture so far describes the life cycle of creating a
reference architecture. The model is descriptive. Based on that
most of the compared ontology are not included in the model.

c. Through using “is-a” relation.

d. An object is mobile if it is defined as being “Transport Capac-
ity”.

e. An object is stationary if it is not defined as being “Transport
Capacity”.

f. Not explicitly defined but it is implied if the object is defined as
being “sharable”.

g. Through the part and structure relationship.

h. Through the use of comprises slot in the object class construct
defined in the function view. Furthermore, the same information
could abstracted using the related objects slot the enterprise
object view construct defined in the information view.

i. Defined as slot in the required capabilities constructs.

j- Defined as “unit-type” & “measured-by” slots in the resource
frame definition.

k. Although it is an essential and basic concept in any model but
since none of the PERA’s document contain any information
on the issue, it is mentioned that the model lacks the term.

1. Through the “Inventory level data” slot in the “PART” entity.

m. Same as footnoote k.

n. Through using “level” predicate.

o. Defined as “quantity” slot in the resource frame definition.

p. Amount of a resource is calculated from the resource’s activity
history.

g. Same as footnoote k.

r. through “unit” relation.

s. Only discrete applications are represented.

t. The consumption specification is implied through accessing
“quantity” slot on “PRODUCTION ORDER?” entity.

u. Through the use of “required capabilities” construct.
v. Same as footnoote k.
w. Defined in the “Put on” operator

x. Achieved through accessing “allocation-event” or “de-alloca-
tion-events” or “production-events” attributes in the resource
frame definition.

y. The use specification is implied through accessing:

D “PERSONNEL ASSINGMENT” relation between “PERSONNEL”

and “EQUIPMENT GROUP” entities,

D “OPERATION ASSIGNMENT” relation between “OPERATION” and

“EQUIPMENT GROUP” entities

» “TOOL ASSIGNMENT” relation between “OPERATION ASSIGN-

MENT™ and “TOOL USE”.

Fadi George Fadel: M.A.Sc Thesis

Ontology in the other efforts

z. Through the use of “required capabilities” construct.

aa. Same as footnoote k.

ab. Same as footnote w.

ac. Same as footnoote x.

ad. A resource, by definition, can not be shared by two activities
ae. Same as footnoote x.

af. Implied when a resource is declared as a resource with respect
to an activity.

ag. Defined through “allocate-consumable-resource” event. This
event would check if the resource is available or not and com-
mit the resource. It was not mentioned how this would apply
on reusable resources.

ah. Not explicitly defined, however this information is acquired
through accessing “MACHINE LOADING?” relation.

ai. Through checking which activity the resource is linked to.

aj. Done through accessing “Resource usage Records” which
provides meta information about which activities (events) that
are supported by the resource.

ak. KRSL does not contain capacity assessment theory. If a
resource is defined as being sharable then the resource can sup-
port more than one event (activity). This is explicitly stated
using “is-a” relation that defines an object as being “sharable”.
However a resource could be checked whether it is available or
not through accessing the value of “quantity” slot in the
resource frame.

al. Done through accessing “Resource usage Records™ through
accessing the value of “Available Capacity” slot in the resource
frame.

am. Same as footnoote ah.

APPENDIX B Capacitated temporal
constraint propagation

This appendix presents initial research on defining a capacitated temporal
constraint propagation.

B.1 Introduction

In chapter five, a methodology for defining a resource’s capacity is defined. A
sequencing heuristic is presented that sequences “independent” jobs on a single
machine that can support multiple activities simultaneously.

This appendix presents initial research for including the capacitated sequencing
heuristic. This is done through the use of a heuristic due to [Chu & Ngai 93] for
embedding temporal constraint propagation in machine sequencing for job shop
scheduling. Unlike the sequencing heuristic, defined in chapter four, the new heu-
ristic (Capacitated Temporal Constraint Propagation for Machine Sequencingl)
sequences activities on a resource(s) taking into consideration the precedence con-
straint between activities inaddition to resource constraints.

B.2 About the heuristic

The heuristic presented in figure B.1 and figure B.2 defines how activities are cho-
sen to be scheduled. Moreover, based on the selection of an activity, the capacity
and temporal constraints are propagated.

1. CTICP

Fadi George Fadel: M.A.Sc Thesis B-1

The CTCP heuristics is as follows is as follows:

Phase 1:

1.
pA

10.

Phase 2:

11.

12.

Identify the starting time window for all activities.

Let [S] be a list of the activities that have no preceding activities and
the activities with all preceding activities are scheduled.

.. Choose activity X from [S] with the EDD.

Find all activities with earliest starting time less or equal to the earliest
finish time of activity X (i.e Sto(Y) < Et,(X)). Put the activities in [C].
Select an unmarked (i.e unscheduled) activity Z from [C], and assign to
it the earliest starting time (St,(Z)).

Propagate the capacity constraint as a result of activity Z using a
resource over the whole duration of the activity.

If the capacity constraints are unsatisfied!, then mark the activity Z as
and go to step S else continue.

Propagate temporal constraints.

If an empty window start is formed during the temporal constraint
propagation, then the current sequence of activity Z is infeasible. Mark
the activity and go to step 5 else, if the sequence is still feasible, then
continue.

If all activities are scheduled, then go to phase 2 (step 11), else go to
step 2.

If there are marked activities, then schedule them after the last sched-
uled activity in phase 1, else continue.

End of heuristic.

1. i.e infeasible sequence.

B-2

About the heuristic

FIGURE B.1 CTCP - phase 1

Set up start time windows for all activities

+ Activities with
- Find activities in the next stage of scheduling. Zgﬁgﬁc:;i 81%
Put activities in [S} all preceding
+ ones are
scheduled

Choose an activity from [S] with EDD = Activity X

Find all activities Y with St(Y) <= Et,(X)
e in C]
y

Select an unmarked activity Z from [C] and assign
St.(2)

check capacity satisfaction over Duration of activity Z

New scheduling Stage

Capacity(ti)

Mark activity Z <= Requirement(Z) Mark activity Z

Propagate temporal constraints (if activities have
temporal relation i.e dependent)

Y

Y Empty s
window

N

All activities
scheduled

Go to phase 2

* i.e no unmarked activities

FIGURE B.2 CTCP - phase 2

Ay marked
activities?

Schedule the rest activities after the last
scheduled activity.

Fadi George Fadel: M.A.Sc Thesis

APPENDIX C Code listing

This appendix contains the prolog and C code implemented in the thesis. The
prolog code contains the axioms and the ground terms defined in the ontology
chapter. The C code is the programming environment inwhich the sequencing
heuristic is implemented in.

C.1 Sequencing heuristic

/*
Module: Capacitated Sequencing heuristic {see chapter four}
Author: Fadi George Fadel
Purpose: Sequences independent jobs on a single resource that has the capa-
bility to support multiple jobs simultaneously
Comment: Four detailed information of the heuristic used, check chapter four.
This version is the ESR one. Since difference between this version
and the rest is in the assignment criteria, therefore it is going to be
pointed out in the code what has to be changed in each version.
* */
#include <stdio.h>
#define begin |
#define end }
#define True 1
#define False 0

#define Max_N 160 /* Number of jobs */
#define Max_t 200 /* time span of N resource */
int i,J,kNt,
Sequence_Is_Done; /* Flag for the completion of te sequence */

struct job |

int job_no; /*JObID ¥/

int r_job; /* Ready Time */

int d_job; /* Due Date */

int p_job; /* Processing Time */

int c_job; /* Capacity Requirements */

int status; /* G if not scheduled & 1 if scheduled %/},

struct job all_job[Max_NJ; /* Array of structure of jobs */

struct scheduled_job {
int job_no;
int st_job;
int et_job;
int status;
int tm_period;};

struct scheduled_job all_scheduled_job[Max_NJ; /* Array of structure of jobs */

struct EDD {
int job_no;
int EDD;
int st;};
struct EDD EDD_sequence[Max_N1;

int Conflict_job[Max_N7;
struct Resource_Capacity |
int amount; };

struct Resource_Capacity Current_Resource_Capacity[Max_t];

/* Main */
main (argc, argv)

int argc;
char *argv[];
begin /* Main */
[H e Initailize */
for (k = 0; k < N;k++)
{ EDD_sequence[k].job_no = k+1;
EDD_sequence[k].EDD = (;}
for (k = 0; k < ;k++) /* Initialize Current_Resource_Capacity */
{

Current_Resource_Capacity[k].amount = 150;}

Fadi George Fadel: M.A.Sc Thesis

for(k = 0; k<N; k++) |
all_scheduled_job[k].status = 0;
all_job[k].status =0;}
for(i = 0; i<N; i++) Conflict_job{i] = 0;
Sequence_Is_Done = False;
[¥ommme e Initailaze */
Read_Input (argc, argv), /* Calling Read_data function */
EDD_Stack(EDD_sequence, N); /* Sequence the jobs according to EDD */

while(!Sequence_Is_Done) /* Try to sequence all jobs to minimze the number of */
/* tardy jobs ¥/
{
Schedule_w_EDD(); /* Schedule according to the EDD */
Check_Capacity(); /*Find the capacity used at all time periods */
Capacity_Conflict(); /* Check violation of capacity */
!

CR_Disregarded_jobs_2(); /* Schedule the disregatded jobs according to CR after */
/* the first phase of sequencingis done.
- this function:
: sequence jobs with O<= CR <= 1 after the milestone
: sequence jobs with CR<=0 and jobs not scheduled from
0<= CR<=1 by checking if there is any available time slot
that can not violate the capacity constraint */
end /* Main */
[¥ cmmmmemmeeeen ReadInput - Function */
Read_Input(argc, argv)
/* Phasel:
This function reads the input file. The first line of the data file should contain the
number of jobs then the length of the time window considered. The rest of the lines

should contain the job number, ready time, due date, processing time and capacity
requirement of each job */

int argg;
char *argv(];

begin /* Read_Input */

int ij.k;
FILE *fp, *fopen(), *in_file;
if (arge == 1) |{

printf(*Usage: CCTSP datafile.\n");
exit(1);}

if((in_file = fopen(*++argv, “r”)) == NULL) {
printf(“Can’t open %s\n”, *argv);
fclose(fp);
exit(1);}
/* Reading data */
fscanf(in_file,”%d %d”,&N,&t);
for(i=0;1i<N;i++) {
fscanf(in_file,”%d %d %d %d %d”, &all_job[i].job_no, &all_job[i].r_job,
&all_job[i].d_job,
&all_joblil.p_job,
&all_jobl[i].c_job,
&all_job[i].status);} /* fori */
fclose(in_f3ile);
end /* Read_Input */
/¥ oo Read_Input -End */
¥ mmememmeeeae EDD_Stack -function */
/* Phase 1 cont’d:
This function sorts jobs according to EDD rule ¥/

EDD_Stack()

begin
intij,ktemp ;
int swapped;

/* getting all due dates from all_job[x].* to be saved in EDD_sequence[x].* */
for (j=0; j<N; j++)

{EDD_sequence[j].job_no = all_job[j].job_no;

EDD_sequence[j].EDD = all_job[j].d_job;}

/* Sort the jobs according in ascending order of the EDD */
i=0;
swapped = True;
while ((i < (N-1)) & swapped){

j=N-I;

swapped = False;

while (j > i){

if (EDD_sequence[j].EDD < EDD_sequencefj-1].EDD)

Fadi George Fadel: M.A.Sc Thesis

{
swapped = True;
temp = EDD_sequence[j}.EDD;
EDD_sequence[j].EDD = EDD_sequence[j-1].EDD;
EDD_sequence[j-1].EDD = temp;
temp = EDD_sequencefj].job_no;
EDD_sequence[j].job_no= EDD_sequence[j-1] job_no;
EDD_sequence[j-1].job_no= temp;
} /* for */
i=j-L
| /* while j */
i=i+];
| /* while i ¥/
end /* EDD_Stack */
[¥omomoemeen EDD_Stack- End */

/* Phase 1 cont’d;

This function just assigns jobs to time slots in the resource horizon without check-
ing capacity */

Schedule_w_EDD()
/* Scheduling of jobs according to EDD without checking Capacity */
begin

int ij.k;

int go_to,temp1,temp2,temp3;

char chr;

for(i=0; i<N; i++) {
/* 1. Go through EDD_sequence array & schedule each job in its time window.

Note: the status should be checked so that for the capacity recheck, all the deleted
jobs are excluded. ’

2. calculate et of the job & save it in all_scheduled_job[i].et _job*/
/% 1,2%/
/* Find job index */
templ = EDD_sequence[i].job_no;
go_to = templ - 1;
/* After the first phase jobs that disregarded should be removed from the sequence *
if(all_job[go_to].status == 1) /* go_to -> index */
{all_scheduled_jobfi].job_no = 0;
all_scheduled_jobl[i].st_job = 0;

all_scheduled_jobfi].et_job = 0;}

if(all_job[go_to].status == 0) |
all_scheduled_jobli].job_no = EDD_sequenceli].job_no;
all_scheduled_jobli].st_job = all_job[go_to].r_job;
all_scheduled_job[i}.et_job = all_scheduled_job[i].st_job + all_job[go_to].p_job;
} 7* if(all_job[go_to].status == Q)*/

/*
For ESSR & LSPR versions the above “if” statement is going to be replaced y
the following:
if(all_job[go_to].status == 0) |
all_scheduled_jobli].job_no = EDD_sequence[i].job_no;
all_scheduled_jobl[i].st_job = all_job[go_to].d_job;
all_scheduled_jobli].et_job = all_scheduled_job{i].et_job -
all_job[go_to].p_job;
} /* if(all_job[go_to].status == 0)*/

*/
} r* fori*/
end /* Schedule_w_EDD */
[¥emmemeeaen Schedule_w_EDD - End------------eveuuv */
[¥ e Check_Capacity -function */

/* Phase 1 cont’d:
This function checks for capacity violation of the resource over a specified resource
time window */

Check_Capacity()
begin
int time_now,sequence_no,i, j;
int go_to,templ,temp2,temp3,temp4;

sequence_no = 0; /* Intializing */

/* Assigning the jobs to time periods instead of tm points in all_scheduled_job */
for(i = 0; i < N; i++)
{ all_scheduled_jobl[i].tm_period = all_scheduled_jobfi].st_job;]

/* Capacity check for time periods */
for(i = 0; i<N; i++)|
templ = EDD_sequence[i].job_no;

Fadi George Fadel: M.A.Sc Thesis C-6

go_to = templ - I, /* index is based on the EDD_sequence[i].job_no *
if(all_job[go_to].status == 0) /* go_to->i¥
{
temp2 = all_scheduled_job[i].tm_period; /* starting period of the job */
temp3 = (all_job[go_to].p_job + temp?2) - 1; /* Ending period of the job */
for(j = temp?2; j < (temp3+1); j++){
/* Update the Resource Capacity over the processing time period of job */
Current_Resource_Capacity{j].amount =
Current_Resource_Capacity[j].amount - all_job[go_to}.c_job;
| /* forj */
} 7* if(all_job{i].status ==0) */
} /* fori*/
end /* Check_Capacity*/
[¥ e Check_Capacity -End */
I e Capacity_Conflict -function */
/* This function finds the period(s) inwhich capacity is violated */

Capacity_Conflict()
begin
int i,j,k,c,templ, temp,go_to;
int swapped,
no_violation,
req,
p_req,
for_job;

no_violation = True;

req = 0;/
/* variable used to find the job with the highest capacity requirement*/
p.req = 0; /* varaiable to find the highest procsessing time*/

for_job=0;temp=0;i=0;

while((no_violation) && (i<(t+1))) /* while capacity is not violated */
{if(Current_Resource_Capacity[i].amount < 0){
/* checkimg if the capacity is violated */
no_violation = False;
for(j=0; j<N; j++) /* find the jobs using the resource at the time of violation */
{ /* Find the job scheduled at time of violation */
if((all_scheduled_job[j].tm_period <= i) &&
(all_scheduled_jobfj].et_job >= (i+1)))

go_to = (all_scheduled_job[j].job_no) - 1;

/* index of the job to use in all job structure */

/* Finding: - the job with the highest usage requirement in terms or

number of blocks OR

- the job with highest requirement AND longest pj */

if (((all_job[go_to].c_job >=req) &&
(all_job[go_to].p_job >p_req)) ||
(all_job[go_to].c_job > req))

/*
For the LSR & LSPR only above “if” condition is going to be replaced
by:
if((all_job[go_to].p_job >p_req))

*/

{
req = all_job[go_to].c_job;
_req = all_job[go_to].p_job;
for_job = all_scheduled_job{j].job_no;
} /* if(all_job[go_to].c_job > req) */
} /* if(all_scheduled_job[j].tm_period <= i)*/
} /7% forj */
all_job[for_job-1].status = 1;
/* Disregard the job from the sequence i.e change the status of the job */
} 7* if(Current_Resource_Capacity[i].amount < 0) */
i=i+];
} /* while */

if(no_violation) {
Sequence_Is_Done = True;
printf(“\n*****> The Sequence is Done\n™);
printf(*\n all_scheduled_jobl[i] -> Schedule_w_EDD \n™);

for(i = 0;i<N; i++)
printf(*job = %d st_job = %d et_job = %d status= %d\n",
all_scheduled_job[i}job_no, all_scheduled_job[i].st_job,
all_scheduled_job{i].et_job, all_job{(all_scheduled_job[i].job_no)-1].status);
printf(*“\n Current_Resource_Capacity[i] ->\n™);
printf(“ \n™);
for(i = O;i<t; i++)
printf(*“period = %d Current_Resource_Capacity = %d\n” i,

Fadi George Fadel: M.A.Sc Thesis C-8

Current_Resource_Capacity[i]);
} /* no_violation*/

if(!Sequence_Is_Done) |
for (k = 0; k < t;k++)
/* Initialize Current_Resource_Capacity so that next phase could use the same
structure*/
{ Current_Resource_Capacity[k].amount = 150;}
} 7* 1Sequence_JIs_Done */
end /* Capacity_Conflict ¥/

R Capacity_Conflict -End */
[¥ e CR_Disregarded_jobs_2 - Start-------~---vmmemm */
/*Phase 2 & 3 & 4:

This function schedule the disregarded jobs, from phase 1, according to “C™ritical
“R™atio after the first phase of sequencing is done.

- this function:
: sequence jobs with 0<= CR <= 1 after the milestone
: sequence jobs with CR<=0 and any unscheduled jobs with 0<= CR<=1 ¥/

CR_Disregarded_jobs_2()

begin
int i, j, k, L, T, go_to, milestone, loc_in_EDD, o, swapped, temp, st, et, st2,
st_counter, END, reset_st, satisfied, not_at_this_tp, tardy, tardy_counter,
unsequenced_counter, done, available_period, slack, dummy_st_counter, LS;

float homar;

struct p_cr |
int job_no;
float JCR;
int status; }; '
struct p_cr p_cr_job[Max_NJ;
/* Contains jobs with (+)ve & <= 1 CR at the milestone */

int p_cr_no, /* p_cr_no-1:index to the no of jobs in p_cr_job[N] */
O_CT_no; /* o_cr_no-1:index to the no of jobs in o_cr_job[N] ¥/
float CR;

satisfied = True;
not_at_this_tp = False;

/* Initialize p_cr_job & o_cr_job */
for(i=0; i<N; i++)
{ p_cr_job[N].job_no = o_cr_job[N].job_no = 0;
p_cr_job[N]JCR = o_cr_job[N].JCR = 10000;
_cr_job[N].status = o_cr_job[N].status = 1; /* i.e a disregarded job */
} /¥ fori*/

p_cr_no =o_cr_no = 0;
/* 1.. Get the end time of the last scheduled job in phase one (milestone) */
milestone = -1;
for(i=0; j<N; j++)
{
if(all_scheduled_job[j].et_job > milestone)
milestone = all_scheduled_job[j].et_job;}

/¥ 2.. Find disregarded jobs ie the ones with all_job[].status ==
3..Save in: a.. p_cr_jobif CRis (+)ve & <=1
4.0_cr_jobif CRis (-)ve &> 1%/

_cr_no = o_cr_no =0;
CR = 0.00000;
for(j=0; j<N; j++)
{ ,
go_to = EDD_sequence[j].job_no - 1;
[¥2.%
if(all_job[go_to].status == 1)
{

if{milestone == all_job[go_to].d_job)

{ /* if true then CR is infinity then save in o_cr_job[o_cr_no] */
o_cr_jobfo_cr_no).job_no = all_job[go_to].job_no;
o_cr_job[o_cr_nol.JCR = -10000;
o_cr_job[o_cr_no].status = 1;
o_Ccrno=o_cr_no+l;

} /* if milestone */

else /* if milestone \= all_job[go_to].d_job */

{

CR = (float) (all_job[go_to].p_job)/(all_job[go_to].d_job - milestone);

if((CR > 0.00000) && (CR <= 1.00000))

{p_cr_job[p_cr_no].job_no = all_job[go_to].job_no;
p_cr_job[p_cr_no].JCR = CR;

Fadi George Fadel: M.A.Sc Thesis C-16

p.cr_job[p_cr_no].status = 1;
P_Cr_no++;
} 7*ifCR >0 */
else
if((CR > 1.00) || (CR < 0.00))
{
o_cr_jobfo_cr_no].job_no = all_job{go_to}.job_no;
o_cr_job[o_cr_nol.JCR = CR;
o_cr_job[o_cr_no].status = 1;
O_CT_no++;
} /¥ifCR> 1%/
} /* if milesyone \= all_job[go_tol.d_job */
} 7* all_job[got_to].status == 1 ¥/
} /* for j */

/¥ 4.. Sort the jobs, in p_cr_job, according in descending order of the good CR*/
temp=0; homar=0.0; i = 0; swapped = True;
while ((i < (p_cr_no-1)) & swapped)
{j=p_cr_no-1;
swapped = False;
while (j > i){
if (((p_cr_job[j}.JCR > p_cr_job[j-1]JCR)&&
(all_job[p_cr_job[j].job_no-1].p_job))]|
(p_cr_job[j].JCR > p_cr_job[j-1].JCR))

swapped = True;

homar = p_cr_job[j].JCR;
p_cr_job[j].JCR = p_cr_job[j-1]JCR;
p_cr_job[j-1}JCR = homar;
temp = p_cr_job[j].job_no;
p_cr_job[j].job_no= p_cr_job[j-11].job_no;
p_cr_job[j-1].job_no= temp;
temp = p_cr_jobl[j].status;
p_cr_job[j].status= p_cr_jobl[j-1].status;
p_cr_job[j-1].status= temp;

} 7*if */

i=i-§

} 7* while j */

i=i+1;

} /* while i */

C-1

/* 5.. schedule the jobs with 0<= CR <= 1 starting from the milestone */
for(j=0; j<p_cr_no; j++)
{go_to = p_cr_job[jl.job_no - 1;

satisfied = True;

not_at_this_tp = False;

/* 6.. scheduling disregarded jobs starting from the last ET in the sequence

{milestone)*/

for(T=milestone; T<(t+1);T++)

{satisfied = True;

while((satisfied) && (Inot_at_this_tp) &&

((T+all_job[go_to].p_job)<=all_job[go_to}.d_job))

/*7.. Continue as long as the resource can still hold the job */

{ for(k=T; k<(T+all_job[go_to].p_job); k++)

/* 8.. checking if the resource can hold the resource for the whole job
processing time */

{if{Current_Resource_Capacity[T].amount < all_job[go_to].c_job)
{ satisfied = False;}

if(k > all_job[go_to].d_job)
{satisfied = False;}

} /* for k*/

if(satisfied) not_at_this_tp = True;

if(satisfied)

/* 9.. scheduling the job */

{for(o=0; o<N; o++)
if(EDD_sequence[o].job_no == all_job[go_to}.job_no)

loc_in_EDD = o;

all_scheduled_job[loc_in_EDD].job_no = all_job[go_to].job_no;
all_scheduled_job[loc_in_EDD].st_job = k - all_job[go_to].p_job
all_scheduled_job[loc_in_EDD].et_job = k;
all_job[all_scheduled_jobfloc_in_EDD].job_no-1].status = 2;
p_cr_jobl[j].status = 2;

/* 10.. Update Capacity */
for(L=T; L < (T+all_job[go_to].p_job); L++)
{ Current_Resource_Capacity[L}.amount =

Current_Resource_Capacity[L].amount all_job[go_to].c_job;}

}/* if satisfied */
}/* while */

Fadi George Fadel: M.A.Sc Thesis

C-12

}/* for T */
}/*for j*/

/* 11.. append the job from p_cr_job, that has not been scheduled, to the o_cr_jobf{].
i.e check all_job[] ==1%

for(i=0; i<p_cr_no; i++}{
if (p_cr_job[i].status == 1){
o_cr_job[o_cr_no].job_no = p_cr_job{i].job_no;
o_cr_job[o_cr_nol.JCR = p_cr_job[i].JCR;
o_cr_job[o_cr_no].status = 1; /* indicating being scheduled in the 3rd phase */
0_CT_no++;
} 7 if ¥/
} 7* fori*/

/* 12.. sort o_cr_job according to ascending order*/
i = 0; swapped = True;
while ((i < (o_cr_no-1)) & swapped){
j=o_cr_no-1;
swapped = False;
while (j >){
if (o_cr_job[j].JCR > o_cr_job{j-1]JCR)
{ swapped = True;
temp = o_cr_job[j]JCR;
o_cr_job[jJ.JCR = o_cr_job[j-1].JCR;
o_cr_job[j-1]JCR = temp;
temp = o_cr_job[j].job_no;
o_cr_jobl[j].job_no= o_cr_job[j-1].job_no;
o_cr_job[j-1].job_no= temp;
temp = o_cr_job][j].status;
o_cr_job[j].status= o_cr_job[j-1].status;
o_cr_job[j-1].status= temp;
J7*if ¥/
i=i-L
} /* while j */
i=i+l;
} /* while i ¥/

/¥ 13.. Phase 3:
try to schedule jobs in o_cr_job from st to the et of the job */
for(j=0; j<o_cr_no;j++){

C-13

go_to = o_cr_job[j].job_no -1;
satisfied = True;
st = all_job{go_tol.r_job;
et = all_job[go_to].d_job;
available_period = all_job[go_to}.d_job - all_job[go_to].r_job;
slack = available_period - all_job[go_to].p_job;
dummy_st_counter = slack + 1;
LS = all_job[go_to}.r_job + dummy_st_counter;
T=st;
done = False;
while((!done) && (T<LS)){
st2 = T+all_job[go_to].p_job;
i=T;
st_counter = T,
/* 14.. check if the resource can support the job */
satisfied = True;
while((satisfied) && (i<st2)){
if(Current_Resource_Capacity[i].amount < all_job[go_to].c_job)
satisfied = False;
i++;
} /* while satisified*/
if(satisfied) done = True;
T++;
} /7* while !done */

/* 15.. scheduling the job if the capacity isn’t violated*/

if(satisfied) |

for(o=0; 0<N; o++)
ifEDD_sequencefo] job_no == all_job[go_to].job_no)

loc_in_EDD = o;
all_scheduled_job[loc_in_EDD].job_no = all_job{go_to].job_no;
all_scheduled_job[loc_in_EDD].st_job = st_counter;
all_scheduled_job[loc_in_EDD].et_job = st_counter +
all_jobf{all_scheduled_job[loc_in_EDD].job_no-1].p_job;

all_job{all_scheduled_job{loc_in_EDD].job_no-1].status = 3;
o_cr_job[j].status = 3;

/* 16.. Update Capacity */
for(L=st_counter; L < (st_counter+all_job[go_to).p_job); L++)
{ Current_Resource_Capacity[L].amount =

Fadi George Fadel: M.A.Sc Thesis

C-14

Current_Resource_Capacity[L].amount -all_job[go_to].c_job;
} /* for L */

} /* if(satisfied) */
} /* for j */

/* 17 .. find the last et of the job */

milestone = -1;

for(j=0; j<N; j++)

{ if(all_scheduled_jobfj].et_job > milestone)

milestone = all_scheduled_job[j].et_job;}

/* 18 .. Phase 4:

sequence the unscheduled in any order after the last sequenced job from the
previous phases*/

for(3=0; j<o_cr_no; j++)
{ if{o_cr_job[j].status == 1)

{

go_to = o_cr_job[j].job_no - I;
satisfied = True;
not_at_this_tp = False;

/* 19.. scheduling disregarded jobs starting from the last ET in the
sequence (milestone)*/
for(T=milestone; T<(t+1);T++)
{ satisfied = True;
while((satisfied) && (!Inot_at_this_tp))
/* 20.. Continue as long as the resource can still hold the job */
{ for(k=T; k<(T+all_job[go_to].p_job); k++)
/* 21.. checking if the resource can hold the
resource for the whole job processing time */
| if(Current_Resource_Capacity[T].amount < all_job[go_to].c_job)

{satisfied = False;}
} /* for k*/
if(satisfied) not_at_this_tp = True;
if(satisfied) {

for(o=0; 0<N; o++)
if(EDD_sequencefo].job_no == all_job[go_to}.job_no)
loc_in_EDD = o;
all_scheduled_job[loc_in_EDD].job_no = all_job[go_to].job_no;
all_scheduled_job[loc_in_EDD].st_job = k - all_job{go_to].p_job;

C-15

all_scheduled_job[loc_in_EDD}.et_job = k;
all_job[all_scheduled_job{loc_in_EDD].job_no-1].status = 4;
o_cr_job[j].status = 4;

/* 22.. Update Capacity */
for(L=T; L < (T+all_job[go_tol.p_job); L++)
{ Current_Resource_Capacity[L].amount =
Current_Resource_Capacity[L].amount -all_job{go_to].c_job;
} 7* for L */
}/* if satisfied */

}/* while */

} * for T */

} /* if o_cr_job[] */

} /* for j */

printf(“\n\n Capacitated machine sequencing........ \n");

printf(*“\n Current_Resource_Capacity[i] -> Disregarded_jobs - tm_period\n™);
printf(* \n"™);

for(i = O;i<t; i++)

printf(“period = %d Current_Resource_Capacity = %d\n”,

i,Current_Resource_Capacity[i]);

tardy_counter = 0;

unsequenced_counter = 0;

for(i = G;i<N; i++)

{ printf(*job = %d st_job = %d et_job = %d status= %d Tardiness = %d\n”,
all_scheduled_job{i}.job_no,
all_scheduled_job[i].st_job,
all_scheduled_job[i].et_job,
all_job[(all_scheduled_job[i].job_no)-1].status,
tardy = all_job[all_scheduled_jobl[i].job_no-1].d_job -
all_scheduled_job[i].et_job);

if(tardy < 0) tardy_counter++;
if(all_scheduled_job[i].job_no == 0) unsequenced_counter++;
} /* fori*/

printf(“\n\n Conclusion \n");

printf(*\n\n.../ %d job(s) attempted \n”,N);

printf(*.../ %d job(s) sequenced with %d tardy job(s) \n”,

N-unsequenced_counter-tardy_counter,tardy_counter);

if(unsequenced_counter > 0)

Fadi George Fadel: M.A.Sc Thesis C-16

{
printf(*../ %d job(s) not sequenced because the\n” ,unsequenced_counter);

printf(* resource window could accommodate all jobs\n”);

}
end /* CR_Disregarded_jobs_2 */

C-17

C.2 Sample data file

The first line contains the number of jobs (N) and the resource time window (T). The rest of the
lines contain the job number, ready time, due date, processing time and capacity requirement of

each job

540
135120
20460
326220
401120
513160

Fadi George Fadel: M.A.Sc Thesis

C-18

APPENDIX D Experimental results of the
sequencing heuristic

A number of randomly generated test cases (110 cases) were used to test the
sequencing heuristic. This appendix presents the results of these test cases.

D.1 About the test cases

The four versions of the heuristic were tested over two sets of data; in the first set
(Set A)I, the starting times were based on Poisson distribution. Two values of
lambda [»] (inter-arrival times between jobs) were used: 3.75 and 7.5 minutes.
These values are based on actual data from McDonald’s corporate store located in
the Scarboroughz. Lambda = 3.75 minutes is for the dinner period (5:30 pm to 8:00
pm) while lambda = 7.5 minutes is for the lunch period (11:30 am to 2:30 pm). The
processing times and the capacity requirements of each Job are assumed to be inde-
pendent of the starting times and were drawn from a uniform distribution.

The second set (Set B) of data consists of 109 test problems which were specially
designed to explore the performance of the heuristic by varying the problem size
and the capacity requirements while keeping the starting processing time constant.
Seven of these test problems have a known optimal solution obtained through
using CPLEX mixed-integer programming optimizer. The rest of the test problems
are used to compare the four versions of the heuristic.

1. tables D.2 through D4,
2. Reference to Yan, Gary, Corporate store manager, McDonald’s
3. tables D.6 through D.11.

‘D-1

Four versions of the heuristic were tested for the purpose of experimenting on the
different choice criteria in the heuristic. In the first phase of the heuristic, the
assignment of jobs to time slots is based on either:

¢ earliest start time or
® latest start time of each job

Moreover, in the case when having capacity violations, the job’s disregarding cri-
terion could be either:

* highest capacity requirement among the activities at the time of viola-
tion or

* highest capacity requirement and the longest processing time among
the activities at the time of violation.

The four versions of the heuristic are presented in table D.1.

TABLE D.1 Four versions of the sequencing heuristic

Version Assignment of jobs Criteria of disregarding jobs
ESP Earliest start time Longest processing time
ESPR Earliest start time Longest processing time

&

Highest capacity requirement
LSp Latest start time Longest processing time
LSPR Latest start time Longest processing time

&

Highest capacity requirement

The experimental results are presented in tables D.2 through D.11.The tables
include the number of tardy jobs generatedl. In table D.6 the optimal solution of a
number of problems is presented. The optimal results are obtained as a result of
applying the integer programming formulation in CPLEX which is mixed integer
optimizer developed by CPLEX Optimization Inc. However, obtaining the optimal
solution using the optimizer is impractical as it takes around ten hours to solve a 40
job problem. Tables D.6 through D.8 include the solution time of a number of the

1. For data set B, the tables include the duration elapsed in solving a problem using one of the four versions
of the heuristc.

Fadi George Fadel: M.A.Sc Thesis : D-2

tests performed, while the rest of the tables specify only the number of tardy jobs
as a result of using the different versions of the heuristic.

TABLE D.2 Experimental results SET A

A=3.75
Tardy Tardy Tardy
#of Tardy jobsin | jobsin | jobsin
jobs jobsin | ESP LSPR LSP
ESPR
1 31 12 15 12 15
2 54 29 34 29 134
3 48 24 30 24 30
4 44 22 27 22 27
5 40 17 20 17 20
6 46 21 27 21 27
7 50 27 27 27 34
8 41 20 34 20 25
9 58 31 25 31 40
10 |} 40 18 21 18 21
11 |] 44 22 30 22 30
12 |} 31 12 14 12 14
13 |} 64 36 4] 36 41
14 I 50 27 33 27 33
15 || 52 26 33 26 33
16 {] 51 27 33 27 33
17 || 38 18 23 18 23
18 |} 44 19 21 19 21
19 |j 46 22 27 22 27
20 |j 60 33 39 33 39

TABLE D3 Experimental results SET A - cont'd
ra=1.5
Tardy | Tardy | Tardy

#of Tardy jobsin | jobsin | jobsin
jobs | jobsin | ESP LSPR LSP

"ESPR

21 || 18 4 4 4

22 || 24 7 8 7

23 || 32 11 13 11 13

24 || 29 9 8 9 8

25 127 10 11 10 11

26 || 24 8 8 8 8

27 || 27 11 12 11 12

28 |1 19 6 5 6

29 {124 7 7

30 || 32 11 13 11 13

Fadi George Fadel: M.A.Sc Thesis

TABLE D4

Experimental results SET A - cont'd
x =3.75
Tardy Tardy Tardy

of Tardy jobsin | jobsin | jobsin

jobs jobsin | ESP LSPR LsSP
ESPR
31 |55 | 26 29 26 2
32 |1 69 37 43 37 43
33 58 29 37 29 37
34§61 29 32 29 32
35 171 39 40 39 40
36 |68 36 47 36 47
37 || 64 32 36 32 36
38 |l 62 29 36 29 36
39 H58 29 41 29 41
40 || 75 42 48 42 48
41 |l 124 82 89 82 89
42 1 119 73 84 73 84
43)1 137 89 107 89 107
44 |1 125 78 92 78 92
45 |} 132 82 92 82 92
46 || 135 86 98 86 98
47 |l 118 73 88 73 88
48 |1 115 68 81 68 81
29 120 |76 91 76 91
50 | 139 90 112 90 112

D-5

TABLE D5

Experimental results SET A - cont'd
A =75
l Tardy Tardy Tardy
of Tardy jobsin | jobsin | jobsin
jobs | jobsin | ESP LSPR LSP

ESPR

51 48 15 19 16 17
52 1164 21 25 16 24
53 {151 16 19 15 18
54 || 69 25 29 24 27
55 |1 58 19 21 18 20
56 || 68 25 36 26 33
57 || 50 15 15 15 16
58 || 56 17 22 17 21
59 #& 74 26 32 25 29
60 |j 69 28 34 27 29
61]I 63 21 24 21 22
62]| 56 17 19 18 23
63 |l 60 21 23 21 22
64]j 60 17 24 17 19
65 || 66 24 28 23 29

Fadi George Fadel: M.A.Sc Thesis

D-6

Experimental results - SETB

TABLE D.6

‘BupuwresZoid 1o8s1ur Suisn pase) 10U d1am (p Urey) Joreals ozis
pim swa[qoid 1533 ‘A[BUIpIOddY "SWIN (891 SINOY UA) USY) JIOW 3003 1 A[[eroy *awiy) 140) SeInurul £ pue oy
UE 003 31 pajsa) sem O 9Z1s Jo wajqoid e usy p “uonenuuio; Junuuressosd Jo8ayut Suisn paynduios oq 1ou pnoy) ‘e

L0

01 11 I I'1 I 80 v | 9¢tl = 6
2 £0 S 0 ¢ €0 S 0 9 89| 8
[4 00 [4 00 [4 00 [4 00 [4 vejy L
1 00 I 00 1 00 [4 00 I te|l 9
0 00 0 00 0 00 I 00 0 (4% | Y
0 00 0 00 0 00 I 00 0 eyl ¢
0 00 0 00 0 00 I 00 0 e ¢
0 00 0 00 0 00 I 00 1 Ie) ¢
I 00 1 00 [4 00 (4 00 £ 01 I
oo wo— 1t
(Spuooas) dS1 (spu0das) ddsT (Spuodas) dSq (spuooas) | WdSHA
uonnjos ul ut sqof
: aun awn awn ut sqof awn ur sqof #
rewndo co::.ﬁom sqof uonn[os sqof uonnjos Apie], uonjos ».Em,r Jo#
‘ ; Aplel, : Apie], : :

Experimental results SET B - cont'd

TABLE D.7

Lo I L0 8 60 14! 80 8| 9¢I || 9¢
L0 9¢ €0 £C 60 |4 80 €l | 9¢l || ST
80 9¢ 70 12 01 (44 80 ST 9¢l || +¢
Lo 8 9'0 8 80 8 L0 8 9¢l || €T
60 8 90 8 I'l 8 90 8| 9¢l | TC
01 11 L0 11 L0 11 90 IT| 9¢1 || 1T
90 8 90 '8 60 I Lo PI | 9¢1 || OT
S0 IT 90 IT 60 I ¢o IT{ 9€1 | 61
€0 IT g0 8 80 14! 90 81 9¢l | 81
90 11 €0 11 01 1§ 80 IT | 9€T || LT
80 11 L0 14! 60 L1 80 PI | 9¢l || 91
90 8 L0 8 80 v1 80 LT | 9¢T |l S1
L0 ¢l €0 91 90 91 Lo 61 | 9¢l || 1
€0 €l S0 Sl 90 £l Lo el | 9tl || €1
Lo L1 9'0 61 90 (44 S0 IC] 9¢r || 21
90 (44 90 1T 9'0 (44 9'0 ¢ 91|l 11
6'0 9t 9'0 £ 01 17 Lo €C | 9¢1 | 01
(Spuodas) ds1 (spuodes) | WdST | (spuodass) | dJSH (Spu09as) ddsa | qof
own ur sqof own ut sqof awn ur sqof awn ur sqof N o#
couswom \A.Em 1 uonnjos ApJe], uonnjos | Apiel uonnos Apie], JO#

D-8

Fadi George Fadel: M.A.Sc Thesis

Experimental results SETB - cont'd

TABLE D.8

'L [4 9y 8 69 L 9°¢ I €6 | LE

L (4 14 8 984 Y 6'¢ 13 €6 | 9¢

8 9 8¢ 9 I'L L Ls €1 £6 || St

14! 91 'y 8 v'01 01 I'C1 4! £6 || PE

(42! 11 I 11 01 4! 8¢ €1 €6 || €€

(44! 91 601 4! 12 Sl £l (44 £6 |l <t

4 11 o1 11 91 ¢l L9 ¢l €6 I¢

o1 8 L (4 01 I €9 (4! £6{ Ot

601 4 9 4 8'6 4 v'9 1 €6 || 6¢

vl 01 6'S €l 9¢ 61 L9 91 t6 | 8¢C

I'LT 0z L'L 12 129 124 89 Sl £6 || LT
(Spuo9as) dS1 (Spuodas) | WJST | (Spuodss) dsd (Spuodas) | Ydsd sqof

swn ur sqof awmn ug sqofl awn ui sqofl awn ut sqof N o#

co_Ewom %.Emrr uonn[os Apie], uonnjos Apie], uonnjos Apie], JO#

TABLE D9 Experimental results SET B - cont'd
4 #of 'ljardy jobs: Tgrdy jobs 'ljardy jobs Tz}rdy jobs
jobs in ESPR in ESP | in LSPR in LSP

38 93 13 13 11 10
39 93 10 10 8 11
40 193 9 9 9
41 93 9 9 8
42 93 11 10 11 9
43 93 16 14 10 12
a4 [l93 |9 9 8 8
45 93 10 8 8 8
46 93 10 10 5 5
47 93 6 6 9 7
48 93 6 6 5 5
49 93 27 32 24 32
50 93 20 25 23 23
51 93 20 21 21 19
52 93 19 22 19 18
53 93 i8 23 20 21
54 93 24 28 20 24
55 93 21 27 19 19
56 93 17 22 18 25
57 93 15 17 13 17
58 93 13 17 13 13
59 93 15 21 11 13
60 93 19 19 16 17
61 93 18 12 12 12
62 93 17 17 15 14
63 93 15 15 14 12
64 93 19 20 14 15
65 93 21 18 17 19
66 93 15 13 11 11
67 93 16 15 11 11
68 93 12 12 8 8
69 93 12 12 10 10
70 93 12 12 8 8

Fadi George Fadel: M.A.Sc Thesis

D-10

TABLE D.10 Experimental result SET B -cont'd
4 #of Tardy jobs Tgrdy jobs ’I:ardy jobs T%}rdy jobs
jobs | in ESPR in ESP in LSPR in LSP
~ ——— — — aunn

71 136 36 39 36 36
72 |[136 |33 35 31 30
73 136 31 33 31 30
74 136 27 33 29 27
75 136 | 26 17 29 26
76 136 20 21 26 19
77 136 23 24 23 25
78 136 14 15 20 22
79 136 14 15 23 22
80 136 14 15 23 19
81 136 11 15 23 16
82 136 11 12 20 16
83 136 8 12 20 16
84 136 19 20 23 21
85 136 20 16 21 15
86 136 16 12 17 19
87 136 16 13 19 11
88 136 16 9 17 13
89 136 10 10 12 7
90 136 10 7 18 13
91 136 10 7 12 10
92 136 10 7 15 10
93 136 13 7 15 7
94 136 7 7 15 4
95 136 7 4 12 4
96 136 4 4 12 4

b-11

TABLE D.11 Experimental results SET B -cont'd
4 #of fljardy jobs Ta}rdy jobs | ’ljardy jobs Ta_lrdy jobs
jobs in ESPR in ESP | in LSPR in LSP

97 || 136 |20 31 T2z 25

98 136 | 27 30 25 24

99 136 |23 25 19 20

100 [[136 |18 23 19 20

101 fl136 |21 21 17 19

102 |f136 |13 20 10 11

103 fl136 |19 14 16 14

104 Jl136 |7 11 13 14

105 [l136 |10 8 7 11

106 || 136 |7 17 10 11

107 [l136 |10 8 7 14

108 (136 |7 8 7 11

109 (136 |4 8 7 11

110 |l136 |4 8 4 8

Fadi George Fadel: M.A.Sc Thesis

D-12

APPENDIX E Activity-state, temporal
axioms and data

Throughout the resource microtheory, number of ground terms and axioms are
used that are defined in the “activity-state” and time ontologies. This appendix
presents these terms.

E.1 Activity-state, Temporal axioms and data

This appendix axioms that are used through put the thesis. The detailed semantical
description of these relations as in TOVE manual [TOVE 92].

period_contains(Ti, Tp):- strictly_contains(Ti, Tp) | possibly_contains(Ti; Tp).

period_overlaps(Til, Ti2):- striclty_overlaps(Til,Ti2) | possibly_overlaps(Til, Ti2) |
striclty_overlaped_by(Til,Ti2) | possibly_overlaped_by(Til, Ti2).

period_after(Ti, Tp):- strictly_after(Ti, Tp) | possibly_after(Ti, Tp).
period_before(Ti, Tp):- strictly_before(Ti, Tp) | possibly_before(Ti, Tp).

This appendix contains the time data base for the examples in chapter three. It is
defined in conformity with time representation in TOVE.

Time points: time_point(TP_ID, Min, Max).
time_point(tpl, 12, 12).

time_point(tp2, 14, 14).

time_point(tp3, 90, 90).

time_point(tp4, 100, 100).
time_point(tp5, 150, 150).
time_point(tp6, 190, 190).

time_point(tp7, 8, 8).
time_point(tp8§, 9, 9).
time_point(tp9, 10, 10).

Time Interval (Period): time_period(Ti_ID, ST, ET, MinDur, Dur, Max Dur).

time_pericd(pdl, 12, 14,2, 2, 2).
time_period(pd2, 14, 16, 2, 2, 2).
time_period(pd3, 11, 13, 2,2, 2).

is_related:

is_leaf(State,[H|T]):-

((conjuncts(H,HList); disjuncts(H,HList)),

is_leaf(State,HList)); ((conjuncts(T,TList); disjuncts(T,TList)),
is_leaf(State, TList)); (is_leaf{State H));(is_leaf(State T)).

is_related(Act,State):- enables(State, Act).

is_related(Act,State):-

(enables(EState,Act), conjuncts(EState, SList),

is_leaf(State,SList)); (caused_by(Act,CState), conjuncts(CState,CList),
is_leaf(CState,CList)).

is_related(Act,State):-
enables(EState, Act), disjuncts(EState,SList), is_leaf(State,SList).

is_related(Act,State):-
caused_by(Act,CState), disjuncts(CState,CList), is_leaf(State,CList).

Fadi George Fadel: M.A.Sc Thesis

APPENDIXF FOL formulations of
resource ontology

This appendix contains a list of all FOL formulation of the terms, axiom,
implication (etc.) included in the resource ontology.

Role:

(V 1, a, roley, , roley) role(r, a, roleg) A roley # roley O - role(r, a, roley) (FOL 1)
Division of:
(Vryna Physical_division_of(ry, r) > functional‘division_of(rz, r) (FOL2)
Divisibility:
Y (r, a) physical_divisible(r, a) = V{r 1> T0 1) rknown(r) A physical_division_of(r T A
role(ry, a, rog) O role(r, a, ro 3l (FOL 3)
VY (r, a) functional_divisible(r, a) =

Y(ry, roy) rknown(r) A Junctional_division_of(ry, r) role(ry, a, rog) O role(r,
a,roy) (FOL 4)

V(r, a) temporal_divisible(r, a) = 3 (4, ti 1 o tpy, tp), ajy, ap, 51, 89) rknown(r) A
(uses(sy, r) v consumes(sy, r)) A (uses(sp, r) v consumes(sy, r)) A
is_related(ay, s1)' A is_related(ay, sp) A
time_bound(s, ti 1) A time_bound(s,, tin) A
activity(ay, executing, tp1) A period_contains(ti LA
((activity(ay, suspended, tp_end) A tp_end = EP(tiy) v

1. is a term defined in the activity-state ontology that finds an activity is linked (related) to a state.

((activity(ay, completed, tp_end) A tp_end = EP(ti A
activity(ap, executing, tpy) A period_contains(tiy, tpp) A
contains(ti, tig) A contains(ti, tiy) A role(r, a 1, role) A role(r, ay, role) (FOL 5)

Continuos/Discrete;

(VY 1, a) continuous(r, a) = physical_divisible(r, a) (FOL 6)

(V r, a) discrete(r, a) = - continuous(r, a) (FOL 7
(consumption_spec(r, a, 4, g, rate, u) v use_spec(r, a, 4, g, rate u)) A discrete(r, a) ©

integer(g) (FOL 8)

Unit of measurement/Measured by:
(V r, unit_id, a) measured_by(r, unit_id, a) >
(3 u) unit_of_measurement(r, unit_id, u, a) (FOL 9)
Component of:

(V r1, rp) physical_component_of(ry, ry, a) = V(r, ry, ro1) physical_division_of(r), r1)

role(ry, a, roy) A —role(ry, a, roj). (FOL 10)
V ry, rp) functional_component_of(ry, ry, a) = V(r, rp, roy) functional_division_of(ry, r1) A
role(rp, a,rog) A ~role(ry, a, roj). (FOL 11)
Resource Point:
(V@ Q, tp, unit) rp(r, @, tp, unit) = 3 q1, g2, q3 qn,sil, si2,......... sin)
rknown(r) A rpl(r, q1, tp, s11, unit) A rpl(r, q2, tp, s12, unit) A rpl(r, g3, tp, s13, unit)
Aeeene, rpl(r, qn, tp, sIn, unit) A\Q=ql +q2 +4q3 qn (FOL 12)

Encapsulation of resource points:

(V'r) 3 g, tp, unitl) rp(r, g, tp, unitl) = (unit2, q2) rp(r; g2, tp, unit2) A
transformation(q2, g, unitl, unit2, r)) (FOL 13)

Resource existence;
(V' 1) 3 tp) rexist(r, tp) = rknown(r) A (31, g, w) rpl(r; g, tp, |, u) A (g > 0) (FOL 14)
(V)@ 1p,) rexistl(r, 1p,) = rknown(r) A (3 g, u) rpl(r, g, tp, I, u) A (g > O)(FOL 15)
Application specifications;
(3 a, g, 1, rate, unit) (Vr) consumption_spec(r, a ti, q, rate, unit) = (3 s, §9, unit_id)
enabling(s, a) A
is_related(a, s5) A consumes(s), r) A quantity(sy, g A time_bound(s,, ti) A
unit_of_measurement(r, unit_id, u, a) A measured_by(r, unit_id, @) (FOL 16)
(Y1, a, s, 4, q’, rate, unit) consumption_spec(r, a, ti, q’, rate, unit) = (V s, 1, a, g, ti, tp, tp’)
p(r, g, tp, unit_id) A ((is_related(a, s) A consumes(s, r)) A
tp = SP(t) A tp’ = EP(ti)A enabling_state(s, tp, enabled)

Fadi George Fadel: M.A.Sc Thesis F-2

2rp(; q- q’, tp', unit) (FOL 17)

3 a, g, 4, rate, unit) (Vr) use_spec(r, a, ti, g, rate, unit) = (3 s, s, u) enabling(s, a) A
is_related(a, s7) A uses(sy, r) A quantity(sy, q) A time_bound(sy, ti) A

unit_of_measurement(r, unit_id, u, a) A measured_by(r, unit_id,a) (FOL 18)

(Vr1, a, s, 8, ¢’, rate, unit) use_spec(r, a, s, i, q’, rate, unit) = (V s, 1, a, g, i, tp, tp’)
rp(r, g, tp, unit_id) A (is_related(a, s) A uses(s, 1)) A
tp = SP(ti) A tp’ = EP(ti) A enabling_state(s, tp, enabled)
2rp(r, g, p', unit) (FOL 19)

(3 a, g, 4, rate, unit) (Vr) produce_specfr, a, 4, g, rate, unit) = (s, $3, u) enabling(s, a) A
produces(sy, r) is_related(a, s7) A quantity(s, g) A time_bound(s, ti) A

unit_of_measurement(r, unit_id, u, a) A measured_by(r, unit_id, a) (FOL 20)

(Vr, a, s, i, q’, rate, unit) produce_spec(r; a, s, ti, g’, rate, unit) = (V s, r, a, g, ti, tp, tp’)
p(r; g, tp, unit_id) A (is_related(a, s) A produces(s, 1)) A
tp = SP(ti) A tp’ = EP(ti) A enabling_state(s, tp, enabled)
2rp(r g + g, tp', unit) (FOL 21)

(3 a, q, 4, rate, unit) (Vr) release_spec(r, a, ti, q, rate, unit) = (3 s, s, u) causes(s, a) A
releases(sy, r) A is_related(a, s3) A quantity(s, g) A time_bound(s, ti) A
unit_of_measurement(r, unit_id, u, a) A measured_by(r, unit_id,a) (FOL 22)
Usage mode:
(V 1, a) continuous_mode(r, a) = (3 g, unit_id, rate, ti) (rknown(r)
(use_spec(r, a, 1, g, rate, unit) V consumption_spec(r, a, ti, q, rate, unit) V
produce_spec(r, a, 1, g, rate, unit)) Aq * rate (FOL 23)

(V' 1, a) discrete_mode(r, a) = (3 g, u, rate, unit) (
(use_spec(r, a, 4, g, q, unit) V consumption_specfr, a, ti, g, g, unit) V
produce_spec(r, a, ti, g, g, unit)) (FOL. 24)

(Y 1, a) continuous_mode(r, a) = continuous(r, aj (FOL 25)

Simultaneous use restriction:

(Y al, a2, r) simultaneous_use_restriction(al, a2, r) = (V s, s2, 1, a, a2) use(s, a) A uses(s, rj A
use(s2, a2) A uses(s2,r) (~ 3t

O enabling_state(s, tp, enabled) A enabling_state(s), tp, enabled) (FOL 26)
Committed to:

(Vr, a, 5, 4, ti5, q, q’, rate, unit) committed_to(r, a, s, 4, §’, unit) A
(consumption_spec(r, a, ti,, g, rate, unit) v use_specfr, g, tiy, q, rate, unit)) O
(contains(t, tiy) v equal(t, ti,)) (FOL 27)
Total committed:

(V r, tp, u) 3 TQ) total_committed(r, TQ, tp, u) = (3 pdl1, pd2 ... pdn, ap ay ...ay 41,92 ... qp)
rknown(r) A

committed_to(r, ay, pdl, q1, u) A period_contains(ti, pd1) A
(committed_to(r, ay, pd2, qpu)A ... A committed_to(r, a,, pdn, qp u) A
TQ=qr+qz+...+ g, (FOL 28)
(Vs, a4 ¢, 81p,1p’,u)

) A uses(s, r)) v (consumef(s, a) A consumes(s, r)))A total_committed(r, q’tp, W) A
enabling_state(s, tp, possible) A (tp = SP{ti) A

(tp’ = EP(ti)) D total_committed(r, q - ¢’, tp’, u) (FOL 29)

((use(s,

(VY r) @ act_list, tp)has_current_activity(r, act_lst, tp) =
3, s, g, u, a) (committed_to(r, a, s, 4, g, u) A (period_contains(t, tp)
A enabling_state(s, tp, enabled). (FOL 30)
Availability for activities:
(Y1) (3a, %) available_for (r, [a], £)) =
(V tp € ti) (3 unit_id, u, amt_required, tq, q, amounty, amount; ... amounty, rate|, rate) ... ratep)
(consumption_spec(r, aj, ti, amounty, ratey, unit) v use_specr, ay, ti, amount,, ratey, unit)) A

(consumption_spec(r, a), i, amount,, rate), unit) v use_spec(r, ay, ti, amounty, ratey, unit)) A

(consumption_spec(r, ay, ti, amounty, ratey, unit) v use_spec(r, a, ti, amounty, ratey, unit)) A
amt_required = amount| + amount) + + amounty A

(period_contains(ti, tp) A (total_committed(r, tg, tp, unit)) A unit_of measurement(r, unit_id, u, a)
A

measured_by(r, unit_id, a) A rp(r, g, tp, unit) A (amt_required > g- tq) A

((Vay € a) no_restricition(r, a, a,, ti)) (FOL 31)

Fadi George Fadel: M.A.Sc Thesis ' F-4

no_restricition(r, a, ay, ti) = (committed_to(r, ay, 5, tiy, g, u) A
(a*ay) Aperiod_overlaps(ti,tiy) A ~(simultaneous_use_restriction (a, ax, r)))(FOL 32)

Available capacity;
(V r) @ r, tp amount, u) available_capavity(r, tp, amount, u) = (v a)(3 tg, g, unit_id) rknown(r) A
P, g tp u) A
total_committed(r, tg, tp, u) A unit_of measurement(r, unit_id, u,a) A
measured_by(r, unit_id, a) A amount > q - tq (FOL 33)

Trend:

(¥ r) 3 tp) trend(r, 1p, decreasing) =

(Va 3rate) (rp_at_last_tps(r, a, tp, rate) A (rate < 0.00)) (FOL 34)
(Y r) 3 tp) trend(r, tp, increasing) =
(Va 3rate) (rp_at_last_tps(r, a, tp, rate) A (rate > 0.00)) (FOL 35)
(V r) 3 tp) trend(r, tp, steady) =

(VA) (3 amount, unit) (rp_at_last_tps(r, a, tp, rate) A (rate = 0.00)) v
~(committed_to(r, a, s, ti, amount, unit) A period_contains(ti, tp)) (FOL 36)
rp_at_last_tps(r, a, tp, rate) = (3 qy, g, 1}, tp))
P05 92) A TP, g, 1) A (rate = (41-92)/(tp1 - 1p2)) (FOL 37)
Activity history;
(V' r) Gact_list, tp) activity_history(r, act_list, tp) = (V a€ act_list)(34, g, u, a, 5)
(committed_to (r,a,s,ti,q,u)/\period_before(ti,tp)/\enabling__state(s,tp,completed)(FOL 38)

Resource Configuration:

Vapayr) 34q1,9 ty, ty cy, ¢, ratey, ratep) (use_spec(r, aj, iy, qp, ratey, u) v
consumption_spec(r, ay, t 1> 41, rateq, uw) A (use_spec(r, ay, tiz, qp, ratey, u) v
consumption_spec(r, ay, tiz, q, ratey, u)) A resource_configuration(r, cy, ay) A -
resource_configuration(r, cy, ay) O simultaneous_use_restriction (az, ap, r) (FOL 39)

Set-up time constraint:

(v 1, ay, Iy, dur, u) set_up(r, ap, b, dur, u) = (3 ap b, q,¢tp1, I, et It uy, s1)
committed_to(r, ay, sy, 8, g, u) A
tp = EP(ti) A resource_configuration(r, ¢, a) A rpl(r, g 1, 1,) A
(config_set_up(r, ay, ap ct, up) A loc_set_up(r, g, 1p, It u 2) Adur =ct +It) (FOL 40)

Alternative resource:

(V 1, a) (3 list) alternative_resource(r, a, list) = (3 s, sy, disjunct_state) uses(sy, r) A is__related(sz, S)A
subclass_of(s, disjunct_state) (FOL 41

Relation of the resource ontology with that of the activity-state:

(V state_id) (3 tp) completed(state_id, tp) = (3 1, a, act_list)
((consume(state_id, a) A consumes(state_id, r)) v
(use(state_id, a) A uses(state_id, r))) A
activity_history(r, act_list, tp) A member_of(a, act_list) (FOL 42)

(V state_id) (3 tp) possible(state_id, tp) = (3 1, a, 4, unit) (consume(state_id, a) v consumes(state_id,
r) v (use(state_id, a) v uses(state_id, r)) A

available_for(r, a, ti) A ~committed_to(r, a, state_id, ti, amount, unit) A period_contains(ti, tp) A
~activity(a, executing, tp) (FOL 43)
(V state_id) (3 tp) not_possible(state_id, tp) = (31, a, ti)
((consume(state_id, a) A consumes(state_id, r)) v (use(state_id, a)A uses(state_id, r))) A
~avdilable_for(r, a, i) A ~committed_to(r, a, state_id, ti, amount, unit) A period_contains(ti, ip) A
-1 activity(a, executing, tp) (FOL 44)
(V state_id) (3 tp) committed(state_id, tp) = 3 1, a, ti)
((consume(state_id, a) A consumes(state_id, r)) v (use(state_id, a)\ uses(state_id, r))) A
committed_to(r, a, s, ti, amount, unit) A period_contains(ti, tp) A
has_current_activity(r, act_list, tp) A ~member_of(a, act_list) A
activity_history(r, list, tp) A ~member_of(a, list) (FOL 45)
(V 1, @) 3 tp) release_completed(r, a, tp) = (3 act_list) (activity_history(r, act_list, tp) A
member_of(a, act_list)) (FOL 46)
(V 1, a) (3 tp) release_committed(r, a, tp) = (V act_list) has_current_activity(r, act_list, tp) A
member_of(a, act_List) (FOL 47)
(V 1, a) (3 tp) release_not_possible(r, a, tp) = (Istate, act_list, ti, g, u)
((period_before(ti, tp) v period_contains(ti, tp)) O ~ committed_to(r, a, state, ti, g, u) v

(has_current_activity(r, tp, act_list) A = member(a, act_list)) (FOL 48)
(V 1, @) (3 tp) produce_completed(r, a, tp) = (3state, act_list) activity_history(a, act_list,) A
member_of(a, act_list) (FOL 49)

(Y r, a) (A 1p) produce(r, a, 1p) = 3(s), 53)
((use(sp, a) A uses(sy, r) A enabling_state(s), tp, not_possible)) v
(consume(s3, a) A consumes(s3, r) A enabling_state(s3, tp, not_possible))) (FOL 50)
(V 1, a) (3 tp) produce_possible(r, a, tp) = Vs Vs3
((use(sy, a) A uses(sy, 1) D enabling_state(sy, tp, possible)) A
(consume(s3, a) A consumes(sz, r) 2 enabling_state(s3, possible))) (FOL 51)
(v r, @) (A 1p) produce_committed(r, a, tp) = (Istate, 4, q, u, act_list)

Fadi George Fadel: M.A.Sc Thesis F-6

(committed_to(r, a, s, fi, g, u) A after(ti, tp) A

has_current_activity(r, act_list, tp) A- member_of(a, act_list) (FOL 52)
(V' 1, a) (3 tp) produce_enabled(r, a, tp) = (3 state, act_list) has_current_activity(r, tp, act_list) A

member_of(a, act_list) (FOL 53)

REFERENCES

[Aikins 83]

[Allen 83]

[Allen et al 92]

[Baker 74]

[Beeckman 90]

Aikins, Janice S., Prototypical Knowledge for Expert Systems,
Artificial Intelligence journal, vol. 20, 1983.

Allen, J.F., Maintaining Knowledge about Temporal Intervals,
Communications of the ACM, volume 26, number 11, 1983, p-
832-843.

Allen, James, Boddy, Mark, Breese, Jack, Burstein, Mark, Car-
ciofini, Jim, Desimone, Roberto, Hammond, Chris, Lowrence,
John, MacGregor, Robert, Russ, Tom, Schrag, Bob, Smith,
Stephen, Tate, Austin, Wellman, Mike, Wilkins, Dave, Knowledge
Representation Spesification Language (KRSL), DARPA/Rome
Laboratory PLanning and Scheduling Initiative, 1992.

Baker, Kenneth R., Introduction to Sequencing and Scheduling,
John Wiley & Sons Inc., NY, NY, 1974.

Beeckman, D., CIM-OSA: Computer Integrated Manufacturing -
Open System Architecture, International Journal of Computer Inte-
grated Manufacturing, volume 2, number 2, 1990, p. 94-105.

[Bennett et al 92]Bennett, Malcolm, Buson, Susanna, Hicks, Gabriel, Kosanke,

[Blair et al 92]

[Brachman 79]

Kurt, Vigne, Veronique, Characterizing the Need Jfor Enterprise
Integration, Proceedings of the First International Conference,
The MIT press, 1992. ’

Blair, Paul, Guha, R.V, Pratt, Paul, Microtheories: An Ontological
Engineer’s Guide, CYC-050-92, Microelectronics and Computer
Technology Corporation, 1992.

Brachman, R.J., On the Epistemological Status of Semantic Net-
works, Associative Networks: Representation and Use of Knowl-
edge by Computers, Findler, N.V. (ed), Academic Press, New
York, 1979.

[Chu & Ngai 93]Chu, Wesley W., Ngai, Patrick H., Embeding temporal constraint

propagation in machine sequencing for job shop scheduling, Al
EDAM, 7(1), 1993, p. 37-52.

Ref-1

[Davis et al 83] Davis, B.R., Smith, S., Davies, M., and St. John, W., Integrated

[ESPRIT 91a]

[ESPRIT 91b]

Computer-aided Manufacturing (ICAM) Architecture Part IIl/Vol-
ume Il1: Composite Function Model of “Design Product” (DESO),
Materials Laboratory, Air Force Wright Aeronautical Laborato-
ries, Air Force Systems Command, Wright-Patterson Air Force
Base, Ohio, AFWAL-TR-82-4063 Volume I1I, 1983.

ESPRIT, Open System Architecture - Open System Architecture,
ESPRIT - Project 688 AMICE, CIM-OSA AD 1.0, 1991.

ESPRIT, Research Reports, CIM-OSA: Open System Architecture
Jor CIM, Esprit Consortium AMICE (eds), Springer-Verlag, Lux-
embourg, Federal Republic of German, 1991.

[Fadel & Fox 94] Fadel, Fadi George, Fox, Mark S., A Resource Ontology for

[Fadel et al 94]

[Fikes et al 92]

[Fisher 78]

[Forbus 84]

[Fox 83]

Enterprise Modelling, To appear in the Third Industrial Engineer-
ing Research Conference (IERC 94), Atlanta, May 1994.

Fadel, Fadi George, Fox, Mark S., Gruninger, Michael, A Generic
Enterprise Resource Ontology, Submitted to the third IEEE
Transactions on Enabling Technologies: Infrastructure for Collab-
orative Enterprises (WET ICE ‘94) West Virginia. 1994,

Fikes, Richard E., Finin, Tim, Gruber, Thomas, Mckay, Don,
Neches, Robert, Patel-Schneider, Peter F., Patil, Ramesh S., The
DARPA Knowledge Sharing Effort: Progress Report, DARPA Ini-
tiative, 1991.

Fisher, M.L., Jaikumar, R., An Algorithm Jfor the space-shuttle
scheduling problem, Ops. Res., volume 26, 1978, p. 166-182.

Forbus, Kenneth D., Qualitative Process Theory, Artificial Intelli-
gence, 24, 1984 p. 86-168.

Fox, M.S., The Intelligent Management System: An Overview, Pro-
cesses and Tools for Decision Support, Sol, H.G (ed), North-Hol-
land Publishing Company, 1983.

[Fox & Tenenbaum 91] Fox, M.S., and Tenenbaum, J M., (1991), Proceedings of

[Fox 92]

the DARPA Knowledge Sharing Workshop, Santa Barbara Ca.

Fox, M.S, Enterprise Integration Laboratory Research outline,
University of Toronto, Toronto, 1992.

Fadi George Fadel: M.A.Sc Thesis Ref-2

[Fox et al 93a]

[Fox et al 93b]

[Fox et al 94]

[French 87]

[Garey et 89]

Fox, Mark S., Chionglo, John F,, Fadel, Fadi G., A Common-
Sense Model of the Enterprise, Proceedings of the 2" Industrial
Engineering Research Conference (IERC 94) May 1993, L.A,
California, 1993.

Fox, Mark S., Chionglo, John F.,, Barbuceanu, Mihai., The Inte-
grated Supply Chain Management System, Submitted to the
Industrial Engineering Research Conference (IERC 94) May
1994, Atlanta.

Fox, Mark S., Gruninger, Michael, Yin, Zhan, Enterprise Engi-
neering: An Information Systems perspective, To appear in the
Industrial Engineering Research Conference (IERC 94) May
1994, Atlanta.

French, Simon, Sequencing and Scheduling: An Introduction to the
Mathematics Of the Job-Shop, Ellis Horwood Limited, Chichester,
England, 1987.

Garey, Micheal, Johnson, David, Computers and Intractability: A
guide to the theory of NP-Completeness, W.H Fremman and Com-
pany, San Francisco, California, Victor Klee (ed), 1979.

[Graham et al 79]Graham, R. L, Lawler, E.L, Lenstra, J.K, Kan, A.H.G.R, Optimi-

[Grosof 92]

[Gruber 90]

[Gruber 91]

zation and approximation in deterministic sequencing and schedul-
ing: a survey, Annals of Discrete Mathematics, volume 5, 1979, p.
287-326.

Gosof, B. & Morgenstern, L., Watson, T,J. Application of Logistic
K.R to Enterprise Modelling, AAAI Workshop on Enterprise
Integration, 1992.

Gruber, Thomas R., The Role of Standard Knowledge Representa-
tion for Sharing Knowledge-Based Technology, KSL 90-53, Com-
puter Science Department, Stanford University, 1990.

Gruber, Thomas R. The Role of Common Ontology, Principles of
Knowledge Representation and Reasoning: Proceeding of the
Second, International Conference, 1991.

Ref-3

[Gruber 93] Gruber, Thomas R., Toward Principles for the Design of Ontologies
Used for Knowledge Sharing, KSL 93-4, Computer Science
Department, Stanford University, 1993.

[Guha et al 90] Guha, R.V,, Lenat, Douglas B., Cyc: A Midterm Report, A1 Maga-
zine, Fall 1984, p. 32-59.

[Hama et al 92a]Hama, Toshiyuki, Hori, Masahiro, Nakamura, Yuichi, Modelling
Job Assignment Problems Based on Task Ontology, IBM Research,
Tokyo Research Laboratory, 5-11 Sanban-cho, Chiyoda-ku,
Tokyo 102, Japan, RT 0076, 1992.

[Hama et al 92b]Hama, Toshiyuki, Hori, Masahiro, Nakamura, Yuichi, Identifying
Reusable Problem-Solving Knowledge as Task-Specific Components,
IBM Research, Tokyo Research Laboratory, Chiyoda-ku, Tokyo
102, Japan, RT 0078, 1992.

[Hayes 90] Hayes, Patrick J., Naive Physics I: Ontology for Liquids, Readings
in Qualitative Reasoning about Physical Systems, Weld, Daniel S.
(Eds.), 1990, p. 484-502.

[Hirst 89] Hirst, Graeme, Ontological Assumptions in knowledge Represen-
tation, Proceedings of the International Conference on Principles
of Knowledge Representation an Reasoning, 1st, Toronto, 1989.

[TFAC/IFIP 93] Williams, Theodore J., Bernus, Peter, Chen, David, Doueingts,
Guy, Nemes, Laszlo, Nevins, James L., Vallespir, Bruno, Zoetek-
ouw, Dick, with the contributions of the other members of the
task forse, A technical report on the IFAC/IFIP task force on archi-
tecture for integrating manufacturing activities and enterprises,
1993.

[Kim & Fox 94] Kim, Henry, Fox, Mark S., Formal Models of Quality and ISO 9000
Compliance: An Information systems Approach, To appear in the
Proceedings of ASQC Quality Contro Congress, Las Vegas, NV,
1994.

[Kise et al 78] Kise, Hiroshi, Inbarki, Toshihide, Mine, Hisashi, A Solvable Case
of the One-Machine Scheduling Problem with Ready and Due Times,
Operations Research, volume 26, number 1, 1978.

Fadi George Fadel: M.A.Sc Thesis Ref-4

[Kuipers 84] Kuipers, Benjamin, Common sense Reasoning about Causality:
Deriving Behavior from structure, Artificial Intelligence, 24,
1984. pp 169-203.

[Lenstra et al 77]Lenstra, J.K, Kan, A.H.G.R, Buchers, P., Complexity in Machine
Scheduling Problems, Annals of Discrete Mathematics, volume 1,
1977, p. 343-362.

[Mizoguchi et al 92]Mizoguchi, Riichiro, Tijerino, Yuri, Ikeda, Mitsuru, Task
Ontology and its use in as Task Analysis - Interview System, Pro-
ceedings of JKAW 92, 1992, p.185-198.

[Moore 68] Moore, J.M, An n-job, one machine sequencing algorithm for mini-
mising the number of late jobs, Mgmt. Sci., 15, 1968, p. 102-109.

[Nahmias 89] Nahmias, Steven, Production and Operation Analysis, IRWIN,
1989.

[Parnuk 87] Parnuk, H. Van Dyke, White, John F., A synthesis of factory refer-
ence models, Industrial Engineering Institute, Ann Arbor, Michi-
gan, 1987.

[Patterson et al 74] Patterson, J.H., Huber, D., A Horizon varying, Zero one
Approach to Project Scheduling, Management Science, volume 20,
number 6, 1974, p. 990-998.

[Petrie 92] Patrie, Charles, Enterprise Integration - Introduction, Proceedings
of the First International Conference, The MIT press, 1992, p.1-
14.

[Pinto & Reiter 93] Pinto, J. and Reiter, R. Temporal reasoning in logic program-
ming: A case for the situation calculus. In Proceedings of the Tenth
International Conference on Logic Programming, Budapest, June
1993.

[Sathi et al 85] Sathi, A., Fox, M.S., Greenberg, M., Representation of activity
knowledge for project management. IEEE Transactions on Pattern
Analysis and Machine Intelligence. PAMI-7:531-552, September,
1985.

[Scheer 89] Scheer, A.W, Enterprise-Wide Data Modelling, Springer-Verlag
1989.

Ref-5

[Slowiniski 80] Slowinski, R., Two Approaches to Problems of Resources Allocation
Among Project Activities - A Comparative Study, J. Operational
Research Society, volume 31, number 8, 1980, p.711-723.

[Smith 90] Smith, Stephen F., The OPIS Framework for Modelling Manufac-
turing Systems, Center for integrated Manufacturing Decision
Systems, The Robotics Institute, Carnegie Mellon University,
Pittsburgh, CMU-RI-TR-89-30, December, 1990.

[Sommervil 92] Sommervil, lan, Sofiware Engineering, Andison-Wisley, Lan-
caster, England, McGettrick, A.D, Leeuwen, J. van, 1992.

[Sowa et a1 92] Sowa, John F., Zachman, John A., A Logic-Based Approach to
Enterprise Integration, Proceedings of the First International Con-
ference, The MIT press, 1992.

[Sussenguth 92] Sussenguth, Wolfran, Jochem, Roland, An object oriented method
for integrated enterprise modelling applied for development of enter-
prise-related CIM-strategies and general CIM-standards, Produc-
tion Technology Centre Berlin, 1992.

[Talbot 82] Talbot, F. Brian, Resource-Constraint Project scheduling with Time-
resource Trade-offs: The Non Preemptive case, Management Sci-
ence, volume 28, 1982, p.1197-1210.

[Tham & Fox 94]Tham, Donald, Fox, Mark S., A Cost Ontology for Enterprise
Modelling, To appear.

[Tenenbaum et al 92)Tenenbaum, Jay M., Weber, Jay C., Gruber, Thomas R.,
Enterprise Integration - Lessons from SHADE and PACT, Proceed-
ings of the First International Conference, The MIT press, 1992.

[TOVE 92] Fox, Mark S., Chionglo, John F., Fadel, Fadi G., TOVE manual,
University of Toronto 1992.

[TOVE 94] Fox, Mark S., Chionglo, John F., Fadel, Fadi G., Gruninger,
Michael, TOVE manual (The second veriosn), University of Tor-
onto 1994, To appear.

[Wegalrz et al 80] Weglarz, J., Blazewicz, J., Cellary, W., Slowinski, R., 4n Auo-
matic Revised Simplex Method for Constraint Network Scheduling,
ACM Trans. Math. Software, volume 3, number 3, 1977, p. 295-
300.

Fadi George Fadel: M.A.Sc Thesis Ref-6

[Wilkins 88] Wilkins, David E., Practical Planning: Extending the Classical Al
Planning Paradigm, Morgan, Michael B. (ed), Morgan Kuafmann
Publishers, Inc., 1988.

[PERA 91] Williams, T.J., and the Members, Industry-Purdue University
Consortium for CIM, The PURDUE Enterprise Reference Architec-
ture, Purdue Laboratory for Applied Industrial Control, Purdue
University, West Lafayette, Report Number 154, 1991.

[Zweben et al 94]Zweben, Monte, Brian, Daun, Davis, Eugene, Deale, Michael,
Scheduling and Rescheduling with Gerry”, To appear in “Inelligent
Sceduling”, Zweben, Monte, Fox, Mark S., Morgan Kuafman,

1994.

Ref-7

