
Submitted to WET ICE 95

January 24, 1995 1

An Ontology of Quality for Enterprise
Modelling

Henry M. Kim, Mark S. Fox, Michael Gruninger

Department of Industrial Engineering,University of Toronto,

4 Taddle Creek Road, Toronto, Ontario M5S 1A4

tel:1-416-978-6823 fax:1-416-978-3453

internet:{ henryk, msf, gruninger }@ie.utoronto.ca

Abstract
Although there are many quality domains in which ideas and concepts about quality are
represented, these representations are often informal. The TOVE Quality Ontology is the formal
representation (using first-order logic) of terms, relationships, and axioms about quality which are
generic beyond any specific quality domain. The assumption that quality is “conformance to
requirements” is used to decompose the domain of quality into sub-domains of measurement,
quality analysis, identification, and traceability. An ontological engineering methodology of
posing ontological scope, stating competency questions, constructing data models and axioms, and
visualization of the answering of competency questions is demonstrated with an example from the
engineering of the traceability ontology.

Keywords:
quality, traceability, enterprise modelling

1. Introduction
In this world of global competition, the importance of quality is well-acknowledged, and quality
has now become a corporate cliché in North America. But as with most clichés, the term quality is
more anecdotally, and less formally defined. Quality gurus like Juran, Deming, and others have
espoused the importance of quality from an experiential and philosophical perspective, and helped
many a companies remain competitive. Quality tools, such as statistical quality control (SQC) or

Mark Fox
Kim, H., Fox, M.S., and Gruninger, M., (1995), "An Ontology of Quality for Enterprise Modelling",
Proceedings of the Fourth Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, IEEE Computer Society Press, pp. 105-116.

Submitted to WET ICE 95

January 24, 1995 2

quality function deployment (QFD), are defined with more rigour— mathematics or rules for
building the “House of Quality” [Hauser 88]— but relate to only a specific domain of quality
management. The ISO 9000 and the Baldridge Awards do address the domain of quality from both
a formal and generic view, as these documents specify guidelines or requirements for what
constitutes a certain quality level for a generic company. The TOVE Quality Ontology endeavors
to an even more formal representation of terms, relationships, and axioms about quality. Yet these
representations will also be generic beyond any specific quality domain. Some of the goals of the
overall TOVE project of the Enterprise Integration Laboratory at the University of Toronto are to:
1) provide a shared terminology, and 2) define precise and unambiguous semantics for the
enterprise [Fox et. al. 93]. Thus the TOVE Quality Ontology is generic to satisfy the first goal, and
formal to satisfy the second goal.

With effective use of information technology also providing a competitive advantage for
organizations [Walton 89], the need for an organization to better manage information about quality
will become more emphasized with increasing advances in information technology [Godfrey 93].
Since the TOVE Quality Ontology presents constructs for all strata of knowledge representation
[Brachman 79]— i.e. implementation, logical, conceptual, generic, and application— the
ontology, in conjunction with the other TOVE ontologies, provides a comprehensive and
integrated representation with which sophisticated, deductive decision-making using information
technology can be made.

The bedrock for the TOVE Quality Ontology is the TOVE core ontologies: the ontologies for
activity, state, causality, time, and resources [Gruninger & Fox 94],[Fadel et. al. 94]. As the next
section will demonstrate, constructs are eventually added into the TOVE Quality Ontology if only
it can be defined in terms of the data model and axioms of the core ontologies.

In engineering a generic quality ontology, an overall system competency question can be: “What
is the quality of a product, process, or system of the enterprise?”. However this overall question is
too broad to motivate the requirements of the TOVE Quality Ontology. Thus this must be
decomposed into component competency questions that are narrow enough in scope to motivate
the development of ontology representations that will answer these questions. This decomposition
also constitutes the abstract exploration of the quality domain; that is, organizing the generic
domain before formalizing it.

Submitted to WET ICE 95

January 24, 1995 3

2. Decomposing the Task of Engineering the TOVE Quality
Ontology

2.1 What is Quality?

The official definition of quality, stated by the standardization bodies of Europe and North
America, is from the ISO 9000:

“Quality is the totality of features and characteristics of a product or service that bear on its ability to sat-
isfy stated or implied needs.” [ISO 91, pp. 16]

This vague definition can be augmented with a manufacturing-based definition [Garvin 84], as
stated by Crosby: “Quality means conformance to requirements.” [Crosby 79, pp. 15]. Combining
the ISO 9000 and Crosby’s definitions of quality, the basis of the TOVE Quality Ontology is this:

• A need can be decomposed into a set of requirements upon features and characteristics
of a product or service, and if all these requirements are conformed to, then that need
has been satisfied.

2.2 Decomposing a Quality Need

[Hall 89] stresses the importance of mapping needs into goals, objectives, constraints, input-output
requirements, and specifications for the system that will satisfy these needs. These inputs translated
into requirements should also be layered into system component requirements and overall system
requirements [Blanchard 91]. And [Grady 93] emphasizes a structured methodology for system
requirements analysis. The diagram below shows how such a structured methodology is used: it is
shown that as a quality need is decomposed, there are concomitant competency questions at each
level of decomposition, that drive the engineering of the TOVE Quality Ontology.

The diagram shows that it is possible to decompose a vague need— such as the need for a safe
car— into a myriad of very concrete, measurable specifications on features or characteristics—
such as the specification for stopping distance. Intermediate nodes in this decomposition are
requirements and specifications. That requirements are validated and specifications are verified,
are explained in [Boehm 81, pp.37]:

• Verification: “Are we building the product right?”

• Validation: “Are we building the right product?”

Submitted to WET ICE 95

January 24, 1995 4

FIGURE 1. Engineering the TOVE Quality Ontology: Decomposing a Need

2.3 Towards a Base Representation: Grounding Out to the TOVE Core
Ontologies

The core ontologies can represent such entities as standard driver, driving, car, anti-lock brakes,
and the state of being stopped. However the conformance of the example specification cannot be
determined unless the stopping distance is measured. Hence in order to talk about quality,
activities, states, times, and resources must be measured, and the measurement values must be
represented. It is noted that: “Things are investigated in physics in so far as it is possible to
measure them, and not with the impossible goal of discovering their intimate essence.” [Di Franca

TOVE Ontology Competency Questions

“I want a car to drive my family.

“In this car, anti-lock brakes

My need for safety must
be satisfied.”

may enhance safety. This
requirement for anti-lock

brakes must be validated.”

“For a standard driver driving

“For an anti-lock braking
system, there must be a

at 100 kph, the car with
anti-lock brakes must come

to a stop at 20 m. This feature

final testing and inspection.
A specification for

this process must be verified.”

or characteristic of the anti-
lock brakes must conform

to specifications.”

other requirements
for the same need

other process
specifications for

the same requirement

other feature and
characteristic
specifications for
the same process
specification

other needs
of the car

What is the quality of a product, process,
or a system of an enterprise?

Can need and satisfaction be represented?
Can it be proven that a certain need
is satisfied?

Can requirement and validation be
 represented?

Can it be proven that a certain
 requirement is validated?

Can specification and verification be
 represented?

Can it be proven that a certain
 specification is verified?

Can features and characteristics and
 conformance be represented?
Can it be proven that a certain
 feature or characteristic conforms to
specifications?

Submitted to WET ICE 95

January 24, 1995 5

81, pp. 18]. As in physics, measurement is the root of quality management, as evidenced by Federal
Express’ quality philosophy of “measure, measure, measure”.

An ontology of measurement links the features and characteristics specification, decomposed from
a quality need, to the representations of activities, states, times, and resources, that exist in the
enterprise model. Constructs in the measurement ontology can be defined in terms of constructs in
the core ontologies. So the domain of measurement constitutes a sub-domain of quality; that is, an
ontology of quality includes an ontology of measurement.

Measurements are taken only because variability exists. Often this variability needs to be analyzed
because the variability causes a problem. That analysis proceeds it, is a post-condition to
measurement. A pre-condition to measurement is identification; that is, an entity must first be
identified as that which is to be measured. The TOVE Quality Ontology, then is comprised of sub-
domain ontologies, an ontology of requirements, plus the TOVE Core Ontologies in the following
way:

FIGURE 2. TOVE Quality Ontology Decomposition

The TOVE Quality Ontology builds up from the other ontologies being constructed in the
Enterprise Integration Laboratory. So the quality sub-domain ontologies of measurement,

measurement

analysisidentification

features and
characteristics

SQC
ISO 9000

Requirements

Core:
- Activity
- State
- Time
- Resources

Quality
Sub-Domain
Ontologies

Traceability

Quality
Analysis
Micro-Theories

Submitted to WET ICE 95

January 24, 1995 6

identification, and analysis are constructed from existing representations from the core ontologies.
Moreover the de-composition of quality needs into measurable specifications on features and
characteristics is supported by representations from the TOVE Requirements Ontology.

The philosophy of minimal ontological commitment [Gruber 93] underlies the development of the
TOVE Quality Ontology. Although it is believed that a rigorous development of the identification
and measurement ontologies is warranted, there is a minimal representation for generic analysis in
the TOVE Quality Ontology. Why? Because there are a myriad of quality analysis domains, such
as SQC, QFD, quality costing, ISO 9000, and Baldridge Awards, which can be used to analyze,
control, assure, and improve product, process, or organizational quality. But in committing one or
more of these analysis techniques to the TOVE Quality Ontology, it is believed that a bias is
introduced, and the desired genericity of the TOVE Quality Ontology is lost. Hence just with this
system of integrated ontologies, it is possible to represent only primitive assessment of quality—
e.g., what is the quality of the car at this point in time— without the representational capability to
even analyze a nonconformity.

Such analysis capability and more is possible through the construction of TOVE Quality Analysis
Micro-Theories, as represented in the previous diagram. The two micro-theories that directly use
the TOVE Quality Ontology representations are the TOVE SQC (Statistical Quality Control) and
ISO 9000 micro-theories. With an implementation of the ISO 9000 Micro-Theory, it is possible to
query an enterprise model— constructed upon the TOVE Core and Quality Ontologies— as to
whether the enterprise is compliant to one of the ISO 9000 standards.

A primitive analysis capability requires that it be possible to trace back, for example, from a
problematic assembly to its sub-assemblies to diagnose the root of the problem. Therefore
traceability is the basic form of quality analysis that identifies the relationship between a measured
entity and other related entities. But is traceability then a sub-domain of generic quality to be
included in the TOVE Quality Ontology, or is it a basic analysis technique to be represented as one
of the TOVE Quality Micro-Theories?

An ontology of traceability is included as part of the TOVE Quality Ontology, because it is a
domain of quality that is generic and usable by any quality analysis technique, and hence does not
violate the philosophy of minimal ontological commitment. As such traceability is that subset of

Submitted to WET ICE 95

January 24, 1995 7

analysis that links the measurement domain with the identification domain, and thus it is
worthwhile to explore traceability, as an important sub-domain of quality.

2.4 Structure of Competency Questions

For each of the sub-domains which constitute the TOVE Quality Ontology, the ability of the
information system— constructed upon the ontology of that sub-domain— to answer the
competency questions put forth at the onset of the ontological engineering process thus validates
that ontology. The competency of the ontology is motivated in the following manner:

• Scope: Certain assumptions about the domain will need to be made, and in so doing
the scope of the ontology will become more apparent. As the assumptions about the
ontology are made, objects, relationships, and attributes that belong in this ontology
are “ferreted out”. Of the set of criteria to evaluate a shareable representation of
enterprise knowledge as presented by [Fox et. al. 93], this scoping then dictates the
extensibility, granularity, and scalability of the ontology.

• Problem Statement: This is the one general problem statement which justifies the
construction of the ontology. This is a question, motivated from a quality perspective
and within the bounds of the scope of the ontology, posed generally to serve as the
template for all competency questions. All competency questions are motivated from
this question. This problem statement dictates the generality of the ontology.

• User Level Competency Questions: Competency questions for the TOVE Quality
Ontology must be motivated by questions related to quality scenarios. These questions
are of the form of the problem statement, but more specific. These are called user level
competency questions, since these are types of questions likely to be asked by the user
of the ontology. The competence of the ontology is dictated by these questions.

• Developer Level Competency Questions: These competency questions are, in
essence, the concrete requirements of the ontology. These questions dictate the
engineering of representations that are needed to answered the user level questions,
and are likely to be asked by the developer of the ontology. Whereas user level
questions require a breadth of representation to answer, these developer level
questions are those that directly motivate the depth of representation. What this means
is that developer level questions motivate the full development of a small subset of
representations, and the answering of these questions are needed to answer the user
level questions. As such efficiency, perspicuity, and transformability of the ontology
are dictated by these questions.

Submitted to WET ICE 95

January 24, 1995 8

These stages of discerning scope, stating general problem statement, and posing a hierarchy of
competency questions roughly reflect the systems analysis and requirements analysis phases of a
classical software engineering project.

3. A Sub-Domain of the TOVE Quality Ontology: the Traceability
Ontology

In this section, a small sample from the TOVE Traceability Ontology is presented to show:
• some of the representations required to explicate the domain of traceability

• concrete examples of application of the ontological engineering methodology

• that it is possible to solve a practical problem, related to a quality scenario, by using
this ontology.

The steps in the engineering of the traceability ontology are included in the methodology shown
below.

FIGURE 3. Ontological Engineering Methodology

3.1 Competency Questions

Why is traceability important in the context of reasoning about quality? This question must be
definitively answered before we start an endeavour to engineer an ontology of traceability, that is
to a part of an overall ontology of quality. In order to answer this, a scenario can be put forth to
show the importance of traceability:

• Of the resources that were consumed and/or produced along the diagnostic path, the
amount of the resources that were needed for specific activities over a period of time is

? A B
A1 A2 B1 B2

X

∀A1∀Α2∀Y { A1 ∧ Α2 ⊃ Y }.
∀B1∀Β2 { B1 ∨ ¬B2 ⊃ ∃Z Z }.

Data Model of terms in domain

Axioms that define and
constrain data model

pose Competency Questions
that determine the type of problem
solving that an ontology supports

Submitted to WET ICE 95

January 24, 1995 9

desired. It is known that an electric surge occurred during that period of time, and that
this may be the cause of the quality problem. If a given batch of resource existed in
that time period (that is, its quantity was greater than zero, and it had not been
exhausted), then examination of this batch and activities which consumed or produced
it may help diagnose this problem.

It must then be possible to represent this scenario using some representations from the traceability
ontology, and with a combination of different ontologies, it may be possible to answer the question
embedded in this quality scenario. In order to start this capability, competency questions about
traceability must be posed. But before this, the scope of the traceability ontology must be scoped.

3.1.1 Scope

[Grady 93] states that traceability is a clear knowledge of ancestry, and so a discussion of
traceability entails a graphical notation of ancestry: the tree. As such the task of traceability
becomes one of recursively decomposing tree nodes, until terminal nodes are encountered. In such
a decomposition, nodes are composed of sub-nodes that have a conjunctive or disjunctive
relationships to the node. So a problem decomposition task represented by an AND/OR graph
[Shinghal 92] can be used to represent the traceability problem. In the TOVE core ontologies, a
non-terminal state is abstracted from a conjunction and/or disjunction of terminal states [Fox et. al.
93]. So scope for abstraction is that of questioning acceptable traceability given abstractions of
conjunctive and disjunctive states. As well acceptable traceability for aggregations must be
addressed. Finally which of the TOVE entities are to be traced must be scoped.

FIGURE 4. Scope Decomposition for Traceability Ontology

The TOVE Core Ontologies support different abstracted views. With such different levels of
abstraction, the issue to consider for the TOVE Traceability Ontology is at which level of
abstraction a certain level of traceability is possible. Some assumptions to handle this are:

Assumption 1: It must be possible to trace from one entity to another, where
neither the entities are abstracted entities.

TRACEABILITY

Decomposition Entities

Abstraction Aggregation

What is
traceability?

What is acceptable
traceability?

What to
trace?

Submitted to WET ICE 95

January 24, 1995 10

Assumption 2: If the previous assumption holds, then it will be possible to trace
from one entity to another, regardless of the level of abstraction of
either the entities.

Next, it must be discerned as to what level of traceability is acceptable. Is it acceptable to state that
“A led to B, and then somehow B led C”, or to state that “Either A or B led to C”. The first
statement is incomplete since the path from B to C is uncertain, and the second statement is non-
unique, since the exact path is one of two options. Thus it must be scoped as to when complete and
unique traceability is necessary, and when incomplete and non-unique traceability is sufficient.
Some assumption about the appropriate level of traceability are:

Assumption 3: Given a completely conjunctive traceability tree, it is assumed that
complete and unique traceability— e.g. “It is known exactly that A
led to B, which led to C”— is possible.

Assumption 4: It is assumed that traceability is required to recall what has already
occurred in time; that is, traceability is backwards in time.

Assumption 5: It is assumed that traceability is recalled from the information
system implementation records.

Assumption 6: Because of the previous two assumptions, even given a completely
disjunctive traceability tree, it is assumed that complete and unique
traceability is possible.

The entities to trace depend on which entities are uniquely identified. Of the entities that the ISO
9000 recommends for tracing, only products (one form of traceable resource units) and activities
are to be uniquely identified in the TOVE Identification Ontology. Therefore:

Assumption 7: Traceable resource unit (aka a tru—a representation defined in the
TOVE Identification Ontology for a batch of a something, e.g. a tru
of 100 widgets) is the resource representation that must be
traceable, since a tru is neither an abstracted nor aggregated entity.

Assumption 8: Primitive activity (a representation defined in the TOVE
Identification Ontology) is the activity representation that must be
traceable, since a primitive activity is neither an abstracted nor
aggregated entity.

Finally, in tracing between entities, it is desirable to, for example, trace the quantity variance of
traceable resource units over time, or trace the processing history of activities. Thus:

Assumption 9: It is possible to trace as per attributes of traceable resource units
and primitive activities.

Submitted to WET ICE 95

January 24, 1995 11

3.1.2 Problem Statement

Now that the scope of what is entailed in traceability and what entities are to be traced have been
established, engineering of the representations to enable traceability can ensue. What these
representations will be depends upon the quality-related scenario that necessitates the traceability
capability. The general problem statement for this quality-related scenario is:

Q: Given an entity and a state of the enterprise, can all entities and necessary
attributes of these entities that had a bearing on the quality of the given entity
be traced and identified?

The user competency questions posed below are all forms of this general problem statement.

3.1.3 User Competency Questions

This particular question is directly motivated from the quality-related scenario:
Q 1. How much of a specific batch of resources was used by one or more activities

over a given period of time?

This question motivates the asking of more lower-level questions that a developer is likely to ask.

3.1.4 Developer Competency Questions

In order to answer the user competency question, what characterizes the traceable resource unit (a
batch) must first be defined. For example, when can a traceable resource unit not be traced?

Q 2. Under what condition(s) is traceability of a tru not possible?
A: Traceability is not possible before the time point at which the entity is

identified to be a tru. But after this time point, traceability is possible, even if
at the time of the trace all of the quantity of the tru have been exhausted.

Justification: Axiom T1., pg. 13; Axiom T6., pg. 14; Axiom T7., pg. 14

Note that an important issue to consider is what happens to the traceability of a tru if a portion of
it is used or consumed for one activity, while the remaining portion is not. That is:

Q 3. What happens when a tru is split or disaggregated?
A: If a tru is disaggregated, the disaggregated portions still retain the ID as the

original tru.

Justification: Axiom T9., pg. 14

Conversely it must be considered what happens when two or more tru instances of the same tru
class are brought together. That is:

Q 4. What happens when trus are aggregated?

Submitted to WET ICE 95

January 24, 1995 12

A: If trus are aggregated, the ID of this aggregated tru is different from the IDs of
any of the original trus.

Justification: Axiom T8., pg. 14; Axiom T10., pg. 14

Since these previous axioms maintain the traceability of a tru, even if it is aggregated or
disaggregated, then it is now possible to axiomatize about the quantity of aggregation or
disaggregation of a tru, and quantity changes over time.

Q 5. Quantities of a tru will vary over time. How will this change be represented?
A: Quantity change will be expressed as discrete changes. Representing

continuous quantity changes is beyond the scope of this ontology.

Justification: Axiom T2., pg. 14; Axiom T3., pg. 14; Axiom T4., pg. 14; Axiom T5.,
pg. 14

Q 6. Can the quantity of the tru be represented?
A: Yes. The construct for representing quantity of a tru is called rp_tru (resource

point of a tru).

Justification: Axiom T2., pg. 14; Axiom T3., pg. 14; Axiom T4., pg. 14

Q 7. Can the quantity of the tru at a certain point in time be represented?
A: Yes. The construct for representing quantity of a tru is called rp_tru (resource

point of a tru).

Justification: Axiom T2., pg. 14; Axiom T3., pg. 14; Axiom T4., pg. 14

Submitted to WET ICE 95

January 24, 1995 13

3.2 Data Model

FIGURE 5. Traceability Ontology Data Model

The above diagram shows the terms of the traceability ontology. Examples of what can be read
from this data model are:

• A primitive activity may consume a tru.

• There may exist a possible trace between a tru and a primitive activity, a tru and
another tru, or a primitive activity and another primitive activity.

• There may exist a primitive trace between a tru and a primitive activity, a tru and
another tru, or a primitive activity and another primitive activity.

• Trace between one tru-primitive activity pair to another tru-primitive activity pair is
comprised of one or more primitive traces.

The details of the relationships between these terms and the constraints upon these terms are stated
in first-order logic in the next section.

3.3 Axioms

These are some, but not all, of the axioms of the TOVE Traceability Ontology. These are only the
ones necessary to answer the developer level competency question. The first-order logic
expressions for these axioms are given section 7 Appendix.

T1. A tru is first known to exist at the time that it is first used, consumed, produced, or

possibly
traceable

tru

rp_tru

primitive

primitive
trace

trace

activity
has resource

point

trace from

trace to

trace from

trace
to

trace from
trace from

trace to
trace to

comprised of

consume_tru
use_tru

release_tru
produce_tru

curp_tru

constructs from
identification
ontology

constructs from
traceability
ontology

tru_known

tru known
to exist

Submitted to WET ICE 95

January 24, 1995 14

released.

T2. If a tru is produced by a primitive activity, then the resource point of the tru at time Tp (the

time at which the produce state completes) is quantity that was produced, Q, measured in

U units.

T3. If a tru is released by a primitive activity, then the resource point of the tru at time Tp (the

time at which the release state completes) is the quantity released plus the quantity that

was already available, measured in U units.

T4. If a tru is used or consumed by a primitive activity, then the resource point of the tru at

time Tp (the time at which the use or consume state is enabled) is the amount of the tru

that has not been committed, and hence is available for other states.

T5. If there exists a resource point of a tru at time Tp1, and there exists a resource point for the

same tru at time Tp2, and for any point Tp where Tp ∈(Tp1,Tp2) there does not yet exist a

resource point for that tru at Tp, then the resource point of the tru for any point Tp is

assigned to be the resource point at time Tp1, because the quantity of the tru has not

changed since Tp1.

T6. Before the time point, Tp, at which the tru is known to exist, there is no quantity for the

tru.

T7. However after Tp, there is always a quantity value for the tru (this value = 0, if the tru has

been completely consumed).

T8. The quantity of a given tru is never incremented after it is recognized to exist.

T9. Should a tru be produced or released such that the total amount available is Q, and it is

used or consumed in quantity Q0 by a subsequent primitive activity, where Q0≤Q, then the

units of Q0 all have the same ID as that previously in Q. The implication is that individual

units of a tru are indistinguishable from each other, and hence traceability within a tru is

not possible.

T10. If one tru is produced or release such that the total quantity available is Q, and another tru

Submitted to WET ICE 95

January 24, 1995 15

is used or consumed in quantity Q0 by a subsequent primitive activity, where Q0>Q, then

the two trus cannot be the same. The implication is that once trus are recognized to exist,

aggregating the contents of two or more trus does not result in the aggregate quantity

maintaining the ID of any of the trus that are aggregated.

3.4 Implementation

The enterprise model used in the TOVE project is implemented in C++ using the ROCKTM

knowledge representation tool from Carnegie Group. Queries about the enterprise model are made
in Prolog. So the representations developed in the traceability ontology are either implemented as
objects, relations, and attributes in the enterprise model, or implemented as Prolog predicates that
reason about the enterprise model. Finally the enterprise model is visualized using a graphical user
interface called oakTM, also from the Carnegie Group.

The user level question is posed again below. A re-statement of this questions with the terminology
from the TOVE Ontologies is shown below this. A Prolog implementation of how this question is
to be answered is shown. Finally the graphical presentation of the answer to this query is displayed.

Q 1. How much of a specific batch of resources was used by one or more activities
over a given period of time?

Q 1. How much of a given tru was used/consumed/produced/released by one or
more primitive activities over a given period of time?

A: It is possible to plot the quantity change of a tru over time. Some of the
granularity assumptions in the traceability ontology are that: there are integral
units of time, and quantity changes occur discretely, not continuously.

Implementation:
show_tru_history(R,[Te,Te]) :- rp_tru(R,Q,Te,U).
show_tru_history(R,[Ts,Te]) :-

rp_tru(R,Q,Ts,U),
TNew is Ts + 1,
show_tru_history(R,[TNew,Te]).

Submitted to WET ICE 95

January 24, 1995 16

FIGURE 6. Graphical Answer to Traceability User Level Competency Question

The above diagram shows that the traceable resource unit named tru_bolt1_001 was produced by
the primitive activity named purchase_bolt1_001 at time 5 min, where the quantity of the tru was
100. The diagram also shows that all quantity of tru_bolt_001 was consumed for the primitive
activity named assemble_nut_bolt1_001 at time 11 min.

4. Conclusion
A logical formalization of quality knowledge is presented in this paper. By formalizing this body
of knowledge, these benefits have been accrued:

1. Elucidation of the concept of quality by classification of identification,
traceability, and measurement as sub-domains of the TOVE Quality Ontology

2. Clearly identified terminology and axioms: the TOVE Quality Ontology
3. Presentation of a rigorous methodology for ontological engineering
4. Graphical presentation of the ability to use this formalization to make

deductions and decisions about quality

What has been presented in this paper is only a portion of the work in formalization of quality
knowledge that is being performed in the Enterprise Integration Laboratory. As mentioned, there

Submitted to WET ICE 95

January 24, 1995 17

are two types of formalizations: engineering of the TOVE Quality Ontology and the TOVE Quality
Analysis Micro-Theories. The status of these efforts is as follows:

TOVE Quality Ontology
• Identification Ontology. Its problem statements are:

Q: Given an entity, can that entity be uniquely identified, such that the quality of
that entity can be discerned from the quality of another entity?

Q: Given an entity, can that entity be classified into an entity type, such that the
quality of that entity can be compared to the quality of another entity which is
classified in the same entity type, although both entities are uniquely identified
as being different?

A full iteration of the ontological engineering methodology has been applied to the
development of this ontology. The biggest contribution of this ontology to the
overall TOVE Quality Ontology is the explicit scoping of basic assumptions about
unique identification.

• Traceability Ontology
Q: Given an entity and a state of the enterprise, can all entities and necessary

attributes of these entities that had a bearing on the quality of the given entity
be traced and identified?

As display in this paper, a full iteration of the ontological engineering
methodology has been applied to this ontology. With this ontology, a basic
capability to perform traceability in analyzing quality problems is given.

• Measurement Ontology
Q. Given an entity, can attributes of that entity which have a bearing on the

quality of that entity be measured, so that such a measurement can be used to
assess the quality of that entity?

This is the crux of the TOVE Quality Ontology. With representations from this
ontology— using the assumption that quality is conformance to requirements— it
is possible to deduce the quality of an entity.

TOVE Quality Analysis Micro-Theories
• ISO 9000 Micro-Theory

Q. Given an enterprise and a state of the world, can it be determined that the
enterprise complies to one of the ISO 9000 standards for quality management?

This is a formalization of the ISO 9000. Specifically this is a formalization of the
ISO 9002 requirements upon an enterprise’s quality management system, and the
ISO 8402— a glossary of terms. This micro-theory can be used as a software tool

Submitted to WET ICE 95

January 24, 1995 18

to help a company meet ISO 9000 compliance.

• SQC Micro-Theory
Q. Given an entity, and a state of the world, can the quality of that entity in past

states be stated, and can the quality of that entity in future states be predicted?

Q. Can the above capability be used to control the quality of that entity in future
states?

This is a formalization of some of the basic techniques in statistical quality control.
This micro-theory can be used as a software tool to control a company’s processes.

The TOVE Quality Ontology is the representational basis upon which formalized quality
knowledge can be used to integrate the quality-related decision making through out an enterprise.

5. Acknowledgments
This research is supported, in part, by the Natural Science and Engineering Research
Council, Digital Equipment Corp., Micro Electronics and Computer Research Corp., and
Spar Aerospace.

6. Appendix

T1. A tru is first known to exist at the time that it is first used, consumed, produced, or
released.

∀Rt ∃Tp (tru_known(Rt,Tp) ≡ tru(Rt) ∧
∀S ∀T ∃S0 ∃T0 [(uses(S,Rt) ∨ consumes(S,Rt) ∨

produces(S,Rt) ∨ releases(S,Rt)) ∧
(uses(S0,Rt) ∨ consumes(S0,Rt) ∨ produces(S0,Rt) ∨ releases(S0,Rt))
∧ state_duration(S,T) ∧ state_duration(S0,T0) ⊃

{ (strictly_before(T0,T) ∨ possibly_before(T0,T) ∨ T=T0)
∧ start_point(T0,Tp) }]).

Rt: ID of the tru
Tp: time point at which the tru is recognized to exist
S: all states that use/consume/produce/release Rt
S0: the first state that uses/consumes/produces/releases Rt
T,T0: time durations for states S, S0, respectively

T2. If a tru is produced by a primitive activity, then the resource point of the tru at time
Tp (the time at which the produce state completes) is quantity that was produced,
Q, measured in U units.

Submitted to WET ICE 95

January 24, 1995 19

∀Rtru∀Tp∀A∀S∀U∃Q { primitive_activity(A) ∧
produce(S,A) ∧ produces(S,Rtru) ∧
∃Tpp (tru_known(Rtru,Tpp) ∧ Tp≥Tpp) ∧
state_duration(S,T) ∧ end_point(T,Tp) ∧
amount_produced(Rtru,Q) ∧ unit_of_measurement(R,capacity,U,A)

⊃rp_tru(Rtru,Q,Tp,U) }.
Rtru:unique ID of the traceable resource unit
Q: quantity of Rtru that was produced
Tp: time point at which Rtru is produced
U: unit of measurement in capacity measurement units; if the traceable resource

unit is produced discretely, then this can be “objects”, and if produced
continuously, this can be “litres” or “tons”

A: primitive activity that produces Rtru
S: state associated with the produced tru Rtru

T3. If a tru is released by a primitive activity, then the resource point of the tru at time
Tp (the time at which the release state completes) is the quantity released plus the
quantity that was already available, measured in U units.

∀Rtru∀Tp∀A∀S∀U∃Q { primitive_activity(A) ∧
release(S,A) ∧ releases(S,R) ∧
∃Tpp (tru_known(Rtru,Tpp) ∧ Tp≥Tpp) ∧
state_duration(S,T) ∧ end_point(T,Tp) ∧
∃Q1 ∃Q2 (amount_available(S,Rtru,Q1) ∧ amount_committed(S,Rtru,Q2) ∧

Q=Q1+Q2) ∧
unit_of_measurement(R,capacity,U,A)

⊃rp_tru(Rtru,Q,Tp,U)}.
Rtru:unique ID of the traceable resource unit
Q: quantity of Rtru available for other states just after Rtru was released
Tp: time point at which Rtru is released
U: unit of measurement in capacity measurement units; if the traceable resource

unit is produced discretely, then this can be “objects”, and if produced
continuously, this can be “litres” or “tons”

A: primitive activity that releases Rtru
S: state associated with the released tru Rtru

T4. If a tru is used or consumed by a primitive activity, then the resource point of the
tru at time Tp (the time at which the use or consume state is enabled) is the
amount of the tru that has not been committed, and hence is available for other
states.

∀Rtru∀Tp∀A∀S∀U∃Q { primitive_activity(A) ∧
[(use(S,A) ∧ uses(S,R)) ∨ (consume(S,A) ∧ consumes(S,R))] ∧
∃Tpp (tru_known(Rtru,Tpp) ∧ Tp≥Tpp) ∧
state_duration(S,T) ∧ start_point(T,Tp) ∧
amount_available(S,Rtru,Q) ∧ unit_of_measurement(R,capacity,U,A) }

⊃rp_tru(Rtru,Q,Tp,U)}.

Submitted to WET ICE 95

January 24, 1995 20

Rtru:unique ID of the traceable resource unit
Q: quantity of Rtru that is available for other states once Rtru is committed to be

used or consumed
Tp: time point at which Rtru is committed to be used or consumed
U: unit of measurement in capacity measurement units; if the traceable resource

unit is produced discretely, then this can be “objects”, and if produced
continuously, this can be “litres” or “tons”

A: primitive activity that uses or consumes Rtru
S: state associated with the used or consumed tru Rtru

T5. If there exists a resource point of a tru at time Tp1, and there exists a resource
point for the same tru at time Tp2, and for any point Tp where Tp ∈(Tp1,Tp2) there
does not yet exist a resource point for that tru at Tp, then the resource point of the
tru for any point Tp is assigned to be the resource point at time Tp1, because the
quantity of the tru has not changed since Tp1.

∀Rtru∀U∀Tp∃Q ∃Q1∃Tp1∃Q2∃Tp2{{ rp_tru(Rtru,Q1,Tp1,U) ∧ rp_tru(Rtru,Q2,Tp2,U) ∧
Tp>Tp1 ∧ Tp<Tp2 ∧
∃Tpp (tru_known(Rtru,Tpp) ∧ Tp≥Tpp) ∧
∀Tp0∀Q0 [Tp0>Tp1 ∧ Tp0<Tp2 ∧ rp_tru(Rtru,Q0,Tp0,U) ⊃ Q0=Q1]

⊃ Q=Q1 }
⊃rp_tru(Rtru,Q,Tp,U)}.

Rtru:unique ID of the traceable resource unit
Q: quantity of Rtru that is available for other states at time Tp
Tp: time at which the resource point of the tru is desired
U: unit of measurement in capacity measurement units; if the traceable resource

unit is produced discretely, then this can be “objects”, and if produced
continuously, this can be “litres” or “tons”

Q1: this is the resource point associated with the last state (before time point Tp) in
which Rtru was used/consumed/produced/released.

Q2: this is the resource point associated with exactly the next state(after time point
Tp) in which Rtru was used/consumed/produced/released.

Tp1: time at which the resource point of the tru was assessed to be Q1
Tp2: time at which the resource point of the tru was assessed to be Q2

T6. Before the time point, Tp, at which the tru is known to exist, there is no quantity for
the tru.

∀Rt ∀Tpa ∀U ∃Tp [tru_known(Rt,Tp) ∧ Tpa<Tp ⊃
¬∃Qa rp_tru(Rt,Qa,Tpa,U)].

Rt: ID of the tru
Tp: time point at which the tru is recognized to exist
Tpa: any time point before Tp
U: unit of measurement for Rt
Qa: the quantity of Rt at Tpa. Since Rt does not exist at Tpa, there is no value for Qa

T7. However after Tp, there is always a quantity value for the tru (this value = 0, if the

Submitted to WET ICE 95

January 24, 1995 21

tru has been completely consumed).

∀Rt ∀Tpz ∀Qz ∀U ∃Tp [tru_known(Rt,Tp) ∧ Tpz≥Tp ⊃
rp_tru(Rt,Qz,Tpz,U) ∧ Qz≥0].
Rt: ID of the tru
Tp: time point at which the tru is recognized to exist
Tpz: any time point equal to or after after Tp
U: unit of measurement for Rt
Qz: the quantity of Rt at Tpz

T8. The quantity of a given tru is never incremented after it is recognized to exist.

∀Rt ∀Qa ∀Q ∀U ∀Tpa ∀Tp [tru_known(Rt,Tp) ∧ Tpa≥Tp ∧
rp_tru(Rt,Q,Tp,U) ∧ rp_tru(Rt,Qa,Tpa,U) ⊃

Q ≥ Qa].
Rt: ID of the tru
Tp: time point at which Rt is recognized to exist
Tpa: any time point after Tp
Q: total quantity of Rt at the time that it is recognized to exist
Qa: total quantity of Rt at time point Tpa
U: unit of measurement for Rt

T9. Should a tru be produced or released such that the total amount available is Q,
and it is used or consumed in quantity Q0 by a subsequent primitive activity,
where Q0≤Q, then the units of Q0 all have the same ID as that previously in Q.
The implication is that individual units of a tru are indistinguishable from each
other, and hence traceability within a tru is not possible.

∀Rt∃Rt0∀S∀Rtclass ∃S0 { tru(Rt) ∧tru(Rt0) ∧
has_tru(Rtclass,Rt) ∧ has_tru(Rtclass,Rt0) ∧
{ (produces(S,Rt) ∨ releases(S,Rt)) ∧

(uses(S0,Rt0) ∨ consumes(S0,Rt0)) } ∧
∀Q∀T∀Tp∀U∃Q0∃T0∃Tp0 [{ state_duration(S,T) ∧

state_duration(S0,T0) ∧
(strictly_before(T,T0) ∨ possibly_before(T,T0)) } ∧

{ has_point(T,Tp) ∧ has_point(T0,Tp0) ∧
rp_tru(Rt,Q,Tp,U) ∧ rp_tru(Rt0,Q0,Tp0,U) ⊃ Q0≤Q } ⊃

Rt = Rt0] }.
Rt, Rt0 :ID of a tru that is produced or released, and then subsequently used or

consumed
Rtclass: tru type, for which Rt is an instance
S: a produce or release state for Rt
S0: a use or consume state for Rt
T,T0: state durations for A and A0, respectively
Tp,Tp0: any time point in T and T0, respectively
Q,Q0: total quantity of Rt at states S and S0, respectively
U: unit of measurement for Rt

Submitted to WET ICE 95

January 24, 1995 22

T10. If one tru is produced or release such that the total quantity available is Q, and
another tru is used or consumed in quantity Q0 by a subsequent primitive activity,
where Q0>Q, then the two trus cannot be the same. The implication is that once
trus are recognized to exist, aggregating the contents of two or more trus does not
result in the aggregate quantity maintaining the ID of any of the trus that are
aggregated.

∀Rt∃Rt0∀S∀Rtclass ∃S0 { tru(Rt) ∧ tru(Rt0) ∧
has_tru(Rtclass,Rt) ∧ has_tru(Rtclass,Rt0) ∧
{ (produces(S,Rt) ∨ releases(S,Rt)) ∧

(uses(S0,Rt0) ∨ consumes(S0,Rt0)) } ∧
∀Q∀T∀Tp∀U∃Q0∃T0∃Tp0 [{ state_duration(S,T) ∧

state_duration(S0,T0) ∧
(strictly_before(T,T0) ∨ possibly_before(T,T0)) } ∧

{ has_point(T,Tp) ∧ has_point(T0,Tp0) ∧
rp_tru(Rt,Q,Tp,U) ∧ rp_tru(Rt0,Q0,Tp0,U) ⊃ Q0>Q } ⊃

Rt ≠ Rt0] }.
Rt : ID of a tru that is produced or released
Rt0 : ID of a tru that is used or consumed after Rt is produced or released
Rtclass: tru type, for which Rt and Rt0 are instances
S: a produce or release state for Rt
S0: a use or consume state for Rt
T,T0: state durations for S and S0, respectively
Tp,Tp0: any time point in T and T0, respectively
Q,Q0: total quantities for Rt and Rt0 at states S and S0, respectively
U: unit of measurement for Rt and Rt0

7. References

1. [Blanchard 91] Blanchard, Benjamin S., Systems Engineering Management, John Wiley
& Sons, Inc., 1991.

2. [Boehm 81] Boehm, Barry, Software Engineering Economics, Prentice Hall, 1981.

3. [Brachman 79] Brachman R. J., On the Epistemological Status of Semantic Networks, in
Associative Networks: Representations and Use of Knowledge by
Computers, in Findler, N.V: Academic Press, 1979, pp. 3-50.

4. [Crosby 79] Crosby, P.B., Quality is Free: The Art of Making Quality Certain, New
York: McGraw-Hill, 1988.

5. [Di Franca 81] Di Franca, G.T., The Investigation of the Physical World, Cambridge,
England: Cambridge University Press, 1981.

Submitted to WET ICE 95

January 24, 1995 23

6. [Fadel et. al. 94] Fadel, F.G., Fox, M.S., Gruninger, M., A Generic Enterprise Resource
Ontology, Proceedings of Third Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Morgantown, WV, April
1994, pp. 117-128.

7. [Fox et. al. 93] Fox, M.S., Chionglo, J.C., Fadel, F.G., A Common-Sense Model of the
Enterprise, in 2nd IE Research Conference Proceedings, Los Angeles,
CA, May 1993.

8. [Garvin 84] Garvin, D.A., What does 'Product Quality' Really Mean?, Sloan
Management Review, Fall, 1984.

9. [Godfrey 93] Godfrey, A. Blanton, Ten Clear Trends for the Next Ten Years, Quality
Quotes, Vol. 19, Spring 1993, No. 2.

10. [Grady 93] Grady, Jeffrey O., System Requirements Analysis, McGraw-Hill Inc,
1993.

11. [Gruber 93] Gruber, Thomas, R., Towards Principles for the Design of Ontologies
Used for Knowledge Sharing, Technical Report KSL 93-4, Knowledge
Systems Laboratory, Computer Science Department, Stanford
University, Stanford, CA 94305.

12. [Hall 89] Hall III, Arthur D., Metasystems Methodology: A New Synthesis and
Unification, Pergamon Press, 1989.

13. [Hauser & Clausing 88] Hauser, J.R. & Clausing, D., The House of Quality, Harvard Business
Review, May-June, 1988, pp. 63-73.

14. [ISO 91] ISO, ISO 9000 International Standards for Quality Management,
Geneva,Switzerland: ISO General Secretariat, 1991.

15. [Shinghal 92] Shinghal, Rajjan, Formal Concepts in Artifical Intelligence
Fundamentals, London: Chapman & Hall Computing, 1992

16. [Walton 89] Walton, Richard E., Up and Running: Integrating IT and the
Organization, Boston, MA: Harvard Business School Press, 1989.

Submitted to WET ICE 95

January 24, 1995 24

