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Decision support systems (DSS’s) for aiding group prob-
lem-solving situations have become increasingly important for
supporting and coordinating complex organizations. This pa-
per describes a framework for designing, developing, and
formalizing group problem-solving systems based on dis-
tributed artificial intelligence (DAI). Among the issues, we
find the coordination mechanisms and the learning schemes
to be of particular importance in supporting group problem
solving. Two implementation examples, one on a network of
expert systems, one on a multi-agent concurrent design sys-
tem, are used to illustrate the distributed artificial intelligence
approach to group decision support.
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1. Introduction

The technological breakthroughs of the last
decade have made computers an essential con-
tributing element to the decision-making process
in organizations. Nowadays, computers, with the
ever-growing computational, problem-solving, and
communications capabilities, are increasingly be-
ing used to provide decision support to individual
decision makers, or they themselves function as
decision units utilizing artificial intelligence. This
new era of information technology has brought
along a number of challenging problems. In par-
ticular, communications networks are emerging
as a medium for coordinating organizational ac-
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tivities in an inherently distributed environment.
These advances necessitate the development of
some new principles of information system design
that consider the distributed, coordinated nature
of group problem solving.

We can use a common problem faced by the
manufacturing industry today to illustrate this
need. It has become increasingly important, due
largely to global competition, to achieve short-
ened cycle times for developing products to meet
market demands. As a result, there is a great
‘need to coordinate the decision processes among
design engineers, manufacturing engineers,
schedulers, marketing managers, financial offi-
cers, etc., in an organization. Without proper
coordination in the product designs, production
schedules, financial analysis, and marketing plans
made by the various departments, there would be
conflicts among these decision processes and the
resulting modifications needed would substan-
tially lengthen the product development life-cycle.
The advances in information technology can en-
able computer-supported coordination to support
group problem-solving processes within organiza-
tions [4;36;37;20;22]). In this paper, we shall de-
scribe a distributed artificial intelligence (DAI)
framework for facilitating such coordination in
supporting group problem solving activities.

A number of research areas have emerged
recently that concern the issues related to infor-
mation systems for supporting group problem

solving. Several different names have been used

to describe this type of systems, such as dis-
tributed problem solving systems [15], computer-
based systems for cooperative work [29], group
decision support systems [9;42;43], electronic
meeting systems [16], electronic brainstorming
systems [57), groupware [19], distributed reason-
ing systems [2], and cooperating knowledge-based
systems [14]), among others.

A general DAI system consists of a group of
problem-solving agents collaborating in finding
the solutions to given problems. In this paper we
will identify the design considerations for such
DAI systems and the possible mechanisms for
coordinating the problem-solving activities. By
developing a DAI framework for supporting
group problem solving, the DSS component is
taking a more active role in guiding the decision
processes. Such a DAI approach can support a
group of decision makers either simultaneously,

such as the case in a electronic meeting system
[16], or it can support asynchronous group prob-
lem-solving activities, such as the case in office
information systems [61] or concurrent engineer-
ing design systems [22;8]. We use the term group
problem-solving systems to encompass-these dif-
ferent variations, and the information system for
supporting group problem solving is referred to
as a group decision support system (GDSS). This
paper will- discuss the important features, the
design issues, and the necessary functions that
have to be incorporated in a DAI system to
effectively support group problem solving.

DAI may fill an important gap of the existing
research in the DSS literature, especially in the
areas related to developing and analyzing GDSSs.
Nunamaker et al. [42] articulated three factors
mmportant for developing GDSSs: user profile,
task domain, and technology. The technology used
by the existing GDSSs has been mostly focused
on facilitating the group communication, structur-
ing the decision processes, integrating the deci-
sion-support software tools, and guiding the group
interactions. DAI can naturally provide all these
capabilities. In addition, just as knowledge-based
expert systems can demonstrate expert-level per-
formance by incorporating human judgement and
heuristics, so can a DAI system demonstrate
group intelligence by incorporating the effective
knowledge and strategies for group problem-solv-
ing. Essentially, the information system incorpo-
rating DAI serves as an invisible manager sup-
porting the group of problem-solving agents (i.e.,
human decision makers or Al nodes), overseeing
the group problem-solving process, and making
sure that the problem is solved by the group in
the most effective fashion.

A critical component in developing DAI-based
system for group problem solving is the coordina-
tion strategies used by the agents: the group
meta-level knowledge for enticing the agents to
work with each other effectively. Similar to the
way expert systems are inspired by the heuristic
problem-solving process used by individual hu-
man experts, the effort of developing DAI system
can benefit from studying how a group of people
work together in collaborative work. The chal-
lenge is for each individual problem-solving unit
(synonymously, agent) to coordinate, in a most
efficient and goal optimizing way, its interactions
with those of other agents. Coordination can be



M.J. Shaw, M.S. Fox / DAI for GDS 3

exerted in the form of passing data, goals, prefer-
ence, partial solutions/ plans, or constraints.

Furthermore, this paper is to develop multi-
agent learning schemes for enhancing the perfor-
mance of DAI systems. It has become commonly
recognized in the AI community that learning
and problem-solving should be well integrated in
an intelligent system. In single-agent problem-
solving systems, learning capabilities are indis-
pensable for knowledge acquisition and refine-
ment. Learning capabilities are even more impor-
tant in multi-agent problem solving due to the
constant interactions and information-sharing
among agents. Incorporating the right learning
schemes could improve the problem-solving per-
formance of DAI systems. Furthermore, we will
show a multi-agent learning approach which use
the DAI framework with a distributed problem-
solving strategy to improve the performance of
the learning processes. 3

After reviewing the research issues related to
cooperative problem solving and developing a
framework for characterizing such systems in sec-
tion 2, section 3 focuses on the coordination
mechanisms in DAI systems, which affect the
problem-solving strategies and learning schemes
used. In section 4, the possible schemes for carry-
ing out learning in multi-agent problem solving
are discussed, including a multi-agent induction
procedure, called the distributed learning system
(DLS), are discussed. Section 5 illustrates two
exemplary GDSS systems incorporating DAI: the
Networked Expert System Testbed (NEST) - for
group problem solving, and the Design Fusion
system for facilitating concurrent design.

2. Distributed artificial intelligence and DSS re-
search

2.1. Group decision support

The demand for GDSSs arises due to two
conflicting organizational situations: the require-
ment for more information sharing in organiza-
tions as a means to cope with the environmental
complexity ad uncertainty, and the desire to facil-
itate coordination among a group of decision-
making agents [17]. The purpose is to increase
the effectiveness of decision groups by facilitating

the interactive sharing and use of information
among group members and also between the
group and the computer.

A group decision support system improves the
process of group decision making through the use
of communication, computing and decision analy-
sis techniques. By effectively coordinating the ex-
change of information, it provides new ap-
proaches for organizational decision making and
thus facilitates the solving of unstructured prob-
lems by a group. DeSanctis and Gallupe [17]
outline three levels of GDSSs. Each level alters
the group communication process to a different
degree and requires more sophisticated technol-
ogy. Level 1 only facilitates information exchange
by removing common barriers (i.e. electronic
messages, anonymous input), so there is a small
degree of communication change. Level 2 makes
qualitative modeling tools available to the entire
group, thus reducing uncertainty in the decision
making process. Level 2 systems incorporate a
greater degree of communication change than
Level 1. Automated group structuring techniques,
such as the Delphi method and Nominal Group
Technique, can be applied at Level 2. A Level 3
GDSS controls the communication process by
imposing communication patterns on the group.
Rules are developed to control the pattern, tim-
ing and content of the information exchange. The
rules, which are applied to the group meeting
procedure, can be pre-set during development or
selected by the group. The advancement in devel-
oping Level 3 GDSS is very much needed for
truly achieving group decision support (Benbasat
and Konsynski [1988]), and the DAI framework
described in this paper is aimed at supporting
group problem-solving functions as characterized
by Level 3 GDSSs.

2.2. A taxonomy of group problem solving systems

The group problem solving system discussed in
this paper is a DAI system consisting of a net-
work of intelligent problem-solving nodes. An
example of such a system is a network of rule-
based DSSs, each of which incorporating an area
of expertise as represented by the content of its
rules. There are three different types of group
problem-solving systems that have been devel-
oped:
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Type I: Collaborative reasoning systems. The
agents in this type of systems would be solving
the same problem collaboratively. The main issue
here is not the decomposition into subproblems
assigned to the agents; rather, the focus is usually
put on guiding and coordinating the interactions
among the participating agents, so that the prob-
lem can be solved jointly by the group_simultane-
ously. The PLEXYS system [42;43]), COLAB [57],
and the concurrent design system described in
[8;20;22}] all fall into this category. The collabora-
tion among the agents is enforced through infor-
mation sharing, mutual stimulation of ideas, and
helping the group focus on the most relevant
information for reaching the solutions.

Type 2: Distributed problem-solving systems. In
these systems, the overall problem to be solved is
decomposed into sub-problems assigned to the
agents, each agent, asynchronously, would plan
its own actions and turn in its solutions to be
synthesized with the solutions of other agents.
The agents in these systems use either task shar-
ing [55;56] or data sharing (e.g., [32)]) to cooperate
with other agents. The office information system
described in [61], Design Fusion system described
in [20], and the scheduling system describe in {50]
are examples of these systems. Because the agents
can work on different parts of the problem in an
asynchronous fashion, distributed problem-solv-
ing systems enjoy more flexibility. On the other
hand, the properly designed coordination mecha-
nism becomes especially important for these sys-
tems.

Type 3: Connectionist systems. The third type of
multi-agent systems use agents as the basic com-
putational elements. These agents individually are
just simple computing units and are not intelli- %
gent; but together they can solve complicated
problems quickly. A typical example is the soci-
ety-of-mind model described in [39] Unlike the
previous two types of systems, where the agents
are intelligent problem solvers, the agents in the
connectionist model are only simple computation
units. The agents learn to solve problems more
effectively by adjusting their connections with
each other. Such a connectionist model can help
real-world systems to achieve self-organizing,
adaptive, coordination between the agents. For

example, [45] described a connectionist system,
called CASCADE, for performing material han-
dling in a discrete parts manufacturing environ-
ment.

2.3. The strategic considerations: A framework for
DAI

Although the agents, the problems to be solved,
and the strategies used are different in the
afore-mentioned systems, it is nevertheless possi-
ble to construct a general framework to describe
the strategic considerations shared among these
systems. These considerations are summarized
below.

(1) Goal Identification and task assignment. There
are two different types of problem- solving pro-
cesses that can be used by the group of agents: in
the first type, the problem is presented to the
whole group and the agents would collectively
carry out the deliberation process, which usually
consists of issues identification, proposing solu-
tions, discussion, prioritizing, and finalizing the
group solutions. For the second type of group
problem solving, the tasks involved in having the
problem solved are structured and known, and
the common strategy used consists of four steps:
problem decomposition, task assignment, local
problem solving, and solution synthesis. Gener-
ally, the former approach is often used in collabo-
rative reasoning systems; the latter is used in
distributed problem-solving systems previously
defined.

(2) Distribution of knowledge. In designing a dis-
tributed knowledge-based system, the set of do-
main knowledge possessed by the group of agents
can be distributed in different fashions. In a
sense, the consideration of knowledge distribu-
tion is similar to the design consideration of
placing copies of data files in distributed
databases - the copies of different areas of knowl-
edge should be placed according to the utilization
by each agent. There may be different degree of
redundancy in the agents’ knowledge bases. In
one extreme, the group of agents have exactly the
same knowledge; in the other extreme, each agent
in the group possesses different area of knowl-
edge, without any overlap whatsoever. For some
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systems, however, the knowledge distribution is
given and fixed.

(3) Organization of the agents. The organizational
structure of the agents would determine the
amount of information processed and the coordi-
nation necessary for the agents to operate effi-
ciently. [35] evaluated a variety of organizational
structures and compared them on three dimen-
sions: amount of processing needed, amount of
coordination required, and degree of vulnerabil-
ity. [21] addressed the issue of organization struc-
ture and problem characteristics; he articulated
the two opposing forces of task complexity and
uncertainty, and related them to the issue of
bounded rationality of the agents in an organiza-
tion (or a computer system). [12], on the other
hand, underscored the importance of considering
the transitory nature of organizational decision
making; he argued for incorporiting flexibility
and the dynamic performance of the agents in an
organization. In the GDSS environment, the
group, for example, can have a central coordina-
tor which gives commands to the other agents in
a hierarchical fashion; alternatively, the agents
can have a heterarchical structure, sometimes
with the flexibility to dynamically form subteams.
In addition, the agents may also use a market
structure, such as the case for the DAI systems
based the contract-net framework [56].

(4) Coordination mechanisms. Coordination is
necessary in multi-agent problem solving for re-
solving conflicts, allocating limited resources, rec-
onciling different preferences, and searching in a
global space for solutions based on local informa-
tion. Coordination mechanisms can be based on a
variety of information passed among the agents,
such as data, new facts just generated, partial\
solutions / plans, preferences, and constraints. A
number of coordination mechanisms have been
developed for DAI systems, each of which with
its unique protocol for determining the timing of
activities, triggering of events, action sequences,
and message content in the coordination process.
The role of coordination in multi-agent problem
solving is discussed in detail in Section 3.

(5) Learning schemes. Learning should be an in-
tegral part of problem solving for improving the

strategies, knowledge, and skills employed in the
process. There are several learning processes that
can be incorporated in group problem solving
systems. It can be in the form of data exchange,
knowledge transfer, or heuristics migration, where
the learning mechanisms involved are relatively
simple. It can also be done by extending machine
learning techniques developed for single-agent
systems, such as explanation-based learning,
case-based reasoning, or inductive learning, to
the multi-agent systems, where one agent can
learn by observing other agents. In the organiza-
tion context, the learning processes interact with
the dynamic performance of the agents [12]. [34]
showed how the learning effects can be affected
by coordination among the agents. Of particular
interests are the use of group processes, such as
group induction, nominal group techniques, or
brain storming, for achieving the learning effects
among the whole group. These group processes
use structured sessions of information exchange
to develop new concepts, which would lead to
solutions not attainable by any of the agents
alone. They are also good examples for illustrat-
ing the complementary role played by the prob-
lem-solving and learning activities.

In implementing a group problem-solving sys-
tem, these five strategic considerations can be
implemented in the form of group meta-knowl-
edge [7]. The group meta-knowledge would con-
tain a variety of group functions and strategies
for the group to conduct problem solving effec-
tively. An example of such implementation is
described in Section 5. Directly affecting how the
multi-agent system operates, this group meta-
knowledge can be embedded in the network
through which the agents communicate. [55] de-
scribed the use of a ‘problem-solving layer’ for
incorporating such group meta-knowledge in the
layered network architecture. It can also be
viewed as a ‘protocol’ which every agent has to
observe for the group to operate efficiently. De-
pending on the organization of the system and
the knowledge distribution, group metaknowl-
edge would be stored either in the agents’ local
knowledge bases or a shared memory space in the
network. It is used by the DAI system to direct
and coordinate the group problem-solving ses-
sions.
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3. Coordination mechanisms for group problem
solving

Coordination is the key design component for
group problem-solving systems. Since each prob-
lem-solving agent only possesses local view and
incomplete information, it must coordinate with
other agents to achieve globally coherent and
efficient solutions. The design of coordination
can be viewed from three different perspectives:
the information content, the exercise of control,
and the coordination mechanisms. Coordination
can be achieved through passing different types
of information among the agents, such as data,
new facts just generated, partial solutions/ plans,
preferences, and constraints. The initiative to co-
ordinate may result from a variety of means of
control: it may be self directed, externally di-
rected, mutually directed, or a combination of
them [13]. N

Since coordination represents the major design
components in extending problem-solving meth-
ods to the multi-agent environment, it has at-
tracted the most attention for research in the
literature. Many coordination mechanisms have
been developed for DAI and group problem-solv-
ing systems, some representative ones are de-
scribed below. Most of group problem solving
situations, however, sometime require the use of
more than one kind of coordination mechanisms.

1. Coordination by revising actions. One of the
primary factors that necessitates coordination is
the potential conflicts underlying the actions of
the individual problem-solving agents. The objec-
tive of coordination, then, is to derive a solution
or a plan of actions for the group such that all the
conflicts are avoided. [10] used the collision
avoidance problem in air traffic control to illus-
trate coordination mechanisms based on passingx
the information constantly among problem
solvers, each of which guides the course of an
aircraft. The flight plan would be revised if there
is a risk of conflict with the plan of other air-
crafts. [5] developed a conflict-resolution frame-
work for coordinating the solution processes
among multiple agents performing tasks related
to engineering design.

2. Coordination by synchronization. In a multi-
agent system, the action of an agent usually al-

fects some other agents. The objective of coordi-
nation in a way is to regulate the interactions
among agents and to control the timing and se-
quence of these interactions. Since the agents
generate new facts throughout their problem-
solving processes, these new pieces of informa-
tion need to be properly coordinated so that they
would not interfere with each other. In addition,
the new facts generated by one agent may acti-
vate the rules in the knowledge base of another
agents. [13] and [24] incorporated communica-
tions primitives, similar to the ones used in dis-
tributed operating systems, for synchronizing the
problem-solving process of the agents. The newly
discovered facts may also change the assumptions
held by other agents; as a result, a distributed
version of the true-maintenance mechanism may
be needed for keeping the knowledge bases con-
sistent [2].

3. Coordination by negotiation. Negotiation is a
widely used form for mutually directed coordina-
tion: the process involves two-way communication
to reach a mutually agreed course of actions. The
contract-net mechanism described in [55] uses
negotiation to coordinate the sharing of
problem-solving tasks among agents, in which the
negotiation process is done by contract bidding.
[14] adopted the negotiation process to maintain
the consistency of different agents’ plans. [10]
also used the negotiation for finalizing revision of
the agents’ plans. [58;59] developed a system for
labor contract negotiation that adopted case-

based reasoning to facilitate the process.

4. Coordination by structured group mediation.
Structured group processes, such as the nominal
group technique, the Delphi technique, and the
brainstorming process, are a special type of coor-
dination based on multiple rounds of group inter-
actions. They are developed for guiding the group
to reach satisfactory solutions in a systematic
manner. Recent work on collaborative work [57]
and group decision support [1;42;43] use these
group processes to mediate group problem-solv-
ing among multiple human agents. It should be
feasible, but yet to be tested, to implement these
schemes for coordinating the problem-solving ac-
tivities among Al agents. [25] studied the user
interface in GDSSs; they described the various
group processes, such as voting, brainstorming,
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issue analysis, and negotiation that have been
supported by GDSSs.

5. Coordination by opportunistic goal satisfaction.
The blackboard model for problem solving {41]
has been used extensively in DAI systems [18].
The blackboard model provides a paradigm for
coordinating the multiple problem-solving agents
(i.e., knowledge sources), which share the black-
board, to opportunistically contribute to the group
solution process. However, the use of a single
blackboard in a DAI system implies shared mem-
ory, which would restrict the architecture of the
DAI system. [51] described an approach incorpo-
rating a distributed version of the blackboard
model but retained the opportunistic mechanism
for coordinating the agents, each of which is a
stand-alone expert system. {41] described two DAI
systems, Cage and Poligon, that extends the
blackboard model to concurrent ptoblem solving.

6. Coordination by exchanging preferences. A
group of researchers have applied the game-theo-
retic view to multi-agent problem solving. They
focus on how the group of autonomous, self-in-
terested Al agents should interact with each other
in achieving globally satisfactory solutions. {23]
developed a coordination scheme that does not
need communication. The agents, however, need
to know the possible actions and the correspond-
ing utility functions of one another. Taking a
game-theoretic approach, [47] described a coordi-
nation scheme between agents based on the ex-
change of the payoff matrices.

7. Coordination by constraint reasoning. In some
group problem-solving situations, the major pur-
pose of coordination is to find a common feasible
solution space by taking into account the collec-
tive set of constraints posted on the individual™
agents. Since the constraints of one agent may
affect the optimal decision of another agent, a
mechanism to coordinate the constraint interac-
tions becomes crucial for the group of agent to
reach a solution satisfactory to all members. [48]
developed a constraint-directed negotiation ap-
proach allocating resources among multiple
agents. [22] describes a multi-agent design system,
called Design Fusion system, that use constraint
reasoning as the engine to direct the problem-
solving processes among multiple agents.

4, Multi-agent learning

Machine learning is the study of how to de-
velop computer programs that enable an intelli-
gent system to learn. By learning we mean the
system can improve its performance through ac-
quiring new knowledge, refining existing knowl-
edge, using better strategies, or memorizing cases
previously proven to be successful. Potentially
there are a number of benefits for developing
machine learning techniques for multi-agent sys-
tems. First, since multi-agent systems provide
parallel processing capability in performing the
learning process, they can achieve substantial
speed-up in learning new knowledge. Second,
machine leaning capabilities can enhance the
problem-solving ability of the multi-agent system
and improve its performance. Third, understand-
ing the learning processes in a multi-agent system
can help develop better problem-solving strate-
gies and coordination mechanisms. The fact that
a group collectively can perform problem-solving
tasks better than what the sum of the individuals’
abilities can do is primarily due to the learning
processes that go on in group problem solving.
This phenomenon is referred to as emergent in-
telligence in DAI [50). It is this emergent intelli-
gence of DAI systems, that a group of agents
collectively can offer something not available in
the individuals, that makes DAI a potentially
powerful problem-solving tool. The learning pro-
cesses that go on among the agents may be the
key factor resulting in emergent intelligence.

In a DAI system, two types of learning may
occur: the agents can learn as a group, while at
the same time, each agent can also learn on its
own by adjusting its views and actions. As a
group, learning takes effect in a DAI system in
the form of (1) better coordination or (2) more
efficient task and resource allocation. The im-
proved coordination can be achieved by informa-
tion sharing, knowledge sharing, or more efficient
communications among the agents. Whereas the
task and resource allocation process can be im-
proved by learning the specialization (i.e., knowl-
edge distribution) of the agents (e.g., agent x is
good at performing task A), by learning the group
characteristics (e.g., agents y and z work well as a
team), by learning the patterns of tasks (e.g., for a
given type of problem, the past experience indi-
cated that it is easier to break the problem into
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two tasks, C and D, and do D first), and finally,
by learning such environmental characteristics as
user preferences, processor reliability, or future
jobs [50].

[39] developed a model for intelligence based
on the theory that a human problem-solving pro-
cess consists of a set of smaller processes, each of
which conducted by an agent with specialized
responsibility. The problems handled by the
agents in Minsky’s model, referred to as the soci-
ety of mind, have much smaller granularity than
ones handled by the agents described in NEST.
The major thrust of the society-of-mind model is
to explain intelligence as a combination of sim-
pler things executed by agents. Although none of
these agents individually is intelligent, collectively
they can solve complicated problems and do that
quickly.

The society-of-mind model captures both the
problem-solving as well as the learning processes.
The key is to emphasize not only how the agents
solve the sub-problems, but also the inter-rela-
tionships between the agents in the whole pro-
cess. The idea is that in the course of solving
some problem, certaln agents must have stimu-
lated certain other agents. A reward system is
incorporated so that if agent A has been involved
in stimulating agent B, it will be easier for A to
stimulate B in the future. The group of agents
activated in having a problem solved would have
strong connections with each other. Such con-
nected groups should make it easier to solve the
same problem the next time by simply reactivated
the same group. Minsky developed a theory of
memory based on this connectionist view, in which
the group of agents involved in solving a problem
successfully was referred to as the knowledge
line.

Learning, based on this model, is not simply
the acquisition of a single concept. It involves™
assigning priorities (weights) to competing con-
cepts which can be represented by a hierarchy of
agents. A crucial aspect of the model is to deal
with knowledge refinement in such hierarchies.
Minsky argued that it is not enough to have many
kinds of reasoning; one must know which to use
in different circumstances - i.e., the knowledge
about how best to use what was already learned.
Minsky related this to the issue of the organiza-
tion of the agents in the following characteriza-
tion, in what he referred to as the Papert’s princi-

ple: “Some of the most crucial steps in mental
growth (ie., learning) are based not simply on
acquiring new skills, but on acquiring new admin-
istrative ways to use what one already knows.”

In other words, in the multi-agent system, it is
necessary to learn how to organize the group of
agents in a problem-solving process most effi-
ciently for solving that problem. In the society-
of-mind model, as the problem-solving process
help accumulate more low-level agents, it is nec-
essary to create new levels of agents to administer
the low-level agents. The group of agents thus
would grow increasingly into a multi-level hierar-
chy. This emphasis on organizational structures
in dealing with the multiple agents is consistent
with our DAI framework described in section 2.
Since this model uses fine-grained problems, the
agents are simple computation elements. Hierar-
chies can provide good coordination for the group
of agents with the least amount of overall com-
munications activities required [53;21]. This type
of systems can learn the best organization simply
by adjusting the interconnections between units.
By enabling the evolution of the system from a
bad organization to a good one, the approach has
the flavor of a self-organizing systems [3].

[60] described a connectionist learning scheme
for organizations based on the garbage can model
[12]. The basic idea is that the logic of organiza-
tion intelligence is a temporal one: it emerges as
a result of the confluence of partially indepen-
dent flows of problemns, solutions, decision mak-
ers, and choice opportunities. An interesting re-
sult of this approach is that the emergence of
organizational learning phenomena can be ad-
dressed as a by-product of the choice activity in
organizational decision making. This Finding is
consistent with our view on emergent intelligence
discussed earlier.

This ability to organize the processing agents
as needs arise would be quite significant in a

" GDSS environment, where the efficiency and ef-

fectiveness of the group decision processes are
affected by the organizational structure of the
group. The weight adjustments used in the soci-
ety-of-mind approach may be related to the
amount of communication among agents- the
agents learn to organize themselves by learn to
better coordinate. Improved coordination can be
achieved by getting to know such information as
which is the most likely agent to have a given
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area of expertise or the preference of other agents
in sharing tasks.

Concept learning is one of the most developed
areas in machine learning, where the objective is
to derive concept descriptions satisfying all the
training examples [44]. Starting with the given set
of training examples, the learning process em-
ploys a series of generalization and specialization
steps to search through the space of all possible
concept descriptions [[54]; this process continues
until the concept descriptions that satisfy all the
descrlptions of the training examples are found.

A direct extension of the concept-learning al-
gorithm for single agent is the group induction
process. In group induction, the agents of the
system engage in collecting evidence, generating
hypotheses, and evaluating hypotheses in order to
discover new concepts collectively. Each agent
makes its individual observations, forms hypothe-
ses based on the observations, and keeps search-
ing for new evidence for modifying the hypothe-
ses. As more observations are made, evidence
may confirm or disconfirm hypotheses, thus
strengthening or weakening the agents’ beliefs
about the hypotheses. This process continues un-
til new concepts are derived that are supported
by the observations and the agents’ beliefs. The
crucial design in such a group induction process
is the coordination mechanism incorporated for
the agents to interact with each other. Proper
coordination can greatly accelerate the learning
process by having the agents share their beliefs as
well as the newly generated hypotheses that ap-
pear to be successful.

A possible source of inspiration for under-
standing the group induction process comes from
the psychology literature where researchers have
been conducting behavioral experiments to study
group induction. For example, [31] described an
experiment on group induction to address the™
issue whether “a cooperative group is able to
induce a general principle that none of the group
members could have induced alone, or the group
merely adopt an induction proposed by one or
more of the group members. They concluded that
the group were remarkably successful in recogniz-
ing and adopting a correct hypothesis if the hy-
pothesis was proposed by one or more members.
In contrast, group induction in the strong sense
that a correct group hypothesis was derived that
none of the group members had proposed indi-

vidually was extremely rare. Their findings can be
summarized by the following propositions: Propo-
sition 1, Group induction is advantageous over
single-agent induction primarily due to the agents’
sharing of hypotheses and new facts generated,
not necessary because of that the group together
can generate new hypothesis not derivable by the
individual members; and Proposition 2, In the
group induction process, the sharing of hypothe-
ses and new facts generated among the agents
would result in the identification of correct group
hypotheses in fewer iterations.

The first proposition attempts to identify the
key element of group induction; the second
proposition attempts to explain the underlying
reason for the phenomenon. Together, based on
the evidence presented by the experiment, these
two propositions point out the importance of
information sharing in a group induction process.
By the same token, designing algorithms for
achieving the same learning effects requires the
incorporation of effective coordination mecha-
nisms that would facilitate information sharing.

The major benefit of having the group of agents
is their sharing of the newly generated hypothesis
in each iteration, which Increases the probability
that a correct hypothesis can be identified sooner.
In a DAI system, since each AI nodes, a prob-
lem-solving agent, has a different knowledge base,
the rules they use in generating new hypothesis
would be different. Information sharing thus
would provide greater probability to identify the
correct hypothesis for concept descriptions
sooner.

We can make the conjecture that group prob-
lem solving can find solution quicker because of
information sharing. New facts, hypothesis, and
partial solutions generated by one agent in its
problem-solving are shared by other agents. These
additional pieces of information shared among
the agents would trigger the set of agent to con-
duct new problem-solving and evidence-gathering
activities which would not have been performed
without the agents’ interactions. In turn, these
triggered activities would generate new facts, hy-
pothesis, and evidence that are shared among the
agents. Thus, the amount of information shared
in the agents’ problem-solving efforts grows expo-
nentially, giving the group an advantage to reach
a solution much sooner. On the other hand, the
exponentially growing information would mean
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substantially more searching efforts in screening
through all the information generated. A prop-
erly designed coordination mechanism can lead
the group to evaluate all the facts, hypothesis,
new evidence, and partial solutions more system-
atically. '

The primary objective of coordination, there-
fore, is for focusing the agents’ attention on the
relevant information. It also can be used to con-
strain the search space engaged by the group.
The Delphi method is an example for such a
group problem-solving method incorporating a
structured coordination mechanism [33].

Since the complexity of the learning processs is
due primarily to the hierarchical nature of the
concepts to be learned- that is, learning has to
build on intermediate results not explicitly con-
tained in the examples- a group problem-solving
approach should have the advantage of having
the agents share their intermediate results, which
helps facilitate the identification of the crucial
intermediate concepts during the learning pro-
cess and thus enables the group to reach the
solutions faster.

Based on the previous discussion on group
induction and distributed problem solving, a dis-
tributed learning system (DLS) was developed in
pursuit of the issue of how a group of agent might
conduct the concept-learning process in a cooper-
ative fashion [52]. This algorithm basically apply
distributed problem solving to the induction pro-
cess just described, using the task-sharing strategy
developed by Smith {55].

The DLS embodies the views underlying
Propositions 1 and 2, i.e., the multi-agent version
of the inductive learning process is advantageous
because of the knowledge, hypotheses, and facts
shared among the agents. Moreover, the
solution-synthesis step also incorporates mecha-
nisms for generating new hypotheses based onx
the evaluation of existing pool of hypotheses gen-
erated by the group. DLS uses the genetic algo-
rithm to evaluate the hypotheses id to produce
new hypotheses which have high success rate
based on the evaluation. As shown by the empiri-
cal study described in {52}, the DLS has superior
learning performance comparing to the single-
agent version of the same learning procedure.

The distributed learning system research helps
illustrate two things: first, a multi-agent approach
to learning can be advantageous over single-agent

learning in terms of the learning outcome and the
system’s performance; second, the multi-agent
learning process can be guided by the the dis-
tributed problem-solving mechanism, but special
care need to be taken to ensure that the pool of
hypotheses generated by the group have been
fully utilized.

A hypothesis that has been central to our
inquiry is that the mechanisms of multi-agent
learning are not peculiar to that activity but can
be subsumed as special cases of the general
mechanisms for group problem solving. The elec-
tronic brainstorming process incorporated in [57]
and [42), for example, is a case in point. The
process is primarily aimed at structuring the group
interactions for issue identification, idea (i.e., hy-
potheses about good solutions) generation, evalu-
ation, and solution selection. This group prob-
lem-solving process highly resembles the group
induction process discussed in the preceding sec-
tion. Therefore, a group learning procedure can
be used to solve problems in a DAI-based GDSS.
This is especially true for problems that are rela-
tively unstructured and fuzzy in nature, such as
organizational planning [1], proposal develop-
ment [57], or engineering design [5;8;20;22], where
the eventual solutions are mostly satisfying rather
than optimizing. The quality of the group solu-
tions obtained in these domains depends to a
great extent on whether or not sufficient consid-
erations have been given to inducing good ideas
from the agents (i.e., the hypotheses transforma-
tion step in learning) and to recognizing the in-
formation most relevant to the final solution (i.e.,
the credit-assignment step in learning). Such an
integrated approach to problem solving and
learning were pointed out in the early develop-
ment of machine learning [54;30}. But this unifi-
cation seems to add a new dimension to group
problem solving; namely, the group interactions
required in group problem solving are very simi-
lar to those in group learning. In this light, it
should be quite possible to develop multi-agent
learning methods for enhancing group decision
support.

When a GDSS is used for supporting group
problem solving and the participating agents are
performing disparate tasks involved, learning pro-
cesses can be used to achieve better coordination
and task /resource allocation [50]. More research
is needed to establish the relationships between
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coordination and learning in this context. [11]
develops a model to formalize the interrelation-
ships among reputation, learning, and bidding as
jmportant elements of coordination. The model
explicitly recognizes that coordination can be in-
fluenced by both current and past decision pro-
cesses. The model stresses opportunity for coor-
dination improvement via reputation adjustments
that constitute a kind of organization learning. It
suggests a mechanism, based on the concept of
bidding, whereby an organization’s experiences
cause each entity’s reputations to eventually con-
verge towards its true abilities, with a likely result
of improved coordination in ad across decision
processes. Based on similar designs, it is possible
that a “learning through collaboration” mecha-
nism Ca be developed for GDSSs. In this paper,
we describe a more general mechanism in which
multi-agent learning is achieved through task
sharing. Since each agent is treated equally and

remains anonymous, reputation is not considered.
’ In addition, machine learning methods may be
incorporated to enhance group decision support
by equipping the agents to learn the other agents’
belief, preference, and the previous group solu-
tions or cases that were developed for handling

Group Strategy
Knowledge

Group Blackboard

Mailbox Area

Expert System

Expert System
Node 1 Node 2

Fig. 1. The architecture of NEST.

certain problems. For example, [58;59] incorpo-
rated the case-based reasoning capability in a
group negotiation system called PERSUADER.
In mediating the conflicts between agents, PER-
SUADER uses a high-level structure called gen-
eralized episode [49] to organize similar concepts
in memory. The group solutions (i.e., tradeoffs
and compromises that were made) proven to be
successful previously for similar problems and
agents involved will be stored for future retrieval
for similar cases. Failed solutions will also be
stored to warn the agents of potential difficulties
in future similar situations. Other machine learn-
ing methods such as the explanation-based learn-
ing technique can be used to achieve the same
effect. These methods enable the individual
agents to learn from the interactions with the
other agents in the group problem-solving situa- -
tions, such as the concurrent design process in
the Design Fusion system.

Based on this DAIT framework, the agents can
learn as a group whereas each agent can also
learn on its own by adjusting its views and ac-
tions. It points to the need for more coordination
for accomplishing these learning functions to fa-
cilitate group decision support. In terms of the

Expert System
Node n
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NEST architecture, the group learning processes
would refine the group meta-knowledge; the indi-
vidual agents’ learning processes would affect the
agents’ local knowledge bases. Together these
learning processes would integrate with the group
problem-solving processes supported by the
GDSS and produce better group solutions.

5. Examples of DAI systems for group decision
support

5.1. NEST: A networked expert systems testbed

A prototype version of our group problem-
solving model, based on the DAI framework dis-
cussed, was implemented in an experimental net-
work. The system, referred to as the networked
expert systems testbed, or NEST, consists of a
network of four expert systems. The architecture
of NEST is based on a variation of the black-
board system, with ‘“mailbox” areas added to the
blackboard shared area for coordinating the
agents. The architecture of NEST is shown in
Figure 1.

NEST was developed using Texas Instrument
Personal Consultant Plus Version 4.0, an expert
system development program. Personal Consul-
tant On-line, a supplementary tool for real-time
applications, was also utilized. The prototype was
installed on an IBM Token Ring Network of
IBM-AT computers. PC Plus and On-line were
installed locally at four nodes of the network. A
distributed version of dBase III + was installed
as a shared memory so all nodes could have
access to it. dBase was selected because PC Plus
has internal interface with it.

5.1.1. Group meta-knowledge

NEST is a generic DAI system. It was not™
dependent on a specific application. The group
meta-knowledge of the system directs the group
problem-solving processes. It asks the user for the
problem description and characteristics of the
problem; It also determines some group charac-
teristics and selects the appropriate group strat-
egy based on this information.

Corresponding to the knowledge distribution,
the user describes the group problem with the aid
of an expertise database. This contains a list of
the available expertise on the network, indexed

by a standardized classification scheme. It also
indicates the node where the particular expertise
is located. The database needs to be updated by a
human system administrator whenever a new ex-
pert system is added to the network.

For the goal-identification and the task-assign-
ment function, if the user is unable to solve the
problem with the given expertise, the problems
may be decomposed into sub-problems. The group
knowledge base will select a strategy for each of
the sub-problems individually. The user can then
combines the results from each node and arrives
at the overall problem solution. This is the task-
sharing strategy for distributed problem solving.

The expertise database is also used for task
assignment. Given the problem description, the
expertise database is consulted to find out which
nodes are capable of solving this problem. This is
especially helpful in the collaboration strategy.
When one node needs help and asks the strategy
coordinator for assistance, the coordinator checks
in the expertise database to see which nodes can
provide the required expertise.

5.1.2. Coordination mechanisms

NEST uses a modification of the blackboard
architecture, in which the agents, i.e., the expert
systems, can communicate through two means -
the blackboard or the mailbox - for coordination.

Blackboard

The blackboard communication area is imple-
mented with the following three databases:
(1) Coordination database. This serves as a mail-
box for the coordinator to coordinate agents. It is
part of the blackboard and all of the local nodes
have access to it. The fields of the database
indicate which node sent the message, a com-
mand for the coordinator, and a message. For
example, the coordinator can receive two types of
messages in this database: (1) x-node Request
parameter-name and (2) x-node Respond status-
value.
(2) Value database. Serving as the world model
for the multi-agent environment in NEST, this is
a shared area where parameter values for the
current problem are stored. It contains the pa-
rameter name, the value, and a timestamp. Every
time a node ascertains a new value for a parame-
ter, it updates the entry in the value database.
Thus, the most recent value of the parameter is
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always available. Users of the value database (i.e.
other nodes) can calculate how current the value
is by checking the timestamp.

(3) Status database. This database marks which
nodes are currently busy so they will not be
assigned a new task. A timestamp is included for
start and finish of the task.

Mailbox

The second means of communications between
the agents are through the mailbox area. Each
node in the network has a unique mailbox
database that serves as its mailbox (refer to Fig-
ure 1). Messages to the nodes from the coordina-
tor are placed in this database. The message
consists of a field indicating the type of message
(“provide™), and a field containing the parameter
name. The coordinator would ipitiate a func-
tional expert system by sending it the notification
message. The mailbox database is periodically
checked by each node to see if it contains any

Marketing
Expert Agent

Desired Market/ l

13

new messages, just like the way one would check
his, mailbox.

State transitions in the expert system nodes

There are three possible states that an expert
system node can be in. In idle state, the node is
waiting to be initiated by a strategy coordinator
or by a human user. The node periodically checks
its mailbox database to see if it has any “provide”
messages. If so, then it enters the working state.

The node is actively running rule-based con-
sultation during the working state. When infor-
mation is needed, it checks the value database for
the required parameter value. If the value is not
there, or if it is too old, then the functional expert
system sends a “request” message to the collabo-
ration coordinator (strategy database) to ask for
help. It then enters the active waiting state. It
returns to the working state when the parameter

. has a new value and the consultation continues

until complete. At that time, the node will update
the value database with new parameter values,
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/ / Market Qty "\ ,
/ \P/rolduct Duc(c:t Material
olu ost
Direct Labor B%?lgt? d \
C OS/ Q4T \ \

Production Capability

Production
Expert Agent

: Communication Links

: Physical Links
Fig. 2. A group problem solving example with NEST.
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and send a “respond” message to the strategy
coordinator. The node re-enters the idle state.
In the active waiting state, the node periodi-
cally checks the value database until the re-
quested parameter value is updated. If possible,
the node will continue to run the consultation,
determining other parameter values and goals
that do not rely upon the missing information.

5.1.3. Organization of the expert systems

The organization incorperated in NEST is a
hierarchical structure, in which an expert system
serves as the coordinator in the group problem-
solving process. Given the initial problem de-
scription, the collaboration coordinator assigns
the problem to a functional expert system node.
It uses the expertise database to check the knowl-
edge distribution and see which nodes are capa-
ble of solving this problem, and checks the status
database for their availability. When the assign-
ment is made, the functional expert system is
initiated by sending it a “provide” message.

The coordinator periodically checks in the
strategy database for messages from the func-
tional expert system. In the collaboration strat-
egy, two messages are possible. A local expert
system will send a “request” message when it
needs a parameter value. The coordinator deter-
mines which nodes can supply this parameter
value, assigns the task to one of them, and up-
dates the status database to reflect the assign-
ment.

A “respond” message can also be sent to the
strategy database. This indicates that a node has
completed its processing. The coordinator up-
dates the finnish time in the status database. If
all nodes in the status database are done, then
the collaboration process has solved the group
problem.

5.1.4. A distributed problem-solving example

To demonstrate the working of NEST, in par-
ticular the collaboration strategy, a common or-
ganizational decision-making situation was used
as a cooperative problem-solving example [51].
The knowledge distribution is as follows: Three
functional areas - marketing, production, and
purchasing — need to collaborate to reach a deci-
sion: What quantity of a product should be sent
to the market? Perhaps this decision could influ-
ence the amount of advertising and sales effort.

The marketing expert initially sets a desired
market quantity, based on given supply and de-
mand information. Before it can make the final
decision, Market Quantity, it needs input from
the other two experts: Production Quantity and
Direct Labor Cost from Production; Direct Mate-
rials Cost from Purchasing (Figure 2).

The purchasing expert receives the request for
information from marketing, along with market-
ing’s desired market quantity. Using its produc-
tion constraints and other scheduling require-
ments, it determines how much it is capable of
producing for marketing (Production Quantity).
However, this quantity is also dependent on the
availability of materials from the purchasing de-
partment. If the materials are not available, then
the quantity will be adjusted accordingly before
notifying marketing.

The purchasing expert determines if it has
enough materials in inventory, or if it has to place
order for production to manufacture its recom-
mended quantity. It also calculates the direct
materials cost for marketing. This decision pro-
cess continues until marketing reaches a final
decision. The market quantity will be adjusted in
response to production’s capabilities and the cost
to produce. For instance, if the costs are too high,
then the quantity may be increased to achieve
economies of scale.

The design details of NEST and the trace of
rules used in the group problem-solving session
for solving this example are described in [51].

The implementation of NEST demonstrates
the viability of applying the multi-agent problem-
solving framework described in sections 2 and 3.
It is especially interesting to be able to integrate
two widely used softwares to implement the ex-
pert system nodes and the distributed databases,
incorporating a variation of the blackboard model.
More work would be needed to make the group
meta-knowledge more flexible in dealing with dif-
ferent types of problems, group strategies, learn-
ing schemes, organization structures, and knowl-
edge distribution.

5.2. A GDSS for concurrent design: The design
fusion system

Mechanical designs are often composed of
highly-integrated, tightly-coupled components
where the interactions are essential to the execu-
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tion of the design. Therefore, concurrent rather
than sequential consideration of requirements,
such as structural, assembly, manufacturing, and
maintenance constraints, will result in superior
design. Such an approach to engineering design,
which simultaneously take into account several
stages of design requirements in the development
life cycle, is referred to as concurrent design. It
has become an increasingly important manufac-
turing technology because by adopting concurrent
design in developing new products, a company
would be able to shorten the time it takes to meet
market demands, thus making its products more
competitive. Since the key to successfully imple-
menting concurrent design is to coordinate the
various areas of design considerations, which can
be viewed as group problem solving, the process
can be aided by a GDSS.

Control Blackboard
- Goals
- Perspectives

Design Blackboard

- Specification
- Components
- Features

- Constraints

Manufacturing

Marketing

Distribution

Planning

Fig. 3. Design fusion architecture.

Such a GDSS is for creating an environment
that surrounds the designer with experts and ad-
visors — i.e., agents — that provides continuous
feedback based on incremental analysis of the
design as it evolves. These agents can generate
comments on the design (e.g., manufacturability *
or ease of assembly), properties underlying a spe-
cific design (e.g., stresses), and portions of the
geometry (e.g., the shape of a component). More
than a set of software tools, the GDSS consists of
a group of advisors who interact with one another
and with the designer.

The Design Fusion system described in [22] is
an example of such a GDSS, aided by distributed
Al The goal is to “... infuse knowledge of
downstream activities into the design process so
that designs can be generated rapidly and cor-
rectly.” The design space is viewed as a multi-di-

Truth
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Manager
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mensional space in which each dimension is a
different life-cycle objectives such as fabrication,
testing, serviceability, reliability, etc. These di-
mensions are called perspectives, or design agents,
because each dimension can be thought of as a
different way of looking at the design. Figure 3
depicts the organization of the system. The de-
signer ad three life-cycle perspectives_are repre-
sented as manufacturing, structures, and dynam-
ics. Each of these perspectives encapsulates ex-
pertise for the relevant specialty. The perspec-
tives monitor the design through the blackboard,
which represents the design in terms of geometry,
constraints, and a database of qualitative design
features and quantitative parameter values deriv-
able from the geometry.

[22] describes the problem-solving architecture
for design fusion. The system can be viewed from
the standpoint of the five design dimensions dis-

cussed in section 2.3. .

(1) Goal identification and task assignment
Design is a search process that explores the elab-
oration of portions of a design resulting in a
top-down decomposition of the design problem
into smaller, more manageable subproblems.
Subproblems are further decomposed until solv-
able problems are found. At any particular time
during the design process, the solving of a sub-
problem is the goal of the designer, with the
ultimate goal being the creation of an artifact or
description of an artifact. To satisfy goals, the
design agents make changes to the design. The
design progresses through multiple levels of ab-
straction and refinement until all goals are satis-
fied. The architecture of the design system would
support the process of goal formation and decom-
position, and the selection of subtasks upon which
to focus design attention.

The task assignment of the design system is“
executed in an opportunistic fashion, always se-
lecting the perspective of a design agent that is
the most relevant in terms of constraint satisfac-
tion. The task-assignment decision is supported
by the blackboard architecture.

(2) Knowledge distribution

The design space is viewed as a multi-dimen-
sional space in which each dimension is a differ-
ent life-cycle objective such as fabrication, test-
ing, serviceability, reliability, etc. These dimen-

sions, which form the knowledge bases of the
design agents, are called perspectives. Using per-
spectives allows the Design Fusion system to par-
tition the design knowledge into manageable
chunks, while allowing us the flexibility to add
new information to the representation.

(3) Organization structure

The design fusion system adopts a heterarchi-
cal organizational structure and control, which
permits competition between agents that are co-
operating toward a common goal. Heterarchical
systems have many disjoint agents available for
particular tasks. Coordination is by negotiation
and contract based upon the marginal cost of the
task [58]. Each agent in the heterarchy pursues its
own goals in correspondence to the needs of
others. In the design fusion system, the heterar-
chy provides a structure for problem-solving with
multiple perspectives. Negotiations between mul-
tiple competing perspectives decide the particular
design tasks to pursue in the design process.

(4) Coordination

The coordination of the design system is di-
rected by constraints. During problem solving,
design agents must cope with interactions be-
tween design constraints: the specifications, the
goals of the design, and the design decisions
made during the design process. The major pur-
pose of the coordination mechanism is to provide
support for the management of these interac-
tions. It should identify which subtasks interact
and what impact the design decisions will have.

Since the parameters specified by one agent
may violate the constraints from other agents’
perspectives, the ability to reason about the con-
straints of various perspectives, resolving the con-
flicting constraints, and reaching a feasible design
by iterative adjustment would be necessary. In
the Design Fusion system, the following mecha-
nisms are used to take into account the effects of
constraints: (1) Parameter revision — when a con-
straint is violated, the parameters involved in that
constraint would have to be modified; (2) Post-
ponement ~ sometime the resolution of a vio-
lated constraint is postponed to be considered at
a later time, so that more critical constraints can
be considered first, or that the system anticipates
the violated constraint may become feasible again;
(3) Revelation — resolving the conflicts between
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two perspectives may require the agents to reveal
more detailed level of abstraction in the con-
straint space, so as to facilitate the reaching of a
compromised solution: (4) Negotiation — agents
participating in the design process needs to use
negotiation when they make conflicting recom-
mendation, or when a design decision made by an
agent adversely affect the decision optimality of
another agent.

The blackboard architecture enforces a shared
representation of the design, which supports in-
ter-agent communication.

(5) Learning

The very term design fusion points to the need
of achieving some sort of synergistic effects among
the agents in the design process. The benefit of
having a group of agents in design problem solv-
ing is that everyone can contribute opportunisti-
cally and share their Thus, inherently, the Design
Fusion system has adopted an integrated frame-
work for problem solving and learning, in which
learning is achieved by having the agents share
their knowledge, experience, heuristics, and data.

Stronger types of learning can be achieved
through the implementation of explicit learning
mechanisms. For examples, since most designs
bear some similarities to previous designs, it is
often the case that parts of a design can be solved
by remembering past experience - that is, the
design process is a combination of problem-solv-
ing steps and steps that directly apply cases
learned from experience [40]. In the Design Fu-
sion, since the knowledge base is distributed
among the set of design agents, these different
agents should have their individual case bases to
facilitate the design process. Further more, the
case base should include cases about conflict
resolution learned from prior experience of solv-
ing similar design problems [59], so that the coor-%
dination of multiple design agents’ perspectives
can be facilitated.

6. Conclusion

In this paper we have constructed a DAI
framework for group problem solving, in the con-
text of developing GDSSs. We have shown the
importance of integrating problem solving, coor-
dination, and learning in such systems. The DAI

framework was illustrated by the implementa-
tions of a network of expert systems, called NEST,
and the Desing Fusion system - both are multi-
agent problem-solving systems based on the
blackboard architecture. We also identified
multi-agent learning as an important component
of DAI systems. A multi-agent induction algo-
rithm, called DLS, was developed and illustrated.
The study of NEST, Design Fusion system,
and the analysis of DLS all reveal the efficacy of
the DAI approach to support group problem-
solving and learning tasks. The DAI approach for
supporting group problem solving has several ad-
vantages: information sharing achieved by coordi-
nating the agents; better solution quality due to
agents’ specialization; facilitated solution proce-
dure by having the agents pursuing diversified
path in the search space; and the improved re-
sponse-time because of the parallelism among the
agents’ problem-solving activities. This frame-
work can be a useful tool for developing, for
example, Level 3 GDSSs outlined in [17].
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