
CAPTURING AND MODELING COORDINATION KNOWLEDGEFOR MULTI-AGENT SYSTEMSMihai Barbuceanu and Mark S. FoxEnterprise Integration LaboratoryUniversity of Toronto,4 Taddle Creek Road, Rosebrugh Building,Toronto, Ontario, M5S 1A4fmihai,msfg@ie.utoronto.cahe agent view provides a level of abstraction at which we envisage computationalsystems carrying out cooperative work by interoperating globally across networksconnecting people, organizations and machines. A major challenge in building suchsystems is coordinating the behavior of the individual agents to achieve the indi-vidual and shared goals of the participants. As part of a larger project targeted atdeveloping an Agent Building Shell for multiagent applications, we have designedand implemented a coordination language aimed at explicitly representing, apply-ing and capturing coordination knowledge for multiagent systems. The languageprovides KQML-based communication, an agent de�nition and execution environ-ment, support for modeling interactions as multiple structured conversations amongagents, rule-based approaches to conversation selection and execution, as well as aninteractive tool for in context acquisition and debugging of cooperation knowledge.The paper presents these components in detail and then shows how the coordinationlanguage is used in the Agent Building Shell to manage content-based informationdistribution scenarios among agents and the coordination aspects of con
ict man-agement processes that occur when agents encounter inconsistencies. The majorapplication of the system is the construction and integration of multiagent supplychain systems for manufacturing enterprises. This application is used throughoutthe paper to illustrate the introduced concepts and language constructs.1. IntroductionThe agent view provides a level of abstraction at which we construe computationalsystems that interoperate globally across networks linking people, organizationsand machines on a single virtual platform. We call the computational entitiesthat can operate at this level agents. For our purposes, we consider an agentto be a piece of software that (1) is signi�cantly autonomous, goal-oriented andentrusted in performing its functions and (2) operates globally on networks by relyingon application-independent high-level communication and interaction protocols withother "agents". 1

Focusing on the agent level of system (de)composition brings to attention anumber of speci�c issues that are not adequately dealt with at other levels of systemorganization. Some of these are:� Agent interaction: How do agents communicate? How do agents coordinatein joint work, such as to achieve the individual and joint goals of the partic-ipants? How are problems stemming from dynamically occuring events andpartial knowledge about the environment handled during coordinated behav-ior? How do we model the patterns of interaction and interoperation thatcharacterize coordinated behavior? How do capture these patterns during theon-line operation of the system?� Representation: How do agents represent their local views of the domain? Howis the local view updated or maintained as a consequence of interaction? Howare the semantic problems related to con
icting or di�erent meanings of theexchanged terms solved? How do agents revise their beliefs due to exchangedinformation? How do agents share models and how does the shared modelchange? How do agents model each other in a cooperative community? Howare common-sense issues, e.g. time, action, causality, handled?� Reasoning: How do the requirements for communication and coordinationimpact the internal reasoning of agents? How do agents handle contradictoryinformation, and how is consistency maintained across agents that may havedi�erent goals, views, preferences?� Integration: How can pre-existing (legacy) applications be integrated intoagents and thus used in agent communities?From the practical standpoint, any solutions to the above issues must providethe ability to reuse descriptions of coordination mechanisms, system components,services and knowledge bases. Based on this recognition, we are developing an AgentBuilding Shell that provides reusable languages and services for agent construction,relieving developers from the e�ort of building agent systems from scratch andguaranteeing that essential interoperation, communication and cooperation serviceswill always be there to support applications.The layered agent architecture of the Agent Building Shell is shown in �gure 1.The knowledge management layer provides support for general purpose represen-tation and inference. It is used to represent an agent's conceptualizations - of itsdomain, operation environment and of its own capabilities - as well as the agent'sactual beliefs - again about domain, environment and self. It provides support fornonmonotonic reasoning - agents change their beliefs dynamically - and generalpurpose deductive reasoning. The description logic implementation of this layerprovides services for automated concept classi�cation and inconsistency detection,theorem proving through subsumption and truth-maintenance based managementof the belief base.The ontology layer consists of the actual conceptualizations agents maintainabout their domain, environment and self. Some conceptualizations are sharedamongst agents to allow them to communicate in terms that are semantically uni-�ed. The environment and self representations use a shared organization ontology2

Knowledge Management

Ontologies and Models:

Domain, Organization, Self

Cooperative

Information Distribution

Cooperative

Conflict Management

Coordination

Communication Legacy Software
Integration

Other Agents...
External

Software

Figure 1: Architecture of the Agent Building Shellthat captures the structure of organizations, the roles, goals, actions and empower-ment of member agents of the organization.The cooperative information distribution services provide permanently active in-formation distribution services allowing agents to stay informed about signi�cantevents without having to explicitly demand other agents to provide this informa-tion each and every time they need it. Agents advertise their long-term topics ofinterest to the community. Agents that can supply relevant information will do sowhenever the information is available and as long as the interest persists. If previ-ously sent information is later invalidated, senders will notify receivers. The serviceuses subsumption in description logics to "prove" that some information matchesan interest expressed as a description logic concept.The cooperative con
ict management service provides a general model for rea-soning about retraction in a multiagent setting. If an agent receives contradictoryinformation from other agents, it applies this model to retract some beliefs and rein-stall consistency both locally and with its neighbors. The model uses (i) a measureof the credibility of the beliefs that are potentially retractable and (ii) a measure ofthe utility of these beliefs in the global current situation. The latter captures thefact that retracting information may imply undoing previous decisions and actions(e.g. retracting orders for materials) that come with money or other costs. Themodel reinstates agent-level consistency and, through negotiation with the agentssharing the retracted beliefs, extends the consistent state to surrounding agents.Also, the model stipulates the kind of cooperative behavior that an agent must ex-hibit towards other agents in the process of reestablishing a consistent state. Bothcooperative information distribution and cooperative con
ict management requirecoordinated behavior from the involved agents and thus make essential use of thecoordination system.In this paper we focus on the solutions we are providing for the outer layer of thearchitecture. They are embedded into a domain independent COOrdination Lan-3

guage (COOL) that provides services for de�ning distributed agent con�gurations,managing communication, de�ning and managing structured interactions amongstagents, external software integration and in context acquisition and debugging of co-ordination knowledge. As these solutions impact on the way agents manage changeby information distribution and con
ict resolution, we also address these aspectsshowing how the coordination service supports these tasks.The paper is structured as follows. In section 2 we review the work in DistributedArti�cial Intelligence from several perspectives and de�ne our research goals. Asthe subsequent presentation of our tools is carried out in the context of our mainapplication, the agent-based integration of the supply chain of manufacturing en-terprises, we continue in section 3 with presenting this application domain. Section4 deals with the main subject of the paper, the components of the coordinationlanguage. We illustrate the language throughout with examples from the supplychain. Section 5 then deals with the coordination knowledge acquisition service thatallows users to extend and debug coordination knowledge on-line. To show how thecoordination system is integrated with other reasoning tasks in the Agent BuildingShell, in section 6 we review two other services of the architecture that make use ofthe coordination framework, cooperative information distribution and cooperativecon
ict management. In the end, we discuss some related approaches and provideconcluding remarks.2. Coordination KnowledgeCoordination has been de�ned as the process of managing dependencies betweenactivities [39]. An agent that operates in an environment holds some beliefs aboutthe environment and can use a number of actions to a�ect the environment. Coor-dination problems arise when (i) there are alternative actions the agent can choosefrom, each choice a�ecting the environment and the agent and resulting in di�er-ent states of a�airs and/or (ii) the order and time of executing actions a�ects theenvironment and the agent, resulting in di�erent states of a�airs. The coordina-tion problem is made more di�cult as an agent has incomplete knowledge of theenvironment and of the consequences of its actions and the environment changesdynamically making it more di�cult for the agent to evaluate the current situationand the possible outcomes of its actions. In a multi-agent system, the environmentis populated by other agents, each pursuing their own goals and each endowed withtheir own capabilities for action. In this case, the actions performed by one agentconstrain and are constrained by the actions of other agents. To achieve their goals,agents will have to manage these constraints by coordination.In this paper we adopt the view that the coordination problem can be tackledby having knowledge about the interaction processes taking place among agents.This knowledge is about the problem-solving competence of multi-agent systemsas opposed to that of individual agents. As such, Fox [20] has proposed that itbe studied as an "organization level" and applied Organization Theory conceptsto characterize this level. More recently, Jennings [30] has coined the term "co-operation knowledge level" to separate the social interaction know-how of agentsfrom their individual problem-solving know-how and to help focus e�orts on coming4

with principles, theories and tools for dealing with social interactions for problemsolving.Previous work in DAI can be seen as investigating various facets of this levelof knowledge. One direction is concerned with devising useful structures for co-operative problem solving. Thus, the Contract Net protocol [53] provided a wayof coordinating agents without global control, by means of a contracting modelcomprising dynamic task decomposition, negotiation of subtask assignments amongagents and the commitment of agents to their assigned subtasks. In the PartialGlobal Planning method (PGP) [18] and its Generalized PGP form [16], agentsmaintain their own subjective views of the tasks, task dependencies and the re-sponsibilities of agents. Various coordination mechanisms (like exchanging privateviews of tasks, communicating results, handling various types coordination relation-ships) enable agents to modify their subjective view of the task structure and theircommitments to tasks in the task structure, ultimately improving performance. TheJoint Responsibility model [32] prescribes when and how agents should form teamsand how team members should behave during joint action. The code of conductimposed by Joint Responibility ensures that the group will operate in a coordinatedand e�cient manner and that it is robust in face of changing circumstances.Given the diversity of such cooperation structures, how can we identify, analizeand formalize the essential elements cooperation structures are composed of ? Thisis the focus of a second major direction of work in DAI. We make several distinctionshere. The �rst is between what happens inside an agent when it coordinates withother agents and what happens between agents when cooperative behavior occurs.The second is between explaining how human agents behave and how programmedagents behave. Although in this paper we are solely concerned with arti�cial agents,insights into human agenthood will help us build agents that are understandableand thus easier to integrate as partners for human users.Talking about what happens inside human agents, many researchers believethat mental states, like intentions and commitments are the central notion here.Intentions and commitments have been studied for example in [12, 8, 49]. Thesestudies uncovered a number of essential properties of intentions. Intentions mustbe consistent with each other and with the beliefs of the agent, the latter meaningthat if the intended actions are executed and the agent's beliefs hold in the world,then the desired state of a�airs should follow. Also, intentions should have a degreeof stability, however without being totally in
exible. Agents should not spendall their time considering and reconsidering intentions. At the same time, theyshould be able to drop intentions if changes in the situation makes it impossible orundesirable to achieve the intended state of a�airs. The reexamination of agents'intentions should be "regulated" by known policies or conventions [31] stating underwhat circumstances intentions should be reconsiderd. In the Cohen and Levesque[12] model for example, an agent should reconsider its commitment to a goal G ifany of the following happens: G is already satis�ed, G will never be satis�ed, themotivation for G does not exist any more.The above approach has been extended to the modeling of inter-agent phenom-ena. Levesque, Cohen and Nunez [37] have proposed for example necessary andsu�cient conditions for having Joint Persistent Goals that would allow agents toform teams: (i) agents mutually believe G is currently not true, (ii) they mutually5

believe they all want G to become true (iii) until they all come to mutually believeeither that G is true, that G will never be true or that the motivation for G is false,they will continue to mutually believe that they each have G as a weak achievementgoal (roughly either a normal goal, or a goal whose achievement status has to bemutually believed by all team members). The last condition allows agents to un-dertake actions knowing that if a problem with goal satisfaction occurs, the agentsdetecting it will inform the others. In order to act cooperatively, a numer of otherconditions have been discussed, including the mutual desire of agents to cooperate[13] (otherwise agents may for example compete) and the need for a common planto achieve the goal that will determine the contributions of participants (otherwiseinconsistent action may result even if there is a common goal). The latter issuehas been dealt with by distributed or multi-agent planning research, including forexample [17, 25]. Monitoring the execution of joint action has been investigatedas a way of determining what to do when things go wrong or unexpectedly [33].Another approach to coordinating multiple agents is to restrict their activities in away that enables them to achieve their goals without interfering with each other.Shoham and Tennenholtz [52] have proposed social laws as the means to specifythese restrictions and have studied how such laws can be designed to guaranteecertain behaviors from the multi-agent system.From a sociological perspective, Castelfranchi [10] has shown that internal com-mitments of agents (commitments of individual agents to certain actions) are notenough to explain social phenomena. He discusses social commitments as basic re-lations between two or more agents with respect to executing some actions. This isdi�erent from having several agents sharing the same internal commitment. Thisnotion uncovers the dependence and power relations among people that form theobjective basis of social interaction and has important normative consequences, likeobligations and expectations, that pertain to the notions of Group and Organiza-tion.Given work like the above, how do we brigde the gap between the logical, socio-logical and psychological analysis and the engineering of practical multi-agent sys-tems, performing in real environments and bringing real services to people? Therearen't too many answers to this question, but a few of them deserve mentioning.A �rst answer is represented by the applicative work of Jennings [33] who startedwith the Cohen and Levesque model for joint intentions, extended it to better �tthe need for a common plan and then implemented it with state of the art AI tech-nologies. The result was an industrially applied multi-agent system that comprisedthe results of theoretical work on joint intentions.The second answer lies in developing generic agent architectures that integratethe results of theoretical investigations into practical languages and tools. This isthe path taken by Agent Oriented Programming [51] where a generic notion of agentwas proposed, using speech-act based communication, rule-based behavior and en-capsulation into object-like structures. This approach talks about an agenti�cationprocess in which real systems are casted in terms of mental states and the otherconcepts provided by the approach. Other work in the same direction focuses onspeci�c aspects that are perceived as important when developing practical systems.The ARPA sponsored Knowledge Sharing E�ort [44] attempts to build technologiesfor inter-agent communication by proposing a language for content communication6

based on logic, KIF [23], and a language for intention communication, based oncommunication acts, KQML [19]. Together, these form an Agent CommunicationLanguage (ACL), and approaches like Genesereth's de�ne an agent as anything thatcommunicates using the ACL [24]. Also part of the Knowledge Sharing E�ort, workhas been devoted to the problem of semantically unifying agent communication bygiving common de�nitions to the terms used by agents. Dictionaries of such sharedterms are called ontologies [28, 29, 21] and a number of tools have been constructedfor building and maintaining them. Our work on the generic agent shell falls intothis broad second category.As far as our approach to coordination is concerned, we take the above investi-gations as revealing the nature of the knowledge that is involved in social behaviorand interactions. Our aim is to provide generic tools for the capture, represen-tation and use of this knowledge in multi-agent systems. As previously noted byJennings [33], the evolution of applicative DAI systems follows the evolution of ap-plicative knowledge based AI systems in the following sense. Initially, knowledgebased systems were encoded in more or less ad-hoc ways, such that a lot of rele-vant knowledge about e.g. the task structure and problem solving methods wereburied into the code once systems were implemented, hence could not be explicitelyanalyzed and reasoned about. This created growing problems with explanation,reusability and maintainability. In response to these problems, emphasis has latershifted onto explicitely characterizing the problem solving task at a higher level, forexample in terms of generic problem solving methods [42] like heuristic classi�ca-tion [11] or distinguishing between the various types of knowledge used to modelthe domain, the inferences, the task structures and the higher order strategies forresolving impasses [55]. With this emphasis came a new generation of tools thatare now able to explicitely represent such higher level types of knowledge and assistusers in building systems in more principled and accountable ways.In an essential way we are trying to do the same for the coordination knowledgeagents must posess to interact successfully. In other words we are trying to comeup with higher level constructs for describing coordination processes and to fullysupport these constructs in a programming environment for building multi-agentsystems. The insights into the nature of social interaction, from sociological orpsychological sources, described semantically in logic systems, give us principlesand background knowledge for understanding and modeling interactions. Togetherwith domain and application knowledge, they are used by developers to designthe coordination structures that would be actually used by applications. Thesecoordination structures, encoded into our coordination language, then guide theinteractions among agents. Even if structures of human social interaction may be asource of inspiration for some agent coordination structures, note that they are notour object of study and we do not aim in any way at building programs that behavesimilarly. Our goal is to build clear, understandable, reusable models of interactionfor arti�cial multi-agent systems and to support their engineering as far as we can.In this perspective, we are developing coordination technology that (i) providesa conceptualization of the coordination task in terms of agents, generic and ac-tual conversation structures, rule-driven conversation moves, rule-driven exceptionhandling, rule-driven control of agent and conversation execution, multi-agent andmulti-conversation management, (ii) actual programming constructs for the above7

concepts, (iii) a full visual environment for developing, testing and executing co-ordination programs, (iv) a full visual environment for non-intrusively capturingcoordination knowledge in the execution context. This technology is developed inthe framework of a multi-agent system for supply chain integration which providesour experimentation environment. All these elements form the subject of this paper.3. Integrating the Supply ChainThe supply chain of a modern enterprise is a world-wide network of suppliers, facto-ries, warehouses, distribution centres and retailers through which raw materials areacquired, transformed into products, delivered to customers, serviced and enhanced.In order to operate e�ciently, supply chain functions must work in a tightly coor-dinated manner. But the dynamics of the enterprise and of the world market makethis di�cult: exchange rates unpredictably go up and down, customers change orcancel orders, materials do not arrive on time, production facilities fail, workersare ill, etc. causing deviations from plan. In many cases, these events can not bedealt with locally, i.e. within the scope of a single supply chain "agent", requiringseveral agents to coordinate in order to revise plans, schedules or decisions. In themanufacturing domain, the agility with which the supply chain is managed at thetactical and operational levels in order to enable timely dissemination of informa-tion, accurate coordination of decisions and management of actions among peopleand systems, is what ultimately determines the e�cient achievement of enterprisegoals and the viability of the enterprise on the world market.We address these coordination problems by organizing the supply chain as a net-work of cooperating agents, each performing one or more supply chain functions,and each coordinating their actions with other agents. Figure 2 shows a multi-levelsupply chain. At the enterprise level, the Logistics agent interacts with the Cus-tomer about an order. To achieve the Customer's order, Logistics has to decomposeit into activities (including for example manufacturing, assembly, transportation,etc.). Then, it will negotiate with the available plants, suppliers and transportationagents the execution of these activities. If an execution plan is agreed on, the se-lected participants will commit themselves to carry out their part. If some agentsfail to satisfy their commitment, Logistics will try to �nd a replacement agent orto negotiate a di�erent contract with the Customer. At the plant level, a selectedplant will similarly plan its activities including purchasing materials, using exist-ing inventory, scheduling machines on the shop
oor, etc. Unexpected events andbreakdowns are dealt with through negotiation with plant level agents or, when nosolution can be found, submitted to the enterprise level.A major challenge for such an application is the ubiquity and complexity ofcoordination aspects. Coordination occurs when agents negotiate future plans oractions, when they execute actions together, when they exchange information, whenthey respond to events or when they solve con
icts. We address this by buildingmodels and tools for the representation, utilization and in context acquisition ofthis sort of knowledge, as explained in the remainder of this paper.8

Customer

Logistics

Warehouse1

Warehouse2

enterprise level

plant level Plant1

Resource

Mgr.

Shop
Floor

Scheduler

Plant2
Plant3

Design

Marketing

TransportationFigure 2: Multi-level supply chain.4. The Coordination LanguageAs in the situated-automata model [47], we view an agent as essentially performinga transduction. It takes a stream of input messages from the environment (ingeneral composed of other agents) and generates a stream of output messages tothe environment, mediated by its internal state. The mediation is described in thecoordination language and performed by a conversation management mechanismenhanced with knowledge acquisition capabilities whose description is the purposeof this and the next section.Before going into the details of the coordination language, we note that theinteraction among agents takes place at several levels. The �rst level is concernedwith the information content communicated among agents. A piece of informationcommunicated at this level may be a proposition (fact) like "(produce 200 widgets)".The ARPA Knowledge Sharing E�ort [44] has produced the KIF [23] logic languagefor describing the information content transmitted and the conceptual vocabulariescommunicating agents must share in order to understand each other.The second level speci�es the intentions of agents. The same information contentcan be communicated with di�erent intentions. For example:� (ask (produce 200 widgets)) - the sender asks the receiver if the mentionedfact is true,� (tell (produce 200 widgets)) - the sender communicates a belief of his to thereceiver,� (achieve (produce 200 widgets)) - the sender requests the receiver to make thefact one of his beliefs� (deny (produce 200 widgets)) - the sender communicates that a fact is nolonger believed.KQML [19] has been designed as a universal language for expressing such in-tentions such that all agents would interpret them identically. KQML supportscommunication through explicit linguistic actions, called performatives. As such,KQML relies on the speech act [48] framework developed by philosophers and lin-guists to account for human communication. Work is currently being done [36, 15]9

Communication

Agent and Conversation Management

Coordination Knowledge Acquisition and DebuggingFigure 3: COOL Architecture.on endowing KQML with formal semantics based on the speech-act theory as for-malized and extended within the �elds of Computational Linguistics and Arti�cialIntelligence [14].The third level is concerned with the conventions that agents follow when in-teracting by exchanging messages. The existence of shared conventions makes itpossible for agents to coordinate in complex ways, e.g. by carrying out negotiations[54, 56] about their goals and actions. Many such examples can be given in thecontext of the supply chain. The Customer agent acquires from the customer anorder for 200 lamps with a due date for 28 Sept. 94. It sends this as a proposalto the Logistics agent. Knowing that Logistics can only answer with accepting,rejecting or counter-proposing, the Customer agent is able to check that the actualresponse is one of these and carry out a corrective dialogue with Logistics if this isnot the case or if other events occur (such as delays or message shu�ing). If Logis-tics answers with a counter-proposal (e.g. 200 lamps with due date 15 oct 94), theCustomer agent may use knowledge about acceptable trade-o�s and negotiate withLogistics an amount and a due-date that can be achieved and satis�es the customer.In its turn, upon receiving the order proposal, Logistics will start negotiations withplants and transportation companies to determine the feasibility of scheduling theproduction and delivery of the order and then will monitor execution as alreadyshown. This is the level of interaction we are supporting with the COOL languagedescribed in this paper.4.1. Functions and ArchitectureFrom the viewpoint of the intended functionality, COOL is (i) a language for de-scribing the coordination level conventions used by cooperating agents (ii) a frame-work for carrying out coordinated activities in multiagent systems (iii) a tool fordesign, experimentation and validation of cooperation protocols and (iv) a tool forincremental, in context acquisition and debugging of cooperation knowledge.Architecturally, (�gure 3) COOL is structured into three layers, the �rst provid-ing support for communication in KQML, the second providing the main machineryfor de�ning and executing agents and coordination structures and the third sup-porting the in context acquisition and debugging of coordination knowledge.4.2. CommunicationCOOL has a communication component that implements an extended version ofthe KQML language. Essentially, we keep the KQML format for messages, but we10

(propose ;; new performative:language KIF:sender A:receiver B:content (produce (or widget gadget) 299):conversation C1 ;; first new slot:intent (explore fabrication possibility)) ;; second new slot.Figure 4: Message example.leave freedom to developers with respect to the allowed vocabulary of communicativeaction types (called performatives in KQML, but see [15]). Also, we do not imposeany content language. We have implemented a mail system for KQML messagesproviding TCP/IP supported transport and mail services like persistent storage ofreceived KQML messages, visual tools for message browsing, composition, sortingand general pattern based retrieval. The example in �gure 4 illustrates the form ofextended KQML we are working with.Figure 5 shows the screen for the interface to our KQML mail system (calledKQMaiL). Note the use of mail folders and the use of pattern based search to accessand visualize the contents of folders. Composing and sending out KQML messagesis similarly supported.4.3. Agent and Conversation ManagementThe purpose of this layer is to describe and execute coordination protocols, i.e.shared conventions about agent interaction. The main idea here is that agentsinteract by carrying out structured conversations. To embody this model we pro-vide explicit language constructs for de�ning the agents we deal with, the structureof the conversations they carry out, the rules that describe conversation progres-sion through states and input/output messages, the ways unexpected events aretreated during conversations. As an agent may have multiple conversations at thesame time, we also provide constructs for deciding which conversation to continuenext and when to suspend or resume a conversation (conversation management).As agents exist within environments, we also provide constructs for de�ning thecomposition of environments and for controlling the activation of the agents in anenvironment (agent management).4.3.1. Agents and EnvironmentsIn COOL, an agent is a programmable entity that can exchange messages withinstructured "conversations" with other agents, change state and perform actions.A COOL agent is de�ned by giving it a name and "plugging in" an interpreterthat selects and manages its conversations. The interpreter applies specially de�nedcontrol rules (called continuation rules) to determine which conversation to work onnext. In the following example we use an interpreter that also applies the knowledgeacquisition and debugging service (agent-control-ka) when selecting the next11

Figure 5: KQMaiL system interface.conversation to work on:(def-agent 'customer:continuation-control 'agent-control-ka:continuation-rules `(cont-1 cont-2 cont-3 cont-4))(def-agent 'logistics:continuation-control 'agent-control-ka:continuation-rules `(cont-1 cont-2 cont-3 cont-4))(def-agent 'plant1:continuation-control 'agent-control-ka:continuation-rules `(cont-1 cont-2 cont-3 cont-4)).Agents carry out conversations with other agents or perform local actions withintheir environment. Cooperating agents exist in local or remote environments. Tocontrol agent execution within an environment, we use conversation managers. Aconversation manager de�nes the set of agents it manages, speci�es a control func-tion that at each cycle selects an agent for execution and the instrumentation (e.g.tracing, logging, etc.) of agent execution:(def-conversation-manager 'm1:agent-control `execute-agent:agents `(customer logistics plant1 ...)).The purpose of the environment is to "run" agents by managing message pass-ing and scheduling agents for execution. Environments exist on di�erent sites (ma-12

chines) and a directory service makes message transmission work just the sameamong sites as within sites. This has the advantage that a set of COOL agents thatrun in an environment that exists on a single machine will also run without anymodi�cation in several environments on several machines. Thus, we can developand test on a single machine and then deploy with no modi�cation (except for thedirectory table) on the network. The environment also provides a wealth of tools forvisual manipulation - browsing, editing, environment set-up, animated execution.4.3.2. ConversationsAgents interact by carrying out "conversations". Within a conversation, agentsexchange messages according to mutually agreed conventions, change state andperform local actions. COOL provides a construct for de�ning generic conversa-tions, the conversation class and a corresponding instance construct, the actualconversation.Conversation classes are rule based descriptions of what an agent does in certainsituations (for example when receiving messages with given structure). COOL pro-vides ways to associate conversation classes to agents, thus de�ning what sorts ofinteractions each agent can handle. A conversation class speci�es the available con-versation rules, their control mechanism and the local data-base that maintains thestate of the conversation. The latter consists of a set of variables whose persistentvalues (maintained for the entire duration of the conversation) are manipulated byconversation rules. This data-base is the mechanism we currently provide for agentsto represent their "mental state"during the interaction represented by the conver-sation. We do not enforce the use of variables describing explicit mental states like"my current intention" or "my current obligation", but developers can use such avocabulary if they feel it's appropriate. Conversation rules are indexed on the �niteset of values of a special variable, the current-state. Because of that conversationsadmit a �nite state machine representation that is often used for visualization andanimation purposes. VonMartial [40] describes techniques for designing consistentasynchronous conversations described by �nite state machines.Figure 6 shows the conversation class governing the Customer's conversationwith Logistics in our supply chain application. Figure 7 shows the associated tran-sition diagram of this conversation class. Arrows indicate the existence of rules thatwill move the conversation from one state to another.Figure 8 illustrates the visual editor for creating or editing conversation classes,with specialized machinery for editing the sets of rules indexed on the conversationstate.Error recovery rules are another component of conversation classes (not illus-trated in �gure 6). They specify how incompatibilities among the state of a con-versation and the incoming messages are handled. Such incompatibilities can havemany causes - message delays, message shu�ing, lost messages, wrong messagessent out, etc. Error recovery rules deal with this by performing any action deemedappropriate, such as discarding inputs, initiating clari�cation conversations withthe interlocutor, changing the state of the conversation or just reporting an error.Actual conversations instantiate conversation classes and are created wheneveragents engage in communication. An actual conversation maintains the current-13

(def-conversation-class 'customer-conversation:name 'customer-conversation:content-language 'list:speech-act-language 'kqml:initial-state 'start:final-states '(rejected failed satisfied):control 'interactive-choice-control-ka:rules '((start cc-1)(proposed cc-13 cc-2)(working cc-5 cc-4 cc-3)(counterp cc-9 cc-8 cc-7 cc-6)(asked cc-10)(accepted cc-12 cc-11)))Figure 6: Customer-conversation.
start proposed

ask

counterp

working

accepted

failed

satisfied

rejected

rejected

1

13

6,7

8

2

5

3

4

11

12

9

10

Figure 7: Finite state representation of customer-conversation.14

Figure 8: Conversation class editor.
Agent = A1

Conversation
classes = C1, C3

Conversation C Conversation C

Conversation

Agent = A2

Instantiates C1 Instantiates C2

classes = C2, C4Figure 9: The same conversation instantiating di�erent conversation classes.state of the conversation, the actual values of the conversation's variables and var-ious historical information accumulated during conversation execution.Each conversation class describes a conversation from the viewpoint of an indi-vidual agent (in �gure 6 the Customer). For two or several agents to "talk", theexecuted conversation class of each agent must generate sequences of messages thatthe others' conversation classes can process. Thus, agents that carry out an actualconversation C actually instantiate di�erent conversation classes internally. Theseinstances will have the same name (C) inside each agent, allowing the system todirect messages appropriately (�gure 9).4.3.3. Conversation RulesConversation rules describe the actions that can be performed when the conver-sation is in a given state. In �gure 6 for example, when the conversation is inthe working state, rules cc-5, cc-4 and cc-3 are the only rules that can be exe-cuted. Which of them actually gets executed and how depends on the matching andapplication strategy of the conversation's control mechanism (the :control slot).Typically, we execute the �rst matching rule in the de�nition order, but this is easy15

(def-conversation-rule 'crn-1:current-state 'start:received '(propose :sender customer:content(customer-order :has-line-item ?li)):next-state 'order-received:transmit '(tell :sender ?agent:receiver customer:content '(working on it):conversation ?convn):do '(put-conv-var ?conv '?order (cadr(member :content ?message))):incomplete nil) Figure 10: Conversation rule.to change as rule control interpreters are pluggable functions that users can modifyat will. Figure 10 illustrates a conversation rule from the conversation class thatLogistics uses when talking to Customer about orders.Essentially, this rule states that when Logistics, in state start, receives a pro-posal for an order (described as a sequence of line-items), it should inform thesender (Customer) that it has started working on the proposal and go to stateorder-received. Note the use of variables like ?li to bind information from thereceived message as well as standard variables like ?convn always bound by the sys-tem to the current conversation. Also note a side-e�ect action that assigns to the?order variable of the Logistics' conversation the received order. This will be usedlater by Logistics to reason about order execution. Among possibilities not illus-trated, we mention arbitrary predicates over the received message and the local andenvironment variables to control rule matching and the checking and transmissionseveral messages in the same rule.To help users access and modify rules easier, the system provides a browser forconversation classes and a visual editor for the associated conversation rules.4.3.4. Initiating ConversationsWhen an agent wishes to initiate a conversation in which it will have the initiative, itcreates an instance of a conversation class. When this conversation instance is exe-cuted, messages will be sent and received according to the conversation class. Whena message is sent to an agent, the sent performative must contain a :conversationslot (an extension to KQML) that contains a conversation name that is sharedby the communicating agents. For example, agent a2 may send to agent a1 thefollowing message:(propose :sender a2:receiver a1:content (produce widget 100):reply-with r1:conversation c1). 16

Figure 11: Setting up the initial conversation.Agent a2 has an actual conversation named c1 that is managed by the rules ofone of a2's conversation classes. If a1 has an actual conversation named c1, thenthe rules in the conversation class that a1 associates to its c1 actual conversationwill be used. If receiver a1 has no conversation c1, the message is interpreted asa request for a new conversation made by a2. In this case, a1 must retrieve andinstantiate a conversation class able to handle the communication.Our current mechanism for retrieving the conversation class that will managea request for a new conversation is based on two elements. First, any messagethat is a request for conversation may have an additional slot :intent (another- and last - extension to KQML) that contains a description of the intent of therequesting agent. The receiving agent tries to �nd a conversation class that matchesthe expressed :intent of the sender. This is done by having conversation classesspecify an :intent-test predicate that will be used with the actual :intent asargument. If the test determines that a conversation class can serve the :intent ofa request, then the second element is used. This is a veri�cation that in the initialstate of the selected conversation class there exists at least one rule that can betriggered by the received message. If this is the case, a new (actual) conversationcontrolled by the retrieved conversation class is created and the receiver agent willuse it as its conversation with the sender. Finally, if :intent is not speci�ed inthe message, the receiver will select a conversation that in the initial state has rulesthat accept the sent message.Figure 11 shows how a set of agents in an environment is interactively set-upfor execution within a conversation manager. For each agent, a pull-down menulists the conversation classes that exist for that agent. The user selects an initialsuch class and creates an instance of it by simply naming it. Then, if the ManageConversations button is pressed, the system will start to execute conversationsbeginning with the created conversation. Usually, we arrange things such that thisconversation sends messages to other agents which will then answer, and so on.4.3.5. Continuing ConversationsAnother element of the framework is the ability of agents to specify their policiesof selecting the next conversation to work on. Since an agent can have many ongo-ing conversations (some may be waiting for input, some may be waiting for otherconversations to terminate, others may be ready for execution), the way it selects17

conversations re
ects its priorities in coordination and problem-solving.The mechanism we use to specify these policies is continuation rules. Unlikeconversation rules and error recovery rules, which are attached to conversationclasses, continuation rules select from among the conversations of an agent andhence are attached to agents.Continuation rules perform two functions. First, they test the input queueof the agent and apply the conversation class recognition mechanism to initiatenew conversations. Second, they test the data base of ongoing conversations andselect one existing conversation to execute. Which of these two actions has priority(serving new requests versus continuing existing conversations) and which requestor conversation is actually selected, is represented in the set of continuation rulesassociated to the agent. Our agent de�nition mechanism allows the speci�cation, foreach agent, of both the set of continuation rules and the continuation rule applier.For illustration, the following continuation rule speci�es that a new conversationrequest is served if there exists a conversation class that accepts the �rst messagein the agent queue:(def-continuation-rule `cont-1:input-queue-test #'exists-conv-class-initially-accepting-1st-msg)4.3.6. Nested Conversation ExecutionNested conversation execution is a conversation execution mode in which the currentconversation of an agent is suspended, another conversation is created or continued,with the former conversation being resumed when speci�ed conditions hold (liketermination of the spawned conversation). Nested conversation execution of thiskind makes it possible to break complex protocols into smaller parts that will beexecuted much like coroutines in some programming languages. This is importantin applications where protocols are complex and need to be broken into manageablepieces.The mechanism is appropriate in situations like the following. An agent a,that has an ongoing conversation with an agent b, needs sometime during thatconversation to start a new conversation with an agent c, for example to acquireinformation, to achieve a goal or to correct an error. Second, an agent a havinga conversation with an agent b is interrupted during this conversation by a higherpriority request from an agent c.To allow for these situations, we let each agent have a set of ongoing conversa-tions. When an agent initiates a new conversation, the new conversation instanceis added to this set. When a conversation has to be interrupted because anotherconversation must take place, the old conversation is suspended, and the systemmarks the suspended conversation as waiting for the new conversation to reach acertain state (in which some condition is true). This creates dependency recordsamong conversations that are used when selecting the next conversation to work on.Because conversations can be inspected, the states and variable values of a conver-sation that another conversation waits for can be used by the waiting conversationwhen the latter is resumed.For example, consider again the multiagent supply chain. The Customer agentmay have a conversation with the Logistics agent about a new order. Logistics may18

temporarily suspend this conversation to start a conversation with a Plant agentto inquire about the feasibility of a due date. Having obtained this information,Logistics will resume the suspended conversation with Customer. This mechanismis intensively used in the logistics execution protocol discussed in Section 7.4.3.7. Pluggable rule interpreters and operation regimesWe have shown that the de�nitions of both agents and conversation classes havecontrol slots for specifying the interpreters that will handle agent execution andrespectively conversation execution. Users can freely develop and use their owninterpreters. Up to now we have a number of interpreters for basic operation modesof the system. The basic (default) interpreters carry out conversation selection andexecution as explained above. Another set of interpreters support the knowledgeacquisition mode of the system explained further in section 4.5. These interpretershave the default behavior as a subset (that is they will function like the defaultones if there is no knowledge acquisition to perform) but have the added capabilityof managing complex graphical interfaces that users employ to dynamically add,re�ne or debug the coordination knowledge embedded in rules.Both sorts of interpreters support an operation mode in which once a rule hasbeen found to be applicable, rather than applying it directly, a graphical interfaceis spawned in which the user can inspect the current execution context, modify theaction part of the rule and apply it selectively or as a whole. The purpose of thisregime is to o�er the foundation for combining rule execution with direct, interactiveuser action. The actions available when executing a rule may be custom designedto activate external applications, read data or results (from �les, databases, etc.) orperform any action in the environment whose e�ects or results may be needed beforeor when executing the rule. In particular, active messages that come with attachedalternative actions the receiver should choose from in response - as supported bysystems like Strudel [50] - can be implemented in this way. The rules that mustbe executed in this manner are specially tagged in the source form by specifying afunction that will manage their execution (actually another pluggable interpreter).4.3.8. Legacy Software IntegrationTo integrate legacy software, we simply employ the above conversation mechanismin which we have rules that, rather than checking input messages and sending outresponses, activate the legacy application, communicate with it and reason aboutits operation. This can be done in several ways, ranging from batch execution of anapplication (by preparing input data, spawning its process, reading the producedoutputs) to dynamically interacting through its API functions.4.4. Example: The Supply ChainGoing back to the supply chain, we implement the supply chain agents as COOLagents and devise coordination protocols appropriate for their tasks. Figure 12shows the protocol that the Logistics agent executes to coordinate the entire supplychain. The process starts with the Customer agent sending a request for an order(according to customer-conversation shown in �gures 6 and 7). Once Logistics19

start

order-received

fail

alternative-proposed

alternative-needed

contractor-needed

contractors-committed

success

small-team-formed

large-team-formed

contractors-ranked

order-decomposed

asked

1

24

25

3

22,26

21

2

4 5

8

7

10

11

6

9

12 13

15
16

18

20
14

19

27

23

17Figure 12: Logistics execution protocolreceives the order, it goes to state order-received. There, it checks that the orderis completely speci�ed, in the sense that it contains all required information. Ifthis is not the case, it will ask speci�c questions form the Customer to �ll in themissing parts. If this is not possible, the conversation ends. When the order iscomplete, the conversation goes to the order-decomposed state. Here, Logisticstries to decompose it into activities like manufacturing, assembly, transportation,etc. and to determine which agents will execute these activities. This is doneby running an embedded constraint based logistics scheduler. A rule attached onthis state prepares an input �le for the scheduler, runs it and then parses theproduced output �le to extract the activities required to complete the order and theagents that are supposed to carry them out (note that both activities and potentialexecutors are determined by the logistics scheduler - for each activity there can beseveral potential executors).If this decomposition fails, Logistics will try to negotiate a slightly di�erentcontract with the Customer (by going to state alternative-needed). If decom-position succeeds, Logistics tries to form the team of contractors that will executethe activities. This is done in two stages. First, a large team is formed. The large20

(def-conversation-rule 'lep-6:current-state 'contractors-ranked:such-that '(not (get-conv-var ?conv '?forming-large-team)); to prevent multiple spawning of form-large-team-conv:next-state 'contractors-ranked:do-before '(add-conversation logistics 'form-large-team-class`form-large-team-conv):do-after'(progn(put-conv-var ?conv '?forming-large-team t)(put-conv-var (get-named-conv ?agent `form-large-team-conv)'?ranked-contractors(get-conv-var ?conv '?ranked-contractors))(put-conv-var (get-named-conv ?agent `form-large-team-conv)'?result nil)):wait-for '(form-large-team-conv):incomplete nil)Figure 13: Rule spawning team forming conversation by Logistics.team contains all ranked contractors previously determined by the logistics sched-uler that have expressed interest to participate by executing the activity determinedpreviously by Logistics. Membership in the large team does not bind contractorsto execute their activity, it only expresses their interest in doing the activity. Ifthe large team was successfully formed (at least one contractor for each activity),then we move on to forming the small team. This contains exactly one contractorper activity and implies commitment of the contractors to execute the activity. Italso implies that contractors will behave cooperatively by informing Logistics assoon as they encounter a problem that makes it impossible for them to satisfy theircommitment. In both stages, team forming is achieved by suspending the currentconversation and spawning team forming conversations.For example, in state contractors-ranked we form the large team by hav-ing Logistics start conversations with each contractor ranked for each activity,in the ranking order. The rule presented in �gure 13 shows how this happens.First, the rule makes sure that the team forming conversation has not been al-ready spawn (the :such-that condition). If this is the case, the action in slot:do-before creates a new conversation named form-large-team-conv, of classform-large-team-class. Then the action in the :do-after slot marks team form-ing as taking place, initializes the result variable of the new conversation andtransfers some data from the current conversation to the newly created one (thisis how new conversations receive the data they need to operate). The transferreddata consists of the list of ranked-contractors. The new form-large-team-convconversation will contact each ranked contractor to inquire if they are willing tojoin the team. The :wait-for slot of the rule informs the system that the currentconversation will be suspended, waiting for the named conversation to reach somestate. 21

start
proposed

counterp

ok failed

1

2,3 4

65

9 10

11 12 7,8

Form-small-team-class

start

proposed

rejected
accepted

counterp

asked

1

5

6

2 3

8 9

47

10

Answer-form-small-team-classFigure 14: Team forming conversation classes (logistics and contractors).Forming the small team is similar, Logistics will discuss with each member ofthe large team until �nding one contractor for each activity. In this case the ne-gotiation between Logistics and each contractor is more complex in that we canhave several rounds of proposals and counter-proposals before reaching an agree-ment. This is normal, because during these conversations contractual relations areestablished, while the large team forming conversations had the purpose of onlyexpressing or con�rming interest. How the dialogue between Logistics and eachcontractor takes place when forming the small team is illustrated in �gure 14 wherewe show the form-small-team-class conversation class used by Logistics and theanswer-form-small-team-class conversation class used by the contractors.An important aspect of the negotiation between Logistics and each contractorin this conversation is that when a contractor counterproposes or rejects an activity,it also reveals to Logistics a list of constraints that it can not satisfy as the reasonfor counterproposing or rejecting. Logistics uses these revealed constraints to makea new proposal that would satisfy the revealed constraints or, in case of rejection,remembers them when proposing to a new contractor. This mechanism is importantbecause it focuses negotiations on the problematic issues and thus makes themconverge rapidly.When an activity is assigned to a contractor that will be part of the small team,the other members of the large team are informed about that and asked if theywish to remain in the large team for potential future assignments. If team form-ing is successful, then we resume the suspended main conversation and move tothe next state. This is done by rules like that shown in �gure 15. This particu-lar rule, tried after the form-large-team-conv terminates, applies a test (in slot:waits-for-test) on the form-large-team-conv conversation. The test checksthat the form-large-team-conv has produced the required team in one of its vari-ables. There is a similar rule checking the formation of the small team.In the small-team-formed state we continue with other newly spawned conver-sations (according to the same pattern) with the teammembers to kick o� execution.22

(def-conversation-rule 'lep-7:current-state 'contractors-ranked:waits-for-test 'large-team-formed-test;; tests that waited for conversation is terminated and if it;; has produced the team (in one of its variables) it sets the;; ?large-team variable in this conversation and returns t:next-state 'large-team-formed:incomplete t)Figure 15: Rule resuming execution of suspended conversation.After having started execution (which every team member in part acknowledges),we move to state contractors-committed where Logistics monitors the activitiesof the contractors. If contractors exist that fail to complete their activity, Logisticswill try to replace them with another contractor from the large team. The largeteam contains contractors that are interested in the activity and are willingly form-ing a reserve team, hence it is the right place to look for replacements of failedcontractors. If replacements can not be found, Logistics tries to negotiate an alter-native contract (alternative-needed) with the Customer. To do that, Logisticsrelaxes various constraints in the initial order (like dates, costs, amounts) and usesits scheluling tool to estimate fesability. Then, it makes a new proposal to theCustomer. Again, we may have a cycle of proposals and counter-proposals beforea solution is agreed on. If such a solution is found, the protocol goes back to theorder-received state and resumes execution as illustrated.5. In Context Acquisition and Debugging of CoordinationKnowledgeCoordination protocols for applications like supply chain integration are generallyvery complex, hard to specify completely at any time and very likely to changeeven dramatically during the lifespan of the application. Moreover, due to thesocial nature of the knowledge they contain, such protocols are better acquired andimproved during and as part of the interaction process itself rather than by o�-lineinterviewing of experts. This is especially true in our application context wheremany agents are supervised by users. Because of this, the coordination tool mustsupport (i) incremental modi�cations of the protocols e.g. by adding or modifyingknowledge expressed in rules and conversation objects, (ii) system operation withincompletely speci�ed protocols, in a manner allowing users to intervene and take anyaction they consider appropriate (iii) system operation in a user controlled mode inwhich the user can inspect the state of the interaction and take alternative actions.We are satisfying these requirements by providing a subsystem that supports incontext acquisition and debugging of coordination knowledge. Using this systemexecution takes place in a mixed-initiativemode in which the human user can decideto make choices, execute actions and edit rules and conversation objects. The e�ectof any user action is immediate, hence the future course of the interaction can be23

(def-conversation-rule 'cc-13:current-state 'proposed:received '(ask :sender logistics):next-state 'proposed:transmit '(tell :receiver logistics:sender ?agent:conversation ?convn):incomplete t)Figure 16: Incomplete conversation rule.controlled in this manner.Essentially, we allow both conversation and continuation rules to be incomplete.An incomplete rule is one that does not contain complete speci�cations of conditionsand actions. Since the condition part may be incomplete we don't really knowwhether the rule matches or not, hence the system does not try to match the ruleitself. Since the action part may be incomplete, the system can not apply therule either. All that can be done is to let the user handle the situation. Protocolspeci�cations may contain both complete and incomplete rules in the same time.Incomplete continuation rules are encountered when the system tries to determinethe next conversation to work on. Incomplete conversation rules are encounteredwhen executing a given conversation. Assuming the usual strategy of applying the�rst matching rule in the de�nition order, we can have two situations. The �rst iswhen a complete rule matches. In this case it is executed in the normal way. Thesecond is when an incomplete rule is encountered (hence no previous complete rulematched). In this case the acquisition/debugging regime is triggered. In this regime,a graphical interface is popped up in which the user is presented information aboutthe context of rule execution. For conversation rules, this consists of the currentconversation, its status, variables, history, the message queue, the available rulesin the current state. The user can browse this information and view each availablerule in part. Also, the user can manipulate rules and the message queue by checkingrule conditions to determine applicability, editing a rule, creating new rules, movingor removing messages. When the user feels sure about what to do he can executeeither an existing, a new, or a modi�ed rule and can instruct the system aboutretaining the new or modi�ed rules for further use. In this way, the sets of rules areincrementally modi�ed (perhaps becoming complete) as more knowledge is addedto the system.Figure 16 shows an example incomplete rule from the customer-conversationthat allows a user interacting with the Customer agent to answer (indeterminate)questions from the Logistics agent.The rule is incomplete in that it does not specify how to answer a question- the :transmit part only contains the generic part of the response message. Itis designed to work under the assumption that once a question is received, theuser will formulate the answer interactively, using the graphical interface providedby the acquisition tool. When the knowledge acquisition interface is popped up,the user will have access to the received message containing the actual question.24

Figure 17: Viewing the conversation status.Using whatever tools are available, the user can determine the answer. Then, theuser can create a copy of the rule and edit the transmitted message to includethe answer. This rule can be executed (thus answering the question) and thendiscarded. Alternatively, if the new rule contains reusable knowledge, it can beretained, marked as complete and hence made available for automated application(without bothering the user) next time.The facilities provided by this service can be illustrated with examples from thegraphical interface of the service. To view the status of the conversation at thetime an incomplete rule was encountered, the acquisition service shows the screenin �gure 17. Here we have an instance of the logistics execution protocol as seen bythe Logistics agent. The �nite state abstraction is depicted, together with a textualpresentation of the conversation and a browser for the conversation variables.Another aspect of the conversation context is formed by the available rules. Thisis shown in �gure 18. The browser for conversation rules allows the user to inspectthe rules indexed on the current state (drawn as a larger circle). Rules can bechecked for applicability in the current context, with the resulting variable bindingsshown so that the user can better assess the impact of each rule. The interfaceallows the user to perform a number of corrective actions like moving a rule to adi�erent position or removing it from the conversation class. It is also possible toinvoke the rule editor, the conversation class editor (if there is something wrongwith the conversation class, such as a rule being indexed on the wrong state) or thebrowser for classes and rules allowing the user to inspect other classes and rules inthe system. The e�ect of any of these modi�cations will be immediate. Finally, theuser can leave the interface and continue execution by applying a speci�ed rule.When the user needs more information about the history of conversation ex-ecution, especially with respect to message exchange, the interface provides pre-sentation and interaction facilities as shown in �gure 19. First, the history of the25

Figure 18: Inspecting, editing and applying rules.

Figure 19: Inspecting and editing conversation history and messages.26

Figure 20: Editing, executing and learning rule actions.conversation can be traced by viewing the sequence of past states and the actionsperformed in each state (received messages, rule triggered, transmitted message).Second, the messages received (and not yet processed) by the conversation are alsodisplayed. Again, here we provide means for corrective actions, assuming that mes-sage transmission is an important source of errors. Amongst them we mentiondeleting messages and reordering messages in the conversation queue. To betteraccess the content of messages (especially if their number is large or if their contentis complex) we provide pattern based search in which the set of messages is searchedfor all messages that match a given pattern and we show the variable bindings forthe matched messages.Finally, when the action part of an existing rule is not complete (like in �gure16) or is not what the user needs, the service allows the interactive modi�cation ofthe action part before executing it. This is shown in �gure 20. First, a set of formsis available for presenting and editing the various slots of the action part (theseinclude the transmitted message, the next state and the side-e�ect actions). Theycan be �lled automatically from a selected rule. The user can edit these slots andthen execute them either separatedly or together. As rule execution may removemessages from the conversation queue, messages shown in the previous part of theinterface can be marked as to be removed (or accepted) and actually removed whendesired. Arbitrary conditions testing for any conversation variables can be alsoevaluated in this context to obtain more information. Finally, the modi�cationsperformed to the action part can be saved into a new rule that can be "learned" bythe system, replacing the original one. 27

Information
Agent

Plant 1

Plant 2

TransportationFigure 21: Information Agent servicing functional agentsThe treatment of incomplete continuation rule is similar, just that this time thesystem acquires or debuggs control knowledge for conversation selection.This service provides a uni�ed debugging, development and acquisition envi-ronment for cooperation knowledge that has proven invaluable when developingcomplex multi-agent interactions. Our current policy is that, whenever a new pro-tocol is designed, its �rst runs are always in this debugging mode (by marking allrules as incomplete). This ensures that the right rules are executed at the righttime and helps to quickly detect and correct missing knowledge or other errors.6. Coordinating Information Distribution and Con
ict Man-agementCoordination is an ubiquitous aspect of multi-agent systems. In this section wereview two other services of the shell that require coordination to operate prop-erly, Cooperative Information Distribution and Cooperative Con
ict Management.These are complex multi-agent reasoning tasks that play a major role in managingchange across the supply chain.6.1. Cooperative Information DistributionA �rst requirement for building agents that are responsive to events is being able tokeep agents informed about relevant events. When the number of relevant events ishigh and their occurence can not be predicted in advance - which is the case in thesupply chain - we can not propagate information only at explicit request, that is byhaving every agent asking every other agent every minute if event "X" occured. Weneed a way to automatically update agents whenever relevant things happen, with-out relying on explicit demand. Cooperative information distribution is a way toachieve this goal. It allows an agent to distribute information to other agents basedon the content of the information and the expressed interests of agents. Agents ex-press an interest by posting a persistent query (once) that will be answered by otheragents whenever relevant information becomes available. If supplied information isever disbelieved, cooperative behavior requires the producer of the information tosend retraction messages to all agents that have received it.The essential capabilities needed to perform this function are (i) being ableto prove that a piece of information satis�es an expressed interest of some agent,(ii) being able to trace information that depends on retracted beliefs in order to28

;; Topic of interest and subscription of Transportation Agent:(concept heavy-component ;; any component whose weight(:and component (:gt weight 5000)));; is greater than 5000(subscribe:content(stream-about:content(query heavy-component[:alltime march-april 94])))Figure 22: Topics of interest and subscriptions;; Plant-1 to Information Agent:(achieve :content (part-of p-111 c-12))(achieve :content (weight c-12 2700[:starting feb 94]));; Plant-2 to Information Agent:(achieve :content (part-of p-111 c-13))(achieve :content (weight c-13 3400[:starting jan 94]));; Information Agent inferences:(component p-111)(weight p-111 6100 [:starting feb 94])(heavy-component p-111 [:starting feb 94]);; Information Agent to Transportation Agent:(tell :content (heavy-component p-111[march-april 94]));; Plant-1 to Information Agent:(deny :content (weight c-12 2700 [:starting april 94]))(achieve :content (weight c-12 1000 [:starting april 94]));; Information Agent to Transportation Agent:(deny :content(tell :content (heavy-component p-111 [march-april 94])))Figure 23: Content-based information distribution scenario.29

notify agents a�ected by retractions and (iii) being able to coordinate informationexchange according to this model. In our system the proof part is performed bythe classi�cation and recognition services of the description logic language we usefor knowledge management [1], dependency tracking is supported by the truth-maintenance service of the same description logic and coordination of informationexchange is supported by the coordination framework.In our supply chain architecture we are supporting content based informationdistribution with the help of Information Agents [2]. These are specialized agentsthat collect information interests of other agents together with advertisements ofwhat information agents are willing to provide and on this basis mediate informationexchange by routing information to interested agents, handling retraction noti�ca-tion and executing the advertise-subscribe protocol that coordinates the process.The operation of this agent is illustrated in �gures 21-23. Let us assume that theTransportation Agent is interested to know in advance about produced componentsthat are heavy and thus require special arrangements to transport. It expressesthis interest as a KQML subscription to the Information Agent as shown in �gure22. As the Information Agent is connected to the plants in the supply chain, itpermanently receives information updates about events like production of variousparts. Having a de�nition of what a heavy part means to Transportation and know-ing that subparts of the same part will be assembled together to form assemblieswhose weight is the sum of parts, the Information Agent is able to infer in whichcases heavy components are produced and inform Transportation about that. Ifinformation is retracted, a�ected inferences are retracted as well and recipients ofretracted information noti�ed. Figure 23 shows how these things happen, usingKQML messages and propositional representations as content. Figuring out thestructure of the conversations that model this interaction is an easy exercise left tothe reader.6.2. Cooperative Con
ict ManagementAnother important problem in multi-agent systems that manage dynamic events isdealing with con
icting information. When the future course of action of an agentdepends on con
icting information, the agent must make choices about what tobelieve/disbelieve in order to continue. Our view is that deciding between whatto believe and what to disbelieve must be based on multi-dimensional reasoningabout information and the individual and social consequences of adopting/rejectingbeliefs. Cooperative behavior requires that decisions that impact other agents benegociated with them, thus making the con
ict management process truly social.The sort of information con
ict that we are dealing with occurs from localreasoning and communication as illustrated by the following general scenario:- Agent-1 believes p and communicates it to Agent-3- Agent-2 believes q and communicates it to Agent-3- Agent-3 believes p because it was communicated by Agent-1, q because it wascommunicated by Agent-2 and has local knowledge stating that p&q) false.When this contradiction prevents Agent-3 from taking action, it has to be elim-inated by retracting some current belief that supports either p or q. In this sectionwe address the issue of how to determine which of the possible supporting beliefs30

to retract to reinstall consistency and how to behave cooperatively with the agentsthat are a�ected by the retraction.6.2.1. Credibility and Utility of InformationConsider again the supply chain. Assume that one customer expresses an intentto place an order with a certain due date, for example (due-date O1 (13 march95)) and involving materials from a certain supplier with which the plant alreadyhas an on-going contract. In the same time, another customer expresses an intentto place a second order, for example (due-date O2 (15 march 95)), with a duedate close to the �rst one, involving materials from a di�erent supplier (with whomthere is no contract yet) but whose production can not be scheduled in the sametime because the plant's capacity would be exceeded. The plant has to make achoice between the two customers before accepting a contract. Solving the problemrequires multi-dimensional reasoning involving evaluation of what is gained/lost ifeither order is accepted. Among the questions to be answered in this evaluationare the following. Which customer is more credible in its intent to place an order?With which customer has the plant a more important relationship? Is any customermore likely to be unable to pay in time? How costly will it be to receive materialsfrom the �rst supplier without using them or how costly will it be to cancel the�rst supplier's contract? How important is the relationship with each of the twosuppliers?We classify the aspects dealt with by the above questions into two classes. The�rst class comprises those properties of information that are relevant to its cred-ibility, while the second considers the properties that are relevant to its utility.Credibility measures the precedence of information coming from various sources. Itis based on things like the legal or organizational authority of the source, its relia-bility, the speci�city or the recency of the communicated information. We assumethat we can estimate the aspects related to credibility and on that basis estimate aunique numerical measure of credibility ca(b), for each belief b of any agent a.Estimating credibility is not enough to decide what to retract. We also needto reason about the impact of retracting a belief over the entire system, in termsof how much we lose if a belief is retracted in the existing situation. For exam-ple, decisions might have been made based on beliefs, and retracting these beliefsmay imply undoing the decisions. This may cost money, may incur losing usefulrelations or may a�ect one's image. Another loss is that of potential gains thatwe might had obtained by adopting the retracted belief. Examples in the supplychain include retracting orders which causes undoing lots of planning/schedulingwork or retiring manufacturing machines which similarly may have big impacts onscheduling decisions. We quantify these aspects in a measure of information utility.The main aspects of information utility comes from include:� Money costs. For example, assume that the plant decides to go for the secondcustomer and cancel the contract with the �rst supplier. This may incurpaying substantial penalties besides losing the �rst customer's contract.� Loss of credibility, relations or image. In the above example, besides losingmoney the organization may a�ect its relations with the �rst customer and31

the supplier whose contract was cancelled, and this may create a long rangeproblem especially if cancellation was unexpected or the partners are stronglya�ected.We assume we can compute a numerical estimate of information utiliy - ua(b) isthe estimated measure of utility for information b as computed by agent a. Like inthe case of credibility, there can be many aspects that determine utility and theircomplete delimitation may be possible only on the basis of each application domainin part.Credibility and utility a�ect belief retraction in the same sense: beliefs with highcredibility/utility are harder to retract. For credibility, this comes from the di�cultyof having to contradict a highly credible source. For utility, this comes from theimportant consequences that retraction may have. The estimation of both utilityand credibility requires an agent to put itself into another agent's place. As this maybe particularly hard to do, we allow agents to carry out con�rmation conversationsin which the credibility and utility of beliefs are established. For example, an agentmay inquire a producer of information about how credible the information is, or aconsumer of information about how useful the information actually is. We assumeagents are honest when exchanging such estimates.For information that is consumed and used by several other agents, the sum ofconsumers' utilities would normally be used to compute the overall utility. Whenagents derive new information from existing information, the utility of derived in-formation must be considerd when computing the overall utility.6.2.2. What to Retract and How to Behave When RetractingSuppose now that we have determined a set fpig of premises which supports ap&q) false contradiction, in the sense that each pi is the starting point of a localderivation chain supporting either p or q. A set fpig thus de�ned is called a con
ictset for the given contradiction. Without going into details about how to obtain theactual con
ict set(s), let us attach to each pi its credibility and utility measures.We can represent these two values by points in a diagram called a c-u space, asillustrated in �gure 24.An important aspect of the approach is that when an agent decides to retracta belief, it must exhibit cooperative behavior towards the other agents that sharethis belief. The kind of required cooperative behavior depends on the credibilityand utility of the retracted belief. If these values low, then it would be enough forthe agent to notify the others about the retraction. If these values are higher, theagent may request advice before retracting. Finally, if these values are very high,the agent may become incompetent or unauthorized to decide on retracting, andmay need to request permission to retract. We capture these di�erent behaviorsby distinguishing among several regions of the c-u space that contain beliefs whoseretraction requires di�erent cooperative behavior of the agent. There are threebroad such regions (each may have subregions where the nature of cooperativebehavior may vary). Figure 24 shows these qualitative regions of the c-u space.(i) Belief is easy to retract. Propositions with low values of credibility and utility- as de�ned e.g. by some threshold values Ict and Iut - are easy to retract32

Inform

Request

Advice

Request
Permission

utility

Iut Aut

Ict

Act

credibility

Figure 24: Cooperative behavior regions in the c-u space.because we don't contradict highly credible sources and we are not likelyto produce serious consequences. An agent can unilaterally retract such aproposition. Cooperative behavior principles would however require agentsperforming such retractions to inform the others about the retraction. Sinceretraction was entirely decided by the agent, the agent also bears the entireresponsibility for the act.(ii) Belief is harder to retract. Propositions with higher values for credibility orutility - for example up to another set of thresholds like Act and Aut - areharder to retract because credibility or authority now have signi�cant values.Since retractions from this zone imply either contradicting a credible sourceor producing signi�cant consequences, an agent will have to negotiate withproducers and/or consumers about retraction. At this level the negotiationessentially consists of Requesting Advice w.r.t. retraction from producers andconsumers. Requesting advice implies that the agent presents its intention toretract a shared belief to a producer or consumer and requests their opinionabout the retraction. A producer or consumer can advise on proceeding withthe retraction, cancelling it or be neutral. No matter what advice is received,the agent will continue to be responsible for its decision.(iii) Belief is very hard to retract. Propositions whose credibility or utility is high-est - for example higher than the advise thresholds Act and Aut - go beyondthe decision authority of the agent, either because they come from a very im-portant source or because their consequences are too important for the agentto judge. In this case, the agent's behavior is that of Requesting Permissionfor retraction. The agent will request permission form producers/consumersto retract a shared belief. In this situation the agent is not competent enoughto contradict the source and/or has not enough authority in the organizationto decide about the consequences of this retraction. In this case, the problemis actually passed on to somebody else and the responsibility of the agent islimited while the responsibiliy of the interlocutors is dominant.Based on these ideas we have built an interactive framework for contradictionremoval where the user makes the �nal decision about what to retract, how and33

when and the system assists with tracing, presenting and evaluating the relevantinformation. A visual interface allows the user to visualize the con
ict set in thec-u space and inspect or modify the credibility/utility values. Special conversationclasses specify the cooperative behavior of agents when performing retractions. Asshown, this behavior ranges from simple noti�cation to more complex negotiationfor requesting advice or permission.Unlike previous work on distributed truth-maintenance [45, 9, 41], our modelplaces more emphasis on reasoning and negotiation about how to solve con
icts andavoids full automation of the process which is often plagued by arbitrary "algorithm-made" decisions. By placing the human user back into the loop, we take advantagefrom his/her situated reasoning abilities that can make decision making realisticallyuseful. [56] and [54] are examples of previous work exploring negotiation as a meansto mediate among con
icting agents. Some recent approaches to con
ict resolutionuse prioritized defaults [27] or model-theoretic solutions [38]. They provide semanticaccounts of con
ict resolution based on a single order of precedence of beliefs. Thisis very useful, but still has to address the issues of computational architectures andnegotiation.7. Related WorkOur coordination system is related to a number of other e�orts brie
y reviewedhere. KQML[19] is a high-level agent communication language that provides a mes-sage format and a set of communication acts with informally speci�ed semantics.COOL can be seen as providing an operational semantics to KQML, as it de�nes thestructure of agent agreed message exchanges. As KQML does not have a declar-ative semantics at the time of writing, it is hard to check if the operational useof KQML in COOL conversations complies with the agreed meanings of KQMLacts and actually lets one introduce their own communication acts freely. Thisimpedes interoperability and reusability. When declarative semantics will be avail-able, COOL protocols will be easier to check for proper use of KQML and this willimprove reusability for both COOL and KQML.COOL is also related to a number of previous systems originating from thecomputer supported cooperative work community, like Strudel [50], ConversationBuilder [34] and The Coordinator [43]. In these systems the emphasis is on sup-porting humans in performing their work. As such, users are required to directlygenerate communication acts and be aware of the obligations they create. Our workextends these electronic conversation concepts for inter-agent coordination addingstandardized communication based on KQML, rule-based speci�cations at severallevels (agent control, conversation execution and exception handling) and knowl-edge acquisition services. We use coordination structures in a context in whichprogrammed agents rather than human users are in direct contact with communi-cation acts and their implications. This makes it possible for agents to mediate userinteraction in more varied and adequate ways.ARCHON [33] is a general purpose architecture used to develop agent systems inreal world domains like electricity distribution and supply. It supports large grain,loosely coupled, and semi-autonomous agents. In ARCHON cooperation knowledge34

had to be manually coded into a general representation language. We are trying toimprove on that by coming with more generic tools like COOL. We continue thistrend in our agent building shell by providing reusable, application independenttools for other cooperative services related to information distribution and con
ictmanagement.Agent infrastructures for engineering are aimed at bringing previously isolateddesign and engineering tools on-line. One set of solutions correspond to the SHADE[35] architecture: KIF as the interlingua, KQML as the speech act language, andthe use of facilitator agents (like the SHADE Matchmaker) that match and routeadvertisements and subscriptions among the set of cooperating agents. Our agentbuilding shell supports facilitator-type services as cooperative information distribu-tion services that any agent can provide if needed. With COOL we have advancedin building an application independent coordination layer on top of KQML, makingit much easier to capture, use and reuse complex coordination protocols.Finally, [46] is an important precursor of the work described here as it �rstproposed a multi-layer enterprise information architecture that would integrate in-formation processing from the network communication layer to market based coor-dination and negotiation.8. ConclusionsWhile there exist several meanings of "agents" in the literature, our work buildson agents understood as the high level building blocks of computing architecturesdesigned to interoperate globally on networks forming a virtual, unifying platform.Critical enterprise applications like supply chain integration can not be developedand fully exploited unless such programming environments become available. Fromthe research perspective, attacking such applications requires the merger of theo-retical work on the nature of agenthood and coordination with the development ofpractical architectures and tools where principles can be tested, evaluated and ex-ploited. Adopting the view that social interactions in arti�cial multi-agent systemsare described by a distinct level of knowledge and noticing the stringent need forconceptualizations and systems operating at this level we have developed genericagent building tools that are able to capture, represent and utilize this level ofknowledge. The social nature of coordination knowledge poses special problems,not only because it confers it highly complexity, but also because this implies thatcoordination knowledge can be acquired from or through the interaction processitself rather than from o�-line interviewing of experts. To add to these di�culties,there are few paradigms to guide modeling of coordination by computer languages.We have responded to these issues by building an application independent lan-guage and programming environment that can be used to model, execute and ac-quire coordination knowledge. We assume a communication act based model ofinteraction and we devise a number of constructs for representing coordination con-ventions. These include a programmatic notion of conversation with distinct rulesets controlling conversation execution, conversation selection and exception han-dling, constructs for agents and their environments, plug-in interpreters for con-versation selection and execution and mechanisms for multiple conversation man-35

agement. The programming environment we provide supports distributed agentexecution and visual instruments for browsing, editing and execution monitoring.To deal with in context acquisition and debugging of coordination knowledge, we in-troduce incomplete rules and provide an interactive acquisition environment which,in requested circumstances, handles the control to users and supports them in ac-quiring and modifying rules and conversation descriptions. Using these tools wehave developed complex reasoning services for information distribution and con
ictmanagement well as complex coordination mechanisms for integrating multi-agentsupply chains of manufacturing enterprises.9. AcknowledgmentsThis research is supported, in part, by the Manufacturing Research Corporationof Ontario, Natural Science and Engineering Research Council, Digital EquipmentCorp., Micro Electronics and Computer Research Corp., Spar Aerospace, CarnegieGroup and Quintus Corp.References[1] M. Barbuceanu. Models: Toward Integrated Knowledge Modeling Environ-ments, Knowledge Acquisition 5, pp. 245-304, 1993.[2] M. Barbuceanu and M. S. Fox. The Information Agent: An Infrastructure forCollaboration in the Integrated Enterprise. In S.M. Deen (ed) CooperatingKnowledge Based Systems, DAKE Centre, University of Keele, pp 257-295,1994.[3] M. Barbuceanu and M.S.Fox. The Architecture of an Agent Building Shell. InProceedings of the Workshop on Agent Theories, Architectures and Languages,IJCAI 95, August 1995.[4] M. Barbuceanu and M. S. Fox. Con
ict Management with a Credibil-ity/Deniability Model. In S. Lander (ed) Proceedings of AAAI-94 Workshopon Models of Con
ict Management for Cooperative Problem Solving, AAAITechnical Report, 1994.[5] M. Barbuceanu and M. S. Fox. COOL - A Language for Describing Coordina-tion in Multi-Agent Systems. In V. Lesser (ed) Proceedings of First Interna-tional Conference on Multi-Agent Systems, AAAI Press/The MIT Press, pp17-24.[6] A. Borgida, R.J. Brachman, D.L. McGuiness, L. Resnick. CLASSIC: A Struc-tural Data Model for Objects. In Proceedings 1989 ACM SIGMOD Interna-tional Conference on Management of Data, pp. 59-67, 1988.[7] R.J. Brachman, J.G. Schmolze. An Overview of the KL-ONE Knowledge Rep-resentation System. Cognitive Science 9(2), pp. 171-216, 1985.36

[8] M. Bratman. Intentions, Plans and Practical Reason. Harvard University Press,1987[9] D. M. Bridgeland and M. N. Huhns. Distributed truth maintenance, Procedingsof AAAI-90, pp 72-77, 1990.[10] C. Castelfranchi. Commitments: From Individual Intentions to Groups andOrganizations. In Proceedings of First International Conference on Multi-AgentSystems, AAAI Press/The MIT Press, pp 41-48, 1995.[11] W. J. Clancey. Heuristic Classi�cation. Arti�cial Intelligence 27, pp 289-350,1985.[12] P. R. Cohen and H. Levesque. Intention is Choice with Commitment. Arti�cialIntelligence 42, pp 213-261, 1990.[13] P. R. Cohen and H. Levesque. Teamwork. Nous 15, pp 487-512, 1991.[14] P. R. Cohen, J. Morgan, M. Pollack (editors). Intentions in Communication,MIT Press Cambridge, MA. 1990.[15] P. R. Cohen and H. Levesque. Communicative Actions for Arti�cial Agents. InV. Lesser (ed):Proceedings of First International Conference on Multi-AgentSystems, AAAI Press/The MIT Press, pp 65-72, 1995.[16] K. S. Decker and V. Lesser. Designing a Family of Coordination Algorithms.In Proceedings of First International Conference on Multi-Agent Systems, SanFrancisco, AAAI Press/The MIT Press, pp 73-80, 1995[17] E. H. Durfee. Coordination of Distributed Problem Solvers. Kluwer AcademicPress, 1988.[18] E. H. Durfee and V. Lesser. Partial Global Planning: A Coordination Frame-work for Distributed Hypothesis Formation. IEEE Trans. on Systems, Man andCybernetics 21 (6) pp 1363-1378, 1991.[19] T. Finin et al. Speci�cation of the KQML Agent Communication Lan-guage. The DARPA Knowledge Sharing Initiative, External Interfaces WorkingGroup, 1992.[20] M. S. Fox. Beyond the Knowledge Level. In L. Kerschberg, editor: ExpertDatabase Systems, Benjamin/Cummings Publishing Company, pp 455-463,1987.[21] M. S. Fox. A Common-Sense Model of the Enterprise. In Proceedings of Indus-trial Engineering Research Conference, 1993.[22] M. S. Fox, M. Barbuceanu, M. Gruninger. An Organisation Ontology for Enter-prise Modeling: Preliminary Concepts for Linking Structure and Behavior. InProceedings of the Fourth Workshop on Enabling Technologies, Infrastructurefor Collaborative Enterprises, IEEE Computer Society Press, 1995.37

[23] M. R. Genesereth, R.E. Fikes. Knowledge Interchange Format, Version 3.0,Reference Manual, Computer Science Department, Stanford University, Tech-nical Report Logic-92-1, 1992.[24] M. R. Genesereth and S. Ketchpel. Software Agents. Communications of theACM 37(7), pp 100-105, 1994.[25] M. P. Geoge�. A Theory of Action for Multi-Agent Planning. In Proceedingsof National Conference on AI, Austin, 1984 pp 125-129.[26] R. McGregor and R. Bates. The LOOM Knowledge Representation Language,ISI-IRS-87-188, USC/ISI Marina Del Rey, CA, 1987[27] B. N. Grosof. Con
ict Resolution in Advice Taking and Instruction for LearningAgents, IBM Research Report RC 20123, T.J.Watson Research Center, June1995.[28] T. R. Gruber. Toward principles for the design of ontologies used for knowledgesharing, Report KSL 93-04, Stanford University, 1993.[29] R. V. Guha and D. B. Lenat. CYC: A Mid Term Report. AI Magazine 11(3)pp 32-59, 1990.[30] N. R. Jennings. Towards a Cooperation Knowledge Level for CollaborativeProblem Solving. In Proceedings 10-th European Conference on AI, Vienna,Austria, pp 224-228, 1992.[31] N. R. Jennings. Commitments and Conventions: The Foundation of Coordi-nation in Multi-Agent Systems. The Knowledge Engineering Review 8 (3) pp223-250, 1993.[32] N. R. Jennings and E. Mamdani. Using Joint Responsibility to CoordinateCollaborative Problem Solving in Dynamic Environments. In Proceedings of10-th National Conference on AI, San Jose, CA, pp 269-275, 1992.[33] N. R. Jennings. Controlling Cooperative Problem Solving in Industrial Multi-Agent Systems Using Joint Intentions. Arti�cial Intelligence, 75, 2, pp 195-240,1995.[34] S. M. Kaplan, W.J. Tolone, D.P. Bogia, C. Bignoli. Flexible, Active Supportfor Collaborative Work with ConversationBuilder. In CSCW 92 Proceedings,pp378-385, 1992.[35] D. Kuokka, J. McGuire, J. Weber, J. Tenenbaum, T. Gruber, G. Olsen.SHADE: Knowledge Based Technology for the Re-engineering Problem, Tech-nical Report, Lockheed Arti�cial Intelligence Center, 1993.[36] Y. Labrou and T. Finin. A Semantics Approach for KQML - A General PurposeCommunication Language for Software Agents, University of Maryland, 1993.[37] H. J. Levesque, P. R. Cohen and J. H. Nunes. On Acting Together. In Pro-ceedings of 8-th National Conference on AI, Boston, pp 94-99, 1990.38

[38] J. Lin. Integration of Weighted Knowledge Bases. To appear in Arti�cial In-telligence Journal.[39] T. W. Malone and K. Crowston. Toward an Interdisciplinary Theory of Co-ordination. Center for Coordination Science Technical Report 120, MIT SloanSchool, 1991[40] F. vonMartial. Coordinating Plans of Autonomous Agents, Lecture Notes inArti�cial Intelligence 610, Springer Verlag Berlin Heidelberg, 1992.[41] C. Mason and R. R. Johnson. DATMS: a framework for distributed assumptionbased reasoning. In Les Gasser and Michael N. Huhns, editors, DistributedArti�ciall Intelligence, Volume II, pp. 293-317, Pitman Publishing, London,1989[42] J. McDermott. A Taxonomy of Problem solving Methods. In S. Marcus (ed):Automating Knowledge Acquisition for Expert Systems. Kluwer AcademicPress, pp 225-256, 1988.[43] R. Medina-Mora, T. Winograd, R. Flores, F. Flores. The Action Work
owApproach to Work
ow Management Technology. In CSCW 92 Proceedings, pp281-288, 1992.[44] R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin, T. Gruber, andR. Neches. (1992). The ARPA Knowledge Sharing E�ort: Progress report. InB. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge Repre-sentation and Reasoning: Proceedings of the Third International Conference(KR'92), San Mateo, CA, Nov. 1992. Morgan Kaufmann.[45] C. Petrie. (1987) Revised dependency-directed backtracking for default reason-ing, Proceedings of AAAI-87, pp 167-172[46] M. Roboam and M. S. Fox. Enterprise Management Network Architecture:A Tool for Manufacturing Enterprise Integration, in: Arti�cial IntelligenceApplications in Manufacturing, AAAI Press/MIT Press, 1992.[47] S. R. Rosenschein and L. P. Kaebling. A Situated View of Representation andControl. Arti�cial Intelligence 73 (1-2) pp 149-173, 1995.[48] J. Searle. Speech Acts: An Essay in the Philosophy of Language. CambridgeUniversity Press, Cambridge, UK, 1969.[49] J. Searle. Collective Intentions and Actions. In P. R. Coehn, J. Morgan and M.E. Pollak, (eds) Intentions in Communication, MIT Press 1991, pp 401-416.[50] A. Shepherd, N. Mayer, A. Kuchinsky. Strudel - An Extensible Electronic Con-versation Toolkit. In CSCW 90 Proceedings, pp 93-104, 1990.[51] Y. Shoham. Agent-Oriented Programming. Arti�cial Intelligence 60, pp 51-92,1993. 39

[52] Y. Shoham and M. Tennenholtz. On Social Laws for Arti�cial Agent Societies:O�-line Design. Arti�cial Intelligence 73(1-2), pp 231-252, 1995.[53] R. M. Smith. The Contract Net Protocol: High Level Communication andControl in a Distributed Problem Solver. IEEE Transactions on Computers29(12) 1980, pp 1104-1113[54] K. Sycara. Multi-agent compromise via negotiation. In Les Gasser and MichaelN. Huhns, editors, Distributed Arti�ciall Intelligence, Volume II, pp. 119-137,Pitman Publishing, London, 1989.[55] B. J. Wielinga, A. Th. Schreiber and J. A. Breuker. KADS: A Modeling Ap-proach to Knowledge Acquisition. Knowledge Acquisition, 4 (1) 1992.[56] G. Zlotkin, J. S. Rosenschein. Negotiation and task sharing among autonomousagents in cooperative domains. In Proceedings of IJCAI-89, pp. 912-917, De-troit, MI, 1989.

40

