Building a Generic User Agent
for Multi-agent Integrated
Enterprise

Diploma Thesis

Raik Haase
Enterprise Integration Laboratory
University of Toronto
4 Taddle Creek Road, Rosebrugh Building
Toronto, Ontario M5S 1A4
haase@ie.utoronto.ca

December 1997

DA, mew

Enterprise Integration Laboratory
TUniversity of Toronto
Canada

DAT Laboratory
Technical University of Berlin
Cermany

Abstiract

Today, organizations are faced with permanently changing markets, global competition
and rapidly decreasing cycles of technological innovation. The ability of an enterprise to
achieve competitive advantages and to survive in such dynamic settings largely depends on
organizational flexibility, availability of information and effective coordination of decisions
and actions. Business processes need to be engineered and managed across geographical
borders and beyond traditional functional barriers. One of the key concepts in modern
enterprise operation is the efficient management of its supply chain. The supply chain is
a world-wide network of suppliers, factories, distribution centers, warehouses and retailers
through which raw material are acquired, transformed and delivered to the customer. In
order to optimize performance, supply chain functions must operate in a tightly coordinated
manner. However, the dynamics of the enterprise and the market require flexible responses
and adaptations with local and global effects on supply chain entities. For implementing
such distributed coordinated structures successfully, they need to be equipped with adequate
information infrastructure that reflects and supports the organizational tendencies.

The agent view provides a level of abstraction at which we envisage computational sys-
tems carrying out cooperative work by interoperating globally across networks connecting
people, organizations and machines towards a single virtual platform. The agent’s ability to
plan and to coordinate their actions in a goal-oriented, dynamical and flexible manner while
solving problems autonomously from a local perspective reflects the distributed decision and
execution processes in modern enterprises to the most extent. In viewing supply chain man-
agement as a distributed decision problem which requires the coordination of autonomous
entities, multi-agent systems promise to tackle the issues at a sophisticated and realistic level.
A major challenge in building such systems is to involve people interactively and r’n’cmtwely
in the agent’s execution process by providing adequate interfaces. The objective 1s to adjust’
representation and control-of agent systems to the expectations and experience of prospectlve
end-users. The World Wide Web We allows for business information systems where intelli-
gent agents and humans cooperate in planning, decision making and execution of’ ‘functions
while the system ensures a coherent and coordinated behavior. \

This thesis aims to contribute to the efforts of mtroducmg multi-agent systems in collab-
orative working environments. It has been written in relation to a joint research program
between the Enterprise Integration Laboratory at the University of Toronto, Canada, and
the Distributed Artificial Intelligence Laboratory at the Technical University of Berlin, Ger-
many targeted at developing generic agent architectures for applications in industry and
telecommunication.

The paper comprises of theoretical and practical elements The theoretical background
focuses on (1) reviewing the basics of agent technology, (2) introducing the supply chain
domain agent-based information technology in the business domain applied to supply chain
management and (3) presents the COOrdination Language, developed at the Enterprise In-

tegration Laboratory for defining explicitely coordinated multi-agent systems, Based on the
theoretical insights, the practical application starts with the introduction of a multi-user gate-
way for COOL agent applications, the so called Generic User Agent (GenUA). With GenUA,
people can access and interact with distributed multi-agent applications directly from their
working places through a Web browser. To specify user-agent-interactions, we have developed
comprehensive abstract grammars which can be both immediately interpreted at the agent
level and adequately represented towards the end-user. Through the mediatation of those
interactions by the gateway agent, it is possible to involve people in a coordinated and intu-
itive manner in the agent’s execution process, and to provide an essential mechanism to get
employed in real working environments. GenUA is based on an open and flexible architecture
that allows for adaptation to specific requirements within the application context. A set of
graphical components have been developed to represent the activities of GenUA for the ben-
efit of end-users talking to systems of agents. The COOrdination Language and the Generic
User Agent presented in this paper provide a framework for building agent-integrated busi-
ness structures where people and agent collaboratively participate in business and decision
processes. We describe a primary model which may guide prospective developers in designing
such infrastructures step by step. To demonstrate the synergetic effects of the framework,
we turned a COOL supply chain management application into a distributed, team-oriented
workflow system on the Web where supply chain functions are executed in a coordinated and
collaborative process between end-users and COOL agents mediated by the Generic User
Agent.

R

Contents

1 Introduction 8
1.1 The Thesis Objective i i i it it e e e e e e e e e 9
1.2 Structureof the Thesis 10
1.3 Boundariesof Work 11

2 Basics of Agent Technology 12
21 Agents . . . e e e e e e e e e e 12

2.1.1 Agent Definitions 13

212 AgentTheory o i e 14

2.1.3 Agent Architecturesttt 14

2.2 Multi-Agent Systems L e e e e e 16

2.2.1 The Basics: Agent Communication 16
2.2.2 The Means: Agent Coordination - AT

2.2.3 The Goal: Agent Cooperation. 19

2.3 User-AgentInterfaces ; .o 19

2.3.1 Characteristics of Interface Agents e .20

., 232 Design Principals e Pe. 20

"24 Summary e e e e e e e TLo.o22

3 Supply Chain Management . : 23
3.1 Supply Chain Ma,na,;gement ataGlance24
3.2 Decisions in Supply Chain Management 26
3.3 Methodological Issues J 27
3.4 Technological Support 30
3.5 Motivation for Use of Agent Technology 33

4 COOL: Coordinating Multi-Agent Systems 34
4.1 COOL Concepts . . o v v v ittt e e e e e e e e e e e e e 35

4.1.1 Agent Coordination and Coordination Knowledge 35

CONTENTS

4.1.2 Agent Communicationo ..,

42 COOLElements ittt e e e
4.2.1 Agents L e e
4.2.2 Conversation Classes o i v it it e
423 Conversation Rules
424 Conversations e
4.2.5 Conversation Manager

43 COOLInterfaces i e

4.4 Summary e e e e e e e e e e e

5 Building a Web Interface for COOL

5.1 Overview e e e e e e e e e

5.2 COOL-User-Interactions i ..
5.2.1 Modeling Users as "Stub” Agents
5.2.2 Performing User-Agent-Conversations . .,
5.2.3 Defining Rule-triggered User Interaction
5.24 The Pattern Grammar
5.2.5 Detecting, Forwarding and Visualizing Requests
5.2.6 Visualizing Input Requests
5.2.7 The Notification Grammar
5.2.8 Detecting, Forwarding and Visualizing Notifications and Results

5.3 Further Properties of GenUA
5.3.1 Generic approach - atrade-off? L. ‘
5.3.2 Multiple Connections and Parallel Execution Mode N
5.3.3 System Transparency « . v v v v v v v bt e e i
5.3.4 Autonomous Activity and Offline-Management
5.3.6 Customization and Adaptivity e e e e e e e S
5.3.6 Distribution and Communication i
5.3.7 Authorization and Security e Ll

6 System Architecture and Functionality

6.1 The Generic User AZeNt v v v vt v e e e e e e v
6.1.1 Towards an Open and Flexible Architecture
6.1.2 Insight to the GenUA Architecture,
6.1.3 The Communication Component
6.1.4 The Service Agency it
6.1.5 The Administration Component AP
6.1.6 The Application Manager
6.1.7 The History Component
6.1.8

The Offline Manager

W by

CONTENTS 3

6.2 The Graphical GenUA Interfaces 87
6.2.1 The Communication Handler 88
6.2.2 The Login Window i 89
6.2.3 The COOL User Interface a0

6.3 Summary e e e e e e e e e e e 102

7 Building Agent-Integrated Business Structures 104

7.1 Step 1: Agent Identification 105

7.2 Step 2: Agent Tasks e 107

7.3 Step 3: Information and Control Flow 109

7.4 Step 4: User Role and Interface Character 110

7.5 Step 5: Specification of the User’s Interactions 112

TH SUMMATY . . . o o i i e e e e e e e e e e e e e e e 113

8 The Supply Chain Demonstrator 114

81 Motivation e e e e e 114

82 The Company . . « v v v v v v i i et e e e e e e e e e e e e e e e 114

83 TheAgents i i e e e e e e e e 116
8.3.1 TheCustomer Agent 117
8.3.2 The Logistics Agent 117
8.3.3 The Contractor Agents e 119

84 Issuesof MultiUserMode, 119

85 The Conversation Plans 120
8.5.1 The Customer Conversation "121~
8.5.2 The Logistics Execution Net 4. . 123
8.5.3 The Form Large Team Class 130
8.5.4 The Answer Form Large Team Class L. 131

, 855 The Form Small Team Class B T ... 133
8.5.6 The Answer Form Large Team Class L.. 135
8.5.7 The Kickoff Execution Class. e .. 136
8.5.8 The Answer Kickoff Execution Class . 7. 138
8.5.9 The Monitor Execution Class 139
8.5.10 The Find Contractor Class e e e e e e e e L.. 139

8.6 Summary i e e 141

9 Final Remarks 142

9.1 Summary e e e e L e e e e 142
9.1.1 Theoretical Background 142
93.2 Practical Work 143
9.1.3 Meeting the Objective 143

CONTENTS 4

9.2 Future Work e e 144
9.2.1 Extending the Generic User Agent 144

9.2.2 Improving, Varying and Adopting the GenUA Interfaces 144

9.2.3 Extending and Devising Demonstration Scenarios 145

10 Acknowledgements 146
A Terminology 150
B COOL Syntax 152
Bl Agents o o o e e e e e e e e 152
B.2 Conversation Managers it i i i ittt e 153
B.3 Conversation Classes i i i i it it e e e e 153
B4 Conversation Rules e 155

C User Guide for the Supply Chain Demonstrator 159

e T mey

List of Figures

1.1 Structureofthe Thesis
2.1 Federated Agent System
3.1 Exampleof aSupply Chain
3.2 Decisions in Supply Chain Management
3.3 Conventional Infrastructure of Information Technology in Supply Chain Man-
agement L L e,
4.1 Transition diagram showing the Customer-Order-Conversation
5.1 Three Layer Model for the COOL Web Interface
5.2 User-Agent-Interactions
5.3 Visualization of Input Requests,
54 Visualizing a User Message ' i e P
5.5 User Application Mapping, L.
5.6 Distribution and Communication R, L.
6.1 The Architecture of the Generic User Agent e ‘ C.
6.2 The GenUA Application Management P
6.3 Logging to the GenUA System S A
6.4 The COOL User Interface /i i i i, .
6.5 Selecting a Conversation Class v u.... .o
6.6 Browsing a Conversation Class e L.
6.7 Effects of Initiating a Conversation Class
6.8 Browsing a Completed Input Request
6.9 Inspecting Received Messages i
6.10 Browsing Historical Information e
7.1 Multi-level Supply Chain it .

8.1 Agent-based Supply Chain Model of the Demonstration Company

4

w by - 5

LIST OF FIGURES 6

8.2 The interactive Customer Conversation 121
8.3 Composing a Customer Order via Hierarchical Dialogs 122
8.4 The interactive Logistics Execution Net 125
8.5 A Gantt Chart Example for the Logistics Manager 126
8.6 Problem Detection and Alternative Generation 128
8.7 The interactive Large Team Forming 130
8.8 Decision on Large Team Participation 132
8.9 The interactive Small Team Forming 133
8.10 A Gantt Chart Example for the Workshop Manager 136
8.11 The interactive Activity Execution 137
8.12 The interactive Contractor Replacement 14{)

o e

List of Tables

8.1 The Course of the Customer Conversation
8.2 The Course of the Logistics Execution Net
8.3 The Course of the Form Large Team Class
8.4 The Course of the Answer Form Large Team Class
8.5 The Course of the Form Small Team Class
8.6 The Course of the Answer Form Small Team Class
8.7 The Course of the Kickoff Execution Class
8.8 The Course of the Answer Kickofl Execution Class
8.9 The Course of the Monitor Execution Class

....................

....................

....................

....................

...............

....................

...............

...................

-

e

Chapter 1

Introduction

Today’s business world is characterized by an increasing rate in founding and managing
enterprises that operate on the basis of worldwide networks of suppliers, plants, retailers and
customers. The tendency to overcome functional barriers within and across organizations,
to establish flexible and viable structures and to see individual business activities in a global
enterprise context have become cornerstones of management in order to compete in the era
of globalization, increasing competition and short technological life cycles.

Within dynamically changing environments, flexibility in defining and managing enter-
prise functions requires the coordination of business processes across distributed, heteroge-
nous and (semi-)autonomous units in order to satisfy their individual and shared goals. Pre-
condition for coordinative activities is the availability and accessibility of information . and .
an efficient communication among the organizational units. These tendencies lga,ve to be
reflected by an adequate design of technological systems which allow for electroglcal coor-,
dination of organizational interdependencies by linking people and machines oni;o a single
collaborative platform. A ‘promising approach lies in multzwagent systems which involve users
interactively by providing adequate user interfaces. ‘:

An agent is a piece of software that is semi-autonomous, goal-orienied and entrusted
in performing its functions and that operates globally on networks by relying on applzcatzon-
independent high-level communication and interaction protocols. Agents in a business context
act on the behall of employees - they are meant to assist them in daily computer-based tasks,
to provide access to information, to support decision making and enable collaborative work.
Multi-agent systems inherently represent the distributed and cooperative nature of business
organizations and business activities. A major challenge in building such systems is to ac-
complish coordinated behavior among the singular agentin order to achieve individual and
shared goals, thus reflecting the inter-organizational actions and decisions in an electronical
way. The COOrdination language (COOL), developed as an integral part of an Agent Build-
ing Shell project at the Enterprise Integration Laboratory (EIL) of the University of Toronto,

CHAPTER 1. INTRODUCTION 9

has been designed and implemented for defining networks of agents that exhibit cooperative
problem solving through the execution of explicite plans (”conversations”) and through the
exchange of knowledge by means of KQML-style messages. Each agent is endowed with dif-
ferent types of plans according to its intended role in the system. Several multi-agent scenario
had been implemented in COOL devoted to one of the most challenging enterprise domains
- the supply chain management.

However, for employing agent systems in collaborative working environments, coordina-
tion is a necessary but not a sufficient condition. The acceptance and utilization of computa-
tional systems, particularly if they show semi-autonomous behavior and act in a distributed
manner, depends crucially on how the front-ends converge to the user’s expectations and re-
quirements. After all, those users are usually non-experts that are expected to deal with the
agent system in their daily work. Consequently, a multi-agent system needs to come up with
interfaces which involve users actively in the execution process in an intuitive and familiar
manner, and which are immediately accessible from any computer-supported working place.

The obvious answer for direct access from anywhere is the Internet and particularly
the World Wide Web. Using on-line information, offering on-line services or advertising
products via the Web has become commonplace for many companies. We envisage to shift
the focus from pure customer orientation or individual on-line actions towards carrying out
and coordinating entire business activities and processes using next generation technology. In
merging sophisticated problem solving previded by agent technology with the omnipresence
of Intranet and Web technology in business, we anticipate a lively and flexible hybrid network
of human users and artificial agents across any functional or geographical boundaries working
together to achieve the enterprise’s goals.

s

~—

1.1 The Thesis Objective

e

This thesis is addressing the problem of employing multl—agent applications in rea,l world
enterprise scenarios. Against the background of collaborative environments in (vrrtual) en-
terprise structures, it will be investigated how users can be interfaced to distributed COOL
agent systems in'a flexible and domain-independent manner. A generic interface architecture
will be designed which provides an open virtual framework and basical mechanisxlhs needed
for interactions of multiple users to multiple agent applications. '

To enable accessibility from a Web browser and portability ‘across heterogenous settings,
we have seized upon the JAVA language, and we will present a complex JAVA applet which
involve users actively and intuitively in the agent’s execution process.

To demonstrate the new potentials for collaborative work between users and agents, we
will extend and improve one of the existing COOL supply chain scenarios towards a work-
flow system where distributed users execute routine activities in the context of supply chain
management, mediated and coordinated by the multi-agent system.

CHAPTER 1. INTRODUCTION 10

1.2 Structure of the Thesis

The thesis is composed of two major parts: the imparting of necessary theoretical background
and a description of the practical efforts where the majority of work has been put down.

Supply Chain
Demonstrator

Generic User Agent
{Archi e & Fu.

Figure 1.1: Structure of the Thesis

The theoretical background starts with an introduction to agent technology in chapter 2.
Proceeding from the notion of an individual intelligent agent and a brief review of theoretical
and architectural aspects of agency, key issues of multi-agent systems such as agent commu-
nication and agent coordination will be examined. The chapter will be concluded by a listing
of major directions of agent applications. o

In chapter 3, we infroduce one of the key concepts of modern enterprise ma;na,gemént
- the supply chain management. After declaring the innovative role and crucial/issues for
managing globally distributed supply chains, the state-of-the-art in technologlcal support
will be reviewed. As a result, the use of agent technology for this domain will be motivated.

. In the following chapter 4, the COOrdination Language will be described whith has set
up the technical basic for the entire practical work. This includes an examination 6f the ma-
jor components (agents, conversation plans, conversation rules and conversation 1nstances)
control structures (conversation management) and available graphical interfaces so far.

The vision of an agent-integrated enterprise and the technological basis provided'by COOL
established the framework for the practical work. Chapter 5 is dedicated to outline the es-
sential features being realized in a user-agent interface called GenUA (”Generic User Agent”)
and to explain how the mechanisms provided by COOL have been exploited to design and
implement this solution.

We continue with examining the architecture and functlona,hty of the GenUA system in
detail in chapter 6. Prototypical graphical interfaces will be presented by means of a sample
user session to a multi-agent application.

The availability of the two technological components, the COOrdination Language and

CHAPTER 1. INTRODUCTION 11

the Generic User Agent allows to think about building agent-integrated enterprise structures
in the next chapter 7. As one of the most interesting domains within the variety of agent-
oriented business application, we will focus on the incorporation of agents in supply chain
management. A model will be presented on how multi-agent system and users can be married
step by step towards a hybrid collaborative environment in a business context.

Finally, in chapter 8, the model will be exemplarily applied onto a limited supply chain
scenario. As extended version of a predefined COOL multi-agent application, an integrated
supply chain will be presented which allows for on-line interaction of distributed end-users
with agent-coordinated supply chain functions .

In the last chapter 9, the recognitions and experiences gained through the theoretical and
practical work will be summarized and prospective future work will be shown.

1.3 Boundaries of Work

When designing a user interface to multi-agent systems, it was neither the aim to cover an
all-embracing theory of human computer interaction nor to tailor graphical representations
towards the requirements of specific group of end-users. The focus for the solution provided
has been to identify and to supply a number of general mechanisms, independently from
purpose and prospective end-users of particular multi agent applications.

Also, considering the variety of different approaches in multi-agent research, an attempt to
generalize a user interface for them would be presumptuous. COOL supplies a sophisticated
and promising methodology and technology for designing cooperative agent environments, so
we tailored the user interface to applications implemented in COOL and attached mechanisms ,-
for the on-line interaction of distributed users.

e L

Chapter 2

Basics of Agent Technology

Agent technology has emerged as a result of the increasing tendency and necessity to in-
tegrate once self-contained standalone applications into highly distributed computational
systems and the progress in computational methodology. The agent approach in software
engineering is a sophisticated metaphor in conceiving and developing software systems where
the entities are no longer viewed as singular functional elements with pre-defined interaction
structures. Rather, we talk about behavioral objects in an environment that coordinate their
actions themselves with explicite knowledge about such mechanisms and each other. With
agent technology, a completely new paradigm evolved which promises to tackle the issues of
distributed systems more adequately and which has opened up a new dimension of problems
that can be addressed. o
In order to understand the defining influence of agent technology and its ut1l}1za,t10n in’
business context, it is necessary to become familiar with the cornerstones of this new method-.
ology. This is the target addressed in this chapter with the following structure. Section 2.1
encompasses a general introduction to the concept of an intelligent agent. We continue to
extend the notion of a single agent to issues related to multi-agent environments 2. 2 Finally,
some principles of user—agent—mterfaces 2.3 are reviewed. ‘

Fs

2.1 Agents

The concept of an agent has occupied a key role in both Artificial Intelligence and mainstream
computer science. The following section is meant to give an overview about the essential prin-
ciples that underly agent-based software technology. First, a primary notion of an intelligent
agent 2.1.1 will be declared. The paragraph on agent theory 2.1.2 deals with formalisms for
representing and reasoning about the properties of an agent. Agent architectures 2.1.3 are
software engineering models devised to transform the properties described in agent theory
into practice.

CHAPTER 2. BASICS OF AGENT TECHNOLOGY 13

2.1.1 Agent Definitions

There is no common notion within the scientific community about what an agent is. The term
“agent” is nowadays attached to so many pieces of hardware and software, that it appears
more like a buzzword than being a clearly distinguishable entity in software technology.
However, most approaches define the key criterion for agenthood as a behavioral one. In this
paper, we refer to the works of Wooldridge and Jennings [30]. They identify a weak and a
strong notion of an agent with respect to an agent’s behavior.

The weak notion understands an agent as denoting a hardware or software-based system
that enjoys the following properties:

o Autonomy: Agents operate without the direct intervention of humans or other pieces
of software, and they have some kind of control over their actions and internal states.

o Social ability: Agents interact with other agents (which may involve human users sim-
ilarly} via some kind of agent communication language (see 2.2.1).

e Reactivity: Agents perceive their environment and respond in a timely fashion to
changes that occur in it. An agent’s environment is a defined scope selected from
any kind of periphery surrounding an agent. It may encompass other agents, graphical
user interfaces, legacy systems, the Internet and the physical world.

® Pro-activeness Agents do not simply act in response to their environment, they are able
to exhibit goal-directed behavior by taking the initiative on their own.

e Rationality: An agent is expected to act in a rational way in pursueing its goals as well ”
as in selecting and executing the actions necessary. Rational behavior is consframed by
having knowledge about capabilities, resources and appropriate selection str&tegles for
alternatives. . :

‘Ina stronger notion, additionally oftenr human attributes are ascribed to an agei’lt Under

discussion within the community of Artificial Intelhgence are the following propertles of an

agent:

e Knowledge and Beliefs: Having knowledge is far beyond having information, it refers
not only to the ability to gather information dynamically, but also to reason about
it, even further to know what strategy of reasoning should be applied in a particular
situation and why (known as meta-knowledge). A belief represents the current notion
of an agent about a fact. Beliefs are subject to charges in the environment. They can
be communicated and shared among agents.

¢ [ntentions and Obligations: Intentions reflect long-term objectives an agent may pursue
during its lifespan. From intentions, more short-time goals can be derived which in turn

v

CHAPTER 2. BASICS OF AGENT TECHNOLOGY 14

require the execution of actions to get satisfied. Intentions result in a particular pattern
of agent’s behavior beyond executing individual actions and achieving goals. Agents
may commit themselves explicitely to satisfy a particular task. Thus, obligations are
directly related to an agent’s autonomy: once an agent has expressed his readiness to
work on a task, it is responsible to take the necessary steps in a self—respons1ble manner
when being entrusted with the task.

e Veracity and Benevolence: An agent is obliged to always tell the truth. As an agent can
always state its own inputs, outputs and definitions with confidence and nest conjectures
inside of statements about its belief, this principle is said to be not difficult to achieve.
Benevolence related to an agent means that the agent will always try to answer what
it is asked for or execute what it is requested to do, briefly an agent should not behave
counter-productive.

2.1.2 Agent Theory

Most of the properties associated to agents can not been defined completely as an individual
item. Some of them seem to be somewhat intervowen. For example, autonomous behavior
requires pro-activeness, and when an agent behaves pro-actively it can be seen as an au-
tonomous entity. There are agent properties that can be derived from other properties. For
example, only if an agent exhibits veracity, obligations makes sense. Furthermore, properties
defined are constrained by other properties. For example, if an agent has to exhibit veracity
and benevolence, it may be limited in its autonomy at first sight. This characteristic makes
it difficult to come to a universal definition of agenthood. o

In order to capture these interdependencies in formal specifications, agents gre viewed
as intentional systems, i.e. entities “whose behavmr can be predicted by the method of
attributing beliefs, desires and rational acumen” [30]. Again, the behavioral a,spect is placed
into the foreground. In generally, any object can be described in terms of intentional stance,
evén a simple light switch could be treated as an agent: it has the “belief” that ¥ We want it
to transmit current or not when we communicate or “desire” by flicking the sw1t¢h, and in
an act of “benevolence” it satisfies it obeys our order. *Of course, there is a much simpler
mechanical explanation for the behavior of a light switch. The intentional notion is meant to
be an abstraction tool, which provides a familiar way to explain and predict the behavior of
more complex systems, beyond architecture and step-by-step operation.

2.1.3 Agent Architectures

Research in agent architectures faces the construction of computational systems that integrate
the results of theoretical investigation. An agent architecture is a particular methodology for
building agents: how agents can be decomposed into a set of components, how these com-
ponents interact with each other and how they contribute to the agent’s internal state and

CHAPTER 2. BASICS OF AGENT TECHNOLOGY 15

external behavior. Wooldridge and Jennings [30] have identified three major architectural
approaches: deliberative, reactive and hybrid agent architectures. As all three of them are
relevant for the system presented in this paper, they are worth mentioning here briefly.

Deliberative Architectures

The classical approach for building agents is to view them as a particular type of knowl-
edge based system, following the paradigm of symbolic artificial intelligence. Deliberative
agents contain an explicitely symbolic model of the world, and make their decisions (e.g.
what action to perform next) via logical reasoning based on pattern matching and sym-
bolic manipulation. To construct such an agent, real world entities must be translated into
accurate and adequate symbols, and appropriate mechanisms must be provided to reason
with this information in a timely fashion. The emergence of speech understanding, learning,
knowledge representation and automated reasoning has been driven majorly by the symbolic
computational view,

Reactive Architectures

As the symbolic computation has been subjected to many unsolved problems, researchers
have proposed reactive architectures as amw alternative approach. Here, neither a kind of cen-
tral symbolic world mode nor complex symbolic reasoning is involved. Reactivity adopts the
view of an agent behaving like a situated automata based on a modal logic of knowledge. A
set of “nodes” (tasks, modules, etc.) is declared, and explicitely or implicitely linked to an
execution network at compile time, based on the node’s input and the node’s output. This’
pre-supposes that the agent’s activity can be situationally determined, and that the agent’s
goal or desire system can be represented implicitly in the agent’s structure a,ccorc{mg to the
scheme. We-will see in the corresponding chapter 6.1.1, that the Generic User Agent is based
on. a‘reactive architecture. : H
Hybrid Architectures , X

In hybrid architectures, it is attempted to combine the advantages of deliberative and
reactive approaches. Hybrid agents may be assembled from plan or protocol elements which
are created or executed when external events or changes in the agent’s internal state occur.
Any of these agent elements may be encoded in symbolic constructs. Hybrid architectures
are currently a very active area of research. The COOL system 4, used in the scope of this
thesis, can be put into this category. However, hybrid architectures tend to be application-
specific, it is difficult to extract a formalized, general model for an agent architecture out of
the variety of approaches,

CHAPTER 2. BASICS OF AGENT TECHNOLOGY 16

2.2 Multi-Agent Systems

Agent-based soltware engineering was invented to facilitate the creation of software that op-
erates in heterogenous settings. The next step is, naturally, to talk about the issue in systems
of agents. A multi-agent system (MAS) can be defined as “a network of agents each endowed
with a local view of its environment and the ability to respond locally” [18]. The systems per-
formance emerges through dynamic interactions among the agents in a cooperating manner.
However, enabling interactions among heterogenous entities requires that they have some-
thing in common. Research in multi-agent systems is concerned with coordinating intelligent
behavior among a collection of autonomous agents, how they coordinate their knowledge,
goals, skills and plans jointly to take actions or to solve problems. Towards this objective the
following issues need to be addressed:

e how do agents communicate with each other 2.2.1
e how do agents coordinate their actions and 2.2.2

¢ how do agents collaborate to achieve their goals 2.2.3

This three-stages model to make a multi-agent system work will be discussed in the
respective paragraphs in this section. |

2.2.1 The Basics: Agent Communication

Coordination among autonomous entities requires that they have got some knowledge abdut”
each other. Though knowledge can be acquired implicitely by having the agents ghaking as-
sumptions or simply perceiving their environment, massive support for coordma,ted activities
comes from explicite communication. ’

Genesereth et. al. adopt the view that “software agents are meant to commumcate with
their peers by exchanging messages in an expressive agent communication Ianguage” [12].
Such a language should allow the‘exchange of complex information and knowledge structures
without growing excessively, over domains. In order td get employed among heterogenous
entities, the need for a universal communication language design is immediate, one in which
inconsistencies and arbitrary notational values are eliminated. Research groups associated to
the ARPA Knowledge Sharing Effort have defined an agent communication language (ACL)
to satisfy these needs.

ACL provides a communication model consisting of two layers, an “inner language”
called Knowledge Interchange Format (KIF), representing The communication content, and an

“outer” language called Knowledge Query and Manipulation Language (KQML), representing

the communication act.

CHAPTER 2. BASICS OF AGENT TECHNOLOGY 17

KIF is a prefix version of first order predicate calculus with various extensions to enhance
its expressiveness. It facilitates the encoding of simple data, constraints, negotiations, dis-
junctions, rules, quantified expressions, metalevel information, and many more. By means
of the KIF language constructs, domain specific knowledge can be transformed into formal,
contextually independent declarations. Because of its declarative nature, knowledge encoded
in KIF can be transmitted and interpreted across heterogenous systems.

KQML supplies a linguistic layer for wrapping content information encoded in KIF. Es-
sentially, it supports dialogs by defining a message template. Initially, each KQML message
is composed of a message type, called performative, a sender and a receiver attribute, as well
as the content of the message in form of a KIF expression. KQML provides a system of
standardized message types which are based on Searle’s classification of speechacts [27]. The
performative is a statement which may be used to define a potential intention of the sender
towards the receiver about what he is supposed to do with the content. However, KQML
does not pose an inherent semantics to performatives, the receiver may process the received
content in any way. The standard message format can be enriched by additional attributes
such as defining the communication protocol to enable message transmission among agents
operating in distributed systems.

2.2.2 The Means: Agent Coordination

In a multi-agent system, the environment is populated by a number of agents, while each
agent may pursue its own goals and may have different capabilities. Actions performed by
one agent constrain and are constrained by the actions of other agents. The key problem
of agent coordination is on how to enhance, to organize and to manage agents so that they ”
can achieve their goals resulting in a coherent behavior of the system as a wholé. To put
it more simple, we need control structures or protocols that answer the question;” “Who is’
doing what and when?”. . Genesereth et. al.[12] have identified two different strategms to
coordinate agents: direct communication and assisted coordination. i

Direct communication stands for agents that handle their own coordination by ejcchangmg
messages peer to peer. They do not need a special externa,l coordination program and can
choose their coordination strategy freely. A popular architecture for direct communication is
the contract net approach. Here, agents in need for a particular service, issue requests to a
community of other agents. Each recipient evaluates the request and, upon deciding that it is
able to provide such a service, submits a (constrained) bid to the originator. After gathering
all the bids, the originator decides which agents to task and then awards contracts to them.
A major disadvantage of direct communication is cost. For a small number of agents, this
does not pose a problem. But in a large community of agents, for example in an Internet
environment, a procedure such as broadcasting requests and processing thousands of bids is
prohibitive. Moreover, each agent must contain all of the code to support such a coordination
scheme, which increases the complexity.

CHAPTER 2. BASICS OF AGENT TECHNOLOGY 18

Assisted coordination is based on having a special system component within the agent
community to achieve coordination. Rather than communicating directly with each other,
agents share a service facility to coordinate their actions. A popular architecture is to organize
agents in a federated system.

Figure 2.1: Federated Agent System

Figure 2.1 illustrates a possible structure for a federated system. Each subsystem (not
necessarily associated to a machine) is comprised of several agents and a specialized CopI-
dination component, the so-called facilitator. Agents document their concrete Peeds and
capabilities towards the facilitator by means of an agent communication language;. This one
uses the acquired agent knowledge to transform and route messages to the approplﬁa.te place,
either to its supervised agents or to another facilitator. Facilitators can also (de;)compose
multiple messages. For an efficient message processing, they can take advantage oT a variety
of mechanisms from simple pattern matching to automated reasoning technology. /

Federated systems allow for a very dynamic system structures as agents can be introduced
or removed at runtime. They may also vary their capabilities during the execution through
propagating or withdrawing message patterns the agents are “able” to process. Moreover,
except from providing a common communication interface to the facilitator, federated sys-
tems can be built from a set of heterogenous agents. These properties makes the assisted
coordination a powerful and flexible approach which can be applied to other loosely coupled
system structures, as we will see in the design of the Generic User Agent Jater on 6.1.1.

b

CHAPTER 2, BASICS OF AGENT TECHNOLOGY 19

2.2.3 The Goal: Agent Cooperation

Individual agents and there interactions affect the characteristical behavior of the multi-agent
system as a whole, However, the question is arising how to view the system from a global
perspective or how to make the complete agent system work in a certain coherent manner.

Cooperation in the original sense means “working together on shared tasks”. In the wider
sense, however, there is a range of different types of cooperation with respect to the balance
of willingness to cooperate and self interest: unselfish, obliging, compromising, competing,
antagonistic. Moreover, cooperation is closely associated to the idea of an organization. An
organization is characterized by an objective and specific rules or politics that influence the
behavior of its members,

With respect to the agent view, cooperation among agents addresses the issue how agents
come together to work on a shared task. This is a question, where much influence from
organization theory, cybernetics and social sciences comes into play. We talk about com-
petencies, roles and relationships, about hierarchical structures, market metaphor and team
work, about systems stability, emergence and adaptation. There is a lot of publications that
treats organization and cooperation of distributed agent systems in analogy to the human
world, and it would be expensive to enumerate them all in detail,

However, they all have on thing in common. The objective is to form societies of intelligent
agents that cooperate consciously and effectwely towards achieving a higher-level goal or task
while adopting the most efficient organization for communication and coordination. We will
see in the chapter on a multi-agent scenario in the supply chain domain how agents act within
a team in order to efficiently satisfy customer orders.

2.3 User-Agent Interfaces

LR

In the past, computational systems were mostly passive and ignorant towards the user. People
had to supply the power to operate and the intelligence to guide its applications. T}Erough the
advent of computers and the emergence of agent parad1gms the roles of user and machines are
changing. Machines will become colleagues and partners to human. Of course, people remain
in overall charge of the process, but “emergent control presumes that equ1pment assumes
more responsibility” [18].

Unlike user interfaces to standard applications that have been studied since computer
systems evolved, the area of conceiving and developing agent—orlented front-ends is relatively
new, The challenge is to endow the user interface with mechanisms that reflect and reinforce
the virtues of agent technology for the benefit of end-usegs. Those kind of interfaces are in
generally referred to as interface agents or intelligent user interfaces.

CHAPTER 2. BASICS OF AGENT TECHNOLOGY 20

2.3.1 Characteristics of Interface Agents

Throughout the variety of different approaches and application domains, there is one major
characteristic:

Interface agents are computer programs that employ artificial intelligence technol-
ogy in order to provide assistance to users in dealing with a particular application.

.. The metaphor is that of a personal assistant who is collaborating with the user
in the same environment. [17]

From the perspective of the interface agent’s purpose, it does not matter, whether the
particular application is one of a standard type or a complex multi-agent system. However,
the representation and interactions may differ to a great extent.

There is much related work being done by the computer supported cooperative work
(CSCW) community. CSCW is defined by Baecker as “computer assisted coordinated ac-
tivity such as problem solving and communication carried out by a group of collaborating
individuals” [2]. The emphasis of CSCW is on the development of tools to support collabo-
rative human work. The use of agent technology in these groupware tools has been proposed
by several authors.

2.3.2 Design Principals

For designing an intelligent user interface, there are two different approaches how to “marry”
an artificial and a human part towards a singularity, depending on the perspective one as-
sumes. The classical artificial intelligence claims that agents can be made so mtelhgent that
people come to view them as peers. This notion has turned out ideally and above a,ll imprac-
ticably to solve the immediate problenis people are facing at.present time. For 'bhlS reason
the engineering approachhas become more attractive, where people are represented in the
network by artificial agents that make them look to other agents like computers. Séme of the
agents may implement conventional automatized functions integrated by a shared model or
goal while computerized personal agents are assigned to,each human in the network so that
the other agents see only this one and not the human directly. [18]

For example, there are agents that find documents on. the Internet which are of interest to
the end-user. The user may order his personal agent to find documents on “Agent technology
in supply chain management”. The agent can consult databases, news servers or other agents
for example the library agent at the University of Toronto. If both agents communicate via
the same protocol, the library agent is not aware that the,original request has been made by
a human. It just transmits a prioritized list of documents to the user’s agent in whatever
format which in turn displays them nicely onto the user’s screen. From the user’s point of
view, it is hard to distinguish whether this list has been constructed by standard software
several intelligent agents or by, say, the user’s secretary.

4

CHAPTER 2. BASICS OF AGENT TECHNOLOGY 21

In analogy to the objective of Computer Supported Cooperative Work, where computer
technology is used to integrate communities of humans, interfacing users to agents deals with
building (systems of) artificial agents into which people can be introduced. In a way, the
experiences and accomplishments gained in research on CSCW over the years have opened
the door to practical human agent interaction.

Cornerstone for involving people into multi-agent systems in any kind of domain is ac-
ceptance by the user. The primary goal for a user interface in such a setting is work support.
The challenge is to come to an open and viable agent-based approach for user interface de-
sign. This means, that the variety of guidelines established for user interfaces to standard
applications need to be transformed for interface agents. Summarizing Sanchez et. al. [16]
and Hall et. al. [19], we outline the following set of requirements:

o User awareness: A user must become aware that he occupies a place in a distributed
network and interacts with a system of different cooperating agents.

¢ Accessibility: The interface has to provide access to the available agents, their capabil-
ities and limitations and to visualize them appropriately.

User conirol: Users should be allowed to delegate their tasks to agents expressly. Tasks
may be assigned, suspended, resumed or cancelled at any point in time. If possible, the
user may undo and counteract agent actions.

¢ Transparency: The interface should guarantee access to knowledge on task progression

(current state, approximate completion), task proceeding (how a task is decomposed)

and which agents fulfil the parts) and execution results. ; '

;

Representation: The interface should represent interactions between users amd agents:
in a way con31stent with the end user’s expectatlons . ;

o+

- &' Security: The interface should allow free agent operation Wh11e preserving da,ta integrity
and user privacy. , ‘

° Resiliency: In presence of system crashes, the interface has to record the current ex-
ecution states of ongoing tasks, so that the user is enabled to resume pending tasks
afterwards. :

o Adaptivity: To adjust the interface towards specific end users, it needs to come up with
general mechanisms to represent, to maintain and to apply user-specific knowledge.
”

These demands established also the guidelines for designing the interface between end-
users and multi-agent systems in an enterprise context which will be the major part of this
thesis paper.

CHAPTER 2. BASICS OF AGENT TECHNOLOGY 22

2.4 Summary

This chapter has presented the primary concepts in agent technology. It has given an insight
on what an agent is, and how agents can be formalized, composed, implemented and used. As
computational systems become increasingly distributed and interconnected, intelligent agents
are considered as key technology to tackle the issues arising. Having the ability to plan, to
pursue their goals autonomously, to cooperate, coordinate, and negotiate with each other, to
respond dynamically and flexibly to changes in the environment, and to support collaborative
work across networks, intelligent agent are expected to lead to significant improvements in
the quality and sophistication of software systems that can be conceived, and the application
areas and problems that can be addressed.

By introducing intelligent interfaces between users and agents, a symbiotic interaction be-
tween human and machines is envisioned where users delegate tasks of varying and increasing
complexity to systems of autonomous agents. The computer is considered as a medium to
trigger and to represent agent actions in which users are actively participating. Agent systems
are turning into a “hybrid system” in which some agents are artificial and others are human
but the artificial agents do not distinguish between interactions with a user and interactions
with other agents.

-l

e

Chapter 3

Supply Chain Management

In order to maintain competitiveness in the global markets, one of the determining elements
in enterprise operation is the efficient management of its supply chain.

Hinkkanen et. al. [13] outline that in the past organizations have focused their efforts on
making effective decisions within individual domains and within cooperative boundaries. By
treating various organizational functions, such as assembly, logistics or storage, independently,
the decision complexity could be reduced. The last decade has seen the rise of a plethora
of acronyms, such as “Just-in-Time”, “Total Quality Management” or “Vendor Managed
Inventory”. However, most of the metholodogies were aimed on one particular problem that
may occur in doing business. But with market globalization and increasing competition, the
costly consequences of ignoring the interdependencies particularly those with non-producing .
departments become more and more apparent. ;

For example, as the authors explain, a marketing promotion campaign shoulgl be coor-,
dinated with production plannmg since a higher demand may be expected. Moré products
require more investment in raw materials or even in new facilities, which ca,nnot be done
without consulting the finance department. Likewise, the delivery of finished goods gener-
ates financial income, and so the forecast can be used to calculate the accounts pa,yable and
receivable in future. Another example, a factory that strictly keeps inventories low and pro-
duces and distributes goods in a timely manner according to the “Just-in-Time”- ‘metaphor
may suddenly face the fact of uncertain or irregular availability of input materials!

These simple description explains that the functional domains are highly interrelated and
cannot be managed independently. In order to keep the market share and increase profits,
a company needs to move from decoupled decision making towards more coordinated design
and control of all their components in order to provide goods and services to the customer
at low cost and high process level.

Against this background, the concept of supply chain management has been developed,
a [ramework for integrating the actions and decisions of individual organizational functions.

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 24

The supply chain of a modern enterprise is a world-wide network of suppliers, factories,
warehouse, distribution centers and retailers through which raw material is transformed into
products, delivered to customers, serviced and enhanced. Tt is evident, that such a model in
its entirety becomes very complex and cannot be handled without adequate computational
infrastructure. It is not humanly possible to carry out this task without the use of distributed
system of information technology.

This section is targeted to give an overview on the context of supply chain management
and how agent technology can contribute to address the problems. After a first introduc-
tion 3.1, some decision dimensions in supply chain management are examined 3.2. Then, we
will dwell on methodological issues associated to this domain 3.3. While reviewing conven-
tional support methods at a technological 3.4 level, we are going to motivate the introduction
of software agent technology into the supply chain management domain 3.5.

3.1 Supply Chain Management at a Glance

Throughout the voluminous literature, there is a universal agreement on how to define a
supply chain. Janyshankar et. al. refer to a supply chain as:

. a network of (semi-) autonomous business entities collectively responsible for
procurement, manufacturing, and distribution activities associated with one or
more families of related products. [24]

Ganeshan and Harrison have a similar definition:

A supply chain is a network of facilities and distribution options that perf(éi‘ms

the functions of procurement of materials, transformation of these materialsginto
intermediate and finished products and the distribution of these products to'cus- -
.- ' tomers. [10] g i :1
Figure 3.1 illustrates an exa,rflple of a supply chain. Raw material is supplied 'and flows
downstream to the manufacturing level where it is transformed to intermediate :products.
These can be assembled to form finished products on the next level. Finally, products are
shipped via distribution centers to customers or retailers. Though this description refers to a
principle supply chain in the manufacturing industry, it can be mapped to similar structures
that exist in the service industry. The individual elements of a supply chain may reside in
different locations all around the world and may belong to an individual or several enterprises.
Schary and Skj/ott-Larsen /citesc-global explain that managing the physical product flow
within an enterprise has been traditionally the focus of Logistics. The objective of logistics
is to deliver products efficiently at the precise time and location required while ensuring
a maximum of customer service and minimizing costs. This is done by managing a serie

i v
g ks

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 25

Legend:

Raw matarial

Distribution - Retatlars /
Suppliers Manufacturer & Assemblar Centers Customear

Figure 3.1: Example of a Supply Chain

of functional activities, i.e. transportation, production and inventory management across
departmental boundaries which are linked through product and information flow. The focus
has been on internal operations and external links to suppliers and customers. In adopting
a component view, Logistics balances resources in each area through trade-offs in order to
achieve integrated performance.

With the increasing tendency of globalization, outsourcing and virtual enterprise struc-
tures, the supply chain for a particular product crosses not only department boundaries
but entire enterprise networks. Individual supply chain functions may be distributed across:
legally independent organizations. Moreover, the close interdependencies of prodiyct flow to
non-productional units have become more and more apparent. Traditionally, ma,rketmg, dis-
tribution, planning, ma,nufacturmg and purchasing operate 1ndependently along %he supply
chain. These organizations have their own objectives which afe often conflicting, For exam-
ple, the objective of marketing to. provide high customer service and maximum se11 conflicts
with the manufacturing and distribution limits. Manufacturing operations are ofiented to-
wards maximum throughput and low costs while puttirig less attention to inventory levels.
The more companies are participating in the supply chain, the higher is the degree of con-
flicting goals among functional entities. As a result, there is not a single, integrated plan for
the (virtual) organization. ;

Supply Chain Managementis a strategy through which such an integration can be achieved
[20]. It extends the scope of logistics to the entire set of organizations collectively participating
in the product flow: from procurement of material to tRe delivery of finished products to
the final customer. The supply chain view reflects the organizational tendency of moving
away from centrally coordinated multi-level hierarchies towards a variety of flexible network
structures. Supply chain management focuses on the total effectiveness of the supply chain as

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 26

Time Horizon

Plant Foundation I Supplier Allocation I Mode of Tranaport
strategical

COutsourcing Production Program| Deployment Tactic I Transport Facllity l
tactical

Production Schedule] Order Quantitles Transport Schadule
operational

Location Decisions Production Decisions Inventory Dscision Transportation Decisions Decision Area

Figure 3.2: Decisions in Supply Chain Management

a whole more than on the performance of individual units. However, all members of the supply
chain have stakes in it - by their actions and ability to integrate operations. Performance is
not only measured how well the supply chain routinely delivers products on time or how the
costs of resources are minimized. It includes the ability to flexible responses to changes in
both markets and suppliers and optimal coordination of the supply chain members. A supply
chain is coordinated through an information system which is accessible to all members. The
agility with which the supply chain is managed in order to enable timely dlssemlnatlon of
information, accurate coordination of decisions and the management of actions among people
and systems, is what ultimately determines the efficient achievement of enterprlse‘ goa,ls and
the v1ab111ty of the enterpnse on the world market.

DTt

T

3.2 Decisions in Supply Chain Management y

Supply chain management is a procedure of continuous planning and decision ma,kmg in
response to changes. These decisions can be classified into a matrix of planning horizon and
area. Iigure 3.2 illustrates some typical supply chain decisions for each category. -

At the strategical level, long-term decisions are made. Those are frequently related to
investments, commitments or goals which cannot be withdrawn without suffering a significant
disadvantage. Decisions at the factical level aim at a medium-term horizon without having
such an immensely binding effect. They may refine strategical targets. Finally, the operational
level is concerned with issues of daily business. Here, the constraints given by the higher
decision levels are applied and implemented.

Location Decisions refer to the geographic placement of production facilities, stocking

oot
1 .

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 27

points and sourcing points as well as to the outsourcing decisions. The former one has
inherently a long-term character, and is of great significance to a company representing
the basic to access new markets with considerable impacts on cost and revenue. Such
decisions require an optimization routine which includes all crucial parameters related
to it, based on market analysis, cost analysis, or even political analysis. Outsourcing of
business activities, such as accounting, have a more tactical nature as they are usually
not connected with such immense cost as the foundation of new plants. However, a
company cannot afford to establish and remove entire departments at will.

Production Decisions are made with any time horizon. At the strategical level, suppliers
are allocated and associated to plants, plants to distribution centers and distribution
centers to customers. Tactical decisions include what products to produce, which plant
should produce them and how much capacities are needed. The operational level deals
with production quantities, with all kinds of schedules from a global master production
schedule down to the schedule for an individual machine and with quality control.

Inventory Decisions stipulate the means how inventories are managed. Inventories can be
found at every stage of the supply chain, as raw material, intermediate and finished
goods or in-process within one location. Their primary purpose is to buffer against
any uncertaincy in the supply chain. Efficient inventory management is crucial in the
operation of a supply chain, as their holding can cost up to 40 percent of their value.
Aside from the deployment strategy (push versus pull), inventory decisions are made at
an operational level, concerning optimal levels of order quantities, reorder points and
safety stock levels at each stock location. All of them determine, at last, the customer -

service level. P
¥

Transportation Decisions are closely linked to inventory decisions. For exa,mpl,’é; air ship-

ping may be fast and requires lesser safety stocks, but it is expensive. Shipping by rail

-~ or sea may be much cheaper, but it requires to hold relatively large inventéries. Op-

erating its own car pool is another alternative for a company. Customer sefvice level

and geographical location are the determinants for such decisions at the strategical

level. Transportation is more than 30 percent of the logistics cost. Thus, operating effi-

ciently requires many tactical and operational decisions such as transportation vendors,
shipment sizes, routes and schedules. '

3.3 Methodological Issues

-

Operating an efficient supply chain needs to address three highly inter-related goals: customer
service, inventories and flexibility.

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 28

Customer Service describes the level of satisfaction among a company’s customers, Typi-
cal indicators are the ability to satisfy orders within the due date, or to deliver products
at the time given.

Inventories are a central cost factor in supply chains. They bind capital in form of the
products holded at a time.

Flexibility is the ability to quickly respond to changes in the environment. Applied to
the supply chain context, it is the ability of any entity to change its output when the
demand of the successive entity changes. Thus, the flexibility of the entire supply chain
depends on the interdependencies between and the flexibility of each individual entity.

Having a good customer service is an emblem for a company which is likely to attract
more customers resulting in more orders and consequently in more revenue. An attractive
company would be one that can satisfy any order within one day. This would require a
total just-in-time production across the entire supply chain without any inventories at all.
However, it would also require a constant investment in new capacities, if the quantity of
orders increases. On the other hand, when the demand drops at a time, the company will
find itself with much capital bound in capacities which are not used. Furthermore, a supply
chain is subject to many unforeseeable events downstream: raw material does not arrive on
time, production facilities may break down, employees become ill, products lack in quality.
Given such an event, there would be no safety stock to satisfy the demand for all the entities
upstream.

Inventories serve as a buffer to keep the supply chain flexible towards changes in demand
and unforeseeable events. However, the size and the management of an inventory is the”
determining factor. Oversized inventories may lead to better flexibility, but they will bind a
lot of capital. Inventories which are too small tend to stock-outs, when an entity dqwnstrea.m'
fails or an entity upstream increases its demand. : :

. Thus, we need a production and inventory plan based on demand forecasts. The :longer the
plannmg horizon, the less accurate the plan will be, and the harder it will be to estimate the
effects of unforeseeable events. Plans need to be continuously revised and coordlnated at least
with the immediate predecessors and successors in the supply chain. Nowadays, it is common
for manufacturing companies to make their production and/or material requirements plan
available to their suppliers who, in turn, can use this information to drive their production
and distribution plan.

Introducing inventories happens initially at cost of customer service. The lead time for
an individual product is affected to a great extent on how jt makes its way from inventory to
inventory all along the supply chain until it can be finally delivered to the customer. Moreover,
there is a direct dependency between the inventory level and the ability to satisfy an order.
Stock-outs in any of the inventories may result in lost contracts, which will damage the
company’s reputation. By monitoring the inventories at the customers, one can predict when

4

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 29

a stock-out would occur at the earliest, and when a customer is ready for a new shipment.
This flexibility for inventory replenishment makes it possible to smooth out production and
distribution peaks, eliminating either over-time labor or excess inventories of finished goods
to accommodate those peak demands.

In this context, supply chain management strives not only for internal efficiency of op-
erations, it includes managing and coordinating activities upstream and downstream in the
supply chain. According to Hinkkanen et. al. [13], the following questions have to be an-
swered for an effective supply chain management:

e How much of each raw material or intermediate or finished products should be procured
or converted at each facility?

e Which supply sources should be chosen and what are target inventory levels?

e What is the best production schedule, the optimal batch size and the optimal production
sequence?

e What should be the target levels of finished goods be and how can we forecast demands
most accurately for each customer?

e What is the best mode for transportation, and which should be used for which shipment?
e What are the optimal warehouse locations and sizes?

¢ Which financial resources should be used to finance the production plan?

e Iow will the current material ordering policy and the customer’s payment jpolicy in-
fluence the cash flow, and how should be hedged agamst price fluctations mf finished.
goods and/or commodltles‘?) ‘;

- Which products should be manufactured in which countries and what are ='the global
implications in terms of dut,les, tariffs and taxes?

For many of the tasks and de‘cisions mentioned above, mathematical models, operational
research algorithms, planning and decision supporting tools have been developed and, by
and large, incorporated into computational systems. Ag already single issues had lead to a
considerable complexity, they had been treated in the past more or less separately, resulting
in a variety of “island solutions” for specific problems where interdependencies to other
organizations or processes have not been taken into account adequately.

However, we have seen that all the decisions and actions in the supply chain management
domain are closely inter-related. Thus, maintaining an efficient supply chain and increasing
its performance is driven by two keywords: Integration and Coordination.

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 30

Integration takes place when individual organizational units trade their autonomy for
membership within a larger organization, in effect removing organizational barriers [20]. The
units retain the right to withdraw or to change membership but they effectively operate
as part of a larger unit. Integration is a mean to achieve a higher degree of control over
the product and information flow. It features a more collective approach of the individual
members in order to achieve the enterprise’s goals.

In order to operate efficiently in such settings, supply chain functions must work in a
tightly coordinated manner. But the dynamics of the enterprise and of the world market
make this difficult: exchange rates unpredictably go up and down, customers change or cancel
orders, materials do not arrive on time, production facilities fail, workers are ill etc. causing
deviations from plan. In many cases, events cannot be dealt with locally, i.e. within the
scope of a single supply chain entity, they require the coordination of several ones to revise
plans, schedules and decisions. Coordination takes place through mechanisms of mutual
adjustment of people and organizations, standardization of processes, and shared data and
values [20]. Mutual adjustment includes negotiations over operations leading to synchronous
planning, scheduling and execution. Standardization encompasses specific rules that must
be invariable followed by the organizational entities concerned. Information sharing refers to
situations where the same information is made available to both parties for decision making.

To achieve both factors, adequate support on methodological and technological level is
required. Modern supply chain management makes heavy use of network models, mathe-
matical algorithms, information exchange and coordination strategies which are facilitated
or enabled at all through the advent of information technology.

3.4 Technologlcal Support

-l

Supply Cha,m Management is driven by data. Coordinating the operations of a global supply
cham requires information exchange used as a basis for dec1s1ons and actions, ThlS process
involves suppliers, production processing, assembly, transportation and dlstrlbutio,n

The source of data is a stream of transactions triggered by customer orders; initiating
a serie of transactions within the supply chain that ultimately results in the shlpment of
finished products to the customer. Efficient and transparent information flow becomes the
basis for coordinating operations among the units in the supply chain. They ..

e signal the start of functional activities such as procurement, production or transporta-
tion

”
¢ provide the foundation for operational forecasting and planning, for capacity planning,
and for identifying trends and projecting future activities

e serve as input for analytical models

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 31

The sheer amount of relevant information to be exchanged and processed within the supply
chain, the complexity of planning and analyzing procedures and the physical distribution of
supply chain units requires the installation of an effective information system:.

Following the organizational structure in the past, conventional systems in enterprises had
been centralized units of databases and enterprise plans, that had to manage a large number
of interacting entities, and on the other hand, a “mountain” of specific individual applications
for a particular function which could not be integrated because they were not accessible from
outside. For operating globally distributed enterprise organizations, these approaches had
turned out ineffective and inflexible. With the appearance of cheap personal computers and
workstations, distributed business information systems have become commonplace. Schary
and Skj/ott-Larsen /citesc-global describe the shift from the self-contained organization to
an organization as an network driven by the development in information technology.

Phase 1 Change from personal stand-alone computing to workgroup computing, from in-
dividual applications to those involving collective processes with several participants.
Work activities were reorganized around specific business outcome. Fast communication
protocols and shared databases were introduced which allowed for concurrent document
management and computer supported decision making.

Phase 2 Change from island applications to integrated information systems. Computational
systems connect and unite the enterprise as a whole. For supply chain applications,
interfaces to financial management and control, human resources and physical asset
management have been integrated.

Phase 3 Change to the inter-organizational network. The challenge is to build value net—
works in which separate enterprises are connected through a shared 1nf0r1nat1pn system
in order to create supra-organizations at a long-term or temporarily level?* For the
supply chain domain, they are meant to achieve superior coordination and’ efﬁmency

“in operations embracmg both suppliers (e.g. joint product development and *pla,nmng)
and customers (automaﬁced ordering, joint planning) ‘ ‘
Moreover, the company’s’system is now connected world-wide via the Iniernet or World
Wide Web (WWW). With that, online and real-time information has become abundant, and
company’s that exploit the new opportunities will keep on extending a competitive benefit
in the near future. The major part of business activity on the Web is currently targeted
at customer service and marketing. Electronic shopping, transportation vendors and tour
operators have occupied the leading role in using Web teghnology to involve and to attract
customers online. But the Internet medium is also widely used for internal information
exchange and acquisition. Real-time information pertinent to the company’s operation can
be acquired in real time: stock quotes, commodity prices, etc. Electronic Commerce allows
for even more automation and less clerical work. Ordering can be handled via Electronic Data

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 32

Management
Support Systems

Operational
Systems

Transactions

Datahases

Other Organizations i

Figure 3.3: Conventional Infrastructure of Information Technology in Supply Chain Manage-
ment

Interchange (EDI) messages and the whole procedure of shipment notification, billing up to
and including payments via systems like Electronic Funds Transfer can be done automatically
and electronically, if so desired.

With all these elements, current information systems used in the domain of supply chain
management follow more or less an infrastructure as depicted in figure 3.3. o

Data among organizational units are exchanged through Flectronic Data Ig;a:terchange
(EDI). EDI refers to the electronical transmission of business information between business
partners, intermediaries, public authorities and others in a structured format without any
need for human intervention. In the supply chain context it"-v.is now routinely us;‘ed for the
transmission of data including purchasing orders, invoices, shipping documents and informa-
tion for monitoring the progress of orders. With EDI, business partners and organizations
could reduce costs while, through eliminating re-entry .errors, the accuracy of information
increased. EDI also compresses time through instantenous transmission and proxr‘ides audit
trails for verification. ' ’

These raw data are stored in databases for later retrieval aiid processed by routine appli-
cations which are often largely automatized. With these standard tools and their graphical
interfaces, information can be monitored, manipulated and/or forwarded to other locations
or higher-level applications. ”

Beyond that level are the so-called management decision support systems. These pro-
vide analytical tools and planning instruments which access and process the data at a more
sophisticated level for specific analysis, interpretation and decision making,.

CHAPTER 3. SUPPLY CHAIN MANAGEMENT 33

Such a decentralized information system is deemed to connect operations across organi-
zational boundaries making lateral organizations such as supply chains possible. It enlarges
the span of effective control and coordination of operations in ways not limited by personal
management contact. Decision making power is distributed to local units as it allows them
to become aware of the impact of their decisions on other units.

3.5 Motivation for Use of Agent Technology

However, the current state of information technology used to support global supply chain
management exhibits a number of obstacles. The major factor is the lack in coordination.
Though information can be made available to the different organizational units, the compu-
tational systems do not “know” explicitely the global context for receiving and processing
the information received at that moment. They do not support more sophisticated protocol
to exchange meta-knowledge about the raw data between distributed system components,
to request updates, to obtain more details, to communicate with a specific remote partner
and so on. The responsibility to interpret the information for the management process ad-
equately and to come to the right conclusions is still almost completely left to the human
user, irrespective of his position. So it may well be that local planning actions with the
corresponding tools go against the direct interest of other organizational units as there is no
explicite coordination layer in the information system. The lack of immediate peer-to-peer
communication in certain situations is also responsible for the fact that managers tend to
reject reliance on information systems as basis for planning and decision making.

What is needed is a technology beyond distributed systems which allows for integrating ,-
information exchange and processing locally while coordinating activities with remjote units.
It should be enabled to interface the legacy systems used in the (virtual) enterprisé structure
and link people and information and decision processes throughout the orga,mz’amon in a
ﬂemble way. These are exactly the qualities of coordinated multl—agent systems and that’s
Why we focus on information systems which integrate supply chain functions through systems
of cooperating software agents. The determining elements, a system to develop and execute
such agent systems plus a general end user interface, will be presented in the next three
chapters 4, 5 and 6. With these components, we will have the necessary means to think
about building agent-integrated business structures which are applicable for the supply chain
management domain. This procedure will be presented in detail in chapter 7.

b

Chapter 4

COOL: Coordinating Multi-Agent
Systems

Building a Generic User Agent providing access to a multi-agent applications requires an
underlying model which substantially reflects the requirements towards coordination issues
of the agents participating. The coordination problem in multi-agent applications is the
problem of managing dependencies between the activities of autonomous agents, characterized
by incomplete knowledge about the dynamically changing environment and about the actions,
reactions and goals of the agents populating it, such that to achieve the individual and shared
goals of the participants and a level of coherence is the behavior of the system as a whole.
The COOrdination Language (COOL), developed at the Enterprise Integration Labora- -
tory, supplies such a precise conceptual model of coordination as structured “convprsa,tlons
involving communicative actions amongst agents. The model is extended to a complete lan-.
guage design that provides objects and control structures that substantiate its coficepts and
allow the construction of real multi-agent systems in industiial domains. The language has
been fully implemented and successfully used in several industrial applications 'Where the
most important is the integration.of multi-agent supply chains for manufacturing epterpnses.
From the viewpoint of the intended functionality, COOL can be considered as:

1. Alanguage for describing the coordination level conventions used by cooperating agents.
2. A framework for carrying out coordinated activities in mﬁlti-a,gent systems.
3. A tool for design, experimentation and validation of cooperation protocols.

”

4. A tool for incremental, in context acquisition and debugging of cooperation knowledge.

With COOL, a network of distributed cooperating agents can be defined that interact with
each other by using explicite coordination protocols, so called conversation classes. Such a

v

Wl o 34

CHAPTER 4. COOL: COORDINATING MULTI-AGENT SYSTEMS 35

protocol spawns a state diagram, where the transitions from state to state are specified in
conversation rules. A rule is executed under specific environmental conditions, leading to a
change of the conversation state and effects in the environment. Each agent is endowed with
different types of coordination plans according to its intended role within the application
scenario. COOL belongs to the family of hybrid agent architectures (see section 2.1.3), it
combines elements of symbolic computation such as pattern matching with reactive agent
behavior upon receipt of messages or changes in the environment.

The conceptual model and design of the COOrdination Language as well as the variety
of possibilities in practical use makes this system an ideal candidate for attaching a generic
user interface, dedicated to provide users an casy and comfortable access to multi-agent
applications and to guide them throughout the entire interaction process.

The chapter is based on several internal paper from the Enterprise Integration Laboratory
(EIL), which give an overview of cool [3] [5]. It illustrates the basic concepts incorporated in
COOL in section 4.1, and outlines the essential constructs of the language in section 4.2.

4.1 COOL Concepts

Before throwing a light on the individual constructs provided by COOL, the generic ideas of
the framework will be presented which are:

e how do agents coordinate their actions in COOL and

e how do agents communicate in COOL

4.1.1 Agent Coordination and Coordination Knowledge

| W

Achieving coordinated behavior among its entities is a major issue associated to multl-a,gent
applications. For the design of COQOL, the view has been adopted that the coOrdma.tlon
problem can be tackled by having knowledge about the interaction processes takmg place
among agents. This kind of knowledge refers to the problem-solving competency df a multi-
agent system as opposed to that.of individual agents. Thys, COOL tries to come up'with high
level constructs for describing coordination processes and to fully support these constructs
in a programming environment for building multi-agent systems These elements are used to
guide interactions among agents. :

COOL poses several assumptions about the way agents are hkely to achieve coordinated
behavior. These are as follows:

e Autonomous agents have their own plans according”to which they pursue their goals.

e Being aware of the multi-agent environment they are in, agents plans explicitely repre-
sent interactions with other agents. Without loss of generality, it is assumed that this
interactions takes place by exchanging messages.

v

.

CHAPTER 4. COOL: COORDINATING MULTI-AGENT SYSTEMS 36

e Agents can not predict the exact behavior of other agents, but they can delimitate
classes of alternative behaviors that can be expected. As a consequence, agents plans
are conditional over possible actions/reactions of other agents.

¢ Agents plans may be incomplete or inaccurate and the knowledge to extend or correct
them may become available only during execution. For this reason, agents are able to
extend and modify their plans during execution.

The most important construct of the language is the conversation plan or conversation .
class. Conversation plans specify states and associated rules that receive messages, check
several conditions, transmit messages and update the local status. COOL agents possess
several conversation plans which they instantiate to drive intercations with other agents.
Instances of conversation plans, called conversations, hold the state of execution with respect
to the plan. Agents can have several active conversations at the same time and control
mechanisms are provided that allow agents to suspend conversations while waiting for others
to reach certain stages. Thus, they can create conversation hierarchies dynamically in which
child conversations are delegated issues by their parents and parents will handle situations
that children are not prepared for.

4.1.2 Agent Communication

An agent is viewed as essentially performing a transduction. It takes a stream of input
messages from the environment (in general composed of other agents which may include
users similarly) and generates a stream of output messages to the environment, mediated by -
its internal state. ’-

COOL provides a communication mechanism that implements an extended ver,smn of the
KQML language. KQML [7] has been de31gned as a universal language for expressmg inten-
tions such that all agents 'would interpret a message identically. It supports comrgumca,tlon
through explicit linguistic actions, called performatives.” As such, KQML relies on the speech
act [21] framework developed by phllosophers and linguistics to account for human commu-
nications. In COOL, the communicative action types, as defined by KQML, can be utilized
and extended by further more specific directives. Also, no particular content language is
imposed. The same information content can be communicated Wlth different intentions. For
example:

o {ask {produce 200 widgets)) - the sender asks the receiver if the mentioned fact is true;
e (tell (produce 200 widgets)) - the sender communicates a belief of his to the receiver;

¢ (achieve (produce 200 widgets}) - the sender requests the receiver to make the fact one
of his beliefs;

CHAPTER 4. COOL: COORDINATING MULTI-AGENT SYSTEMS 37

o (deny (produce 200 widgets)) - the sender communicates that a fact is no longer believed;
Consequently, a typical COOL message notation may look like this:

(PROPOSE
:language KIF
:sender LOGISTICS
:receiver PLANT
:content (produce 200 widgets)
:conversation Ci
:intent (explore fabrication possibility)

A new performative propose is introduced, which can be seen as an refinement of the
common ¢sk structure. The sender logistics makes a proposal to the receiver plant, expecting
a response such as accept or reject. The additional slot :conversation is used to relay the
message to a shared conversation instance between the communicating agents while intent
specifies a particular intention the sender is pursueing by sending this message to the receiver.
Such a descriptive element allows the receiver to find a corresponding rule to be executed in
the current state or to trigger another conversation of his own which matches the intent slot.

4.2 COOL Elements

For building multi-agent applications, COOL provides a number of templates to capture the
coordination knowledge needed among the entities and to execute structured ini}eractiohs.
The most important objects are: '

I T

e COOL Agents 4.2.1:

L

"o COOL Conversation Classes 4.2.2

e

e COOL Conversation Rules 4.2.3 .
o COOL Conversations 4.2.4

e COOL Conversation Manager 4.2.5

Each of these objects is described in the next paragraphs.
»

b

CHAPTER 4. COOL: COORDINATING MULTLAGENT SYSTEMS 38

4.2.1 Agents

As stated in section 2.1.1, an agent is considered as an entity which acts significantly au-
tonomous, goal-oriented and is entrusted in performing its functions. It operates based on
internal and shared knowledge, beliefs and intentions. In COOL, an agent is a programmable
entity that can exchange messages within structured plans with other agents targeted at a
particular goal. These plans are defined in conversation classes and carried out by plan in-
stances conversations. As the complete agent interactions are controlled by these plans, it
is possible to define coordinated behavior up to complex cooperation patterns, for instance
agent negotiation [31] about their goals and tasks.

Agent knowledge is bundled in environment variables while different environments are
associated to the agent level {“global” knowledge) and to the conversation level (“local”
knowledge). Moreover, knowledge, particularly coordination knowledge, is implicitly repre-
sented in an agents’ conversation classes and rules.

An agent is defined by giving it a name, setting the variables that form its local database
and optionally specifying a conversation plan for its initial conversation. When an agent
is created, its initial conversation starts running and while it runs, the agent is “alive”.
If there is no initial conversation defined, the agent remains in a “waiting” state until a
message from another agent has been received that can be mapped to one of the agents’ plans,
hence triggering a conversation dynamma.lly Agents are run as lightweight processes inside
ezeculion environments that reside on local or remote sites (see 4.2.5). The transportation
medium used among different sites is a TCP/IP connection.

4.2.2 Conversation Classes R

COOL agents interact by carrying out plans. COOL provides a construct for deﬁnifﬁg generic
plans, the conversation classes, and a corresponding 1nsta.nce construct the actua,l', converse-
tion. o : S '

- Conversation classes are rule based descriptions of what an agent does in cer’cam situa-
tions (for example when receiving a message with given structure). COOL prov1des ways to
associate conversation classes to agents, thus defining what sorts of interactions each agent
can handle. A conversation class specifies the available conversation rules (see below) their
control mechanism and the local knowledge base that maintains the state of the conversation
(see below). Conversation rules are indexed on the finite set of values of a special variable,
the current-state. Because of that, conversation classes and actual conversations. admit a
finite state machine representation that is often used for visualization and animation.

Figure 4.1 depicts an example of a transition diagranr for a conversation class governing
the Customer’s conversation with Logistics in the supply chain application. It is used for
handling a product order submitted by the online customer between the Customer and the
Logistics agent. Nodes represent the states of the conversation, arrows indicate the existence

b

CHAPTER 4. COOL: COORDINATING MULTI-AGENT SYSTEMS 39

asked

start

proposed

counterp

rejected

failed

satisfied

working

®

rejected

Figure 4.1: Transition diagram showing the Customer-Order-Cionversation

of rules that move the conversation from one state to another.

4.2.3 Conversation Rules

Conversation rules describe the actions that can be performed when the conversation is in
a given state. If there are more than one rule applicable, it depends on the matching and
application strategy of the conversation’s control mechanism which of the rules is actually
executed and how this is done. Typically (and thlS is for all the use in here), the first matching-
rule in the definition order is executed. ¥

A rule matches when certain conditions are fulfilled. These conditions 1ncIude receiving
a message of a particular structure and/or applying a predlcate in the current envrronmenta,l
sta,te successfully. o ‘ ,;

" The execution of a rule always leads to changes (actlons) within a conversation, These
include one or more of the followmg items: ‘

Z

e The state of the conversation will be changed
® A message to another agent will be created and transmitted

e A (number of) function(s) will be executed which may manipulate conversation and
agent variables or trigger new conversations

»

A rule may be defined as incomplete or complete. Complete rules are executed “silently”
without notifying the user. In incomplete rules, conditions and/or actions can be omitted,
for instance the exact message composition to be transmitted. When the system encounters

FA

CHAPTER 4. COOL: COORDINATING MULTIFAGENT SYSTEMS 40

an incomplete rule, it can not know what rule it should execute in a given state (missing
condition) or what should happen by executing a rule (missing action). Thus, a graphical in-
terface 4.3 is popped up allowing the user to inspect the current conversations and prompting
him to edit the missing parts or to decide which conversation rule should be applied.

4.2.4 Conversations

Actual conversations instantiate conversation classes and are created whenever agents engage
in communication. An actual conversation maintains the current state of the conversation,
a set of conversation variables whose values (being persistent for the entire duration of the
conversation) are manipulated by conversation rules, and various historical information ac-
cumulated during conversation execution.

Each conversation class describes a conversation from the viewpoint of an individual
agent. When an agent wishes to to initiate a conversation in which it will have the initiative,
it creates an instance of a conversation class. Once this instance is created, messages will be
sent and received according to the rules defined in the conversation class. For two or several
agents to “talk”, the executed conversation class of each agent must generate sequences of
messages that the other’s conversation class can process. Thus, agents that carry out a
particular conversation C actually instantiate different conversation classes internally with
the same name in each agent. This allows the system to route messages appropriately and is
the reason for having an additional slot :conversation attached to each message.

An agent may have multiple conversations at the same time. COOL provides mechanisms
for deciding which conversation to continue next and when to suspend or resume a conversa-
tion. Moreover, nested conversation ezecution is featured in which the current conversation’of ©
an agent is suspended, another conversation is created or continued, with the formgr conver-
sation being resumed when specific conditions hold (like the termination of a conyérsation).
Because conversations can, be accessed and inspected, the states and variable values of a con-
versation that another conversation waits for can be used by the waiting conversagion when
the latter is resumed. In this way, concurrent conversations can be synchronized; Such an
execution mode makes it possible’to break complex protocols into smaller parts.

For example consider again the supply chain application. The Customer agent Ifla,y have a
conversation with the Logistics agent about a new order. Logistics may temporarlly suspend
this conversation in order to start a new conversation with a Plant agent to inquire about the
feasibility of a particular manufacturing process. Having obtained this information, Logistics
will resume the suspended conversation with Customer telling him whether the order can
be satisfied or not. This mechanism is discussed in detall in the description of the GenUA
demonstrators /refdemo-conv-classes

CHAPTER 4. COOL: COORDINATING MULTI-AGENT SYSTEMS 41

4.2.5 Conversation Manager

Agents carry out conversations with other agents or perform local actions within their en-
vironment. Cooperating agents exist in local or remote ezecution environments. To control
agent execution within an environment, conversation managers are vsed. This is necessary as
COOL agents are not separate processes, hence have to be run successively by a controlling
routine. A conversation manager defines the set of agents it manages, specifies a control
function that at each cycle selects an agent for execution and defines the instruments (e.g.
tracing, logging, etc.) for it. The purpose of execution environments is to “run” agents by
message passing and scheduling agents for execution. Environments exist on different sites
(machines) and a directory service makes message transmission work just the same among
sites as within sites. Consequently, an application composed of COOL agents can run in an
execution environment that exists on a single machine, or the agents can be distributed in
several execution environments running on several machines. Each execution environment
gets its own conversation manager to execute the agents associated to that environment.

4.3 COOL Interfaces

Coordination knowledge for comprehensive applications like agent-integrated supply chain
management is generally very complex, hard to specify at any time and very likely to change
even dramatically during the lifespan of the application. The nature of designing a coordi-
nated multi-agent system with wide-ranging effects on business processes involving a variety
of users makes it difficult to capture all the knowledge needed beforehand. Consequent}y,)
such a large-scale system should emerge by acquiring knowledge during the onling interac-
tion rather than by offline interviewing experts. This is the principal idea of thé‘i system’s
execution mode and a full visual environment developed for this purpose. They a.lgowz '

. . H) -'.’ : .
_s.an incremental modification of coordination protocols, e:g. adding or modifying con-
versation classes and rules - ﬂ {

]
pl "

¢ a system operation mode on incomplete knowledge giving the users the cha.ncé to inter-
vene and take any actions they consider as appropriate .

® a system operation in a user controlled mode in which the;user can inspect the state of
the interaction

The basic elements for this kind of in-context knowledge acquisition are incomplete con-
versation rules. Here, either the condition or the action part is missing (as the knowledge
about it has not been captured in detail). If the condition is not exactly specified, the system
can not decide whether this particular rule is applicable in a given state, hence it does not
try to execute the action part. Similarly, if the action part is incomplete, the system does

1 o
4

Wb

CHAPTER 4. COOL: COORDINATING MULTI-AGENT SYSTEMS 42

not execute any actions as there might be a need to manipulate environment variables or
transmitting messages in the given state. Rather, the user should handle such a situation.
Therefore, a graphical interface is popped up where the user can decide to make choices,
execute actions and edit rules and conversation objects. The effect of any user actiom is
immediate, hence the future course of the interaction can be controlled in this manner.

Before taking any action, the user can inspect at that moment the state of interaction as a
diagram, the values of environment, variables, the history of exchanged messages and applied
rules and so on. The entire system execution is initiated and supervised from a separate
Conversation Manager window

4.4 Summary

In this section, the COOrdination Language (COOL) has been presented, a language and
environment for building multi-agent applications. COOL agents coordinate their actions
based on explicite plans, the conversation classes. Those plans can be represented as finite
transition diagrams consisting of states as nodes and conversation rules defining the transi-
tions. A conversation rule specifies the conditions in which it is applicable and the actions
to be performed. Possible conditions include the receipt of a particular message structure
from another agent and predicates applicable on the state of environment variables. Possible
actions involve transmitting a message to 'another agent, creating new conversations and ma-
nipulating environment variables. Conversation classes are instantiated on demand, moving
from state to state as defined by the conversation rules. COOL agents may have many con-
versations ongoing at the same time. They can reside in distributed execution environments
where each of them is controlled by a conversation manager. ;

COOL allows an incremental acquisition of coordination knowledge from the uger during
the execution. By defining a rule as incomplete, the system wi_'ll pop up a graphica{af interface
prompting the user to fill' the missing parts or to decide ‘on ‘how a conversation ;should be
continued in a given state. A L , §

The design and implementation of the COOrdination Language makes it an ideal platform
for developing coordinated agent systems. Building rigorously on structured interactions
among agents, COOL offers a cdmprehensive way to involve users actively in the .execution
and emergence of large-scale agent applications. Thus, it supplies a fundament for creating
a Generic User Agent, an interface solution, that allows users to participate in multi-agent
applications independently from their location. How the COOL features have been exploited
consequently in designing the interface solution will be described in the next chapter,

”

Chapter 5

Building a Web Interface for COOL

Looking back to section 4.3 in the previous chapter we can see how an end user can be invoived
in the execution of a complex multi-agent scenarios, and how the application itself evolves
by in-context acquisition of knowledge. However, the graphical COOL interfaces are aimed
at developing, maintaining and enhancing multi-agent environments from the perspective of
system developers. They display internal views and reguire inputs that come up very close to
implementation details of the language. Furthermore, the interfaces provided by COOL are
only accessible from within the execution environment itself. There is no way to use them
across heterogenous distributed platforms.

For involving people in collaborative settings into distributed multi-agent applications,

the graphical COOL interfaces are not adequate. A real user interface should be tailored .
to the needs of those humans who are supposed to interact with the multi-agent system in
their daily work, under the assumption that most of them are non-system experts. :Moreover,_
they should be allowed to access the multi-agent system in a familiar way directly *f’rom their
working places. Sl o 4 '
- - As a consequence, we have built a gateway solution called Generic User Agent'(GenlUA)
which should bridge these gap. It acts as an intermediator between COOL agent -executing
plans in a multi-agent environment and the associated end user(s) monitoring and c'ontrolling
the behavior of agents through corresponding graphical components. By making co|"1‘resp0nd—
ing visual components available on the World Wide Web, every user will be able to talk to a
COOL multi-agent application through a Web browser. ;

This chapter is meant to present the basical ideas for the design of the COOL Web gate-
way. After a brief introduction 5.1, it will be shown how the agent conversation mechanism
provided by COOL can be used to involve users interactively in the execution process and
about the role GenUA has to play in this context 5.2. Afterwards, we will dwell on additional
features of the gateway for operating in a distributed environment 5.3.

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 44

5.1 Overview

Following the specification of Hall et.al.[16], we define our interface as a component of a
COOL multi-agent system which supports interaction with the user. The major role is that
of a router between users and agent applications. For that we need to handle two key aspects:

User representation: The interface should model and embody the user within the multi-
agent system, so that all agents have an interlocutor when user interaction is required,
despite the fact that the user might be not aware of their existence in its entirety.

Agent representation: The interface should exhibit the agents and their contribution to
the problem solving process in a way consistent with the end user’s expectations and
provides as much transparency as needed.

To achieve this, the interface needs to meet several functional dimensions:

1. System Coherence It should exactly reflect the communication and coordination mech-
anisms used among the COOL agents. In this way, the agents participating do not
distinguish whether they are interacting with a user or another agent. By hiding the
existence of a human participant towards the rest of the multi-agent system, it can be
executed without major changes.

2. Accessibility, Control and Visualization It must give the user access to the elements
of the scenario (agents, plans, conversations). It should visualize structured interac-
tions between users and agents in a familiar manner while abstracting completely frém
internal representations of the multi-agent system.

‘4- ts.,.

3. Web Server Features It has to handle aspects of multlple and parallel mteractlon be-

tween users and COOL applications while both pa,rtys are distributed in the network.

N

In order to implement these functionalities in a conﬁgura,ble way, we divide tfle COOL
Web interface into several layers Wlth different responsibilities. Figure 5.1 shows these layers
at a simplified level.

At the lower level, we find the COOL multi-agent system, which one is initially comprlsed
of an agent application being implemented in the COOL language and executed in an agent
execution environment. On top of that we are going to place an interface layer called Web
API. This one introduces specific objects representing Web users that behave similar to COOL
agents with respect to communication and control and provides a number of applicative
functions which are accessible from outside the execution environment.

At the middle level, we have a component called Generic User Agent (GenlUA). This
is where the major interface logic resides. The purpose of GenUA is to act like a Web
server with respect to linking distributed users with distributed applications while enablifig

v

3

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 45

End User

Presentation System i

Generic User Agent

Multi-Agent Application

Figure 5.1: Three Layer Model for the COOIL Web Interface

straight-forward interactions between them through the Web API. The essential aspect is to
completely separate the visual control objects and the presentation platform from the actual
interaction logic. In this way, we are free to design different graphical components for end
users while using the same interaction mechanism,

Looking at these characteristics and the context of being employed in a collaborative envi-
ronment frames this interface component as a candidate for an interface agent (see definition ,.
in section 2.3.1). An individual multi-agent system is in generally meant to perf_/prm some
kind of cooperative problem solving, for example an agent-integrated supply chain c}r an office.
system of collaborating desktop agents. By facilitating the aspect to link users with such a
system, this-interface component can be seen as an active part of the problem solving process.
That the Generic User Agent enjoys a number of further agent properties will becspme more
clear particularly in the chapter on its architecture 6.1. :

Finally, on top of the layer model, there is the actual presentation system. This is meant
to be a set of graphical objetts which represent objects inside and interactions Wijth COOL
multi-agent application directly onto the user’s terminal. In the context of this paper, we
address a World Wide Web browser as universal presentation platform. However, the design
the Generic User Agent allows that other platforms with different graphical elements can be
linked in a similar manner. How such a graphical user interface may look like and how it is
used to'represent user-agent-interactions will be presentedrin paragraph 6.2.

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOIL 46

5.2 COOL-User-Interactions

COOL allows programming multi-agent systems in which the agents operate by executing
explicite plans and interact by transmitting messages. For designing a user interface, the
question to be solved is: How to make users part of these plans and to allow them to interact
with agents? Our approach is based on a explicite representation of users in the multi-agent
system and on performing “conversations” between users and agents which are derived from
the mechanisms provided by COOL. The following paragraphs treat these issues in detail.

5.2.1 Modeling Users as ”Stub” Agents

A key axiom for linking users to multi-agent systems is that its agents should not distinguish
whether they interact with another agent or with the user. Our approach tackles this by
representing every human participant in a scenario as a stub agent, one that by means of
a number of applicative functions pretends to be an agent by embodying exactly the same
communication and coordination mechanisms as used among the rest of the agent commu-
nity. Whenever a user accesses a particular COOL scenario, such a personalized stub agent
is created and becomes part of the agent execution environment. This means it can be ad-
dressed as an object in the same way as agents or conversations. However, neither agents nor
conversations need to be aware exphcltely from the presence of such a stub agent. Basically,
stub agents enable:

¢ the detection and evaluation of input or decision requests from agents according to their
plans and their redirection to the user -

o

o the sending of completed input or decisions to any agent in order to be précessed as

part of a conversation plan " . 7

F.
e the receptlon of a/ varlety of different notifications or exécution results and ;r,heu' redi-
~ rection to the user) ‘ i
By means of the apphcatlve functions, the stub agent allows the user to browse through the
entire world of defined agents and conversation plans w1thout bothering the agent commumty

in their execution.

5.2.2 Performing User-Agent-Conversations

As we have seen in section 4.2.1, COOL agents become active when one of their conversa-
tion plans is instantiated. After that, the plan is executed by moving from state to state
according to the associated conversation rules. We now want to establish user interaction as
an essential part of executing a plan. However, asking a user for input or presenting results
should not happen at arbitrary moments during the system’s execution. Thus, we assign

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 47

user interactions to specific execution states. COOL conversation plans already feature state-
based mechanisms. In section 4.2.3 we mentioned that in each state of a plan instance, the
system checks for rules that are applicable under given conditions and executes them. As
a consequence, we base user interactions on extending the COOL conversation rules by two
mechanisms

¢ Input Requests, for defining a template for the input expected

e User Messages, for transmitting execution results or notifications to the user

Diagram 5.2 outlines the mode which we envisage for user interaction with COOL agents.

As we can see, essentially a plethora of asynchronous, sequential dialogues will be spawned,
for any interaction between one user and one conversation. According to the conversation
plans, either an input request to the user will be issued, or a result/notification will be
transmitted or the execution is running “silently” without bothering the user. He only cares
about, completing the requests and sending them back to the agent environment. There is no
way to create arbitrary messages and to send them at will. Rather, the initiative is taken by
the agents with respect to their plans. When they “want” to have user input, they ask the
person to provide it, when they “want” to notify the user, they can feel free to do so.

The major effect is that by making the multi-agent system issuing input requests at
defined states, the user will be freed from any wondering what to do and when during the
execution of the system. Rather, he will be guided through the entire interaction process.
This is essential in dealing with such a highly complex and sensitive software like multi-agent
systems. All we need is ... row

e to ask users for input or dec1smns when necessary and 0therw1se to run 1n:the back-

ground and : ;,

. ® to visualize requests in form of templates which just ha,ve to be filled by the ilsers Wlth
appropriate values. ’
Ll

n

A similar approach is taken for sending messages from the multi-agent system to the
user. Every conversation plan ehcompasses a variety of local actions and interactions with
the environment. We introduce sending user messages as one of the possible actions. As all
users will be represented in the scenario as personalized stub agent all we need is ...

¢ to transmit a message to the stub agent concerned with an expressive content, and
”
e to visualize the content adequately onto the user’s screen

Furthermore, our model allows asynchronous and multi-threaded interactions between the
user and the multi-agent system. Remember that agents can have multiple conversations and

oot
1 .

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 48

Legend:

COOL Agent

Request frem A in a_c_1:
Ar; (accept :order ord_1)
B: (reject :ordar ozd 2}
Meassage from A in a_¢ 14
"Ordar received®

jord_1 :items ,..)
Mesgsage £rom D in 4_c_1:
"order ord_{ £inighad=

Requast £:<’m Din d o 2:
(pay iamclnt 10
ode <Btring>)

______ e
Magsage from B in b_g 31
ushipping {cunﬂmbim
(ord 0 i1items ...)

Figure 5.2: User-Agent-Interactions

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 49

a scenario may be comprised of many different agents. As all of them run concurrently, they
can issue a multitude of input requests to different users at the same time (see diagram 5.2).
Each user can select to answer the requests appearing on his screen whenever he wants to
and in whatever order he prefers. Assuming that the requests are visualized in an expressive
way, and the user is aware that nothing will happen unless he responds, he can focus on
a particular dialogue of interest at any point in time, and has full control on his ongoing
dialogues. Analogous, messages can be received by a user from anywhere in the multi-agent
system if so desired. Assuming that they come up with clear assaciations where they belong
to, the user can inspect and save the message, and use the information gained later on,
perhaps in a completely different dialogue.

This kind of agent-based activation establishes the core how we model user interaction
with a multi-agent system. One may argue that this is a very restrictive view as the user
does not play a really active role within the scenario. But the benefit is to involve users
in a clearly structured interaction process supplied by the conversation plans. Wrong input
and user’s confusion as a frequent source of error is eliminated beforehand. Also, we do not
need to provide additional elements to represent user tasks. By capturing task knowledge in
corresponding plans and interactions of agents, they can exhibit to work on specific tasks on
behalf of end-users. Both multi-tasking and multi-user operation are supplied inherently.

The following paragraphs discuss in detail how these interaction mechanisms are achieved.

5.2.3 Defining Rule-triggered User Interaction

COOI conversation plans consist of a set of rules which spawn a state diagram. A conversation
rule specifies the conditions under which it is applicable and an action part which is executed”
when the conditions are satisfied. Conversation rules are always related to specn‘ii: states of
a plan. (see 4.2.2 and 4.2.3). : 1”

The key to involve a yser during the execution of the multl-agent system are ’those con-
ditions where a certain message pattern is expected. From ‘the point of the conversatlon
instance, it does not matter whether this message will be received from another agent or
from an external supplier, i.e. the user. If a conversation comes to a state where no rule
is applicable at the moment, because none of their conditions is met, this convérsatmn is
simply suspended until somethmg happens in the environment, while the rest of the system
proceeds. Now, if the conversation is in a state where rules are associated that expect a
message pattern in order to get activated, and a message that matches one of the pattern
arrives, the corresponding rule will get applied, the conversation will be resumed and moves
to a new state, and the process continues.

Consequently, the problem of having a COOL conversation (or a COOL agent) requesting
the user for input is reduced to (1) propagating the expected message pattern to the user at the
right moment, (2) visualize the message pattern to the user and having him fill the missing
elements and (3) making him send back the completed input to the agent environment.

oot
1 v .

W by

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 50

How such an interaction request can be specified in a generic and comprehensive way will
be explained in paragraph 5.2.4. Paragraph 5.2.5 treats the issue how these requests get
delivered to the user(s) concerned and how they can be visualized.

Vice versa, a conversation rule may specify in its action part a variety of activities: ma-
nipulating agent knowledge, transmitting messages to other agents, querying legacy systems,
initiating new plans. Thus, the action part is the ultimate place to have the conversation
(or, say, the agent) sending expressive results or notifications to the user. However, agents
or conversation plans are not aware of the user’s presence explicitely. We need to (1) handle
user notifications just as any other kind of rule action (2) map those actions to the per-
sonalized user stubs, (3) having the stubs forwarding the notification to the concrete user
and (4) visualize the results to the user. How such a interaction result can be specified in
a general way will be explained in paragraph 5.2.7. Paragraph 5.2.8 deals with the delivery
and visualization of results to the user(s) concerned.

5.2.4 The Pattern Grammar

In generally, input to a system is checked on correctness when it occurs resulting either in
a successful processing or in an error message. For conventional interactive systems such as
shells or word processors, this approach might be sufficient. But interacting with a multi-
agent system requires more sophisticated approaches both for the benefit of the user, who
should clearly know what to do in a particular situation, and for the benefit of the system, as
wrong ot incomplete input may cause unexpected effects within the entire agent community.
For this reason we attempt to prevent errors by defining the input format beforehand. The
question is how agents do formulate their requests to an user. A

For formalizing a dialog request in a generic and expressive way, we devised/a pattern
grammar. The specification of the grammar presented belgw obeys the standgird EBNF
notation where :

T

LT

N

" <word> are non-terminals .
=> represents an derivation
| represents the logical OR
[...] is an optional slement
{...}* symbolizes repetition O or more times
{...}+ symbolizes repetition 1 or more times

R

<request> ~> (<comment> <pattern> <described-vars>)
»
<comment> ~> <string>

<pattern> => ([symbol] {<keyword> <value>}+)

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL

<keyword> => :<symbol>

<value> —-> <number>
| <string>
| <variable>
| <symbol>
| <pattern>

<variable> -> !<symbol>
<described-vars> -> ((<variable> <described-value> [<default-spec>])#*)

<described-value> -> <number-spec>
| <string-spec>
| <date-spec>
| <symbol-spec>
| <any-spec>
| (listof [<length>] [<described-value>])
| (1ist <described-value>+) |
| <pattern>

<length> -> <integer»>

~a

<default-spec> -> <number>
© 7| <integer>

: | <natural>

X | <string>
|
I
I

R

LT A

<symbol> | i
{date (<integer> <integer> <integer>))
(List <default-spec>*)

et

<number-spec> ~> ¥number* :
| *integer*
| *natural#
I--- ”
<string-spec> ~> *gtring*
<date-spec> —-> *date#

<symbol-spec> => *symbol#*

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 52

<any-spec> ~> #predicate argnumber argl arg2 ... argns
where
*predicate’
the name of a predicate to be applied
*argnumber?

the number of predicate arguments
‘argl ... argn’
the individual arguments for the predicate

<number> -> ‘‘a floating point number in decimal notation’’
<integer> ~> ‘“‘an integer number’’

<natural> -> ‘‘a natural number?’’

<string> -> ‘‘anything enclosed between ‘‘ and ¢¢??
<symbol> -> ‘‘any token that is not a number.

Tokens must not conmtain whitepaces.’’

The explanation of the grammar’s purpose and operation is done best by means of a
simple example. Consider the following instance:

(‘‘Please fill the customer order!?®
(propose \
:sender rh
:receiver customer
:content !order)
((lorder (customer-order
:product bananas
famount !amount
:max-price-per-item !max-price
Y :properties !properties B
:payment !pay)
(lamount *integer# 10)
(!max-price *number* 1.0)
(!properties (description , y
:coler !color
:size !size
rquality-level !'quality))
. (lcolor *string* ‘‘yellow’’)
{lsize *number%)
(!quality *integer* 1)
 (lpay (listof 1 *stringk)
(list ‘‘cash’’ ‘‘credit card’’ ‘‘cheque’’))))

P a T N,

L

e

4

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 53

This is an example for a dialog request where a rule for a Customer conversation provides
a template to user “rh” to help him specifying a customer order on bananas.

The request tuple starts with a comment, which may be anything deemed to be useful to
describe the purpose of the request or to give hints for particular elements to the user,

Following there is a patiern composed of a header (here a KQML performative) and a
number of “key value” pairs. Such a structure can be easily visualized as spreadsheets or
dialog boxes which are familiar to most of the users. The pattern is supposed to match
exactly those in the condition part of a conversation rule, following the symbolic paitern
matching algorithm. Pattern matching provides a convenient way to parse structures and
to extract values. As stated above, once a conversation rule becomes applicable because a
message matching its pattern has been received, the rule will fire and execute its actions.

A keyword is any meaningful symbol to name a value. In general, values that are no
variables (no leading “!”} are fixed, they cannot be changed by the user but can be dis-
played. Any variable inside a pattern will be replaced by a matching variable description.
For instance, the “lorder” value for the “:content” keyword is a further pattern, again with
fixed values and variables. In this way, we can construct input requests by a hierarchy of
nested elements.

The variable description specifies the exact content for each variable used in the pattern.
There is no need to obey a particular order, however, all variables used should be also
described. Take a look at the description of “lamount”. It simply states that the input value
for the keyword “:amount” has to be an integer which is set to 10 by default. Of course, a
user may order more or less than 10 bananas and can change this value, but he cannot delete
it. As for the bananas’ “Isize”, the user may enter any floating point number, or he may
leave it blank indicating that he does not care. Take a last look on “Ipay”. Here,, a list of
one string element is expected on how the customer wants to pay his bananas. We pr0v1de a
selection list of standard methods for payment, but the user may feel free to declare another
arrangement as well. .

. To summarize, with the pattern grammar, requests of a.rbltrary complexity ca,n; be bulld
Patterns visualized as hierarchical dialog boxes are a common notion for an user. Values can
be predefined as fixed or variable. Variables are declared with standard data typed and may
be set to defaults. The essential questions to be solved are how to detect and to forward
requests and how to visualize them adequately. ‘

5.2.5 Detecting, Forwarding and Visualizing Requests

Detecting requests to users from (suspended) conversations and submitting them to the user
is a team work of GenUA and the user stub agents. At ény moment of a COOL scenario’s
execution, there might be conversations waiting for input from users. GenUA observes the
complete agent execution environment for waiting conversations and asks the individual user
stub agents continuously for possible requests. In turn, the stub agents consult the rules

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 54

for the conversations concerned (depending on the conservation state) and retrieve all the
requests pertinent to the user they represent. As a result, there may be:

e (a) different requests for different users (“multi user mode”)
e (b) the same requests for different users (“broadcasting”)

e (c) different requests for the same user pertinent to instances of various conversation
plans (“multiple dialogs I”)

(d) different requests for the same user pertinent to several instances of the same con-
versation plan (“multiple dialogs II”)

(e) different requests for the same user pertinent to one instance of a conversation
plan where several rules are potentially applicable in a state, while expecting different
patterns to get fired (“decision dialogs”)

All these situations may occur simultaneously at the very moment when GenUA polls the
user stub agents. However, GenUA is capable to gather all the requests and to forward them
to the correct users in an act of broadcasting. For better evaluation in a GUI, it attaches
agent, conversation and state appropriately to the request lists. The final request format to
be sent to the user’s GUI will look like this

<input-requests> -> (<input-requesti> <input-request2>...)
<input-request> -> (<agent> <conversation> <state> cr
(<alternativel> <alternative2> ...))

.

e

<agent> => <symbol>

<conversation> -> <symbol> ' *
<state> -> <symbol> ' ‘.f

The process of observing conversations and asking user stub agents for requests goes on
and on as long as there are user participating in the multi-agent application and conversations
ongoing. : :

5.2.6 Visualizing Input Requests

As we have seen in the previous section, one user may recgive at any moment different input
requests from different conversations and/or different input requests for the same conversa-
tion. Before turning to the visualization of a single request, we first need to visualize the
received lists adequately. It is essential not to overwhelm and confuse the user with such
an “unstructured” plethora of requests at the same time. However, in using the complete

Yoor

w by

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 55

request information provided by GenUA, they are simple mechanisms to sort and display
them in a way which is easy to grasp by the user.

For input requests from different conversations or conversation instances in different
states, the user needs to select first, which “dialog to turn in”. For example:

AGENT CONVERSATION : STATE TYFE
Desktop-Agent Document-Publishing:1 Ready-To-Broadcast Input
Information-Agent Document-Search:3 Criteria-Definition Decision

Here, we are in an office application and have got two requests from different agents and
conversations, and the user may now decide whether he first wants to deal with publishing
one document (here: to specify the recipients) or searching another one.

We do not pose a particular order of working on input requests. In using expressive
specifications, the user itself will be enabled to select the next one adequately, knowing that
either nothing will happen to the conversation object concerned until he answers the request
or, after a possible timeout, the conversation does something on its own making the request
obsolete.

Once inside a request pertinent to a conversation, the user will have either only one
possibility to respond or several alternatives. The former situation is that of a simple input
action, the latter one a decision action which in turn may need input as well. However, we
just display all of the requests in a separated list giving the user the chance to select and
inspect all of them, and finally to fill and submit one of them. L

For example, when the user chooses the request for searching a document, he may gef a’
list like that: :

S

T S

AGENT: . . Information Agent 3 _
CONVERSATION: Document-Search:3 - i
STATE: Criteria-Definition
ALTERNATIVES: ’) :
1. SearchByTitel “‘Search for documents that match a titel’’:
2. SearchByAuthor “‘Search for documents frem an author?’’

3. SearchByKeyword “‘Search for documents that contain keywords’’

The user will need to decide, which search algorithm he wants to apply, and then he can
specify the corresponding criteria. Also, the user must be allowed to go back, and answer
another request first.

Now, let’s turn to the visualization of a singular request. Each request is one instance
of the pattern grammar 5.2.4. All the elements used in the grammar can be transformed

oot
1 .

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 56

into graphical representations which allow the user to compose input intuitively and guar-
antee correct input types for values. We have identified four general modal dialogs to be
hierarchically nested due to the request composition.

The Top Pattern Dialog is meant to present the “jpattern;” component in form of a
dialog window where the key-value pairs are transformed into a list of label-fiecld com-
ponents. Fields representing simple structured variables (such as symbols, integers etc.)
are made editable and show default values if they exist. For every simple field, there
will be a check function on the correctness of the value. A user should not leave a dia-
log until all fields have a correct value. All incorrect fields may be shown to the user,
when he tries to do so. Fields representing complex variables (such as nested patterns,
lists etc) will appear as buttons which pop up another dialog window displaying the
“inner” structure. Fields representing fixed values are made non-editable and show the
value just as it is. Furthermore the top level dialog should allow the user to browse
the entire request composition with default values plus the new values provided by the
user. When the user has completed the request, he can submit it directly to the agent
environment in order to get evaluated.

The Pattern Dialog ’s job is to represent every “inner” pattern associated to a variable
following the same procedure as above. It may allow browsing, but no submitting.

The Single Type List Dialog is dedicated to the composition of lists where each of the
elements has the same type. Those types may range from simple structures (strings,
numbers etc) to complex types (patterns, lists). Moreover, the single type list dialog .
should keep track of the number of elements required. Typical list ma,mpulq‘mon func-
tions such as “add Element”, “delete element”, “modify element” have to bg provided,
Depending on the cornple)uty of elements to be manipulated, the user m:’;.y do that
within the Single Type List Dialog or he will get anothier nested dialog (Pa,ttern Dia-

" log, Single Type List Dialog, Multiple Type List' Dlalog) for more complex‘ elements.
Default elements should be automatically added to the list. Possible elements may be
displayed in a separate choice box in order to get selected and added to the list. A
user must not leave the dialog until the required number of elements is prowded (if a
number is specified). Otherwise he can stop to add elements at any time.

The Multiple Type List Dialog allows to represent and compose list of different values
needed without having a pattern, for example a structure like “(Ix (list *string* *in-
teger™ *string*)}”. Other than that, it works pretty much the same way as a Pattern
Dialog.

For example, consider the composition of the keyword search alternative. The original
structure may look like this:

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 57

(‘‘Search for documents that contain keywords’’
(SearchByKeyword
:sender alison
:receiver Information-Agent
:conversation Document-Retrieval:3
:content !c¢riteria)
((tcriteria (listof 'keyword-op)
(1ist (list and ‘‘students’’ ‘‘employees’’)))
{('keyword-op (list #*symbol# string#* *string*))))

The idea is to define a keyword search as an (arbitrarily long) AND-ed list of binary or
unary logical operators applied on string elements. We assume, that users are familiar with
pre-order logical operations. The default value may serve as an example.

As being implemented in our Java applet, this syntactic description can be transformed
into a dialog structure as illustrated in figure 5.3.

On top we see the Top Patiern Dialog showing the comment, the “jpattern” element and
its composition. By clicking on the button “Define List #0”, we browse the nested element,
which is mean to be a list of binary or unary operators applied on keyword strings. We
display that as a Single Type List Dialog with typical list manipulation functions such as edd
element, delete element, modify element, and clear list. In the green choice box, we have the
only default element which can be inserted directly if needed. We have already added some
elements which are shown in the middle.

By clicking on “Add Element”, we display the structure of a single element as defined
above. This is a list of multiple elements without having an explicite pattern structure, so’we’
got a Multiple Type List Dialog without explicitely named labels. Beside each field, we show
the expected value for orientation. Of course, there is a checking function for ed’éh field as
well. The dialogs are all modal, which means, the user will have to compose a correct element
first before it is added to the list and if the llst is completed, the content is assocwﬁted to the
key element where it has been invoked from. Cancelling a dialog does nothing but cloging
the dialog window.

If everything is specified; the user may browse from the Top Pattern Dialog the entire
composition and then submit the completed input back to the conversation concetned.

5.2.7 The Notification Grammar

While notifications are somehow restricted to some kind of textual information, results of a
conversation’s execution may be taken out of the entirety of different formats for text, graphic
or sound. However, GenUA was not devised to care about the content of results in any way.
It is only meant to forward results and notifications to the user just the way they had been
constructed in the agent execution environment. Presenting the content adequately to the

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL,

rowse Mes

intelligent agents

n| ’
software robols®, **)

Figure 5.3: Visualization of Input Requests

DT, W,

e ML

58

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 59

user, is the responsibility of the GUI. Accounting that, we stipulated a general format for an
message from a scenario to a user, which can be used for both simple text notifications as
well as complex results. This grammar corresponds to the pattern grammar 5.2.4 used for
specifying input requests. Again we use the EBNF notation.

<message> ~> <msg-type>
:sender <sender>
:receiver <receiver>
:conversation <cenversation>
:comment <comment>
:content-type <content-type>
:content <content>
:date <date>

<msg-type> -> <symbocl> ;; an arbitrary message type, e.g. in KQML-
style: ’Tell?, ’Propose’, ’Confirm’ etc.

<sender> —> <gymbol> ;; the agent who sends this message
<receiver> => <symbol> ;; the yser’s name
<conversation> -> <symbol> ;; the conversation where the message

was generated

<comment> -> <string> ;; any kind of short textual description ¥
S for the following content

A

<content-type> -> <symbol> ;; a descriptor for the type of content. i
may be used by the GUI to trigger the !
corresponding evaluation procedure

for the content

e.g. 'text’, ’chart’ , ’gif’, 'fax’, efc

<{content> ;3 the actual content which can be any
type of data
v
<date> ~> <string> ;; the date when the message had been
generated
e.g. "‘Tue Oct 7 17:33:00 EDT 1997**

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 60

5.2.8 Detecting, Forwarding and Visualizing Notifications and Results

Any conversation rule may specify in its action part such a message and transmit it to a stub
user agent. Those provide a kind of message box. If the rule becomes active during the con-
versation’s execution, the message will just be delivered there. Again, GenUA continuously
polls all stub user agents’ message boxes for received messages and if it detects one in there,
it will be forwarded exactly as it is to the user’s GUI concerned. In this way, any user may
get any kind of message at any moment of the system’s execution from any conversation.

Analogous to input requests, notifications and results can be submitted to the user from
anywhere in the application at any point in time. The structure proposed in 5.2.7 allows at
least to provide a context for the user in order to associate received messages to the execution
state of the application. We do not pose the application to confirm any provided input or
to propagate all changes continuously to the user. This should be left to the designer of the
application. So we just display every message in the order it has been received, and give the
user the chance to select each one of them at any point in time in order to inspect it closer.

For example, we may be involved in an industrial team forming process arranged by a
mediator, where we first announce our principal interest and then commit ourselves to join
the team. '

The accumulated messages during some steps of the process may appear on the screen
this:

AGENT MESSAGE-TYPE CONTENT-TYPE COMMENT

4. TRANSP1 TELL CHART ‘‘Proposed activity scheduled’?
3. TRANSP1 ANNOUNCE TEXT ‘¢Small team proposal’’
2. TRANSP1 . - .TELL ~ CHART ‘‘Large team joined’’ ;
1. TRANSP1 ANNOUNCE TEXT ‘‘Large team proposal?’

- - The last received message appears on top of the list.’ If the user wants to inspeéit message
no. 1 (again), he just selects it from the list. Suppose the message has a structure like this:

s

(ANNOUNCE
:SENDER TRANSP1
:RECEIVER ANONYMOUS{97}
:CONVERSATICN FLT45
:CONTENT-TYPE TEXT
:COMMENT "Large team proposal" >
:DATE "TUE OCT 21 18:11:55 EDT 1997"
:CONTENT ("LOGISTICS asks for interest in the following activity:"
(LOGISTICS-ORDER
:EXECUTDR (TRANSP)

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 61

: LINE-ITEMS
((:START-DATE 25
:DURATION 3
:OPERATION TRANSPORT
:ID INV2
:PRODUCT NUTCRACKER
:DATE ©
:DUE-DATE 30
:QUANTITY 1
:PRICE 8
:UNIT-TRANSPORTATION-COST 0.25)
(:START-DATE 14
:DURATION 4
:OPERATION TRANSPORT
:ID INV1
:PRODUCT GARDEN-GNOME
:DATE 0
:DUE-DATE 30
:QUANTITY 1
:PRICE 10
:UNIT-TRANSPORTATION-COST 0.25)))))

The essential character of messages to users is, that in principal arbitrary data formats
can be contained (as long as they are somehow convertable into a string or bit repres:anta,tibﬁ).
However, the message header is always the same. On the GUIs side, we just needfa handler
for each “:content-typé” that evaluates -and displays the actual “:content” a,dequaﬁély

In reality, the sample structure above will be received as one smgle line. Thus, wé just need
a format routine here for content type “TEXT” that can- transform complex list structures.
In this way, we are able to combine textual statements and values at will. The v1sua11zed
message may look like in figure 5.4:

Handlers for other data formats may replace the text field in the middle perha.ps with
a chart or a gif picture, or with a button that opens a postscript browser for the content,
whatever is needed. :

5.3 Further Properties of GenUA

p
Besides integrating users in the agent execution process, the Generic User Agent needs to
provide a number of features and functionalities that allow for operation in a collabora-
tive Web environment. Such guidelines can be derived essentially from related literature on
WWW services, multi-agent applications, interface agents and human-computer interactisn.

4

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 62

"LOGISTICS WSk for intarest|n the following actlvioy”

LOGKTICS-ORDER
ENECUTOR ~ [TRANSF)
SLINE-ITENS =

START-DATE = 25
DURATION =3
%FEMT?N-YMMPOII‘
ivnunucnr = HUTCRACKER

DUE-OATE = 30
FQUANTITY = 1

SPRICE =
UHIT-TRANSPORTATION-COST = 025,
START-DATE = 14

DURATION =4

SOPERATIOH = TRAHSPORT

HEET
PRODUCT = CARDEH-GNOME
DATE G

{DUE-DATE = a0

QUANTITY =1

PRICE =
INIT-TRAHSPOATATICN-COST = 0.25]

Figure 5.4: Visualizing a User Message

Because of the extensive ongoing discussion in this domains and the overwhelming amount
~of publications, we could not come up with an optimal model for integrating the interface
agent in the Web domain. However, we have identified basical principles and implemented
them in our solution. '

5.3.1 Generic approach - a trade-off?

The design of GenUA is aimed at building a viable application-independent template. H;)Wl
can such a template be constructed? Swaminatham et. al. [24] have proposed thé;following_
method: “The locality that typically exists with respect to the purview, operating (gbnstrajnts
and objectives of a business entity can be captured in different ¢lasses. By incorporating them
dynamically into a generic agent architecture, alibrary of predefined agents emergeb that just
need to be instantiated for a particular entity”. However, in the context of being.{employed
in an enterprise environment, a trade-off arises: On the pne hand, the interface a,giént has to
meet the requirements of the end-users in order to become accepted in work environments.
Hence it should be based on user analysis in terms of .user characteristics and tasks, and
the user’s conceptual model has to incorporated. On the other hand, a multi-agent system
for an enterprise is very likely to be built in a bottom-up fashion from multiple built and
pre-existing modules.

We' attempt to overcome this problem by supplying.,an open architecture and general
mechanisms needed for the online-access of employees to multi-agent systems in enterprises.
The design of the interface agent is completely separated from both the purpose of the ad-
ministrated scenarios and the graphical representation. GenUA is comprised of a set of
independent modules working on general data types without any semantical notion. The

1 o
v

W ks

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 63

modules have clearly structured interfaces to the rest of the system and just need to be
implemented and linked towards the requirements for concrete workplaces. Additional func-
tions can be easily introduced in the template modules, Graphical presentation systems may
display GenUA output and capture GenUA input according to the preferences and needs of
end users.

Another aspect of generality is, that we delegated the responsibility for implementing the
task and interaction structures required for a particular user completely to the designer of the
multi-agent system. This includes, that the COOL application may be populated by a number
of personalized “desktop” agents which by means of adequately structured conversation plans
may reflect exactly the conceptual model of the end users. However, GenUA does not pose
the need to have such agents in a scenario, rather it enables end users to talk to any kind of
agent in the community. In turn, the agent execution environment makes sure that all the
agents can communicate and coordinate their actions without needing to be mastered by end
users.

5.3.2 Multiple Connections and Paraliel Execution Mode

GenUA is neither limited on association to a single end user only nor to assist a community of
end users by default. It is also not limited in the amount of COOL multi-agent applications
being accessible to users at the same time,

GenUA administrates the association between end users and applications in a way that
every user may access many scenarios at the same time, and many, in turn, users may
participate in each of the applications. By means of configuring a simple file, users and
the scenarios they are allowed to access can be declared. GenUA provides the necessary *
authorization and administration mechanisms for both users and applications. #

Figure 5.5 shows possible combinations of applications and end users deemed tp be facil--
itated by GenUA. .

Another key feature supphed by GenUA is the ability to manage asynchronaus, multi-
threaded interaction modes between users, multi-agent applications and the agents within.
Once linked to a scenario, a user may create as many “conversations” to and among agents
as he wants by initiating conversation classes. A single focus of control allows the end user
to switch between various ongoing conversations and to focus his attention on a specific one
at any point in time. Ongoing interactions with a particular apphca,tlon can be suspended
at will in order to be resumed later on.

5.3.3 . System Transparency

”

A major challenge for getting agent systems accepted by prospective end users is to convey
transparency. Following the recommendations of Hall et. al [16] and Sanchez et. al.[19],
GenUA meets this requirement initially as follows:

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 64

Clerk Secretary Office SupsrviscrLogistics Manager Shop Floor Assist. Customer

° ° o o . °
* x x x X L
$ | | i 4 i\

Tnterface
Leyel

Exatutive Supply Chaln

AppHeation
Level

Coordination Management

System System

Figure 5.5: User Application Mapping

Cognition: The end-user will become aware of its place in a distributed network and of its
interaction with a system of cooperating agents.

Accessibility: The end user can browse and inspect all the components within the multi-
agent application, he is concerned with (agents, conversation classes, own conversa-
tions), at any point in time.

’,4 -

Control Information: Conversations with the agent system are created expressly. The
mechanisms provided by GenUA guide the user through the entire interactign process
and supply contmuously information on conversation progression (what is the current
, state of execution), conversation proceeding (which agént works on a user%s action),
and conversation status (what are the results so far). - i

. '

History: All interaction information within a session of a user to an individual multi- -agent
applications is recorded and can be inspected during the session at any pomt in time.
If so desired it can be persistently stored and re- -used in upcommg sessions.

5.3.4 Autonomous Activity and Offline-Management

For interfacing a multi-agent system in real enterprise sgenarios, there is a strong need to
separate the presence of the interface agent from the online presence of the user. Otherwise,
there would be no interlocutor for scenario agents, if an user is offline at the moment. Con-
sequently, the execution of the agent will stop as soon as user interaction is required. As a

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 65

result, with time the process of the entire multi-agent chain might breakdown, since agents
participating are waiting for results or requests of other agents.

This impacts the activation and execution concept for the GenUA and reinforces a strict
separation of interface agent and graphical components. GenUA instances run as processes
independently of the invocation or presence of any presentation system.

However, GenUA must be capable to tackle the problem of (non-) presence of an user
adequately. We integrated a comprehensive session management concept which allows the
user flexible participation in multi-agent applications where he can resume his previous state
and can keep track about important changes and requests during his absence via multimedial
telecommunication messages,

5.3.5 Customization and Adaptivity

In order to become accepted in a real working environment, any support system must not only
fulfil the functional requirements for assisting and guiding a user through his daily tasks in a
standardized way. The high expectations and, at the same time, the fear of humans towards
application systems are determined by the extent of individual control and customization the
software can provide. This is especially true, for every piece of software that comes up as
“autonomous agent” and much more for a distributed multi-agent scenario, where compo-
nents may run somewhere remotely without direct control or even without the knowledge of
the user. Moreover, business and enterprlse domains undergo continuous changes in organi-
zational structure, task models, working place descriptions and also humans. Consequently,
an interface agent in such settings will always be subjected to new requirements. The key for
software systems is to provide adequate mechanisms for customization and adaptation. ‘As~
the Generic User Agent is targeted to get employed within the same context, we mgorporated
a level-wise configuration and adaptation concept: . }f
?f
COOL Agent Customization: Any COOL agent may-be’ turned into a persona,hzed as-
sistant which supports preference administration, adaptlve behavior or even learning
capabilities by means of specially designed conversation plans. The need for adaptive
user agents in multi-agent applications is seconded by the fact that it is almost impos-
sible to extract all the knowledge needed beforehand for bundling into approprlate user
agents, considering the wide-ranging area of business applications towards multi-agent
systems and the prospective variety of different people acting with them. GenUA makes
sure that users can configure their individual agent in exactly the same way as they
perform dialogues to other agents during the system’s execution. However the rest of
the agent’s community behaves, the end user and “his” agent will be always connected

through GenUA.

* Interface Agent Customization: GenUA comes up with a set of module templates which
can be easily implemented, extended and linked towards the requirements of an indi-

4

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 66

vidual working place or a group of end users.

Presentation System Customization: Continuous changes in look-and-feel of end users
and state-of-the-art in GUI development make it hard to stipulate a universal presenta-
tion style or platform for multi-agent applications. GenUA does not pose the utilization
of a particular graphical interface type. The basic functionalities identified for GenUA
operate on data streams at a high level of abstraction from any kind of display or gener-
ation format. Though primarily designed for Web access and coming up with a sample
JAVA applet/application, GenUA’s driver concept allows to link a variety of different
presentation systems. The association between a user and its graphical interface in
order to talk to different scenarios is made only at login time according to the configu-
ration. Here, GenUA allows not only an association at an abstract level between user
and GUI, it is possible to manipulate the appearance of the GUI itself by evaluating raw
preference data attached to the GUI’s name. How name and preferences are specified
syntactically and evaluated semantically depends on the GUI system chosen.

5.3.6 Distribution and Communication

Total distribution and universal communication mechanisms had been cornerstones for the
design of GenUA. We envisage distribution at several levels:

1. Distributed Users: The users of GenUA may reside anywhere in the network. The
network may refer to an Intranet or the Internet. Users can access GenUA, and con-
sequently all its administrated multi-agent applications, worldwide simply through- a .

browser or another graphical platform. i

2. Distributed Interfaces: Different GenUA instances may be employed within distributed’
domains. For example, an enterprise may have one nation-wide Intranet in:’y_'GermaJny
~and one in Canada. The GenUA implementation for Germany may provide anf extended
functionality, while each of the GenUA instances is accessible through a bro"wser only
from within the correspondlng Intranet. Nevertheless, both of them can potentlally
access the same multi-agent-applications across the Internet. The JAVA implementation
allows full portability across heterogenous platforms. :

3. Distributed applications: A COOL multi-agent applications is composed of a number
of agents associated to one or more agent execution environments, Each of these en-
vironments (and thus the agents) may be executed locally or remotely. Agents within
an environment communicate with each other and coordinate their actions remotely in
the same way as they do locally. GenUA keeps track of changes in all the distributed
components of a scenario, and ensures to relay requests from and responses to users
adequately.

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 67

Figure 5.6 illustrates a possible structure for users, GUIs, GenUA instances, multi-agent
applications and agents across the network.

Tger 1 Usexr 2 User 3 User 4 Tser 5

Iy I3 I3

Interface
Level

Domain B

Application
Level

- ~
Domain A Dormain B

Agent
Level

TR W

"
hoc A

.

Figure 5.6: Distribution and Corpmunica.tion

Irrespective of all the distribution “below” it, GenUA links agents and applications to-

wards a single virtual platform, being uniformly accessible through a single interface. The
communication channels among the components are as follows:

L. Agent To Agent: As described in section 4.1.2 COOL agents communicate within and
among execution environments by exchanging KQMI-style messages. Local commu-

nication is ensured by the execution environment itself while communication among
environments is done via TCP/IP socket connections.

CHAPTER 5. BUILDING A WEB INTERFACE FOR COOL 68

2. Ezecution Environment to GenUA: GenUA communicates with the individual environ-
ments by using the same TCP/IP interface mechanisms as utilized for remote agent
communication.

3. GenUA to Browser/GUI: Though primarily aimed to be accessible from the Web,
GenUA does not pose to do so. The system incorporates a driver concept which
allows access from a variety of different GUI components ranging from JAVA ap-
plets/applications via CGI/HTML to X widgets (see communication and data format).

5.3.7 Authorization and Security

Sanchez et al. stated that a user (interface) agent should “permit free agent operation while
preserving data integrity and user privacy” [19]. GenUA address this requirements on the
one hand by sophisticated login and access mechanisms on both system and application
level. This includes a general authorization for the GenUA system itself, an authorization
for start and shutdown of applications and an authorization for participating in running
applications. On the other hand, every interaction from and to the system is a self-contained
and personalized transaction. Users cannot inspect or manipulate dialogues or interactions
from other users directly, unless the application itself is designed to allow this. However,
they will always encounter the interaction’s (impersonal) effects in the multi-agent scenario
resulting in changes of own dialog states, 'notifications, input requests etc.

T e

hoc P

arm

Chapter 6

System Architecture and
Functionality

The last chapter has described the properties of the Generic User Agent and how the func-
tionality had been tailored both towards the requirements of end users and the technical
features of COOL multi-agent systems. We will now turn to the concrete realization aspects
with respect to how the mechanisms had been captured in a flexible and open architecture
and where the individual functions are produced. Furthermore, we will present a sample for
a presentation system: a comprehensive Java applet running in a Web browser which allows
users to interact with multi-agent systems through GenUA.

First, the Generic User Agent will be described in detail 6.1. This includes essentjal ,.
architectural aspects and the examination of the main components. The next s;zctioh 6.2
treats the realized graphical interface for GenUA, which one we named COOQL User, wdnterface.,
By means of a sample session, it will be shown, how a user can interact with a niultl—agent
a,pphcatwn through the néw interface. B .._

N =

6.1 The Generic User Agent

s

The Generic User Agent is the medlator between users and multi-agent systems. It is sup-
posed to allow concurrent interactions from multiple users to multiple applications. For this
reason it has to provide both an intelligent administration concept and sophisticated routing
mechanisms. At the same time, it should be flexible in its configuration, so that different
instances can be build for different requirements. We devised an architecture for the interface
agent deemed to be appropriate to satisfy those demands.

However, before we present the individual components and their functionalities in detail,
we are going to outline the principal ideas underlying the GenUA architecture.

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 70

6.1.1 Towards an Open and Flexible Architecture

Strict Modularization

As an interface agent, GenUA is a self-contained, identifiable and autonomous unit from
the perspective of its environment. From inside, it can be divided into a set of entities,
which are encapsulated in an agent shell. GenUA is meant to be composed of a set of
independent components which are responsible for different tasks in the context of user agent
interaction. A component may need the capabilities of other components to do its tasks,
which means components will need to interact with each other. It can be seen as a container
for a set of functionalities and resources satisfying the component’s tasks. Those elements are
encapsulated inside the component they are not directly accessible. If every component comes
up with the same interface, they can be connected and interact directly without problems.

Even though basical components for GenUA have been identified and implemented, one
cannot be sure, if future requirements do not make additional components necessary. Another
factor is, that the functionality of existing components, or even the responsibilities of a set of
components might be subject to changes with respect to the needs for different organizations.
For this reason, a fixed-wired interaction mechanism between components is unfavorable
and hard to realize. A more flexible approach is that components do not know each other
explicitly, and forward their requests to a meta component ("name server”) in the first place.
This one maintains a list of all processable inputs” for each component. The list will
be created while the server instance is initialized by having each component registering its
possible inputs. However, the list itself is not statical as components may register new inputs
or unregister previous ones at runtime,. o

It may well be that several components specify a similar input. In this case, a,n}'incoming
request will be routed -by the name server to the component Whl(:h had reglsteredf the most
specific input related to the request. However, if this component realizes, that it cannot work
on the request, it may sent it back to the name server upon which this one routeg it to the
next candidate. In case that several components had reglstered an absolutely equa,l,mput we
have automatically a broa.dcastlng mechanism. Inside the component, there is only ‘a singular
handler needed that maps incoming requests onto the cémponent’s functions and resources.

To understand the realization of the described mechanism, one may read the paragraph
above once again while replacing “request” with ”speechact” and ”input” with ”pattern®.
Speechacts allow a high-level abstraction mechanism for defining requests and responses in
an intuitive and familiar manner. E.g. if one component receives an ”ask”-speechact about
a fact, it will try to retrieve the fact. If it finds something it will send a "reply”-speechact
back, otherwise it may perhaps send a "sorry”-speechact’stating the reason for failure, and
so on. On the other hand, component’s inputs registered in form of patterns allows the name
server easily to identify candidates to work on an incoming request by maiching it against
each input pattern.

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 71

Basically, we have mapped in this way the coordination concept of a federated agent
commaunity as described in section 2.2.2 onto the composition of the Generic User Agent
itself. The components correspond to the facilitated agents while the name server is the
facilitator that enables the components to interact with each other.

The architecture becomes both flexible and extendible. New components can be added
easily to GenUA while existing ones may determine their capabilities dynamically. A GenUA
instance can be build following the principle of a construction set: First, we pick the frame
elements (components) needed, then we fill cach frame with contents (functions) and finally
attach them to the frame (input patterns and handler).

?On-The-Fly” Interactions belween Components

Components can indirectly use the capabilities of other components to fulfil their tasks.
This means, that it is not predefined which component really executes a request in order
to avoid fixed coupling among the components. Precondition is the existence of a meta
component which takes on the routing job and that each component informs this about its
capabilities in detail.

The capabilities of a component (its processable input) are propagated to the router by
means of a set of services either, when the component is started or at runtime. A service
is composed of a speechact pattern where the attributes can be fixed values, variables or
wildcards and a priority for this service. The router attaches the component’s reference to
each service and inserts it into a global service directory.

From the name server’s and a component’s perspective, it does not matter whether the
meaning of an incoming speechact is that of a request or that of a response, both alWa,ys
follow the same procedure to work on it. Thus, we will replace both terms by the notion of
an "event” in the next paragraphs. - i f"-

When the router receives an event in form of a speechact -independently whethér it comes
from outside the server or from one of the components, it always tries to find a matching
pattern in its directory. If it finds one, the request is routed to the component. If there
are several matching pattern, the speechact will be routed to that component which had
registered the highest priority. If even this is equal, the speechact is broadcasted. If no
handler can be found at all, the router notifies the sender approprlately so that it can take
the necessary actions.

On the components side there will be a general handler Wthh is invoked by the router
whenever a matching event for this component has been received. The general handler will
trigger special handlers inside the component which procgss exactly one particular event. In
turn, a components may want to send a response after processing an event. Again, this will
be a speechact which is passed to the name server and the procedure continues.

The routing mechanism can be simplified for events which expects an answer, i.e. "ask”-
speechacts, by remembering the :reply-with attribute and the sender of the event. If an

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 72

answer, i.e. "reply”-speechact, has been received by the router, from wherever, where the
iin-reply-to attribute is set to exactly the same value, the answer can be directly routed to
the sender of the original request without pattern matching.

Abstract Interface Agent Functions

Each component enjoys, independently of its actual purpose or functionality, the following
properties:

e specification of its capabilities

e registration/unregistration of services at runtime

e enqueuing requests according to their priority into a "to do” list
e handling incoming requests at an abstract level

e running as an independent light-weight process

Components and modules that acquire "knowledge” during the lifecycle dynamically,
are enabled to archive important data persistently and to reconstruct it in case of restart.
Persistency refers here to pure data persistence, which means to store the content of variables
durable. State persistence, which means to freeze a component or a module in its current
execution state and to resume it later is not generally needed for all of them.

Every component or module is enabled to leave a trace of its actions. Tracing can be
done in three different modes: (1) tracing on standard output (2) tracing into a,ﬁle or (3)
no tracing. Potent1a11y, -every component may operate in a different trace mode,; may use.
different trace files etc.” In this way, we have a highly ﬂex1b1e mechanism to observe a.nd
1nspect the variety of actions. N

“The Generic User Agent is a wrapper for all its components and sets up a smgular iden-
tifiable entity to the environment: The environment in our context consists on the/one hand
of a number of users talking to'GenUA through graphical interfaces and on the other hand
of a variety of executable multl-a,gent applications. Consequently, the interface agent itself
provides only the following functionalities:

e setting up an identity by adopting an unique address
¢ adding and removing components p

e starting, suspending, reactivating and shutdown components

e starting, suspending, reactivating and shutdown itself

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 73

Also, the agent is the first handler for incoming requests from outside. This is necessary
as the interface agent can be controlled by sending corresponding speechacts from a GUL

Declarative Knowledge Processing

A primary goal for the design of GenUA was to operate on knowledge and data struc-
tures which allow both a complete abstraction from the semantics and an uncomplicated
transmission and (re-)construction. An attempt to cast the vast amount of context-sensitive
knowledge used in the business domain into semantical structures for the interface agent
would have lead to an unnecessary blow-up and distraction from focusing on its general-.
ity. Consequently, GenUA processes and exchanges declarative knowledge structures without
thinking about the meaning. The strict syntactical orientation of the interface is one of the
steps towards being open to a variety of different presentation systems.

We implemented a subset of the KII specification needed for our context, resulting in
a knowledge library composed of basical data types and a lot of more complex objects.
The library can be readily extended by new elements for being processed by GenUA and
transmitted from and to presentation systems. Basical data types include lists, strings,
symbols, integers, variables, wildcards etc. Complex data types are build from that set and
include speechacts, input requests from COOL agents to users, user notifications from agents,
etc. All of them can be transformed into and parsed from a string representation which is a
uniform notion across heterogenous platforms.

Complex data types are serialized simply as named lists of key value pairs. Consider the
following example for specifying a GUI network address.

," e

-0l

class GUIAddress {

static String user = "raik"; ; }r
static String.gui = "\'"Java Application\"";. &
¥ static String host =-"timmins.ie.utoronto. ca“ :

static int port = 8000

i m

;

The string representatlon for this object may look like this (with single Whltespaces as
delimiter):

(gui-address :name raik
:gui "Java Application"
:host timmins.lie.utoronto.ca ¥
iport 8000)

Such a structure can easily be parsed and the original object can be reconstructed by
checking the header and evaluating the following tokens successively. The list-like structure

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 74

and a unique header for each object ensures that complex data types can be nested and
combined at will.

Open Communication Platform

Though primarily meant to being accessed from a Web browser, which means with respect
to our sample GUI from a JAVA applet, GenUA is expected to provide openness towards
different presentation systems. Those may include CGI scripts to create HTML pages, or X
widgets or Windows applications. To keep the communication of GenUA towards heteroge-
nous platforms as generical as possible, we provide only one KQML-based communication
interface, which can be connected to different platforms by corresponding GUI drivers. Per-
haps, there is a conversion necessary, if platforms do not support the transmission of raw
strings. However, similarly to the communication among GenUA components, GenUA is
supposed to interact with the presentation system via the same speechact format. In this
way, a request from a presentation component can be forwarded as it is directly to the compo-
nent which satisfies it, and vice versa may send a response to be evaluated by the presentation
component.

We devised a speechact object which comes up as an extended KQML notation for a
communication message. It is composed of mandatory and optional attributes:

(<Performative> ; “Ask, ’Tell, ’Reply, ’'Evaluate, etc.
:sender <Address> ; the sender of the message
:receiver <Address> ; the receiver of the message
:tag <Symbol> ; short characterizer for the content type
:content <Serializable> ; the content of the message ﬁ
[:ontology <Symbol>] i the context of the message ﬁ
‘ i ; default: ’genua-interaction H

, [:topic <Symbol>] ; the topic of.the-mbssage i
. ; default: ’general . z
[:language <Symbol>]~ ; the format of the message content |
‘ . ; default: ’kif’ '
[:reply-with <Symbol>] ; for messages expecting an answer
[:in-reply-to <Symbol>] ; for messages iepresenting an answer
[:priority <Integer>] ; the priority for the message
; default: 5 '

[:platform <Symbol>] ; the platform the speechact has been

; or will be trahsmitted
; default: ’tcpip

» ;Address; characterizes uniquely where in the network the speechact has come from or
should be sent to. As a general rule, speechacts exchanged among GenUA components

[T
1 v .

“ b

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 75

N

have the same sender and receiver, which is exactly the address of GenUA itself. On
the other hand, requests from presentation systems will specify their unique ”network”
address as sender attribute and the address of GenUA as receiver attribute, and vice
versa for responses. As we do not pose a specific presentation system, we do not stipulate
a specific address format, The detailed specification of the address object depends on
how the presentation system can be addressed in the network, it only most be uniquely
to relay GenUA responses correctly to it. This is, of course, related to the existence
of a GUI driver for that platform which is able to receive and to sent messages to the
presentation system used by interpreting the address.

The :tag attribute to typify the message content can be used in many different ways. A
component in GenUA or in the presentation system may use it to trigger an appropriate
handler for the content. One can define a function name in there, while the content are
the parameters.

The :content itself may be anything, in general, but there is one restriction. It must
be possible to transform it into a format which can be transmitted through the GUI
driver, and vice versa be reconstructable from that format into an object GenUA can
deal with.

:Reply-with and in-reply-to can be readily used to relate sent requests, i.e. ”ask”-
speechacts, to received responses, i.e. "reply”-speechacts. This is particularly useful,
as we need to handle multiple requests at the same time.

The :priority determines, how fast the speechact will be processed by GenUA or one’of ~

its components. Speechacts can be ranked from 0 (unimportant) to 10 (very 1mportant)

Finally, the platform is used by the communication component of GenUA io relay a

message to be sent to the correct GUI driver, R

d

‘

How speechact interaction between GenUA and a presentatlon system by means of a
driver concept is described in detall in section 6.1.3. .

The “Right” Implementalion Language

Java offers in contrast to other implementation languages essential benefits for program-

ming

agent-oriented and web-related systems, e.g. explicite thread support, automatical

storage management, communication interfaces. The strict object orientation explicitly re-

flects

the idea of agents and other system components communicating with each other by

exchanging messages. All the benefits of object-oriented software engineering such as inher-
itance, re-usability or abstraction can be utilized during the development process. Also, an

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 76

interpreted language such as Java is more appropriate for development because of the lower
turnaround time and a better error debugging.

Java is promoted by many vendors and developers throughout the agent software and web
community, and has already become a kind of semi-standard. The major benefit of Java is its
portability. Java bytecode can be executed on any machine. As for graphical representation
and universal access, Java applets come up with a variety of pre-defined graphical components
and are accessible through a Web browser from anywhere in the world.

For those reasons, we have seized on the Java language for the implementing the Generic
User Agent and provide a comprehensive Java applet .

6.1.2 Insight to the GenUA Architecture

After this introductory design issues, we move on to have a closer look at the internal com-
position of GenUA. Figure 6.1 provides a complete overview,
We have identified five main components needed for GenUA to fulfil its tasks:

e Communication to send and receive messages to the individual graphical user interfaces

¢ Administration for giving access to multi-agent systems and maintaining user configu-
rations

o Application Manager for enabling interactions between multiple users and multiple
agent applications

o History to record those interactions in a personalized way VA

?

o Offline Manager to gather application events occurlng during a user’s abﬁence and,
mformmg the user via a telecommunication medium .

- Sermce Agency to medlate among the components for 1nteract10ns

= e WM

Some of the components employ sub components and resources (indicated by Whlte boxes).
The exact purpose will be explained in the correspondmg paragraphs following.

6.1.3 The Communication Component

We begin our journey with GenUA’s interface to the outer world - the Communication com-
ponent. The purpose of this component is to receive requests from and send responses to not
only a variety of different users but also different presentdtion systems.

For this reason, we have integrated a GUI driver concept into Communication. GUI
drivers are meant to be tailored exactly to the addressing and transmission mechanism, a
GUI may use. For example, for our Java Applet we utilized a simple TCP/IP driver which

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY

A Towards Graphical Interfaces

77

Generic User Agent

R

[.

Telecom
Interface

Application Administration

#
Agent Request Manager Agent Response Manager +

Towards Multi-Agent Environments

Figure 6.1: The Architecture of the Generic User Agent

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 78

one transmits data through a socket to the Applet residing in the Web browser. It is possible
to replace this connection with object brokers such a CORBA, or with the HTTP protocol.
Instead of the Java applet, it is also possible to have a CGI script running which communicates
with GenUA through files or pipes, fetches requests from HTML pages and generates HTML
results. If one has a X widget execution environment, he can talk to GenUA through one of
the standard inter-process communication.

With respect to the limited time, we could not experiment with more GUlIs and drivers
than the Applet-TCP/IP connection mentioned. However, the mechanism described above
is supported in a generical way. We have initially implemented an abstract description of a
GUI driver, which one can be instantiated by any nurmber of arbitrary parameters due to its
purpose. Every driver can be associated to Communication and is enabled to send and to
receive speechacts in an abstract way. Also, we provide a default driver which operates on
the TCP/IP protocol and is active through the lifespan of GenUA, and we have a default
address to sent any kind of speechacts to if necessary.

As we do not know beforehand, from where and how a user wants to talk to GenUA
and bave no idea about the parameters needed for a GUI driver to establish a physical
connection to that particular GUI, Communication will start GUI drivers only on explicite
demand while the request includes the parameters to be passed to the driver’s instance. Of
course, this has to be made through a independent driver which is active through the lifespan
of GenUA. We provide a default driverrwhich operates on the TCP/IP protocol. Upon
receiving such an installation request and if Communication finds a corresponding driver, it
will be instantiated and administrated so that all further communication from and to GenUA
can be made through the new driver. Vice versa, GUI drivers are shutdown upon receiving _
a corresponding request. i '

In this way, opening and closing drivers appropriate for their purposes is the resfonsibility_
of the presentation éoin-ponent, a user wants to use. We can keep GenUA [ree frofn opening
lots of predefined drivers which are perhaps never used, or.which may need a re-initialization
at.-rintime as the parameters of a particular presentation Com’ponent slightly diffe‘-i‘ from the
default parameters in a running GUI driver. ;

Drivers are always associated to unique addresses in the network, so that users at different
locations can talk to GenUA through different drivers at the same time. The identification
is simply made via the ”:sender” respectively ”:receiver”. attributes of speechacts exchanged.

By means of the parsing and serialization process for knowledge as described in paragraph,
it is possible to send and receive data to different platforms in pretty much the same way
without extensive conversion.

6.1.4 The Service Agency

The Service Agency is the core of the Generic User Agent. With it we realized the meta
component or name server mentioned in paragraph which allows all GenUA components-to

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 79

interact with each other in a flexible and sophisticated manner. It combines routing and
brokering capabilities.

While startup, every server component registers with the Service Agency by providing
a number of services. A service is a speechact pattern, the server component is able to
interpret and to process. In this way, components announce their capabilities or interests in
events. In the following the Service Agency will know about the existence and the capabilities
of every registered component and is enabled to route incoming events to a corresponding
receiver. Components may "improve” or "reduce” their capabilities at runtime by sending
corresponding register and unregister speechacts to the Service Agency. This one maintains
and updates all the registered input patterns in a global directory for referencing, and can
sent a snapshot of it on request.

The Service Agency is also enabled to distinguish between internal requests (received from
a component) and ezternal requests (received from a GUI), and on the other hand between
responses to be routed internally among the components or outwards. As every request and
every response is a speechact event, this can easily be done by evaluating the ”:sender” and
":receiver” attributes. It is obvious, that requests from outside will always come from the
Communication component, and responses to GUD’s will always passed to this component for
sending them away. :

When the Service Agency receives an event in form of a speechact, independently whether
it comes from outside of GenUA or from one of the components, it always tries to find a
matching pattern in its directory. If it finds one, the speechact is routed to the component
by invoking the component’s general event handler. If there are several matching pattern,
the Service Agency builds a list of candidates ranked by the priority, the components.had .
attached to their service registration. Due to the list, the component’s are asked ito handle
the event until one will work on it. If no handler can be found by pattern matghing, the
Service Agency tries in a last act to pass the dangling vent in’ a first-come-first-sefved order
to any component. This is useful, as a component may havé.”forgotten” to register a new
capability at runtime. If no component wants to handle the event, the router notifies the
sender appropriately so that it can take the necessary actions. '

Events which expects an answer, i.e. ”ask”-speechacts, can lead to a simplified mechanism,
with respect to an upcoming answer, i.e. ”reply”-speechact. In that case the Service Agency
simply remembers the event’s :reply-with attribute and its sender. Events with corresponding
iin-reply-to attribute will be directly routed to the markéd sender without pattern matching.

As an additional feature, the Service Agency can be linked to a special network address,
where a copy of all events passing the agency’s loop can be sent to. This allows for moni-
toring the entire GenUA activity, for observing the compenents’ interaction, for recognizing
deadlocks or even for visualizing the activity in an animated picture.

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 80

6.1.5 The Administration Component

The purpose of GenUA’s Administration component is, as the name indicates, to administrate
users, to allow access to the system and to provide user configurations.

Users are uniquely identified by a login name and an encoded password. Those are checked
before any other interaction is possible. Associated to each registered user is a profile with
the following elements:

o the set of multi-agent applications he is allowed to administrate

o the set of multi-agent applications he is allowed to participate in

e the name of the graphical interface to talk to the applications

e 2 set of preferences controlling the appearance and function of the GUI

When a user is allowed to access the system, the Administrator sends those four elements
back to where the login request came from, in order to get evaluated there. The idea is, that
the destination system in turn invokes the user’s preferred GUI instance while interpreting
the preferences and displaying the available applications. In the next step the user can start
to interact with the multi-agent scenarios.

Beside the registered users with name and password, we have defined a special user,
who may login as "anonymous” without password check. This guy may get demonstration
scenarios and a default interface without preferences. However, interaction with real ongoing
applications is only possible, if the application itself allows participation of unknown or new
users. -

After a user has logged in, Administration broadcasts the online presence of the yser to ev-
ery server component. A component may use this information to load user-related {;esources .
to install tools for him or to make specific information for thig user accessible upoji request.
From this moment on, a user is uniquely identifiable by its name/ password AND ifs current
location in the network. An obvious principle used throughout the entire impletnentation
process states: ” A user may have sessions to multi-agent applications from different locations
but not at the same time. Thus keep user-related elements across sessions assomajced to his
name/password, and use his current online location for receiving and sending.”

User profiles are persistently maintained and updated regularly. Administration allows
simple creation, removal and modification of user profiles at runtime via corresponding
speechacts. Of course, user profiles can also be edited manually in a simple file format,
which is interpreted by the component while startup.

»

6.1.6 The Application Manager

The Application Manageris the entity in GenUA, which incorporates the essential functional-
ities to link users to multi-agent applications, to enable interactions, to detect input requests

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 81

and agent notifications, and to forward them to the correct user. In order to satisfy this task,
the application manager employs a variety of sub components and resources. Figure 6.2 gives
an overview to the structure.

The Application Manager is the immediate mediator between distributed multi-agent
execution environments and the rest of GenUA. On top, we can see the Main Event Han-
dler pertinent to every component to handle incoming events when assigned by the Service
Agency. This handler interprets the events and invokes the corresponding functions inside
the the application manager. It is also responsible to pass speechacts, i.e. responses or no-
tifications, created in the component to the Service Agency for routing to other components
or external entities, i.e. the plethora of graphical user interfaces.

Administrating and Acting in Multi-Agent Applications
Attached to the Main Event Handler there is a module called Application Administration.

It is responsible to administrate and control multi-agent applications. General administration
functions include:

self-configuration by loading the specifications of all multi-agent applications provided

listing all specifications

adding, removing and modifying specifications at run-time

e storing changes of specifications permanently 7
An application specification is composed of a unique name and a description Jof its dis-
tributed elements. This is a list of host-port-resource tuples needed to create and’ 'to access:

COOL execution env1ronments on remote machines. 1‘-
The more complex functions are those which allow management and control oﬂ complete
multi-agent applications: i : J

]
4

¢ creation ard shutdown of 'clistributed multi-agent application

¢ linking and unlinking a user to a multi-agent a,pphca,tlon as well as installing and
decoupling the necessary auxiliary tools

e providing information about the main elements in applieations which are agents, con-

versation classes and conversations .

¢ initiation of conversations at agents by the user

. fbrw&rding of user input to multi-agent applications being requested from there at
runtime and filled by the user

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY

82

Application Manager

From and Te¢ the Service Agency

Agent @ onversati Checker @
1

Figure 6.2: The GenUA Application Management

Pyt e

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 83

e execution of distributed multi-agent application

To create a distributed application means to open up a number of COOL agent execution
environments on remote hosts and to load the necessary sources automatically. Only users
with a corresponding profile are allowed to create applications.

Linking a user to a multi-agent application is done in two different modes.

1. A user may be "new” in the application. In that case, we create a personalized stub
agent in each of the distributed environments. From that moment on, the user will be
enabled to access and to interact with the elements in the application, to receive input
requests, to submit input and to receive notifications and results from there., A number
of auxiliary tools will be installed for the user to keep track of what’s going on for the
user in any of the distributed environments.

2. We allow users to suspend sessions with applications temporarily and to resume them
later on (perhaps from another location). In that case, both stub agent and tools will
remain active all the time during the user’s absence. Only the operation mode of the
tools has to be changed {see below).

After being linked, the user may first get information about available agents and their
conversation classes. He can select one or more and initiate them explicitly. The user may
receive input requests, to fill them and submit his input back to the application and to
inspect notifications sent to him. Even though an multi-agent application usually executes
itself without the user’s initiative, there are some cases, the user needs to trigger the e:z:ecutwn
of the multi-agent application expl1c1tely

When wunlinking from a multi-agent application, the user needs to choose, v@f'hether he
wants to resume his session with the application later, or if he wants to finish his pa,rftlmpatzon
Depending on that, either his stub agents and all auxiliary tools installed from him are
removed, or everythlng remains active and just operates in an’ ofﬂlne mode durmg;‘the user’s
absence (see below) :

Shutdown an running multi-a,gent scenario is an eagy act1011 in terms of k1111ng all the
distributed environments but a tricky problem c0n31der1ng the ongoing interactions of users.
First, only those user, which is allowed to create an application, can shutdown it. Second,
applications can be shutdown in two different modes:

1. In a user-friendly mode, we determine if there are still users interacting with that
application (irrespective whether they are online or offline at the moment). Only in
the case, where no one participates, the application is really shutdown. Otherwise, we
provide a list of participating users to the one, who has send the shutdown request. He
may use this information to discuss the issue with them.

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 84

2. In a user-ignorant mode, we shutdown the application, but we send an explicite message
to all the users still participating, so that they are at least informed automatically.

Observing Multi-Agent Applications

Application Administration is connected to three further subcomponents the Agent Re-
queslt Manager, the User Conversation Manager and the Agent Response Manager.

The managers are frameworks which supervise a number of polling elements needed to
keep track of what’s going on for every user in any part of distributed multi-agent applications.
Those polling elements are created on demand, always associated to exactly one user in one
application, and they keep on running as light weight processes until they become obsolete.
As the name may indicate, they serve the following purposes:

Agent Request Manager and Agent Request Checkers The checkers continuously watch
whether there are any input requests for users in applications. Detected requests are
wrapped into corresponding speechacts and passed to the manager. From there they will
be forwarded without further manipulation via Main Event Handler, Service Agency
and Communication directly to the graphical interface where the user concerned can
answer them. Moreover, the checkers keep track which input requests already sent to
GUIs have become obsolete for a number of reasons and they will notify the GUI about
that in the same way.

Agent Response Manager and Agent Response Checkers These checkers do exactly »
the same for notifications and results from multi-agent applications to users.} Detected
notifications undergo the same procedure of transmlssmn to the graphlca,} interface
where the user concerned can inspect them. . ?.

User Conversation Manager and User Conversation Checkers The purpose of these
checkers is to continuously update conversations, a user has instantiated, on .the user’s
screen. As a result, he will get complete instance,descriptions which w111 be updated
continuously, so that the user can keep track of what’s happening to "his” conversations
during the execution process. It is essential to mention here, that this inspection and
update service is available only for self-created conversations. The reason is that, as a
result of the user’s initiative, quite a number of internal conversations may be created
inside the multi-agent application a user should not be overwhelmed with. Detected
changes include changes in states, modified variableg, termination etc. All of them are
submitted in the same way to the GUI as mentioned above.

One of the key elements for all of those personalized checkers is that they may run in
online or offline mode. This means they behave slightly different depending on whether a user

L

b

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 85

linked to a multi-agent application is currently online or offline. Particularly, it will make no
sense to send speechacts to non-existing GUIs. Rather, they will be deposited at the Offline
Manager and transmitted through a standard telecommunication medium to wherever the
user wants to receive information during his absence. Those effects are controlled by the
Application Administration whenever a user links to an application and due to the mode he
unlinks from it.

Accessing and Manipulating Multi-Agent Applications

At a certain point, it is necessary to break all the execution and management logic to
simple functions which can be executed towards agent execution environments and whose
results can be captured and interpreted. Basically, we needed the following mechanisms

e a mapping from JAVA to LISP for both responses and results

e an interprocess communication between the JAVA virtual machine and an LISP execu-
tion environment

¢ a routing mechanism from and to distributed execution environments

This is exactly the task of the COOL Application Interface. As you can see in figure 6.2,
all of the other modules and checkers communicate with the actual agent environments via
the COOL API after all. The API provides a number of basical functions needed for our
context. There is an API in each agent environment which provides exactly the correspondmg
functions just in another notation. The individual functions are: A

e loading an application into an execution environment

sy R

e creating user stub. agents

N

e removing user stub agents

e -__hki,"‘_‘.‘

¢ getting the agents of an application ,

getting the the conversation classes of agents

getting the the ongoing conversations of agents

initiating a conversation at an agent

»

getting input request from a conversation to user

sending input to a conversation

getting notifications for a user

R

W b

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 86

e executing an environment

With these little set it is possible to enable concurrent interactions of multiple users with
multiple applications.

Fortunately, agent execution environments are accessible via TCP/IP socket connections.
As the COOL API knows where the individual environments of all distributed applications
reside, it only needs to open a socket there, to send the encoded request, to read the response
and to convert it. Again, we could benefit from the declarative knowledge structures men-
tioned earlier. We have the API in the LISP environment sending results in exactly the same
string notation as we transmit responses to graphical user interfaces on different platforms.
Aside from parsing a string there is no additional data conversion necessary.

It is evident, that the API establishes the bottleneck of interaction. During the execution
there will be not only continuous but parallel queries from one of the Application Manager’s
elements. We needed to set up a synchronization mechanism in here which allows only one
request to be executed at a time in a FIFO order. However, as the socket communication is
a matter of milliseconds, this poses no obstacle.

6.1.7 The History Component

The purpose of the History component is to record every essential interaction between users
and multi-agent applications and between'graphical interfaces and GenUA itself. Interactions
are captured in form of retrievable events. Every other component of GenUA can create such
interaction events and sends them as speechacts to the History component in order to get
recorded. e

Interactions are always user-related, thus they are maintained in a global user-efent table.

With respect to one user, events either fall into the category of application—in:(:iependent
events, such as login or creating/shutdown applications and :applica,tion—interacti;ﬁn events,
such as inpit requests, user input or notifications from applications to a user. '
-« The heterogenous nature of events requires a retrieval mechanism for the hist"pry across
sessions and across interactions pertinent to particular applications. A user must be allowed
to inspect everything that happened while interacting with GenUA at any point in time. In
this way, a user will be enabled to re-use results obtained from interacting with one application
for interacting with another application. On the other hand, this will lead to a considerable
growing of events for a user during the lifespan of GenUA.

We deal with that in the following way. During a session with GenUA we force the
graphical interface to keep events persistently on its side, once they are retrieved. Subsequent
retrieval requests will only provide those events that happehed in the meantime, thus avoiding
to transmit information twice. Events pertinent to a application will be removed, if the
user has decided to terminate his participation with that application (see "unlinking” in the
description of the application manager). Moreover, we create from time to time dumps of

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 87

events on a persistent medium if the absolute number exceeds are certain limit. This means,
the events are no longer retrievable from GenUA, but they still can be inspected if needed.

However, a snapshot of all events currently maintained in GenUA can always be persis-
tently stored and retrieved.

6.1.8 The Offline Manager

The Offiine Manager is responsible to inform users about essential changes in applications
during their absence. The idea is, that a user may be actively involved in a multi-agent
scenario but is momentarily not able to have a session with GenUA. Nevertheless, there
should be a way to inform him about requests, results or other changes detected for him
during his absence. The Offline Manager is meant to send those events to users as multimedial
telecommunication messages (fax, voice or e-mail).

Whenever a user suspends a session with a particular application temporarily, he can
define where and how he wants to get informed in the meantime. During his absence, the
user-related tools of the Application Manager work in offline mode. This means all events
detected are not relayed to the graphical interface but they will end up here. A copy of those
events is supposed to be converted into the selected format and transmitted to the selected
destination. This means, the internal textual representation will be either converted into a
E-mail message and sent to an E-mail address, or a fax message sent to a fax number or even
a voice message resulting in an automatic phone call.

We have currently implemented a mechanism for sending e-mails in this way. However, we
identified a general interface, which makes it easy to attach handlers for fax or voice similarly
without modifying the Offline Manager. _ AN

Irrespective of that, changes detected during the user’s absence are stored in an application-
related manner. This means they can be retrived when the user resumes his sessi;@n with a
particular application, no matter where he had been located during the previous session. The
events will be transformed to the GUI in exactly the same way, as if he would 'Iiia;ve been
online all the time and just would get a large amount of requests and results at an’instant.

6.2 The Graphical’ GEHUA Interfaces

Users may interact with the Generic User Agent from a variety of graphical interfaces. How-
ever, for worldwide access to multi-agent systems, the best approach is to use the World Wide
Web. We anticipate that interacting with multi-agent systems through a Web browser will
become: as familiar and convenient as using on-line information or searching for documents.
Downloading and executing Java Applets is supported by most of the standard browsers.
For this reason, we developed a graphical interface as a Java applet. In terms of design, it
should be emphasized, that it was neither the purpose to come up with the ultimate graphical

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 88

realization nor to address a particular group of end-users. Rather, we wanted to demonstrate
the principles of interaction to multi-agent systems by utilizing the features of GenUA.

For our approach in designing the graphical representation, we tried to keep the look
and feel as clear and intuitive as possible. The user may operate freely within the elements.
Most of the logical work will be done by the Applet. Also, we force the user for specific
interactions only if its really necessary in order to leave GenUA in a defined state. We
limited communication activities by maintaining most of the objects permanently on the
applet’s side, once they had been obtained from the interface agent. GenUA poses a strict
model for user inferactions to multi-agent applications. The applet reinforces this by a
context-sensitive event handling. With respect to control and transparency, the graphical
interface follows an all-in-one approach which means that all the essential functionalities and
all dynamically changing components are bundled into a singular frame. The user will be
always aware of the current context and can keep track of the effects his interactions will
cause in the multi-agent applications.

The following description of the graphical interfaces starts with the way how they com-
municate with GenUA 6.2.1. After that, we will examine the individual features by means
of a sample interaction with a multi-agent system 6.2.3,

6.2.1 The Communication Handler

The graphical interfaces are composed of two elements: the actual presentation frame and a
communication handler. The latter one enables the presentation frame to communicate with
the generic user agent and updates the content of the frame dynamically.

With respect to security issues, Java applets are restricted in using network services‘on”
the client’s side. They cannot write onto the local filesystem and are not allowsfl to open
socket connections to arbitrary hosts. However, they may talk to sockets on the ﬁost from
where they had been downloaded. As the applet resides on the same host, where GenUA is
running, we can have the applet talking to GenUA via TCP/IP socket connectmn; For that
purpose, we could instantiate exactly the same TCP/IP driver as used by GenUAf

The main responsibilities for the Applet’s communication handler are; :4

¢ to send requests to GenUA and to receive responses from there

e to receive any kind of notifications, GenUA issues autonomously to the applet

e to convert user actions detected by the components of the presentation frame into
adequate speechacts in order to trigger the desired action in GenUA

o to translate speechacts received from GenUA into corresponding manipulations of the
presentation frame

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 89

It is obvious, that conversion and presentation have to work very close together. However,
the conversion layer could be separated from the actual communication layer. This allows for
re-using at least the communication facility, if the requirements for the applets; functionality
are changing significantly.

6.2.2 The Login Window

In the beginning, we need to identify the user uniquely and to recognize, from where in the
system he is talking to GenUA. A user may log to the system from any web browser. Once
accessing the URL, he will first obtain a login window as shown in figure 6.3.

Welcome to the COOL Agent World

lyou are a registered user, please provide
your useérname and password to hook on the System.

I you wish to talk to the ageist system as an
ARORYMOUS uscr, please login with "anonymous”
and your e-mail addriss as ord.

Figure 6.3: Logging to the GenUA System ;

Aside from registered users, which are known to GenUA with name and encoded password,’
we allow “anonymous” users to use its services. Those users may get specia,lly?_'designed
multi-agent applications which offer functionalities to ar.bitra,ryl- users, e.g. commundcation or
information services. To distinguish them from each other, we use their e-mail a_’ﬂdress as
password. o ‘ ‘

Once GenUA has received this information and the ufer has been accepted, it determines
which graphical user interface should be provided to the user. As mentioned in section 6.1.5
it maintains a profile with an abstract GUI name and preferences for each user in order to
be evaluated on the presentation systems side. In our Java Applet case, we transmit a class
name and some preferences back to the Login Window upon which the actual graphical user
interface is instantiated. So far, we had developed only Jone representation deemed to be
appropriate for our purposes. However, one may feel free to design other GUIs while using a
similar execution logic.

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 90

6.2.3 The COOL User Interface

Figure 6.4 shows the complete user interface developed for interacting with multi-agent ap-
plications as it will present itself upon the user has logged in to the system,

As you can see from the design, we followed the all-in-one approach. On top we have
a control panel for dealing with application objects itself and the history across application
sessions. Application Administration refers to the creation and shutdown of agent appli-
cations while Application Linking refers to participating in and dissociating from ongoing
applications.

Below, we have a browsing panel. The purpose of that is, beginning from the available
agents, to guide a user to find an appropriate conversation class in order to get instantiated.

The next panel deals with ongoing conversations. Here you will find a constantly updated
list of conversations, the user has initiated from his screen and that are still active. The single
elements are inspectable at any point in time.

Underneath, there is the action panel. Here, all incoming input requests for this user will
appear in order to get answered and filled by the user during the execution Process.

Finally, we have an response panel where all kinds of notifications and results pertinent
to that user will get listed and can be inspected at any point in time. Those results can be
browsed in a clear and familiar fashion.

To explain the execution logic and its graphical effects, we will slip into the role of a user
and have a sample session with a multi-agent application mediated by the Generic User Agent.

Creating an Application

From the choice box in the upper left corner, the user can create an application. By
interpreting the user’s profile, GenUA automatically only provides only those a,pjplica,tions
here, the user is allowed to create and to shutdown. This usually refers to a kind of dpplication
a,dministré,tbr. There will be many users who have no right to do that at all, Where's"the choice
box is simply empty from the beginning. However, an administrator may creaté as many
applications as he like and as exist. Of course, GenUA allows this process only onge for each
application. From the perspective of the user, it does’not matter whether an aipplica,tion
created will run distributed or not. Once an application is up, an arbitrary number of users
may participate in, each one with his own GUI, from Wh"erever_' they are located.

For our demonstration session, we will create a multi-agent application, that runs on a
single machine and is called “Supply-Chain+Scheduling” defining a supply chain demonstra-
tor with scheduling elements incorporated.

»

Linking an Application
From the choice box in the middle, the user can link a particular application which means

N

W b

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 91

Enjoy your stay in the COOL world.

Application Administration Application: Linking History of Agent Inferaction

Conversation Instantiation

#fvalable Agents Avallaple Conversation Casses

CGngoing Conversations

Agent Conversalion

Resquests from Agents

Agent Conversation Aclion Atematives

Messages fronr Agents

Ho. + Agenl 4 Comment

Figure 6.4: The COOL User Interface

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 92

he can participate in its execution process. However, we allow active participation only in one
application at a time. The reason is to ensure a certain context for the user while interacting.
Mixing up elements from perhaps completely different applications in a single window will
confuse the user. Constant flipping from one application window into another upon every
kind of event issued by GenUA is prohibitive as well. Having multiple windows on the screen
do not help the user to focus his attention. Instead of all that, in our approach the user can
concentrate clearly on being involved in and interact with one particular scenario at a time.

Becoming a participant in a multi-agent application means that the user will get his own
personalized stub agent inside the scenario for browsing its elements, being requested for
input, submitting responses and receiving notifications or results from the application.

In our demonstration session, we now let two users link the “Supply-Chain+Scheduling”
a,ppllcatlon each one from his own GUI instance, one “client” that can order products and
one “executor” that cares for logistics and manufacturing to satisfy the order.

Navigating through the Application

A multi-agent application consists of numerous objects. However, only a limited subset
(1) will be of interest to the user and (2) should be made accessible to users. Essentially,
the purpose of browsing in our context is only, to allow the user to instantiate a particular
conversation class at an agent. '

The question is arising, how a user will find exactly this class which satisfies his needs.
Names and object structure may give a hint, but are not sufficient. The point is, that
every conversation may spawn or interact Wlth a multitude of other conversations inside
the agent environment, the user will be not aware of in the first place, and should also
not be overloaded w1th Moreover, these interdependencies will be subject to changes as
the multi-agent apphcatlon requires an -evolutionary development and constant a justing to
new requirements. However, we kept the issue of searching the “right” service a,s1de for the
presént, and assume that the user will somehow know with respect to daily expenence, which
classes he has to use in order to do a certain job. ‘ ;

At any rate, upon linking to an application, all a,va,ﬂa,ble agents are listed on the left
handside. Aga,m it does not matter where these agents physically reside. From ‘the user’s
perspective they are all linked towards a single virtual platform. The user can select agents
and request its conversation classes which will be llsted by name on the right handside, for
each agent separately.

As you can see in figure 6.5, we did that on behalf of the “client” for the Customer agent
and got its only conversation class - the Customer Conversation.

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 93

Enjoy your stay in the COOL world.

Apgplication Administration Application Linking History of Agent Intteraction

] | CUSTOMER- CONVERSATION
Avdlahle Ayents available Conversalion fasses ;

Agent:

{CUSTOMER 1

Figure 6.5: Selecting a Conversation Class

Instantiating a Conversation

From the conversation class list, the user may inspect every object in detail. A conversa-
tion object will be browsed as illustrated in figure 6.6.

This gives the user an idea what the conversation class is about and how it is structured
in terms of states. Due to limited time, we did not implement a graphical representation for
a state diagram in here. However, future work needs to convert the elements in the lower box
(states & conversation rules) into a state diagram which will be much more expressive than)
just a textual listing. ;

From this window, the user may create an instance of the conversation class .browsed.
The new object will be returned to the user. Moreover, theiobject will automa}lﬁcally fall
into the observance of GenUA meaning it keeps track about bgth possible input requests the
conversation may have to this or other users and changes in its execution states. i‘

As a “client”, we have selected the Customer Conversation from agent Customer here.
This class is responsible to acquire orders, to forward them to the Logistics agent to take
care about its execution, to keep track about its processing state and to assist the client in
decision making if problems arise. We are now going to create an instance of this class, which
mean essentially that we create a file or workflow object: :

Handling Requests from the Application

Once, a conversation has been created, it will get executed inside the agent environment,
moving from state to state as defined by the conversation rules, interacting with other conver-
sations, spawning new conversations, doing local actions. At some states, input needed from
a particular user may be requested. This is detected by the Generic User Agent in teamwork

(ST
) .

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 94

Here we have cooversation class: CUSTOMER - CONVERSATION
Assacialed to Agent: CUSTOMER
This conversalion class atiowrs INTERACTIVE manipulation,

CUSTOMER-CONVERSATION

CUSTOMER-ORDER-HANDLING

{ASKING CE-16)

(CANCELLED CC-14)

(COUNTERP CC-11 CC-12 CC-13 CC-15)

(ACCEPTED CC-7 CC-& £C-9 CC-17 CC-1

(WORKING €C-3 CC-4 CC-§ CC-6 CC-1D)
ROPOSED CC-2)

Figure 6.6: Browsing a Conversation Class

with the user’s personalized stub agent. Those requests have been encoded explicitely using
the definitions in the pattern grammar, and will be automatically transferred to the correct
user screen. o7

Input requests for a particular user may come [rom any conversation running infthe agent
application at any point-in time. This includes conversations started by other use,ﬁ?s or even’
conversations which have heen created internally when requlred. As a result, all thede requests
will appear immediately after being detected on the user’s screen, successwely or jn parallel
- a process accompanying the entire life cycle of the user-integrated multi-agent a,pphca,tlon

For v1sua,hzmg the incoming requests adequately, we implemented the namgatlon and
modal dialog model proposed in section 5.2.6. The result can be found in figure 6.7.

In our case, after initiating the Customer Conversation, we will get the new created
conversation object and a first request for specifying a customer order. The upper elements
in figure 6.7 indicate that to the user. By clicking on the request, it will be decomposed first
into a selection list. Remember that input requests may refer to decision making processes,
where the user is required to choose from different ways to respond.

Here, we have no decision making, so that only one action is possible which is to fill a
customer order (see frame in the middle of the figure). By clicking on that, the elements
of the pattern grammar constructing the request are evaluated and transformed into modal
dialogs. In the lower frame, we see the top level for such a dialog consisting of a name (here

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY

Ongoing Conversations

Agent Conversalich instance Of

| CUSTOMER CUS:ANONYMOUS[ST}0_

Recuesks from Agents

Ageni Conversation

£ CUSTOMER_ CUS:AHONYMOUS{E7):0

Action Alternatives

Here we have a list of actions you may perform
Agenl: CUSTOMER

Canversation: CUSIANONYMOUSI7):D

Filt the ordar form, please.

' Figure 6.7: Effects of Initiating a Conyersation Class

95

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 96

a KQML-performative), the sender (which is the user itself}, the receiver (which is the agent
to send the message to}, the conversation concerned and the actual content. All the values in
orange boxes are predefined, the cannot be changed by the user. The actual customer order
is a complex object itself, which can be accessed by clicking the button beside :content upon
which another modal dialog will be displayed. How the user can fill a customer order there
is shown in figure 8.3 in the chapter describing the supply chain demonstrator.

After that, the user can browse the completed request (see figure 6.8) before submitting
it through GenUA back to the agent environment. If the message has been received by the
agent and the conversation concerned, the input request will be removed automatically as
GenUA informs the applet about that. Now, the input values provided can be evaluated and
the execution process of the conversation continues continues,

:SENDER = ANONYHM OUSES7}
{CONVERSATION = CUS:ANONYMOUS{S7}0
:RECEIVER = CUSTOMER
(CONTENT =
CUSTOMER—ORDER
1ORDER-NUMBER = "HXYZ/123/1"
‘DATE ="FRI OCT 17 21:04:11 EDT 1897"
PRIORITY = 1
DESTINnTION
STINATION
ISTREET = "4 Taddle Craek Rd"
iCITY = "Toronte”
P = "M55 355
{PROVINCE = "QN"
:COUNTRY = “Canada”
{PHONE = "1-416~378-0910"
iCUSTOMER = “Enterprise Integration Laboratory”
LINE-{TEMS =§{

:D = 1NV

‘PRODUCT = GARDEN-GNOME
DATE=0

DUE-DATE = 30 -
QUANTITY = 1 /

sPRICE = 10
sUNIT-TRANSPORTATION-COST = 0.25,

2D w INU2
tPRODUCT = NUTCRACKER
DATE =0

DUE-DATE =30
SQUANTITY =1

:PRICE =8 g
‘UKIT-TRANSPORTATION-COST = 0.25]

T

LC M

e

Figure 6.8: Browsing a Completed Input Request

We do not support deleting requests neither in GenUA nor from the GUI. The reason is,
that if a user deletes a request, he will never have the chance to provide adequate input, as
it is needed right now from a particular conversation. As a comsequence, the conversation
will simply remain in that state forever. With that, perhaps the entire scenario and all other
users are affected unless you access the running application directly with system calls. Thus,
the politics for GenUA must be to deliver input requests to users immediately, to expect a
response from them sooner or later and to take care about cleaning up obsolete requests.

) A
v .

Wb

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 97

Inspecting Messages from the Application

Analogous to input requests, notifications or results for a particular user may come from
any conversation during the applications execution process at any point in time. To ensure
a minimum of transparency, the actual content is wrapped into a message layer that helps
the ser to associate it to particular agents and conversations. Message performatives and
comments provide a context for the result or notification. As the actual content may be any
kind of data type (text, charts, gifs, audio, etc), a type attribute is attached so that the
graphical interface is enabled to invoke a corresponding handler which displays the content
adequately onto the user’s screen.

At present, we support two content types which are text including printable values of
arbitrary complexity and composition, and a special format for a Gantt Chart specification
used in our demonstration scenario. However, we kept the representation facility as open as
possible so that new result types can be introduced readily.

As an example, we move on to the user which has the executor role in our little “Supply-
Chain+-Scheduling” application and controls the Logistics and all the Plant and Transport
agents. We take a closer look at what happens on this user’s screen, when an order from a
client has been received. After Logistics has done some actions like decomposing the order
into activities, scheduling them and identifying facilities to execute them, the results are made
available to the user in form of corresponding messages. Figure 6.9 illustrates this situation.

In the GUI’s response panel, incoming messages will be browsed due to the moment
of reception from bottom to the top. The user can select any of those at any point An .
time, inspect them and may even use informations or conclusions gained for upconing input
requests. As opposed to input requests, messages can be deleted separately or c:gmpletely_
from that panel at will. - : ; £

Just for illustration, we show here the initial message foi the user when the Logistics
agent has received a new customer order, and the textual result for the scheduled brder. As
this result follows a specific description for a Gantt Chart (see Content-Type) we are able
to transform the message in a graphical representation as well. Some examples for Gantt
Charts can be found in chapter 8. The content displayed is self-explanatory. What vou can
see here is, that we are able to format complex data structures combined with text ad’equa,tely.

Obtaining Historical Information

During the session with GenUA, the user can retrieve kistorical information at any point
in time, independently from being linked to a particular application. Historical information
stored at GenUA encompasses any essential interaction event between the user and GenUA
resp. the user and a multi-agent application:

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY

MESSdges frem Agents

Ha, + A.l_]enl HMessage Type

E4. LOGISTICS_ ANNOUNCE
LOGISTICS TELL

1. LOGISTICS, ANNOUNCE

Comend

e R

"An order from customer”
ANONYMOUS{S7}
"with the followIng content*

CUSTOMER-ORCER
JORDER-NUMBER = "HXYZ/123/1"
:DATE = "FRI OCT 17 23:39:38 EDT 1997"
iPRIORITY =
DESTINATION =
DEST!NATICN
‘STREET = “4 Taddla Creek Rd"
WLITY = "Terent:
ZIP = *M5S EEE
{PROVINCE = "QN"
{COUNTRY = "Canada’
:PHOME = “1-416-978-0910"
JCUSTOMER -"Entarprrsa Integration Laboratory®
TLINE=ITEMS = [

HD = INVA
-pgooucr = CARDEN~GNOME
DATE

“DUE-DATE = 30

QUANTITY = 1

[hew order successfully scheduled®

PROBLEM
iigant = LOGISTICS
:Nams = PROBL-36
Jeobs =

i ' team will be formed”

JjoB
Narma -JOB-E?
iRelease-Date = Due—Date = 30
‘Oparations = ASM—SB PAINT—SS TRANSP—40
tiributas =

iD= NV
.PRODUCT GARDEN-GNOME
DATE =

.DUE-DATE 30

H =10
‘UNIT—THANSPORT&TION—COST =025

JoB
iName = J0B—41
‘Release—Date = 0 :Due—Date = 30
i0perations = ASM=-42 PAINT~43 TRANSP=44
Atributes =

A0 = |NY2
:PRODUCT = NUTCQACKEH
DATE=0

ICE=10
'UNIT—TRANSPORTATIO N-COST = 0.25, ‘DUE-DATE = 30 "

1D = INY2
.PRODUCT HUTCRACKER
DATE =

DUE-DATE =30
QUANTITY = 1

n

PRICE =38
.UNIT—TRANSPORTRTION—COST = 0.25] RESCURCE
. has bean racalved from CUSTOMER, LOGISTICS Ish’ylng to dete

mlne a scheduling solutlon for 3%

QUﬁ NTITY =1

iPRI
'UHIT—THANSPORTﬂTION—COST =025

Resources =

{Name = ASSEMEW—PLI\NT

Close and Keep Message

' Figure 6.9

: Inspecting Received Messages

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 99

e begin and end of sessions with GenUA

¢ creation and shutdown of applications

e linking and unlinking of applications

¢ navigating through the application

e initiating conversations

e input requests from the application

» completed input sent back to the application
e user conversation updates

e results and notifications for the user

The history for each user is subject to an exorbitant growing through the lifespan of
GenUA. At the same time, in a business context there is the requirement that no information
should get lost. On the one hand, we have to limit the amount of information transferred
between GenUA and the graphical interface and on the other hand we need to provide as
much information as possible. !

In order to deal with the information flood, GenUA records all historical information for
each user and creates dumps on a persistent medium from time to time. Those dumps will be
no longer accessible through graphical interfaces but can be inspected if desired. The history .
is provided only on explicite demand, and we stipulate that during a session, the interface
maintaing its own li_st of already retrieved events. Thus, we can avoid to transfelf,;:.the same,
information twice. - ' ; &

Anyway; history information is accessible by pressing the éorresponding button from the
main window. It may take some time to transfer all the information, but in the end?} a History
Frame will pop up. The regular pattern of interactions between user and GenUA resp. multi-
agent application facilitate a clear and handy graphical representation. Figure 6.10 illustrates
an example for a History Frame, after several sessions with different applications,

The top panel shows interactions related to the creation and shutdown of Iﬂﬁlti-agent
applications. We assume, that this is not a daily business. However, the person responsible
can see here, when a particular application had been started last or how long it had not been
used.

The panel in the middle presents user sessions with particular multi-agent applications.
Whenever a user decides to leave an application while still participating, one session is com-
pleted. (Otherwise, historical information will be dumped only without being accessible
through the GUI). We see that as completed lines in the list with a “linking” and “unlink-
ing” time. Multiple sessions with the same application appear numbered.

v

P

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY

Application Administration

f Thu Oct 30 16:48:45 EST 1997 SUPPLY-CHAIN+SCHEDULING,_ Create:
Thar Oct 30 16:48:45 EST 1397 _SUPPLY- CHAIN+SCHEDULING____ SUCCESSFULLY_CRERTED
Fri Oct 31 10:23:26 EST 1997__ OFFICE-SYSTEM Creat

Fri Oct 31 10:23:25 EST 1997 __OFFICE-SYSTEM SUCCESSFULLY_CREATED

Tinee i Application . Hetification

QFFICE-SYSTEM #0 Fri Oct 31 10:23:36 EST 1997, Fri Oct. 31 19:38;
[SUPPLY- CHAIN«SCHEDULING #1___Frf Oct 31 15:21:03 EST 1937

Interactions

interactions Total:

Tou Oct 30 TBISTISY EST 1997
PLANT2
Re@actionRegquests

PLANTZ

FLT45
PROPOSED

“Join the farge team®

b ER
ANONYMOUS{S7}

Figure 6.10: Browsing Historical Information

S RV

VN A

100

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 101

If a user wants to trace back interactions of a particular session, he can select the session
from the list upon which the lower panel will be activated. Here, every interaction can be
inspected separately. We see the application session, the total number of interactions, and
for each interaction the type, the initiator, the current number and the content of the event.

The content of the events does not only reflect the interactions detected. Rather, we
nearly copied the content of exchanged messages between the graphical user interface and
GenUA into the event object. This allows for easy displaying, and by using the same output
structure as during the ongoing interaction, supplies transparency for the user. By means
of the control buttons, the user can navigate through the interaction events of a application
sesston at will.

In our example, we have a user who is allowed to create and participate in several appli-
cations. He had a session with the “Supply-Chain+Scheduling” application two days before,
a session with the “...” application yesterday, and today he has resumed his session with the
former one. Supposed, he has got a request from the application, and he remembers to have
had the same situation two days before. I he now wants to see, how he responded then in
order to apply that to the current situation, he just needs to select the event that depicts the
completed request and use the information to fill the current one.

Leaving an Application

As mentioned several times, GenUA provides mechanisms for suspending participation
in applications temporarily, for resuming them later on and for getting the user informed
about crucial changes during his absence via multimedial telecommunication messages. But
an application may also be used only once for a particular service, and then never again. Also
we don’t know, whether a user will be offline only over night or if he is going on a, .business
trip. Considering that, there is a little decision model, Whenever a. user wants te leave a
session with-an application o :

-First, the user will be asked first whether he wants to suspend or to termma,tijs his par-
ticipation. The latter one leads to a removal of all his “traces” meaning all his a,pphcatmn
tools will be terminated a,nd the historical information concerning this apphcatmn will be
outsourced. : -

Second, we need to know, whether the user wants to get informed through multimedial
telecommunication messages and, if so, how. If the user waives that service, he will get aware
of changes during his absence only if he resumes his session again.

Third, we let the user specify, on which medium and where exactly he wants to receive
messages. In the small dialog provided, he may select from “Email”, “Fax” or “Voice”,
and specify an email address, a fax number or a phone number. Currently, only the email
service is supported directly. This decision will influence ALL the applications the user is
still participating in, not only the one he is about to leave. There is no need to assign that
to every application Sepa,ra,tely, before a user closes the graphical interface. '

v

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 102

Affer this process is finished, the top level window remains open, so that the user can
link another application right away.

We do not allow to close the graphical interface unless the user has correctly left an ap-
plication temporarily or finally. Otherwise, we would leave GenUA in an inconsistent state
meaning it will keep trying to send requests and notifications from the application to the
address of a graphical interface that no longer exists.

Shutdown an Application

Running applications can be shutdown only by those users who are allowed to create
them. As only those applications are made available to the GUI at all, where a user has
administration and/or access rights, there is no way to affect applications unauthorized from
a GUI. The problem of a clean shutdown is that the administrator is, in generally, completely
in the dark which users are currently participating in a scenario, where they reside and
whether they are online or offline. On the other hand, it should be possible to terminate an
application without forcing the administrator to run after each participant.

Thus, the administrator may choose from two modes to shutdown an application. The
so-called “user-friendly” mode makes GenUA to check out all users currently interacting
with or just being in the scenario and executes the administrators intention only, if no one
is participating anymore. Otherwise, he will get at least a hint by providing the user’s
login name and there current location. However, in the so-called “user-ignorant” mode, the
application is terminated right away, but every user will receive at least a notification from
GenUA, and the history of interactions remains untouched.

Unlike leaving an application, we allow to close the graphical interface after creatmg an’
application right away and to shutdown an application later durmg a new GenUA session.

{;",
¥,

6.3, Summary ': IR g

With the Generic User Agent, people in a collaborative environment can be linked directly
from there working place to COOL agent systems. They can immediately participate in the
execution process of complex distributed systems without any knowledge about its internal
procedures and structures. All user interactions are fully controlled and coordinated by
GenUA. ‘ :

In featuring an interaction mode where users are explicitely and expressively requested to
provide input at defined moments, he will be freed from any wondering what to do and when.
Automatical relay of execution results and full navigationt and inspection support provide a
maximum in system transparency.

Any kind of user input expected by an application is incorporated in predefined structures
that just need to be filled by the user, when the request has been detected by GenUA. Input

e

CHAPTER 6. SYSTEM ARCHITECTURE AND FUNCTIONALITY 103

requests can be easily visualized as hierarchically nested modal dialogs. Results come up
as messages with a clear context and arbitrary content that just needs to be visualized by
passing to a corresponding handler.

GenUA supplies mechanisms for multiple ongoing dialogs, which can be suspended and
resumed at any point in time. Users can access historical information and receive multimedial
messages about crucial changes in case of non-presence.

Administration and authorization is supplied on both user and application level. Users
can only access entities they are allowed to and which one are of immediate need for their
interaction.

The architecture of the Generic User Agent allows for a flexible composition of functional
elements and a dynamical extension with new capabilities. Interactions among components
are mediated by a facilitator on demand. GenUA processes declarative knowledge at a highly
abstract and domain-independent level. By means of a driver concept, different graphical
interfaces can talk to the Generic User Agent at the same time.

The sample Java applet exposes a convenient way for users to interact to multi-agent
applications from anywhere in the world through a Web browser. The user is guided through
the entire interaction process while giving him the freedom to select his next action. The
all-in-one concept provides transparency and control at any point in time.

The Generic User Agent links people and agents, wherever they may reside, towards a
single virtual platform and assists them to solve problems in a collaborative manner.

e

Tt

WML

Chapter 7

Building Agent-Integrated Business
Structures

Now that we have a tool for developing systems of cooperating agents and a interface for
online user interaction, we have the necessary means to think about a re-design of distributed
information systems in the business world. As mentioned in chapter 3, the goal is to come
to a virtual platform where information and decision processes are coordinated in a mixed
agent-user-initiative across organizational' boundaries.

A major advantage of the agent approach is the natural way to conceptualize a system.
As most of the entities within a business context at a physical level (machines, transportation
systems, inventories, etc) and at an organizational level {plants, departments, offices or even
individual people) can be readily conceived in terms of agents, there is only a sma,lljstep from
a traditional descriptien-to a multi-agent notion. Relations _among the ent1t1es,eexpressed
in terms of interactions, information exchange, coordination or negotiation processes can be
d1rect1y transformed into an agent model. S J

Bmldmg multi-agent applications that involve humans in thelr execution requu‘es a special
software engineering process. For-collaborative systems in industrial or business ddma,ms we
propose the following steps to be taken: ‘

1. Identification of the agents participating 7.1

2. Determination of their tasks 7.2

3. Analysis of the information and control flow a,mong’the agents 7.3
4. Definition of the user’s role and interface character 7.4

5. Specification of the user’s interactions 7.5

AT 104

CHAPTER 7. BUILDING AGENT-INTEGRATED BUSINESS STRUCTURES 105

In the following section these steps will be examined more detailed. For better illustration,
we will apply them to the domain of supply chain management.

7.1 Step 1: Agent Identification

Which entities in a business application context will be identified as an agent, depends on
the granularity of the modeling process and on the complexity of its behavior within the
system. As emphasized in the section on agent theory 2.1.2, we use the term “agent” to
describe entities in an intentional stance, which means for elements that expose a somewhat
autonomous and goal-oriented behavior. In an enterprise context, such a stance can be readily
applied to any kind of organizational structure from viewing the company as an “agent” in
the market or understanding the production and distribution department as “agents” in a
company to delining the role of, say, an individual assembly line worker as an “agent” in the
production process or a clerk working on an insurance case. The agent attribute also works
perfectly for technological components accompanying the product and service flow: assembly
lines, inventories and transport vehicles in manufacturing, switchboards and exchange points
in telecommunication and so on.

All of them share the properties to hold some beliefs from a local perspective, to act as a
result of an internal or external planning process, to respond to changes in their environment
and to coordinate their actions with other entities.

The objective of an agent-based business information system is to provide integrative and
coordinative support for those entities by reflecting their course of action and interactions
with each other, to facilitate information exchange and to take on automatizable routine,
activities. Depending on the application purpose and the scope, we will always ﬁpd a more
or less intervowen network of interacting agents. £

An important issue in the modeling process is the 1ntegrat10n of the plethora, of legacy
1nformat10n systems and tools. It should be emphasized that the “agentification”; ; of a busi-
ness information system does not require the relmplementatmn of the numerous applications
already employed within a company’s network. Software agents can encapsulate databases,
decision support system and online services, thus linking them towards a V1rtua,l platform
with clearly defined interfaces.

In adopting the agent view, we organize the supply chain as a network of heterogenous,
cooperating agents, each performing one or more supply chain functions, and each coordinat-
ing their actions with other agents. As we will see, a supply chain process is simply a serie
of structured interactions among the agents. Given the distributed decision making process
of supply chain management, we construe a distributed decision support system with agent
technology. An example for a agent-based multi-level supply chain is illustrated in figure 7.1.

We have defined several abstraction layers from the supply chain to the plant level, and

CHAPTER 7. BUILDING AGENT-INTEGRATED BUSINESS STRUCTURES 106

—~

supply-chain level

Customer

Suppll

R e

Lagend: @ Agent —— Information Flow —== Product Flow Cash Plow

rs

F"igufe 7.1: Multi-level Supply Chain

CHAPTER 7. BUILDING AGENT-INTEGRATED BUSINESS STRUCTURES 107

for each layer we have identified some agents with essential contributions to supply chain
management domain. The interdependencies among the agents in terms of product, infor-
mation and cash flow arise naturally during the modeling process and will later result in
concrete information exchange and coordination protocols.

Most of the agents may represent or wrap corresponding legacy software systems. The
Inventory agents may be connected to a bar code scanner in the material stock keeping track
about the inventory level. The Scheduling agents may be fed with output of optimal batch
size tools, machine scheduling programs and so on. The Shop floor agents may supervise CNC
programs for the assembly line. The Finance agent may monitor online stock information
such as shareholder values, commodity prices and interests.

7.2 Step 2: Agent Tasks

Once we have identified the agents, we can begin to associate particular tasks they should
fulfil in the global execution context. Enterprise settings are characterized by competencies
and responsibilities attached to any kind of organizational entity from which actual functional
tasks are derived. As a result, we can often find a comprehensive hierarchy of tasks where
abstract descriptions are decomposed successively down to individual operational steps.
When defining the agents’ tasks in a system, we need to examine the individual oper-
ational steps and decide which one (a) are automatizable and {b) will lead to a significant
improvement of performance when automatized. Ideally, the introduction of multi-agent sys-
tems should be accompanied by a reengineering process, a fundamental reconsideration of the

necessity and value of business processes and the efficiency of the organization. It is essential .-

not to fix inefficient structures by tailoring technological systems to it. Only fror;%x a global

perspective on orga,mza,tmnal performance, we are enabled to delegate tasks a,dequately to a.

multi-agent system. a‘.

Other ‘than that, the association of tasks arises na,tura,lly ‘from the scope of actiona an
agent should have. In the same way, as an organizational or technological entity is responmble
to perform certain tasks from a local perspective while interacting with other entities, the
agent representifig this entity will execute a subset of tasks while communicating with other
agents. Competencies and authorities of agents shouId be defined as strict and clea.rly as
stipulated in the real world.

For the supply chain domain, we can examplarily identify the following tasks for agents:

Marketing :

o market information acquisition

e demand forecasting

3

CHAPTER 7. BUILDING AGENT-INTEGRATED BUSINESS STRUCTURES

Customer Service ;

order acceptance

order servicing

billing and accounting
delivered goods servicing

Logistics :

order processing

identification of necessary facilities

global material planning

supplier coordination

global production planning

distribution coordination

global transportation management

determination and propagation of target values to the respective agents

handling of unforeseeable events and exceptions

Inventory :

N ®

Scheduler :

ensuring safety stock level
calculating réo1;der points
determining the order quantity

em WL

defining the preduction sequence
calculating the batch size

determining the production schedule

Bl e e S

108

All'of these tasks may have planning, decision making or execution elements and most
of them are already supported by algorithms, models or tools. The challenge is to capture
and integrate these elements in adequate handling routines for agents and to determine
interdependencies between tasks in terms of necessary information exchange and coordination
requirements. "

CHAPTER 7. BUILDING AGENT-INTEGRATED BUSINESS STRUCTURES 109

7.3 Step 3: Information and Control Flow

A business process is composed of a sequence of activities involving several organizations and
resources. It links the individual tasks by information and control flow in order to achieve
a particular goal. When we have defined a task model for the organization and assigned
the individual tasks to agents, we now have to care about the relations among the tasks.
Naturally, tasks are characterized by some kind of input coming from one or more previous
tasks or the environment and producing some kind of output for one or more successive
tasks or for the environment. Moreover, a task associated to an organizational entity may
encompass the execution of a plan or protocol which in turn requires interactions with tasks
associated to other organizational entities in a particular sequence of steps. The agent view
allows to capture information acquisition, information exchange and interaction protocols
through

e Pnvironment interfaces to acquire information dynamically from all kinds of external
sources and to provide informations to all kinds of external destinations

e Local knowledge for passing information from one task to another within the represented
entity

e Message passing for exchanging information between represented entities

o Coordination protocols to reflect structured interactions between represented entities

The latter one includes all kinds of cooperative activities such as negotiations, (dis-+
tributed) decision maklng processes, or joint task execution beyond the scope of anindividual
entity. - {-"

The described mechamsms go far beyond Electronic Data. Interchange betWeen tradi-
tional information systems. Agents do not only simply respond they can a.utonom,pusly take
corrective actions and make routine decisions. As agents can access a variety of sources
and give conventional information systems a uniform 1nterfa£e, information becommes abun-
dant throughout the organization. For coordination aspects, people can easily communicate
through the agent system and if so desired agent protocols can guide and a551s.t them in
cooperating processes.

In the supply chain model, we exemplarily outline the follong scenarios:

If the Inventory agent is connected to a bar code scanner for incoming and outgoing ma-
terial, it can keep track about the maintenance of the safety stock level. The agent knows
when material should be reordered and what the optimal order quantity is. At those reorder
moments, or when the safety stock decreases below a certain level due to increasing demand
from the production facility, the agent automatically sends material orders to the Procure-
ment agent which in turn consults the supplier. If a supplier has problems to satisfy the

CHAPTER 7. BUILDING AGENT-INTEGRATED BUSINESS STRUCTURES 110

order, Procurement notifies the Logistics agent upon which Logistics may start a negotiation
process with the supplier and the Plant agent in order to overcome the situation. Logis-
tics may temporarily request another supplier to satisfy the material demand. If even this
fails, the Plant agent will make the Shop Floor Agent to turn down the production and the
Scheduling Agent to revise the production plan. Loglstlcs will inform the Customer service
about postponement of deliveries.

From another perspective, the Shop Floor Agent in plant A monitors the ongoing pro-
duction process. If breakdowns occur, they may require initially a notification to plant A’s
Scheduling agent for slight modifications of the production plan. In case the breakdown re-
quires a long time to fix and the Scheduling agent cannot find a solution that matches the
global production constraints, it will inform the Plant agent which in turn informs Logistics.
Logistics may now try to find a replacement capacities at other plants by bidding elements of
plant A’s production program to other Plant agents. Depending on their local schedule and
inventory, those Plant agents may accept or reject the request. If another plant is “willing”
to provide capacity, Logistics will need to ask Transport agent whether the new location can
be serviced. Failure of one of the procedures above will lead to a notification to the Customer
service agent about delayed or even cancelled orders and to a notification to the Finance
agent as cash flow and revenue will be concerned significantly.

Those two scenarios allow only a glimpse to what is possible agent-based information and
control flow. '

7.4 Step 4: User Role and Interface Character
A multi-agent application in a business context is meant to support a variety of dlfferent end
users in their daily work:.to free them from routine activities and to facilitate commumcamon
and coordination across the company’s organization. This requ1res that users are allowed to
interact with the agent system directly from their working, place through adequate interfaces.
* The complexity and functionality of user interfaces to the agent system depen,ds on the
role, a specific user or a intended- group of end user’s are meant ot play when dealing with
the system. The specific role of each end user in the system is determined by two factors:

e the competency and authority

o the degree of participation

The former one is mostly predefined by the role of the user in the company’s organiza-
tion, stipulated in workplace descriptions, competency models and authority rights. Each
user will have its own local perspective to the elements and activities of the agent system.
Determining the user’s role encompasses the association of end users working in any of the
involved organizational entities to specific agents and agent functionalities of the system. The

CHAPTER 7. BUILDING AGENT-INTEGRATED BUSINESS STRUCTURES 111

interface needs to be personalized towards an individual user or group of users so that it can
route information flows from and to the agent system, and can ensure authority and access
rights.

The latter one describes to what degree a user is supposed to be involved in the system
execution process. To some extent, this is stipulated already by the user’s competency and
-authority. The degree of participation will range on the following scale

Monitoring The user obtains specific output during the system’s execution.

Information Acquisition The user may send querys to the agent system in order to retrieve
specific information.

System Input The user may be asked to fill spreadsheets, to edit documents or to answer
questions.

Communication and Information Exchange The user may communicate through the
agent system with other users in order to exchange information or to coordinate activ-
ities.

Decision Making Either as a result of information gained or by evaluating proposals from
the agent system, the user may need to make decisions in a particular situation.

Task Delegation The user may order the agent system explicitely to execute a particular

task.
All of these elements can be combined for the specification of a user’s role which must’be”
supported by a corresponding design of the user’s interface. 3{

Depending on the number of users occupying a specific role in a multi-agent scenano and
on the characteristics of such a role, interfaces may range from simple monitors: ‘or control
terminals to individual interface agents tailored to the needs of a specific user. Héwever, all
approaches have one thing in common: The interface should incorporate the user éxphcltely
in the agent system by esta,bhshmg an own identity. Then, all agents will have an inter-
locutor whenever user interaction in terms of input to the system, decision making or result
presentation is required. i

Back to the agent-based Supply Chain, we exemplamly describe two possible end users
with different roles in the execution process: the inventory assistant and the logistics manager.

The inventory assistant may be responsible to supervise incoming and outgoing material
and products and to ensure the defined stock levels at apy point in time., With respect to
participation, he will occupy a more passive role in the multi-agent system. Thus, we may
link the inventory assistant by providing a simple control monitor to the Inventory agent as
an interface. The control monitor may be tailored to the different inventories maintained in a
company (purchasing inventory, plant inventory, distribution inventory). On the other hand,

' [T

CHAPTER 7. BUILDING AGENT-INTEGRATED BUSINESS STRUCTURES 112

it does not need to be personalized for every inventory assistant individually. We may simply
have one or more terminals in the stock, where every user who is known to the system as a
inventory assistant may use the same functionality provided by the interface.

The logistics manager will occupy a central and comprehensive role in the agent system
as he does in the supply chain organization. His responsibility is to supervise the overall
execution of the internal suply chain, to ensure its efficient operation and to intrude when
unforeseeable events occur. A logistics manager needs easy access to all kinds of information,
models and tools at any point in time, automated information acquisition displayed in a clear
format, comprehensive communication facilities, active decision support and to trigger com-
prehensive evaluation and execution routines affecting the entire agent-based supply chain.
Moreover, the logistics manager’s way of action is highly determined by an own conceptual
models about the operation of a supply chain, personal preferences for useful representation
and, traditionally, a scepticism about putting a computer onto his desk, What we need here
is an interface that is tailored down to the last detail towards the requirements and needs
of the individual logistics manager hiding any system-internal details and coming up with
powerful graphical components and the most intuitive interactions.

7.5 Step 5: Specification of the User’s Interactions

Once the role of a user is defined, and the'interface is endowed with corresponding function-
alities, we need to specify all user interactions in detail. This includes to examine all agent
activities including local actions, plan execution and coordination protocols step by step and,
in close cooperation to the end user, to define what kind of interaction should occur when ,-
and how it should be represented. Closely related is the question of activation, wh;ch means
whether the user or the.agent is the trigger for an interaction. This is a proced},lre where.
the system’s execution process is tailored exactly to the needs and requirements of’ ithose end
users, the multi-agent system is made for after all. R 4 '

“Tn generally, while executing a particular activity or protocol agents may e)?,pect user
actions (input, decision making, etc) from any user interface and send messages: (notifica-
tions, results, etc.) to any user interface, wherever the agent or the user interface physically
resides. Vice versa, a user should be enabled to access and utilize the services of an agent
at any point in time. The challenge here is to determine the need and the exact moment
for user interaction so that on the one hand the system provides a maximum in service and
transparency and on the other hand unnecessary overload is eliminated.

Both user actions and messages to users may assume any possible format. User input
can be captured in command lines, selection lists, tabled, spreadsheets, documents and so
on. Messages to users may encompass the entire multi-medial world: text documents, tables,
charts, faxes, e-mails, audio and video files. The challenge here is to acquire the interaction
knowledge from the users and to incorporate it into the agent activities.

CHAPTER 7. BUILDING AGENT-INTEGRATED BUSINESS STRUCTURES 113

Due to the complexity and constant changes of user-agent interaction, this will require a
prototypical and evolutionary approach comprised of continucus deployment, feedback and
revising.

In our supply chain model, we continue to focus on involving the inventory assistant
and the logistics manager. Suppose we have an Inventory agent being fed with inventory
management procedures and reorder mechanisms and being linked to bar code scanners. For
the shop floor assistant, the Inventory agent may automatically update lists of incoming
and outgoing items, material re-orders, etc. On request, the agent may generate tables
and diagrams about that on a daily, weekly and monthly basis. Through a more or less
comfortable search mask, the shop floor assistant may send simple queries to the Inventory
agent’s database fo instance about the current amount of a particular entity or about its
physical location in the stock.

For our logistics manager, we may envisage an interface to the Logistics agent somehow
similar to a executive support system. A monitor may constantly show the periodical devel-
opment of crucial supply chain parameters such as inventory levels, lead times, transportation
and production capacities and so on. A graphical supply chain model may visualize the com-
plete supply chain including facilities, material and information flow. By simply clicking on
the elements, the manager may inspect the current parameters. If unforeseeable events occur,
the concerned element may blink red, while the manager will be not only informed about the
type of event, rather the agent tries to generate proposals for actions to be taken or decisions
to be made, for example based on case based reasoning. Through a comprehensive commu-
nication module including video conferencing, fax and e-mail, the manager can coordinate
corrective actions online with the executives of the facilities concerned.

R
¥

Nk .
Ty,

7.6 Summary - - /
By 1ntroduc1ng agent- based software systems into the domain" ‘of supply chain mapagement
we are able to integrate concepts and tools and to assist coordination and commumcatwn
among the individual entities in a-flexible manner which are the crucial factors in Qrganlzlng
efficiently managable structures. /

In capturing a supply chain as'a set of autonomous, distributed agents with clea,rly defined
interfaces, we can also address the high dynamics a supply chain is subject to. A mitlti- -agent
system can be adapted to changes in the environment both (1) locally, by extending or
modifying the functionality of one agent without affecting the rest of the community and (2)
globally, by adding or removing agents to the system. As a result, we have a robust and
flexible structure that can undergo continuous adjustments and improvements without loss
of performance.

Chapter 8

The Supply Chain Demonstrator

8.1 Motivation

In order to demonstrate the performance and the high support level of the Generic User Agent
system, we’'ve extended an existing COOL prototype for an agent-integrated supply chain
which now involves the user actively along the entire execution and decision making processes.
The design and implementation procedure concerning the user aspects followed the steps
proposed in section 7. The basical supply thain model is deemed to be appropriate to give a
notion on both the universality and variety of the COOrdination Language and the essential
aspects supported by the GenUA interface. However, it was neither the objective to stipulate
a specific supply chain approach nor to dictate when and how end users have to be involved .
in a real-world scenario. ‘Thus, the following description should be seen as an 1nce7pt1ve and
encouragement for the.interested reader to think about casting models and metl}odologles_
on coordinated supply chain management in a multi-agent scenario, and about 1ritegrat1ng
the everyday activities of éxecutives and employees along the supply chain. COOL; provides
the mechanisms for reflecting decision and information processes among organizatinal units
adequately, GenUA allows structured and guided interactions of end users as the determmmg
element to control and to influenice these processes from any workstation or PC. We envisage
a collaborative environment in which users and agents are hnked to a single v1rtua.l pla,tform
across organizational boundaries. '

8.2 The Company

For our supply chain model, we’ve imagined a medjum-Sized enterprise doing business in
arts and crafts in Saxonia. Its famous articles including nutcracker, garden gnomes and
wooden Christmas pyramids are sold in many countries, and are said to reflect the native
German culture. The “Fichtelberg GmbH” company consists of a headquarter and three

.u‘l» - 114

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 115

workshops distributed in the local area. The headquarter accommodates central customer
service, accounting, logistics and purchasing. The logistics office is responsible to task and to
supervise the workshops, and to coordinate the transportation facilities. Purchasing operates
the main inventory and contracts suppliers. Top articles can be produced in any of the
workshops according to the demand. However, one of the workshops is specialized in assembly,
one of them in painting and one of them has facilities for both. The company is the main
client of two local forwarding agencies which transport material from the wholesaler and
among the facilities, ship final products to the next station and airport terminals, and deliver
a number of tourist shops. For marketing purposes, the “Fichtelberg GmbH” consults from
time to time a local advertising office.

Through the past decade, the demand for high-quality German arts and crafts has contin-
uously increased, and the company was forced to change its production to semi-automatical
manufacturing. They implemented an clectronic material and product registration system in
every workshop which is directly connected via Electronic Data Interchange with the central
logistics and purchasing office. Based on the forecast of the customer service, each workshop
sets up weekly and monthly production plans and coordinates them with the other during
a meeting in the logistics office. The company has also installed a scheduling tool in the
logistics department and in each workshop and forwarding agency. This standard application
features a general algorithm for constraint-based scheduling using texture measurements of
the problem structure. This means, once being configured for a particular environment with
an adequate model, the tool decomposes and schedules activities to be done there.

However, if problems or breakdowns occured in one of the workshops, it was a troublesome

way for the logistics manager to get informed immediately about that in order to discuss

replacement capacities with the the executives of the the other workshops, The company g’
small intranet allows e-mailing but no video conferencing. Also, the customer serv}ice cannot
always satisfy inquiries about the state of an order, and does not have adequate mforma,tlon
in order to make alternative proposals to the clients if the capacities drop. :

. Now, the modern boss has read many about the use of agent technology, eveil in small
busmess He is looking for a systein every employee can work with without being a/computer
expert, that frees the executives from time-consuming routine activities in coordinating their
decisions. It should support the successful concept of team structures, supply: workflow
elements and integrate the company’s software tools, particularly the scheduling applications.

The solution provided by the Enterprise Integration Laboratory was most convincing
and turned out an invaluable support. The COOL multi-agent application allows teamwork,
planning and execution coordination in a virtual agent-based supply chain at several levels of
detail across multiple facilities. Both sophisticated local seasoning tools, like the scheduling
application, and non-trivial multi-level and dynamic replanning protocols with response o
internal or external changes and events are incorporated. By means of the Generic User
Agent, end-users got a maximum in interaction support, transparency and control. The Web
interface supplied with GenUA was familiar to most of the end users involved and lead to

r
'

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 116

a wide acceptance among the employees. The communication expenses could be decreased
radically. Breakdowns can now be much better controlled and overcome, resulting in a higher
customer satisfaction and increasing competitiveness.

8.3 The Agents

We modeled the supply chain of the “Fichtelberg GmbH” at the initial stage as a set of six
COOL agents: a Customer agent, a Logistics agent, three Plant agents and two Transport
agents. This approach arised very naturally from the organizational units participating in
the production and delivery of goods in the company.

Plant Agent 1

Transport Agent 1

Logistics Agent

Customer Agent Plant Agent 2

Ty

P[ant. Agent 3
Figure 8.1: Agent-based Supply Chain Model of the Demonstration Company

Figure 8.1 presents the agent model of the supply chain. The agents are physically
distributed across the company’s intranet according to.the organizational units they are
associated to. Arrows indicate coordination and communication relations among the agents.
In the following paragraphs, we will omit the attachment “agent” occasionally, as it is obvious
what the agent’s names are referring to resp. which organizational unit they represent.

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 117

8.3.1 The Customer Agent

The general purpose (or goal) of the Customer agent is to achieve optimal client service. The
agent is responsible to take and to service customer orders, and is consecutively aimed at
supporting the employees in the service center of the “Fichtelberg GmbH”.

Customer orders in our approach are meant to be acquired by these employees who enter
the data into a generic spreadsheet. One can imagine that the orders arrive the service center
in form of written forms, phone calls, faxes or e-mails. Of course, all these orders could be
also scanned automatically by the Customer agent, if so desired. The information is then
forwarded to the Logistics agent 8.3.2 which is responsible to make sure both manufacturing
and delivery of the single items ordered.

During that time, Logistics sends constantly information about the processing state of
individual orders, so that the service staff can answer client questions, for example about the
delivery date. If Logistics detects problems with an order which affect crucial parameters such
as delivery time or price, Customer obtains not only notifications but alternative proposals.
They can be discussed immediately between the service employees and the clients (in using
an adequate medium) resulting in modifications or cancellations of orders.

The procedure described above has been captured in a single interactive conversation
plan: the Customer Conversation, which is described in paragraph 8.5.1.

8.3.2 The Logistics Agent

In reflection of the central role which one the logistics department occupies in managing
the supply chain of the “Fichtelberg GmbH”, the Logistics agent is also the central player .
in its agent-based model. It coordinates the decisions and actions of all other supply chain
agents, and provides a variety of complex plans to achieve collaborative activities aﬁlong the
organizational units they represent. ' E "

Basically, Logistics is résponsible to take orders from Custdmer and, in close cot hperation
with the workshops and the forwarding agencies, to do everythmg poss1ble to satisly them.

The essential mechanisms used for coordinating and integrating all the supply cha;m agents
(resp. organizational units) responsible to satisfy a particular order are (1)task decomposition,
(2)level-wise team-forming and (3) continuous execution supervision. Those keywords will be
examined in the following more closely. '

Task Decomposition: The scheduling tool already used in the logistics department operates
on a statical company’s model. It knows the general parameters of each facility and
works on standardized order and activity objects. Baged on this, an incoming order can
be decomposed automatically into individual jobs and activities (assembly, painting,
transport etc), the activities can be mapped to potential executors (Workshop 1-3,
Forwarding agencies 1-2) and pre-scheduled due to the assumptions of the model. In this
way, Logistics is able to assign concrete activities to each of the facilities needed to fulfil

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 118

a particular order. With the same scheduling tool, but local models and constraints, the
facilities can decompose the assigned activities into low-level operations and schedule
them as well.

Team Forming We adopt the view, that for optimal satisfaction of every customer order a
team of facilities is founded explicitely in order to work on it. The idea of team forming
between corporations, profit centers and employees has already become commonplace in
most working environment. We seized upon this by having the Logistics agent perform-
ing specially structured interaction and negotiations with the agents representing the
facilities. The purpose of our level-wise approach is to aggregate a team of committed
executors resp. agents out of a loose set of candidates which work on the satisfaction
of an individual order in a tightly cooperated manner.

Continuous Supervision: Due to the dynamics of the enterprise’ world, many unpredictable
events may occur in facilities during the execution of activities. If those events cannot
be dealt locally, Logistics needs to be informed about that. For example, if a breakdown
occurs at one facility, many customer orders may be affected in terms of delay. In order
to detect important problems immediately, we have Logistics explicitely monitoring all
the activities being executed at facilities. Logistics will use the information gathered
to find alternatives, revise plans or negotiate with the client via the Customer agent.

The users of Logistics are meant to be one or more logistic managers working in the
company’s logistic department. So far, the operation mode is a, say, multiple first-in-first-
served queue, which means the first order being received from Customer will be the first in
starting to work on, but this does not infer that it will be the first to get finished. The »
Logistics agent (and hence the associated users) can work on multiple customerforders at
the same time being im different or the same states. One can easily imagine to hafe a team-
of logistics employees Who get orders assigned according to thelr priority, volumé type of
products etc. - ;;

Logistics coordination knowledge is encoded in five, closely mterrelated conversatmn plans
which are: ‘ . ::

rs

the Logistics Execution Net to guide a customer order until satisfaction 8.5.2

the Form Large Team Class to build a team of potential contractors 8.5.3

the Form Small Team Class to build a team of actual contractors 8.5.5

the Kickoff Ezecution Class to trigger the contractops activities 8.5.7

the Find Contractor Class to find a solution in case of breakdowns 8.5.10

The exact functionality of these plans can be traced in the corresponding pa.ragraphs
below.

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 119

8.3.3 The Contractor Agents

We accumulated the company’s manufacturing facilities for assembling and painting as well
as its forwarding agencies under the term Contractors. This means that they are known to
Logistics as those partners in the supply chain that execute the actual activities to satisfy
a customer order. In the “Fichtelberg GmbH”, these are the three workshops and the two
forwarding agencies, represented by three Plant agents and two Transport agents. Under
the assumption of occupying a similar role, we associated in our model the same agent type
with the same functionality to any of these facilities. Each agent works on activities being
assigned by and negotiated with Logistics, maintains its own database and is subjected to
different constraints. The agents are semi-autonomously in taking their actions and decisions:
they are controlled by the end users in the facilities and coordinated in their entirety by the
protocols of Logistics.

As end users of the Contractor agents, we envisage one or more executives at the con-
tractors place, e.g. a shop floor manager at the assembly workshop or the route scheduling
manager at the forwarding agency.

The coordination knowledge needed for the Contractor agents is provided by the following
conversation protocols:

e the Answer Form Large Team C‘lass to indicate interest in the execution of an activ-
ity 8.5.4

o the Answer Form Small Team Class to commit itself to execute activities 8.5.6

o the Answer Kickoff Exvecution Class to indicate the beginning of an activity’s execu- *

tion 8.5.8 3(

o the Monitor Executzon Class to report successful proeessmg of activities oraproblems
|, with their execution 8.5.9 ! J

b
!
7

The exact functlonahty of these plans can be traced in the corresponding p;,n‘agra,phs
below. ;

8.4 Issues of Multi User Mode

We do not know beforehand who will be the person responsible for interacting with the
supply chain agents in each of the departments. Moreover it must be possible to associate
different persons to the “agent-based workplace” as employees may get ill, change positions
etc. For that purpose we introduced the concept of roles. The idea is, that a user, after
linking to the supply chain application introduces himself while occupying one of the roles
“customer-attendant”, “logistics-manager” or “execution-supervisor”.

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 120

We incorporated another agent in the scenario - the Supervisor - which has only one
conversation class - the Role Acquisition Class. The only purpose is

1. to check if a user is allowed to occupy a role
2. to assign the role to the user’s stub agent

3. to propagate the new identity of the stub agent to every agent concerned

In this way, the agents and conversation plans can be targeted at dealing with users that
occupy roles instead of addressing user directly by name,

8.5 The Conversation Plans

According to the COOL philosophy, coordination knowledge among the agents is captured in
conversation plans. Conversation plans are used to declare and to execute structured inter-
actions among agents explicitly in order to achieve shared or individual goals. Those plans
incorporate user interactions at defined moments with pre-defined decision alternatives, or
spreadsheets to be filled, or notification to be displayed. In the following, all the conversation
plans used by the agents in the supply chain model of the “Fichtelberg GmbH” are examined
successively. It will be shown, how the plans contribute to the agents’ and supply chain
goals, how they are constructed and inter-related, and how the user is actively involved in
their execution.

For the representation of the plans, we use state diagrams in which essential user inter-
actions are indicated explicitely, For all the diagrams, the following legend is a;ppli?qable: C

o White balls: indicate the start state of a conversation plan é

R R o ".,
‘o, Gray balls: indicate intermediate states of a conversation plan

e Black balls: indicate final states of a conversation plan

R T e

e - 7 .
e Arrows: indicate transitions between conversation states as defined by conversation
rules

o (Juestion Mark Screens: indicate requests to the user to fill a spreadsheet with values
and/or to make a decision '

e Line Screens: indicate an important notification or {intermediate) result displayed on
the user’s screen

o Mized Screens: indicate that the user will get additional information related to a request
at the same time or that the user’s response immediately leads to an important output

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 121

8.5.1 The Customer Conversation

We begin our journey along the plans and interactions in the agent-integrated “Fichtelberg
GmbH” with the Customer Conversation. This protocol can be seen as the trigger of the
entire supply chain process, and it is the interface to the “outer world” of clients which is
ultimately affected by all the efforts made in optimal supply chain management.

Figure 8.2 illustrates the state diagram of the Customer Conversation where interactions
from and to the customer service employee are indicated.

asked

®
start proposed counterp
o w o
rejected
= 3 _~@
py failed
workin
9 11 12)
5 satisfied
=
® i=
rejected

T
.

Figure 8.2: The interactive Customer Conyersation

,ﬂ',
3‘ .

‘The Customer Conversatlon protocol is listed in detail in table 8.1. For each,{ order, a
separate instance is started, which means essentially that every client gets his own “file”.
At the very beginning, the service employee will get a standard order sprea,dsheeta onto his
screen which one he needs to fill. with the information from the actual customer corder as
- being received via one of the media mentioned above (state start.)

A sample spreadsheet for the customer service is presented in figure 8.3. We see here a
hierarchical structure of pop up windows as defined in the by evaluatmg an instance of the
pattern grammar 5.2.4. The upper window deals with general information for a customer
order, the middle window shows the single items contained in an order with corresponding
manipulation mechanisms, whereas the lower window is used to compose an individual item.

After composing, the order will be sent automatically to Logistics for further processing,
and the protocol moves on to state proposed [1]. If Logistics has started to work on that
particular order, it notifies Customer, and the plan moves “silently” to state working [2].

CHAPTER 8.

THE SUPPLY CHAIN DEMONSTRATOR

Enterprise Integration Laboratory

dodify Element & Delete Element ;

INVE ’

NUTCRACKER

122

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 123

After that, Logistics continuously keeps Customer informed about the state of the order’s
processing so that the information will always be available to the service staff (3) when a
client calls.

Logistics may now accept the order (the plan goes to state accepted) [4], reject the
order (the plan goes to state rejected) [5] or make a counter-proposal with alternative order
constraints (the plan goes to state counterp) [6]. Logistics’ decision on a particular order is
immediately displayed onto the service staff’s screen.

This kind of online notification is especially important in case of a counter-proposal. It
occurs when Logistics has determined problems in the execution of the order such as lacking
capacity or breakdowns at the Contractors. By means of the propagated alternative, the
service employee is able to contact the client, and to discuss solutions with him. The client
may decide to accept the alternative as it is [7], to reject it [8] or to propose an own alternative
solution [7]. At any rate, the service employee just selects the corresponding template and
adds the necessary values to be sent to Logistics while the protocol goes to state proposed
again, or to state rejected where it terminates. Additionally, we allow the client or the
service employee to ask Logistics questions about the proposed alternative, e.g. why the
delivery time needs to be delayed (state asked) [9]. When Logistics responds, the answer will
be immediately available [10] and we can go back to state counterp.

If we consider the regular case, which is Logistics has accepted the order, it will supervise
its execution. Again, during that time it continuously keeps Customer informed about the
state of the order’s processing [11]. When the all the individual items are manufactured and
delivered, Logistics notifies Customer about that [12], the plan is finished (state satisfied)
and the cl1ent is hopefully happy with the goods.

If during manufacturing problems occur that even Logistics cannot handle, i.e. a total
breakdown of a workshop for weeks without any replacement capacities, it informs Customer
that the order has failed [13], and it is the service employees: task to break tha,tr-gently to
the client concerned. Otherwise, Logistics may again send -a cqunter—proposa,l with- modified
order constraints [14].

L My

8.5.2 The Logistics Executlon Net ; J

The Logistics Execution Net can be seen as the master plan of the logistics depa,rtment It
interfaces all the other agents on the supply chain: the Customer agent 8.3.1 and the Con-
tractor agents 8.3.3. All further plans and coordination activities of the Logistics agent 8.3.2
are triggered, supervised and evaluated by this protocol. The Logistics Execution Nét is also
the handler for all unpredictable events that cannot be dealt in sub plans.

However, as the “Fichtelberg” company is only a small business, it could base its entire
logistics management on a manageable, effective and detailed concept. Beyond that, all
the knowledge had been carefully documented, so that it was possible to automatize many
elements of the management process. By means of the agent-based coordination mechanisms,

vor

W by

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 124

STATE CONDITION REQUEST ACTION RESPONSE ao
start Fill order form Submit order to Log. Confirmation 1
proposed | Rec: “working on it” from Log. 2
working Rec: “state of order” from Log. Note state 3
working . State of order (opt) | Retrieve state Display state 3
working Rec: “accept order” from Log. Display info 4
working Rec: “reject order” from Log. Display info 5
working Ree: “counter-proposal” from Log. Note alternative 6
counterp Accept alternative Submit “accept” to Log. Conlirmation 7
counterp Propose alternative | Submit “propose” to Log. | Confirmation 7
counterp Reject alternative Submit “reject” to Log, Confirmation]
counterp Ask on alternative Submit “ask™ to Log. 9
ask Rec: "answer” from Log. Display answer | 10
accepted | Rec: “state of order” from Log. Note state i1
accepted State of order (opt) | Retrieve state Display state 11
accepted | Rec: “order satisfied” from Log. Display info 12
accepted | Rec: “order failed” from Log. Display info 13
accepted | Rec: “counter-proposal” from Log. Display info 14

Table 8.1: The Course of the Customer Conversation

the logistic employees will act basically as a supervisors for the master plan’s execution, and
need only to intrude, at defined moments. Much of routine activities could been taken from
the logistics department by this kind of support. We will refer to the users of our agent
system in the logistics department as “supervisors” along the following description.

Figure 8.4 shows the state diagram of the Logistics Execution Net as well as the user-
system-interactions for the logistics department

Table 8.2 presents the entire course of the Logistics Execution Net in detail. The cham §

starts upon receiving an order from the Customer agent in state start. Again, every order’
gets its own “file”, passmg the scheme until successfully processed or failed. The new order
appears on the supervisor’s screen and we move on to state order-received [1}. -

Now, Logistics tries to decompose the order into 1nd1v1dua,1 activities needed to fulfil it
(such as assembly, painting, transport) and to generate a globaI schedule. This is done by
running the embedded constraint based logistics scheduler, a legacy system whlcﬁ contains
a complete model of the static -parameters characterizing the company’s manufacturing and
transport facilities. This tool is fed with the order information by Logistics and will generate
results which can be interpreted by the agent. If the scheduler finds a solution, this is displayed
in form of a Gantt chart onto the supervisor’s screen, and the plan goes to order-decomposed
2. ‘ |

Figure 8.5 shows an example for Logistics’ Gantt Chart by evaluating the result generated
from the scheduler. Looking on the graph, we see three diagrams depicting the occupation
of the available resources (assembly-plant, painting-plant, trans) by operations related to the
time dimension. A job represents an individual item of & customer order to be manufactured,
which in turn is composed of operations. An individual customer may have ordered many
items leading to many jobs, each job is symbolized by the same color of its operations. Wecan

.

oot
1 .

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 125

. fail
?::
3 25
. /90 asked
O 1 o 24 I S
start order-received
alternative-proposed
2
order-decomposed
e alternative-generated
4 5 ?
8
6 = altemative-needed
contractors-ranked
7 ra
£
}
Y f
20 ;‘
s @ ot ¢
) large-team-formed -"_ i
' H
i ‘ : J
. , .
contractors-cony\ '
Y 13 .
_
2z @ 7 =@
small-team-formed 15 :
contractor-needed
16 X
success

Figure 8.4: The interactive Logistics Execution Net

v

Wby

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 126

also see that there is no resource conflict for the operations, and the entire processing chain
for each item including shipping . Note, that the scheduler operates on abstract resource
names, the mapping to concrete facilities resp. agents will be made afterwards by the plan.
The logistics supervisor may browse the information behind any graphical element by clicking
on the buttons surrounding the graph.

:Earliest-Start = 0 :Latest-Start = 12
:Before = PAINT-4H1
After = 1
‘Resource—-Requirements = ASSEMBLY-PLANT
:Possible—Siart =

1.Min=0 Max =12

Figure 8.5: A Gantt Chart Example for the Lq;;istics Manager

g TORBRRA S il -
Paat

© * if the scheduler could not find a solution, the protocol will.terminate (state faf"q.l) with a
corresponding notification to the supervisor and to the Customer agent [3]. In that case, we
have either a non-standard order or one that cannot be’scheduled at all. How to' deal with
such orders, should be left to the supervisor’s experience.

In state order decomposed, Logistics uses the abstract information proposed by the
scheduler to identify concrete facilities, i.e. to identify the agents to contact, and to associate
the generated activities to them. Upon success, we go to contractors-ranked [4] while dis-
playing the potential executors and scheduled activities textually, otherwise to alternative
needed [5] where Logistics tries to negotiate a slightly different order with Customer. (See
corresponding paragraph below)

The following team forming process deals with the procedure to commit a contractor, i.e.
a facility, for executing one of the pre-scheduled activities. This is done in two stages:

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 127

First, Logistics tries to form a large team. A large team is meant to contain all the
contractors which have expressed their principal interest to execute one of the activities.
This means, that after this stage, each activity may have more than one candidates for its
execution. Indicating interest is not binding for a contractor. The large team is formed
by sending a proposal about an activity to any potential contractor and by evaluating their
responses. For that purpose, we spawn and initialize a sub plan, the form-large-team-class {see
below). The Logistics Execution Net itself will be suspended until the sub plan terminates
with a result [6]. If the large team forming process has been finished successfully, we move on
to state large-team—formed [7] and show the composition of the large team to the supervisor.
Otherwise, an alternative is needed [8].

The second step is to form a small team. Here, the members of the large team are
requested to decide whether they want to sign a contract with Logistics on the activity
they had signaled interest in. After this stage, we have exactly one activity assigned to one
contractor. These are now bound to start the execution of their activity when it is due. The
process of small team forming is done in a similar way through the form-small-team-class.
Upon successful termination [9], we move on to state small-team-formed [10} and show the
composition of the small team to the supervisor, otherwise to state alternative-needed
[11].

After having contracts, Logistics triggers the execution of activities explicitly when they
are due. At that time, it starts yet another sub plan, the kickoff-ezecution-class. The
purpose for Logistics is to know whether its partners, i.e. the signer of activity contracts,
are really enabled to execute them at that moment, as their constraints may have changed
in the meantime. Successful termination [12] of the sub plan indicates to Logistics, tha,t
from then on all the contractors will do their assigned jobs, and we can move on;to state

contractors-committed [13] while notlfymg the supervisor, otherwise we go a;gaurfr to state

alternative-needed [14]. ; f-z

In the following, Logistics watches the executors’ community by waiting for message about
succegsful job execution [15]. If all have done so, the obJectlve of the Logistics E&ecutmn
Net for an individual order “file” is achieved, and we go to the final state success [16] while
notifying the supervisor. : ;

However, during the execition of act1v1t1es there might be lots of unpredlcta.ble events
" at the executors: machine breakdowns, ma,tenal delay, illness among the employees. When-
ever such an event occurs, that cannot be handled locally at the contractor’s place, it is
requested to inform Logistics about that. In that case, the Logistics Execution Net goes
to state contractors-needed [17] while showing the cause of the failure to the supervi-
sor. Logistics now attempts to find a replacement for the failed activity, which means, it
asks successively the other members of the large team, whether they are willing to sign a
contract on the unfinished activity. Remember that all the large team members once have
expressed their principal interest in that activity. This process is done by another sub plan,
the find-contractor-class. Successful termination [18] indicates to Logistics, that a re-

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 128

placement contractor has been found, and Logistics can keep on watching the contractors
community [19]. Otherwise, no replacement has been found for an unfinished activity and
we need to look for an alternative [20]. The supervisor will get informed by corresponding
messages.

The state alternative-needed is entered whenever problems occur during the processing
of a customer order. Here, Logistics examines the nature of the problem and generates
alternative customer orders by relaxing crucial constraints such as delivery time. Those
alternatives are displayed in form of editable spreadsheets to the supervisor and we go to state
alternative-generated [21]. The supervisor can either submit the alternative directly to
the Customer or alter its parameters according to his own knowledge and experience before
sending [22]. In both cases, the protocol moves to state alternative-proposed.

b i
“Fer order:” "The following altarnatlve order has bean submitted to CUSTOMER
filin order to everceme the <urrent problems”

CUSTOMER—ORDE

DER-NUMBER = "#XYZ/123/1" i CUSTOMER-ORDER
:DATE ="FRI OCTEI 18:38:44 EDT 1987° {ORDER-NUMBER = "HXYZ2/123/1"

IPRIORITY = DATE = "FRI OCT 3 19:39:44 EDT 1297"
:DESTINATION NOT_DEFINED! sPRIORITY = 1

‘CUSTOMER = “Enterprise Integration Laboratory™ I DESTINATION = NOT_DEFINED! T
ILINE-ITEMS =[i :CUSTCMER = "Enterprise Integration Laboratory”

(LINE-ITEMS = [
!ID = IN

PHODUCT GARDEN-GNOME i :D = IRV
:DATE = O

~DA i ‘PRODUCT = GARDEN-GNOME
{DUE-DATE =30 ! i -

X E .DﬁTE 2
'QUANTITY = 1 ‘DUE-DATE = 32
{PRICE = 10 HQUANTITY = 1
WUNIT+TRANSPORTATICN—COST = 0,25, sPRICE=9 .
o © :UNIT-TRANSPORTATION-COST = 0.25,
H NVZ2 .
P :Pnooucr = NUTCRACKER : 4D = (NY2
D =10 ' iPRODUCT = NUTCRACKER
:DUE—DATE 3o DATE =12
MQUANTITY =3 " {DUE-DATE = 32
FRICE= 8 :QUANTITV -3 i
, tUNIT-TRANSPORTATION-COST = 0.45, !PRICE = 3
UNI7TRANSPORTATION-COST = 045)
“from customer” . e
ANDNYMOUS{102

“executlon kick—off failed, Looking for alternative,

”
Figure 8.6: Problem Detection and Alternative Generation

Figure 8.6 illustrates the informations appearing onto the supervisor’s screen in case of
failing activity start at a contractor. The left window displays the related customer order

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 129

and the right window a generated alternative. If you compare both structures, you can see
that the Logistic agent proposes to delay the delivery time and to reduce the prices. This
alternative is meant to be sent to Customer. Remember that the customer service now is
requested to negotiate with the client whether he wants to accept the alternative, to cancel
the order or to make an own proposal.

The supervisor can also reject the generated alternative, which causes the Logistics agent
to go back to state alternative-needed [23] and to look for another one, and the procedure
repeats.

Once an alternative had been submitted to Customer and depending on the Customer’s
“decision” on behalf of the client, we move to order-received which starts the entire process
with the modified order again order-received [24], or the order is declared as failed which
ends its plan instance fail [25] with a notification to the supervisor. During the decision
making process, the client (or the customer attendant) may ask questions related to the

alternative order (state asked) [26] which can be answered by the supervisor [27].

STATE CONDITION REQUEST | ACTION RESPONSE GO
start Rec: “Order” from Cust. File order Display order i
order-received Can schedule order Gantt chart 2
order-received Can not schedule order Display info 3
order-decomposed Can find contractors Display contr. 4
order-decomposed Can not find contractors Display info [
contractors-ranked Large team not formed Involve next candidate 6
contractors-ranked Large team formed Display large team | 7
contractors-ranked Large team failed Display info 8
large-team-formed Small team not formed Involve next candidate 9
large-team-formed Small team formed Display small team | 10
large-team-formed Small team failed Display info 7 [11
small-team-formed Job execution not triggered Task next team member P 12
small-team-formed Job execution triggered Display executors 13
small-team-formed Trigger process failed B Display info 14
contractors-committed | Still jobs in process z 15
contractors-committed | All jobs done * Display info ° 16
. centractors-committed { Breakdown at contractor] Display info 17
contractors-committed | Team member available Ask it for replacement H 18
contractors-committed | Replacement foiind Display info 19
contractors-committed | No replacement found 4 Display info 20
alternative-needed ’ ' Generate alternative Display alternative | 21
alternative-generated Accept alt.
Modify alt, | Submit alt. to Cust 22
alternative-generated Reject alt. H 23
alternative-proposed Rec: “accept” from Cust. Replace order file Display info 24
alternative-proposed Rec: “reject” from Cust. Close order file Display info 25
alternative-proposed Rec: “ask” from Cust. Display question 26
asked ' Fill answer | Submit answer to Cust, 27

Table 8.2: The Course of the Logistics Execution Net

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR, 130

8.5.3 The Form Large Team Class

Logistics’ Form Large Team Class defines the interactions of Logistics with the contractor
agents (Plant 1-4 and Transport 1-2) in order to form a large team for each customer order.
The large team will contain all the agents that have indicated their principal interest to
execute one of the activities needed to satisfy a customer order. The form large team class is
a sub plan of the Logistics Execution Net 8.5.2 being activated when that one enters its state
contractors ranked. The plan has a corresponding Answer Form Large Team Class 8.5.4
associated to every contractor agent (see 8.3.3).

The left figure in 8.7 illustrates the state diagram of the Form Large Team Class where
interactions from and to the user in the logistics department are indicated.

@ 5 . accepted

start 1 proposed

>
B
"

start P proposed &
4 3 8
5 8 4 @ rejected
. ° @ ! asking
ok failed asked
Form Large Team Class Answer Form Large Team Class
B
;
F1gure 8.7: The interactive Large Team Forming #
{i

The protocol of the Form Large Team Class is listed in table 8.3. The process is very
simple and automated to a great extend so that almost-no tser interaction is r;;ecessary
The plan is initialized with the activities needed for an individual customer order a,nd their
potential contractors (state start). As long as there are still activities to be distribited and
candidates for each one, Logistics sends a corresponding proposal to the agent concerned and
- goes to state proposed [1]. Now, the contractor addressed may accept or reject indicating
whether he wants to join the large team with the activity proposed or not, and we go back
to state start [2] for the next contractor resp. the next activity. Upon receiving such a
proposal and before decision making, every contractor may ask questions (state asked) [3]
to Logistics which is the only moment where the supervisor has to become active by sending
related answers (back to state proposed) [4]. If for every aCtivity at least one contractor has
been found in this way, the large team forming is successfully finished and the protocol goes
to state ok [5] where it terminates and forwards the large team structure back to the master
plan. Otherwise, no large team could be formed, the protocol goes to the final state failed

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 131

[6] and notifies the master plan about the failure.

STATE CONDITION REQUEST ACTION RESPONSE ao
start Contractors left to contact Submit proposal to contractor 1
proposed | Rec: "accept” from contr. Mark as team member 2
proposed | Rec: “reject” from contr. Set next candidate 2
proposed | Rec: “ask” from contr, Display question | 3
asked Fill answer sheet | Submit answer to contr. 4
start Large team formed 5
start Large team failed 3

Table 8.3: The Course of the Form Large Team Class

8.5.4 The Answer Form Large Team Class

The Answer Form Large Team Class attached to every Contractor agent defines the interac-
tions with Logistics in order to form a large team for each customer order. Upon receiving a
proposal from Logistics, every contractor can indicate its principal interest to execute one of
the activities needed to satisfy the customer order. It corresponds to theForm Large Team
(lass 8.5.3.

The right figure in 8.7 depicts the state diagram of the Answer Form Large Team Class
where system interactions with the user at the contractor’s place are indicated.

In table 8.4 you can trace the course of the Answer Form Large Team Class. The plan
involves a decision making from the executive responsible at the facility concerned. It is acti-
vated when Logistics has sent a proposal about an activity intending to involve a contractor
into a large team (state start). The proposal is displayed to the executive, and we mdve”
on to state proposed [1]. According to his knowledge about the capacities needgd for the
activity’s execution, the executive can decide whether “his” facility wants to Jom%‘ the large
team (the plan moves to state accepted [2] or not (the plan. moves to state rejected [3}.
Accepting to join the large team is not bounding for a later'execution of the ac.‘i:wlty He
may also forward questions to Logistics about the activity proposed (plan goes tb asking)
[4], and can use the answer received in coming to a deglslon (plan goes back to proposed)

[5].

STATE CONDITION REQUEST ACTION RESPONSE

GO
start Rec: “proposal” from Log. : f Display act. 1
proposed Join large team Submit “accept” to Log. | Confirmation 2
proposed Refuse large teamn | Submit “reject” to Log. Confirmation 3
proposed Ask about activity | Submit ®ask” to Log. 4
asking: Rec: “answer” from Log. B Display answer | 5

Table 8.4: The Course of the Answer Form Large Team Class

Figure 8.8 shows how the decision making process is featured. The executive may choose
from any of the items in the upper list. In our example we have selected the “accept”

y [T

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 132

Here we have a list of actions you may perforin

Agent: TRANSPT
1 Conversation: FLY47
State: PROPOSED

Jus large team
Da not Join the large team
Question Form

Here you have the composed message o he sent to the COOL environment.

'SENDER = ANONYMOQUS{1023
iRECEIVER = TRANSP1
:CONVERSATION = FLT47
IN-REPLY-TO = FORM—LARCGE-TEAM
WACTIVITY =
LOGISTICS—ORDER
iEXECUTOR ={TRANSF]
(LINE-ITEMS =[

START-DATE = 26

DURATION =2

‘OPERATION = TRANSPORT

D = [NU2 .

‘PRODUCT = NUTCRACKER o7

:DATE =10 ;

‘DUE-DATE =30 3;

IQUANTITY = 3 ’

‘PRICE=8 i
o) ‘UNIT-TRANSPORTATION-COST = 0.45,

. ISTART-DATE = 14 s

' \DURATION = 4 -y
{OPERATION = TRANSPORT .
!ID = INV1 .
:PRODUCT = GARDEN-GNOME
WDATE =0 .

e ‘DUE—DATE = 36

e w ML f."_

Figure 8.8: Decision on Large Team Participation

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 133

template. There is nothing else needed than the decision in itself, and the protocol does not
allow manipulation of values in this state whatsoever. So, we just display the information
about the activity concerned to the executive and he can decide whether he wants to submit
this or rather another message to Logistics.

8.5.5 The Form Small Team Class

Analogous to the Form Large Team Class, Logistics’ Form Small Team Class defines the
interactions of Logistics with the contractor agents (Plant 1-4 and Transport 1-2) in order to
form a small team for each customer order. In the small team, each activity will have assigned
exactly one executor. The plan is activated by the Logistics Execution Net 8.5.2 when that one
enters the state 1arge-team-formed (see above). Correspondingly, each contractor provides
a Answer Form Smell Team Class 8.5.6.

The left figure in 8.9 shows the state diagram of the Form Small Team Class where
interactions from and to the user in the logistics department are indicated.

/2—\ g asked 1
I * ! proposed
3
unscheduled ‘
4 11

start proposed

it

scheduled

b/

counterp

367

e o) o=
ok - ' failed asking accepted © rejected counterp 3
; : ; ?::
@

Form Small Team Class Answer Form Small Team Class ' asked
Figure 8.9: The interactive Small Team Forming

Table 8.5 presents the course of the Form Small Team Class. Unlike the large team
forming process, this protocol is slightly more complex and requires more user interaction.
Thus, we reflect the nature of the contractors’ commitments sought. The plan is initialized
with the large team as generated by the previous process (state start). Again, as long as
there are still activities to distribute which do not have an executor yet, Logistics sends a
proposal to the next member of the large team and goes to state proposed [1]. In turn, the
contractor addressed may accept or reject the proposal indicating whether he wants to join

v

4 by

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 134

the small team with the activity proposed or not, and we go back to state start [2] for the
next activity. Upon receiving such a proposal and before decision making, every contractor
may ask questions (state asked) [3] to Logistics and the supervisor is requested to send
related answers (back to state proposed) [4]. '

A contractor may also send a counter-proposal in terms of wishing to modify activity
parameters that are not consistent with its current constraints. In that case, we start a
negotiation process between Logistics and the contractor, being composed of several cycles of
proposals, counter-proposals and raising questions until one of them has eventually accepted
or rejected to get (or to be) involved in the small team. This is the essential part of the user
interaction in the Form Small Team Class. Upon receiving a counter-proposal (while moving
to state
tt counterp [5], the supervisor can inspect it, and decide what to do. He can choose from the
following alternatives: If he feels the (current) counter-proposal is feasible resp. impossible,
he can accept resp. reject it, and the negotiation with that contractor is finished. The
protocol can move on to deal with the next activity [6]. A supervisor may have questions
concerning the counter-proposal to the contractor before coming to a decision (state asking)
[7] and use the answer provided to come to a decision (back to state counterp) [8]. Moreover,
the supervisor may use the information provided in the counter-proposal to create an own
alternative proposal (state proposed) [9], which in turn can be accepted, rejected, questioned
or counter-proposed by the contractor.

If for every activity exactly one contractor could been found in this way, the small team
forming is successfully finished and the plan goes to state ok [10] where it terminates and
forwards the small team object to the master plan. Otherwise, no small team could rbe
formed, the plan goes to failed [11] where it terminates and notifies the master plan about’

the failure. 7
R, . : L .
STATE CONDITION REQUEST ACTION RESFONSE GO
start " Lit members left to contact Submit proposal to contr. o 1
proposed | Rec: “accept” from contr. Mark as team member ¥ 2
proposed | Rec: “reject” from contr. Set next'candidate i 2
proposed | Rec: “ask” from contr. - : Displhy question | 3
asked - - Fill answer sheet Spbmit answer to contr. . 4
proposed | Rec: “counterp” from eontr. Display it 5
counterp Use “accept counterp” | Mark as team member 5
Submit “accept” to contr.
counterp Use “reject counterp” Set next candidate 8
Submit “rEject" to contr,
counterp Use “ask contractor” Submit question to contr. : 7
asking Rec: “answer” from contr. Show answer 8
counterp Use “propose altern.” Submit altern. to contr. 9
start Small team formed 10
start Small team failed 11

Table 8.5: The Course of the Form Small Team Class

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 135

8.5.6 The Answer Form Large Team Class

‘The Answer Form Large Team Class attached to every Contractor agent defines the interac-
tions with Logistics in order to form a small team for each customer order. Upon receiving a
proposal from Logistics, every contractor can commit himself to execute one of the activities
needed to satisfy the customer order. It corresponds to theForm Small Team Class 8.5.5.

The right figure in 8.9 illustrates the state diagram of the Answer Form Small Team Class
where interactions from and to the user at the contractor’s place are indicated.

Table 8.6 depicts the course of the Answer Form Large Team Class. The plan involves
several decision making processes from the executive responsible at the facility concerned.
It is activated when Logistics has sent a proposal about an activity intending to involve
a contractor into a small team (state start)., The proposal is displayed to the executive
responsible, and we move on to state proposed [1]. Now the Contractor agent runs the
embedded scheduler. As mentioned earlier, each contractor has a copy of the scheduling
tool configured to its local parameters. The scheduler decomposes the activity proposed into
operations and tries to find a schedule due to the facility’s resources. If the scheduler finds
a solution, a Gantt Chart will be displayed to the executive and the protocol goes to state
scheduled [2]. Otherwise a notification will be shown and we move to state unscheduled
[3].

Figure 8.10 shows another Gantt Chart example, this time being created for a workshop
agent. Each job is related to manufacturing a single item or a margin of the same items
(green nutcracker, big Christmas pyramids etc.). The process is decomposed into low-level
operations, for example cutting the wood or glueing the components. Again, there are no
resource conflicts, the proposed activity could be taken. T

If the proposed activity could be scheduled, the executive can now declare to ??join” the
small team, and the protocol ends up in state accepted [4];. In doing so, he Ig;actically-
commits his facility towards Logistics. Nonetheless, he might have reasons to refuse the
small team, even if the activity is perfectly scheduled. In this tase, we go to sta.teére jected
[5]- : ' = /

When no schedule could be found at all, the executive needs to decide whethef to reject
the small team, or to make a counterproposal. But hé may want to obtain more details
first from Logistics (plan goes t¢ asking) [6], and can use the answer received for coming
to a decision (plan goes back to unscheduled) [7]. Refising the small team will finish the
protocol in state rejected [8]. If he decides to submit a counter-proposal, the executive
gets a spreadsheet onto his screen, where he can edit the parameters of the original activity.
While submitting the counter-proposal to Logistics, we move on to state counterp [9].

Now, another negotiation process is initiated as Logistics (on behalf of the logistics su-
pervisor) may now decide what to do. If Logistics accepts the counter-proposal, it sends the
alternative activity back for being rescheduled with the embedded scheduler {(we go back to
state proposed) [10]. If it rejects the counter-proposal, the decision is displayed to the exec-

7

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 136

Start=4 :Duration = &
:Earllest—Start = 4 ;Latest~Start = 24
‘Before =
:After = 0241
:Resource—-Requirements = R22
:Possible-Start =

1.Mn=4 Max = 24

Figure 8.10: A Gantt Chart Example for the Workshop Manager

utive and the protocol terminates in state rejected [11]. Also, Logistics may have quest1ons }
to the counter-proposal, upon which we end up in state asked [12] where the executive is”
requested to answer them while going back to counterp [13] waiting for the nex{ action of
Loglstms : : L i;i
8.5.7 The Kickoff Execution Class S %
With the Kickoff Frecution Class Logistics makes every member of a small team to start its
activity, when the related customer order becomes due. Even though every contractor in the
small team has committed himself in the first place, there might have been lots of changes in
the meantime. So, Logistics tries to figure out once again, if the items of the customer order
concerned can now be produced and delivered. The corresponding plan at the contra,ctors is,
surprisingly, the Answer Kickoff Execution Class 8.5.8.

The left figure in 8.11 pictures the state diagram of the Kickoff Execution Class with
interactions from and to the user at logistics department

Table 8.7 presents the course of the Kickoff Execution Class. We did not introduce any
user interaction here, as the plan can be started and executed automatically. After all, the
logistics manager needs only to be informed, whether all contractors in the small team have

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 137
STATE CONDITION REQUEST ACTION RESPONSE GO
start Rec: “proposal” from Log. Display act. i
proposed Act. can be scheduled Display Chart 2
proposed Act. cannot be scheduled Display info 3
scheduled Join small team Submit “accept” to Log. Confirmation 4
scheduled Refuse small team Submit “reject” to Log. Confirmation 5
unscheduled Question about act, | Submit “ask” to Log. 6
asking Rec: “answer” from Log. Display answer | 7
unscheduled Refuse small team Submit “reject” to Log,. Confirmation 8
unscheduled Make counterprop, Submit “counterp” to Log. | Confirmation E]
counterp Rec: “accept” from Log. Display info 10
counterp Rec: “reject” from Log. Display info 11
counterp Rec: “ask” from Log. Show question | 12
asked Fill answer form Submit “answer” to Log. 13

Table 8.6: The Course of the Answer Form Small Team Class
1
Il ok ok
start’ proposed 7
» start requested
4 failed failed

end failed

Kickoff Execution Class

Answer Kickoff Execution Class

Figure 8.11: The interactive Activity Execution

Monitor Execution Class

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 138

started their activities or not, which is already done in the Logistics Fzecution Net, when
this little protocol terminates 8.5.2. Logistics simply contacts every contractor in the small
team successively and goes to state requesting [1]. When a contractor has indicated the
activation of his job, we go back to start [2] for asking the next small team member. If all
members have responded positively, we go to state end [4] and notify the master plan. In
case a contractor is unable to start its activity, we go to the final state failed [3] and notify
the master plan as well,

STATE CONDITION REQUEST { ACTION RESPONSE | GO
start Team members left to contact Submit “achieve” to next contr. 1
requesting | Rec: “started” from conir. Mark as contacted 2
requesting | Rec: “failed” from contr. 3
start All team members contacted 4

Table 8.7: The Course of the Kickoff Execution Class

8.5.8 The Answer Kickoff Execution Class

The Answer Kickoff Execution Class attached to every Contractor agent defines the inter-
actions with Logistics when an activity should be started. It corresponds to theKickoff
FEzecution Class 8.5.7.

The middle figure in 8.11 illustrates the state diagram of the Answer Kickoff Execution
Class and the interactions from and to the user at the contractor’s place.

The simple protocol of the Answer Kickoff Execution Class is listed din table 8.8, and
includes one action of the contractors’ executive. He must decide now, if the current capacities
really allow to produce resp. to deliver the items concerned. Upon receiving an q%ctiva,tion
request from Logistics, the activity is displayed once again, and we move to state requested .
[1]. Now the executive can make his decision in selecting either the “started” or the “failed”
message to be sent to Logistics which leads to the correspondirig states ok [2] or f%iled'[3].
In the first case a Monitor Execution Class (see below) will be started for the contractor,
so that he can notify Logistics immediately about problems with the execution or guccessful

processing. o ’
STATE CONDITION REQUEST ACTION RESPONSE | GO
start Rec: “achieve” from Log. . . Display act. 1
requested Act successfully started Submit “started” to Log., | Confirmation | 2
Start Monitor Exec Class)
requested Act. could not be started | Submit “failed” to Log. Confirmation | 3

Table 8.8: The Course of the Answer Kickdff Execution Class

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 139

8.5.9 The Monitor Execution Class

Finally, with the Monitor Fzecution Class attached to each contractors it is possible to notify
Logistics about problems or successful processing related to each activity the contractor has
started to work on. In case of a problem, Logistics can become active in terms of rescheduling
the activity, finding a replacement, contacting the Customer etc. On the other hand, it will
know when a customer order has been satisfied and is ready for shipping.

The simple state diagram and user interaction mode of the Monitor Execution Class is
shown in the right figure in 8.11. At any time, the executive can inform Logistics about prob-
lems during the execution that cannot be handled locally using the corresponding message
template (state failed) [2]. And he should indicate when the work on an activity has been
done (state ok) [1].

Table 8.9 presents the course of the Monitor Execution Class.

STATE CONDITION | REQUEST ACTION RESPONSE Go
start Activity finished Submit “satisfy” to Log. | Confirmation | 1
requested Problems with act. | Submit “failed” to Log. Confirmation | 2

Table 8.9: The Course of the Monitor Execution Class

8.5.10 The Find Contractor Class

The Find Contractor Class is used by Logistics if one contractor has failed to execute an
assigned activity, i.e. its executive has announced to Logistics to have grave problems, In
that case, Logistics is required to find an adequate replacement to do the job nonetheleds, «
as a client is waiting for his products. If this is possible, the activity is simply rg-assigned
to the replacement contractor without notifying th client. Otherwise, the rela,tedﬁ;customer'
order cannot be satisfied 1n time, and Logistic will need to negotiate via, Customei:- with the
client about alternatives. IR J

* " Figurein 8.12 illustrates the state diagram of the Find Contractor Class where ini‘.eractions
from and to the user in the logistics department are indicated. :

The detailed course of the Find Contractor Class can be found in table 8.10. The protocol
uses essentially the same interaction mechanisms as the Form Small Team Class 8."5.6. Con-
secutively, the Contractor addressed can use the Answer Form Small Team Class 8.5.6 again
to interact with Logistics on that matter, The only differences are the initialization with the
large team excluding the contractor who has just failed, and the protocol’s termination as
soon as one contractor has agreed to take over the dangling activity. In state start, if there
are still potential replacement contractors in the (reduced) large team, Logistics proposes the
activity to the next one. The supervisor will be notified and we go to state proposed [1]. If
all contractors have been contacted in vain (or the reduced large team contains no candidates
at all), the supervisor gets informed as well before the protocol terminates in state failed

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR 140

failed

Figure 8.12: The interactive Contractor Replacement

[2]. Now, the contractor contacted has to decide whether he wants to take the dangling
activity. As this is done using the Answer Form Small Team Class, including scheduling,
the executive will know if the resources there are sufficient to add an additional activity. As
Logistics does not know the contractor’s tonstraints, it just waits for a particular message
and acts according to the following scheme:

e Contractor accepts to take over the activity: We display this information, and the
protocol terminates successfully in ok [3]. ; '

j
o Contractor rejects to take over the activity: We display this information, and go back-
to state start [4] i 1n order to try the next potential candldate (if he e)usts)

-o'Contractor has a question about the activity: We show the question, and go to state
asked [5] where the Logistics supervisor may fill the answer template, Whm:h is sub-
mitted to the contra,ctor before going back to proposed [6] waiting for ite decision
again. :

¢ Contractor sends a counter-proposal related to the aétivity; After displaying the counter-
proposal, we go to state counterp [7]. Now, the supervisor himself needs to make a
decision on whether the alternative proposed makes the contractor an adequate replace-
ment.

»

According to his knowledge and experience, the supervisor may .

. a,ccept the counter-proposal: Thus, we have found a replacement contractor for the
dangling activity, and end up in ok [8].

CHAPTER 8. THE SUPPLY CHAIN DEMONSTRATOR

141

e reject the counter-proposal: We notify the unwilling contractor and go back to state
start [9] in order to try the next potential candidate (if he exists).

e ask the contractor about its counter-proposal: After submitting the question, we go to
state asking [10]. Upon response from the contractor, we display it and go back to
state counterp [11] where the supervisor can choose again what to do next.

¢ make an own proposal related to the counter-proposal: The supervisor will obtain a
spreadsheet where he can relax or manipulate activity constraints in order to submit it
as a new proposal to the same contractor. Remember, Logistics tries at that moment
desperately to find an executor for a dangling activity, so that the related customer
order can still be shipped on time. In going back to state proposed [12], the complete
cycle starts all over again, until either one of the candidates has agreed eventually or
no candidate is left to contact.

STATE CONDITION REQUEST ACTION RESFPONSE GO
start Candidate left to contact Submit proposal to contr. | Display info 1
start No cand. left to contact Display info 2
proposed | Rec: “accept” from contr. Display info 3
proposed | Rec: “reject” from contr. Set next candidate Display info 4
proposed | Rec: “ask™ from contr. Display quest. | 5
asked Fill answer sheet Submit answer to contr, 3]
proposed | Rec: “counterp” from contr. Display it 7
counterp Use “accept counterp” | Submit “accept” to contr. | Confirmation 8
counterp Use “reject counterp” | Set next candidate 9

- Submit “reject” to contr.

counterp Use “ask contractor” Submit question to contr. [107
asking Rec: “answer” from contr. Show answer 11
counterp Use “propose altern.” Submit altern. to contr. Confifmation 12

Tablgé 8.10: The Course of the Find Cont;'e;:ctor Class

8.6 Summary

¢

7

1
Fi
¥

L

.

With the demonstration scenario, we have shown how people can interact with each other
in pursueing a complex task like supply chain management. The activities are fully and
explicitely coordinated by the underlying COOL agent application. Elements like team-
forming, workflow management and the integration of legacy systems exhibit the variety
of possible chances to capture the processes of real working environments in agent-based

structures.

Chapter 9

Final Remarks

9.1 Summary

9.1.1 Theoretical Background

The theoretical part of the thesis encompassed an introduction to agent technology, the ap-
plication of agent technology in a business context and the presentation of the COOrdination
Language.

The first chapter outlined agent technology as a new paradigm which allows for the devel-
opment of heterogenous distributed computational systems where the individual components
can pursue their goals autonomously, communicate with each other at a highly abstract level,
plan and coordinate their actions explicitely and involve end users actively in a collaboratwe
process, thus address a variety of real world problems, ¥

In the following, we identified enterprise operation as a promising applica.tioﬁi area for
multi-agent systems. Focusing on supply chain management, aanodel has been pres’ented how
users and agents can be linked towards a virtual pla.tform across geographical and afunctlona,l
boundarles leading to a mgmﬁcant improvement of .. /

The COOrdination Language, developed at the Enterprlse Integration Laboratory has
been chosen as the base for building a Generic User Agent, an interface agent. to merge
users and multi-agent applications onto a universal and abstract interaction platform. With
COOL, distributed systems of agents can be defined where agents coordinate their actions
explicitely through conversations. Well-founded mechanisms such as state-based agent exe-
cution, information sharing through KQMI messages and built-in interpreters make COOL
an ideal framework to implement applications for business purposes.

oo 142

CHAPTER 9. FINAL REMARKS 143

9.1.2 Practical Work

The practical work was focussed on identifying basical mechanisms for interactions between
users and COOL multi-agent applications. Together with elementary administration func-
tions, by taking a variety of user-related issues into account and exploiting agent-oriented
methodology consequently they lead to the design and implementation of a Generic User
Agent (GenUA).

The interface agent enables participation of multiple users in multiple applications relying
on a interaction model where the user is guided and assisted along the entire execution
process. Elements like a comprehensive history and offline information provide an adequate
user service. Authorization at several levels and transactions management protect both the
application elements and the user against unauthorized access.

GenUA comes up with a highly flexible architecture. New components and functionalities
can be easily added without re-implementation of the rest. Working on declarative knowledge
structures and incorporating a communication driver concept, GenUA can talk to a variety
of different presentation systems at the same time.

The comprehensive Java applet being accessible from anywhere through a Web browser,
demonstrates how users at their workplace can be linked to multi-agent applications in an
intuitive manner mediated by the Generic User Agent. The applet provides as much trans-
parency as needed, seconds the process of interaction guidance and, nevertheless, allows the
user to make decisions about the next action.

Though based on a simple company’s structure with a lot of assumptions, the distributed
supply chain demonstrator has shown how information exchange, coordination protocols,
legacy system integration and social structures can be captured in a promising mylti—aéeﬁt
application and how it is used to support end-users in this domain in their dailyfwork. It

has been demonstrated- how a collaborative environment between users and agentdin a real”
' 2

world context may look like.

T

RN P

9.1.3 Meeting the Objective

GenUA allows for building multi-agent applications by means of the COOrdination language
that can be directly employed in enterprise scenarios. While COOL reflects the coordinative
- aspects among organizational units, GenUA links agents and users towards a virtual platform.
With a generic and extendible architecture, GenUA can be failored to specific needs of
organizations. :

Providing access from the Web to the problem solving competency of agents with guided
interactions, a truly collaborative system has been created, " where users and agents are work-
ing together in order to achieve the enterprise’s goals.

‘The extended supply chain demonstrator also gives the Integrated Supply Chain Man-

agement project (ICSM) a real-world prototype for further research on involving users in

=

CHAPTER 9. FINAL REMARKS 144

agent-integrated enterprises.
With these aspects, the thesis objectives as described in section 1.1 have been met.

9.2 Future Work

9.2.1 Extending the Generic User Agent

The Generic User Agent as presented in this paper can only be seen as a prototype. Further
research needs to focus particularly on incorporating explicite models of users in terms of
customization, adaptation and preference management. This can be done, for example,
by introducing a management layer between presentation system and Generlc User Agent
instances which maps users or user groups to specificly tailored instances. This involves, that
GenUA instances will need to coordinate their activities among each other either d1rectly or
facilitated by the manager.

Another key for providing more sophisticated and application specific user interaction lies
in the extension of the pattern grammar (for example by concrete graphical descriptions, so
that agent input can be provided as diagrams or figures) and transferring HTML specifications
for both input requests and execution results between COOL environments and Web browsers.

The idea of multimedial offline messaging may be enriched by a peer to peer communi-
cation and document exchange between users. Another factor is the integration of different
communication platforms, particilarly CORBA and HTTP.

9.2.2 Improving, Varying and Adopting the GenUA Interfaces

The Java applet used to communicate with multi-agent applications through a Wéb browser
is an example how navigation and interaction can be presented in a transparent, qbstra,ctmg
and intuitive way for the benefit of the end user. Assummg that representation déscriptions
are created d1rect1y in the respective agent application, -we need to provide corgesponding
gra,phlca,l components, particularly in terms of editable charts, tables or images. lnstea,d of
or additionally to the textual description, conversation classes should be represented in form
of a finite graph, and analogous, ongoing conversations as constantly updated ones, This will
provide a better notion to the uger about the execution progress. The history may come up
with a comprehensive search mask so that the user can retrleve interaction information from
the past similar to querying a database.

Also, experiments should be made to emulate and improve the mechanisms given by the
standard Java applet on different presentation systems. The specific focus should be directed
to evaluate HTML specification through HTTP or CGI, and to build X widget or Windows
components that can communicate with GenUA.

The most promising challenge would be to develop a Java applet which allows for devel-
opment of COOL multi-agent applications from the Web. This includes the specification. of

CHAPTER 9. FINAL REMARKS 145

agents and coordination protocols and the definition of user interactions. All what is needed
is to implement the corresponding data structures, to ensure a transfer through the Generic
User Agent and an evaluation in the COOL environment. As the effects can be directly
tested through the user interface applet, we will come to a truly comfortable testbed while
the implementation results are immediately deployable into the working environment without
any changes.

9.2.3 Extending and Devising Demonstration Scenarios

The presented interactive supply chain scenario is restricted in both width (number of par-
ticipating agents and users) and depth (capabilities of agents, integration of legacy systems).
For a real-world reflection, we’ll need to

e multiply the number of agents (plants, customer service)

o add new specialized agents (marketing, inventory, purchasing, production, distribution,
finance)

e introduce a number of characteristic features for supply chain management (demand
forecasts, inventory management, production supervision, route planning, cash flow
management)

e provide interfaces to further legacy systems (inventory databases, bar code scanner,
production and quality sensoric, planning and optimization tools, performance analizer)

e identify prospective end-users in real-world supply chain management, acquire knowl— '
edge about their task structure and model adequate 1nteract10ns for them .

,ﬂ
Supply chain management is onIy one of the numerous domams where agents can be
employed in a business context. Other scenarios may encompa,ss, for example:]

e an insurance office system Where agents control the workflow on insurance cases

¢ a manufacturing system where agents plan and schedule the production, fed CNC ma-
chines and assembly lines with corresponding da.ta, superv1se the execution ‘and take
corrective actions when required

¢ a transport agency where one or more centralized agents determine route, schedule and
batch size proposals for incoming orders, negotiate their feasibility with via radio with
agents in the vehicles concerned and acquire feedback from them during the actual
transport

Chapter 10

Acknowledgements

This thesis has been written in relation to the Agent Building Shell project at the Enterprise
Integration Laboratory (EIL), University of Toronto, Canada, and the current research on
intelligent agent architectures at the Distributed Artificial Intelligence Laboratory (DAI lab},
Technical University of Berlin, Germany. Parts of the thesis are also related to the Intelligent
Supply Chain Management project at the EIL.

Research at the EIL is supported in part by the Manufacturing Research Corporation of
Ontario, Natural Science and Engineering' Research Council, Digital Equipment Corp., Mitel
Corp., Micro Electronics and Computer Research Corp., Spar Aerospace, Carnegie Group,
and Quintus Group. The DAI lab is member of the German Research Net and cooperates
with the Fraunhofer Institute. Research at the DAT lab is supported by the German Telecom, -
DeTeBerkom, Sun Microsystems, IBM Germany, Daimler Benz AG, and Siemens AG.

I'would like to thank: Dr.-ing. Sahin Albayrak and Prof. Mark S. Fox for giving me the
chance to write my thesis at the University of Toronto, Dr. Mihai Barbuceanu forfinvaluable
support and guidance through the work, fellow students and team members for p‘}oviding a
friendly and cooperative work environment, and of course friends and family for motivation

and standing by me. . : ;

abe = 146

Bibliography

[1] Nicholas M. Avouris, Marc H. van Liedekerke, Georgios P. Lekkas and Lynne E. Hall.
User Interface Design for Cooperating Agents in Industrial Process Supervision and
Control Applications. International Journal of Man-Machine Studies, 38(5), pp. 873-
890, 1993.

[2] R. M. Baecker (editor). Readings in Groupware and Computer-Supported Cooperative
Work. Morgan Kaufmann Publishers: San Mateo, CA, 1993.

[3] Mihai Barbuceanu and Mark S. Fox. Capturing and Modeling Coordination Knowledge
for Multi-Agent Systems. Internation Journal of Cooperative Information Systems, Vol.5
Nos.2-3 pp 273-314, 1996. !

[4] Mihai Barbuceanu and Mark S. Fox. The Specification of COOL: A Language for Rep-
resenting Cooperation Knowledge in Multi-Agent Systems. Enterprise Integration La,b—
oratory, University of Toronto, Internal report, 1996. A

[5] Mihai Barbuceanu and Mark S. Fox. Integrating Communicative Action, Con"versa,tlons
and Decision Theory in a Coordination Language for Multl—Agent Systerns‘,r Internal
paper, 1996. Sk o 4

[6] .PR Cohen and H. Levesque Intention is Choice with Commltment Art1ﬁc1al Intelli-
gence 42, 1990, pp. 213-261." j

rs

[7] T.Finin et al., Specification -of the KQML agent communication language, The DARPA
Knowledge Sharmg Initiative, External Interfaces Worklng Group, 1992. '

[8] Mark S. Fox. A Common-Sense Model of the Enterprise, Proceedmgs Industrial Engi-
neering Research Conference, 1993.

[9] MarkS. Fox. 60 Month Progress Report: NSERC Inddstrial Research Chair in Enterprise
Intergration. Enterprise Integration Laboratories, University of Toronto, 1996.

[10] Ram Ganeshan and Terry P. Harrison. An Tntroduction to Supply Chain Management.
Penn State University. http://silmaril.smeal.psu.edu/ misc/supply_chain_intro.html.

whe v o 147

BIBLIOGRAPHY 148

[11] M. R. Genesereth, R.E. Fikes. Knowledge Interchange Format, Version 3.0, Reference

Manual, Computer Science Department, Stanford University, Technical Report Logic-
92-1, 1992.

[12] M. R. Genesereth and S. P. Ketchpel (1994). Software agents. Communications of the
ACM, 37(7):48-53.

[13] Aimo Hinkkanen, Ravi Kalakota, Porama Saengcharoenrat, Jan Stallaert and Andrew B.
Whinston. Distributed Decision Support Systems for Real Time Supply Chain Manage-
ment using Agent Technologies. http://yama.bus.utexas.edu/ejou/articles/art1.html.

[14] Nicholas Robert Jennings. Coopera,tlon in Industrial Multi-Agent Systems. Singapore:
World Scientific, 1994.

[15] . Lee and C. Billington. Managing Supply Chain Inventory: Pitfalls and Opportunities.
Sloan Management Review, pp. 65-73, Spring 1992.

[16] Lynne E. Hall. User Design Issues for Distributed Artificial Intelligence. In: G.M.P.
O'Hare and N.R. Jennings (editors). Foundations of Distributed Artificial Intelligence,
pp. 543-556, John Wiley & Sons, Chichester, England, 1996.

[17] P. Maes. Social Interface Agents: Acquiring competence by learning from users and
other agents. In: O. Etzoni (editor). Software Agents - Papers from the 1994 Spring
Symposium (Technical Report $S-94-03). pp. 71-78.

[18] H. V. D. Parunak. Applications of distributed artificial intelligence in 1ndustry' In:
O’Hare, G. M. P. and Jennings, N. R., editors, Foundations of Distributed? Al John
Wiley & Sons:-Chichester, England, 1996. _ ;r

[19] J.A. Sanchez, F.S. AZevedo and J.J. Leggett. PARAgentée:Exploring the Issues in Agent-
"based User Interfaces. Proceedings of the First International Conference on Multl -agent
Systems (ICMAS 95), pp- 320 327, San Francisco, CA, June 1995. '

[20] Philip B. Schary and Tage ‘Skj/ott-Larsen. Managlng the Global Supply Chaln Han-
delsh/ojskolens Forlag, 1995.

[21] J. Searle. Speech acts: An Essay in the Philosophy of Language Cambridge Umversfcy
Press. Cambridge, UK, 1969.

[22] S. R. Rosenschein and L. P. Kaebling. A Situated Vfew of Representation and Control.
Artificial Intelligence 73 (1-2) pp 149-173, 1995.

[23] Janyashankar M. Swaminathan, Norman M. Sadeh, and Stephen F. Smith. Informatlon_
Exchange in the Supply Cham 1995

BIBLIOGRAPHY 149

[24] Janyashankar M. Swaminathan, Stephen F. Smith, and Norman M. Sadeh. A Multi
Agent Framework for Modeling Supply Chain Dynamics. Technical Report, The Robotics
Institute, Carnegie Mellon University, 1996.

[25] A.S. Rao and M.P. Georgeff. Modeling Rational Agents within a BDI Architecture.

In: R. Fikes and E. Sandewall (editors). Proceedings of Knowledge Representation and
Reasoning, KR & R-91, pp. 473-484.

[26] Y. Shoham. Agent-Oriented Programming. Artificial Intelligence 60, 1993, pp. 51-92.

[27} J.Searle. Speech acts: An Essay in the Philosophy of Language. Cambridge University
Press, Cambridge, UK, 1969.

[28] K. Sycara. Multi-agent compromise via negotiation. In: Les Gasser and Michael N.
Huhns, editors, Distributed Artificiall Intelligence, Volume II, pp. 119-137, Pitman Pub-
lishing, London, 1989.

[29] Doug Thomas and Paul Griffin. Coordinated Supply Chain Management. European Jour-
nal of Operational Research, vol. 94, pp. 1-15, 1996.

[30] Michael Wooldridge, Nick Jennings. Intelligent Agents: Theory and Practice. Knowledge
Engineering Review Volume 10 No 2; June 1995.

[31] G. Zlotkin, J. S. Rosenschein. Negotiation and task sharing among autonomous agents
in cooperative domains. Proceedings of 1JCAI-89, pp. 912-917, Detroit, MI, 1989.

- e

L

I

Appendix A

Terminology

This section describes the terminology used in the context of COOL and GenUA throughout
the thesis paper.

Application: A (distributed) multi-agent application implemented in COOL

Agent: Autonomous entity that uses structured coordination protocols (conversation classes)
and interacts with other agents through KQML messages. Agents are associated to a
conversation manager and run in an agent execution environment.

Agent Execution Environment: A software environment residing at a site in the network
where a set of agent is executed by means of a conversation manager o

Conversation: A runnable instance of a conversation class attached to an agent which
' maintains the current state, a local knowledge base and historical mforma,tlén

Con,versatlon Class: A state-based plan describing What an agent does in certmn situa-
tions. Conversation classes-spawn a finite graph’ where the nodes (states) are linked
through conversation rules.” :

rs

Conversation Rule: Describe a state transitions in a conversation class. Composed of a
condition and an action part. The conditions may be received messages of & particu-
lar structure or certain predicates applicable to the current local knowledge. Actions
include transmitting messages to other agents, creating or manipulating other conver-
sations or changes of the local knowledge.

»

Conversation Manager: A control instance responsible to execute a set of agents and to
trace their behavior., Conversation managers and the set of agents they control are
running in an agent execution environment.

.s-‘lo LR 150

APPENDIX A. TERMINOLOGY 151

(Graphical) Presentation System: Platform that supports the development of graphical
components, e.g. Java, X widgets, Windows,

Graphical User Interface (GUI): Graphical component that provides access to and re-
flects the functionality of GenUA to the human

Generic User Agent (GenUA: Mediator between scenarios and graphical user interfaces

Input Request: A request from a conversation to the user to provide input and/or to make
a decision. Encoded using the pattern grammar. Automatically detected be GenUA
and sent to the GUI.

Scenario: Corresponds to the term application
User: Human who interacts with scenarios through a graphical interface by means of GenUA

User Interaction: Encompasses both interactions with GenUA itself and interactions with
a particular scenario

User Message: Any kind of notification or execution result from conversations to users.
Automatically detected be GenUA and sent to the GUI.

Tty '-sv,.(..

R

Appendix B

COOL Syntax

This section describes the syntactical structure of the main COOL objects, used in defining
the supply chain demonstrator.

B.1 Agents
The syntax of the agent definitions in COOL:
<agent-definition>::=

(def-agent <name>
tconversation-classes <list of conversation classes> o

:conversations <list of conversations> f
:continuation-rules <list of continuation-rules> ¥
:continuation- rules-lncomplete <T or nil> ' ’;
contlnuatlon control <name of control fn> [default agent-control] J
) ;
Explanation of the non-terminals: , '[

<name> is the global name of the defined agent in the COOL environment. DIfFerent agents
must have different names.

<list of conversation classes> is the list of names of the conversation classes (see own
section below) this agent has. In order for an agent to use a conversation class, it
must had been declared in this way. The conversation classes must had been declared
before use. Alternatively, to avoid problems of forward referencing, COOQL provides a
def-associations construct allowing one to declare conversation classes for an agent at
the end of the program, after the agent and the conversation classes have been declared.

PV 152

APPENDIX B. COOL SYNTAX 153

<list of conversations> list of actual conversations of an agent. Must had been defined
before use, but to avoid referencing problems the def-associations construct can be used.

<list of continuation-rules> list of continuation rules for this agent. Same observations
as for conversation classes wrt. prior declaration and type use of def-associations.

<T or nil> flag specifying whether the set of continuation rules of this agent is complete or
not. Note that this flag marks the entire set as incomplete, so even if every individual
rule is complete the knowledge acquisition interface for continuation rules will still be
popped up (under the assumption that new rules may be added or existing ones deleted,
see section 4.3).

<name of control fn> [default: agent-control] This is the name of the pluggable func-
tion used as the interpreter of continuation rules. It can be defaulted to a standard
interpreter like agent-control, provided with the language implementation.

B.2 Conversation Managers
Declaration of a conversation manager having the unique global name <name>:

(def-conversation—manager <name>
ragents <list of agents>
:trace-agent <list of traced agents>
:trace-message <list of traced messages>
1trace-conv <list of traced conversations®>

;
‘trace—conv-rule <list of traced conversation rules> f
itrace~err-rule <list of traced error recovery rules> v
itrace-cont-rule <list of traced continuation rulés> "
- trace-conv-class <list of traced conversation classes>

)

a

ERECE R A

rs

The other arguments describe various tracing options. These options belong more to the
particular implementation, but for orientation should always include message tracing which
is of major interest. :

B.3 Conversation Classes
The COOL syntax for defining a conversation class:

(def-conversation-class <name>
:content-language <language name>

APPENDIX B. COOL SYNTAX 154

:speech-act~language <language name>

tontology <onteology name>

:rules <list of conversation rules>
:rules—incomplete <T or nil>

icontrol <conversation rule control fn>[default
interactive-choice=-control]

tinitial-state <state name>

:final states <list of state names>

:variables <1list of variables>

:interactive <T or nil flag>

:recovery-rules <list of recovery rule names>
:recovery-rules-incemplete <T or nil flag>
:recovery-control <recovery rules control fn>[default
recovery-control]

:intent-check <intent check fn>

)

Explaration of the non-terminals:
<name> is the unique name of the conversation class

<language name> is the name of the content language or the speech-act-language. The
speech-act-language is usually KQML. The content language is at the discretion of the
user. If the :content-language is specified, the system will automatically insert it in the .
KQMI: messages that are received or sent by the conversation. i

¥
<ontology name> is.the ontology used by the conversation. If given, it wilf: be auto-
matically inserted into messages received or sent by any-conversation described by, this
-« clags. This simplifies wrltmg the message patterns for recelved messages and ﬁhe output
messages.

i
<list of conversation rules> list of conversation rulé unique names for this conversation
class. Rules are given associated with the state for which they apply. To avmd problems

of forward referencing def-associations can be used.

4

<T or nil> value of a flag that specifies the incomplete status of a rule. Value T means the
rule is incomplete, nil means the rule is complete.

<conversation rule control fn> name of a function used as the interpreter for conversa-
tion rules. This is a pluggable interpreter and is defaulted by the system. The default
interpreters should be accessible as the value of some parameter that users can set at
will.

APPENDIX B. COOL SYNTAX 155

<state name> for the initial state, this is its name. This is the state a conversation starts
in.

<list of state names> list of states. For the final states, when the conversation reaches
any of these states it will terminate.

<variables> list of variables of this conversation class. It is not necessary to declare vari-
ables in advance, they can be created dynamically, when and if needed. This declaration
is useful especially to document the purpose and use of variables in a conversation class.
Remember that variable names start with “?* or “?7’,

<interactive> defines whether this conversation class allows interactive execution by a web
user by means of the GenUA interface. A conversation class should be marked as

interactive if it includes any conversation rules which provide a received-pattern slot.
(see 5.2.2 f.)

<recovery rules> list of unique names of the recovery rules used in the conversation.

<recovery rules control fa> name of pluggable interpreter of recovery rules. Defaulted
by various system configurations.

<intent check> the predicate that will, be applied to the value of the :intent slot of an
incoming message to determine if this class can handle the incoming message. Can
be function name, lambda expression or something else (depending on what the host
language allows).

-

B.4 Conversation Rules | ;

The COOL syntax for defining conversation rules: - ".r_

L e

(def-conversation-rule <name>
iname <name>
ccomment <comment>
:current-state <state>
‘received-pattern <received-pattern>
rraceived-test <received-test>
ireceived <received>
‘received-many <received-many> y
:received-queue-test <received-queue—-test>
:waits—for-test <waits-for-test>
:such-that <such-that>
inext-state <next-stated>

h e

1

b

APPENDIX B. COOL SYNTAX 156

itransmit <KQML message>

iwait—for <wait-for>

:do-before <do-befora>

tdo-after <do-after>

:do <do>

:interactive-execution-fn <interactive-execution—fn>
!incomplete <T or nil>

)

Explanation of the non-terminals:

<name> is the unique global name of the rule.
<comment>> is any string used to document the rule.
<state> is a state name.

<received-pattern> is used for interactions of a web user with the COOL environment
by means of the GenUA interface only. It consists' of an expression which builds
list structure according to the pattern grammar (see 5.2.4). This allows a complete
specification of the message structure and its content being expected from the web
user. The message structure given in a received-pattern slot of a particular conversation
rule should always match one of the following “:received” tests. Moreover, web user
interaction implies disabling the “incomplete” slot as the standard Pop up mechanism
is not available on the web(see 5.2.2). !

N

<received-test> is a_predicate of one argument, the received message. Used t?j perform -
procedural checks on the received message. .

<received> is a message pattern against which the actual message will be checis:ed. The
use of pattern-matching enables the user to specify declaratively the expected structure
of a message in order to apply a rule. . '

<received-many> list of patterns against corresponding received messages will be matched.
This enables us to match several messages in a rule.

<received-queue-test> predicate of one argument, the queue or messages for the conver-
sation. Enables checking the entire queue before applying the the rule.

<waits-for-test> predicate of one argument, the list of terminated conversations this con-
versation is waiting for. This can be used only if the current conversation is waiting for
other conversations to terminate, enabling the conversation to be resumed as soon as
the test condition is satisfied.

P

APPENDIX B. COOL SYNTAX 157

<such-that> predicate of any number of arguments applied on a list of bindings produced
by matching the patterns in :received or :received-many. A number of standard variables
bound by the system are available.

<next-state> state name, the next state if the rule is applied.

<KQML message> a KQML message to be transmitted as an effect of rule execution.
Anywhere in the KQML message, values of the form (<expr>) are replaced by the
value of <expr>. Inside <expr>, free variables are first replaced by their values. This
gives a way of performing arbitrary computations to determine any components of the
message to be sent.

<wait-for> list of conversations this conversation is waiting for to terminate. The conver-
sation is put on wait as a consequence of executing the rule.

<do-before> executable actions to be carried out before transmitting the <KQML message>
<do-after> executable actions to be carried out after transmitting the <KQML message>

<do> executable actions to be carried out at an unspecified moment in relation to when the
<KQML message> is transmitted

<interactive-execution-fn> a user written function that has application-specific GULs
guiding the execution of the action part of the rule.

The semantics of the conversation rule definition above is as follows:
If
current state of the conversation is :current-state
and:received-test is satisfied by the last message
and last received message matches :received o
and there exists a set of messages in the queue matching
‘received-many (order matters)
and the message queue satisfies :received-queue-test
and :wait-for-test predicate satisfied by the list of
conversations this conversation is waiting for
and :such-that predicate satisfied
Then
go to inext-state
and transmit the :transmit message
and put the conversation on wait for the mentioned :wait-for
conversations :
and do the :do-before actions before transmitting the message

LRy S

T

»

APPENDIX B. COQOL SYNTAX 158

and do the :do-after actions after transmitting the message
and do the :do actions anytime
or if interactive-execution-fn exists, execute it

(assume it will carry out all above actions)

The semantic of a conversation rule is not influenced by the way, a user interacts with
the system (see 5.2.3.

The use of predicates and other executable functions in places like :such-that and :do
clauses assumes that programmers are allowed to place as free variables any variables of the
conversation. These will be replaced with their actual values before evaluating the forms they

are in, Moreover, the following variables are always bound by the system and can be used as
well:

e 7convn - the name of the current conversation
e 7agent - the agent who owns the current conversation
e ?message - the received message

e ?conv - the current conversation (as object).

y, W

'
[EPARERL

.

Appendix C

User Guide for the Supply Chain
Demonstrator

The COOL User Interface is available from the following URL
http://timmins.ie.utoronto.ca:8800/Welcome. html

There you click on “COOL User Interface in action”.

Start the Generic User Agent When entering the page “COOL User Interface”, you’ll
probably first need to start the Generic User Agent by clicking on the corresponding
button. After that, the page will be reloaded and the System Login Applet appears. *

Login to the system There you have to specify your login name and your passvg{ord. Note
that if you are a non-registered user, login as “anonymots” and your F-mail '?iddress as
identificator. Furthérmore, you’ll need to specify the 'cé_mplete hostname from where

- " you've started the browser. The hostname may be specified as a complete symbolic IP
address (“timmins.ie.utoronto.ca”) or as an IP number (“123.45.67.89”).

Creating the application - After submitting your login information, the actual COOL User
Interface will appear on your screen. The session. begins by selecting the application
“Supply-Chain+Scheduling” in the upper left choice box and pressing the “Create Ap-
plication” button. ,

Linking the application When it has been indicated that the application was successfully
created (which may take some time, be patient!), ydu select the same application from
the choice box beside and press “Link Application” in order to register as a user.
Successful execution results in filling the list of available agents below.

A 159

APPENDIX C. USER GUIDE FOR THE SUPPLY CHAIN DEMONSTRATOR 160

Initiating the conversation Now you click on the agent “Customer” and retrieve its avail-
able conversation classes by pressing the button to the right of the agent list. This
results in filling the corresponding list.

Clicking on the “Customer Conversation” pops up a window, where you the class is
displayed. When you press “Initiate Conversation” at the bottom of the window, an
instance of the plan will be created, indicated by a small notification frame and after
that the new instance will appear in the list of “Ongoing Conversations” in the middle
of the main window. You may in principle start as many instances as you like, but
remember each new instance requires to conduct the entire process upon satisfaction,
which may take more time.

Answering requests After some moments, you will recognize a first request from the ap-
plication displayed in the list “Requests from Agents” right below the “Ongoing Con-
versations”. Clicking on the request pops up a frame, where, in generally, you can
choose from a number of possible actions (for the initial request, you will only have one
choice).

When selecting a possible action, a top level modal dialog appears which besides the
top request elements shows a legend for the graphical elements. It is recommended
to make your way through the input specification from top to the bottom, by clicking
every green button and inspecting and/or modifying every “inner” value. However you
can also leave every inner dialog by pressing “Cancel” and return to it later again.

When composing a form, you should enter values that match the description beside the
field. Otherwise you will get a notification about incorrect fields. It is not possible‘to
leave a dialog without correct values! If you get lost or if you wanna restore the original
values, press “Clear” and you may leave the dialog. Pressing “OK” (assumi}}ig that all
the fields are correct) leaves the form dialog and sets the value of the attribute where

’ you started the form dialog from to what has been spetified now. You ma,,y re-enter

and modify this dialog as often as you like. ' : ;

When composing a list, you’ll see always the list of t;lemerits specified so farin 4 list. De-
fault values are automatically inserted. Optional values, if any, can be inserted directly
from the green choice box above the list. Below the list you’ll find list manipulation
functions. “Modify Element” and “Delete Element” requires that you first select the
element out of the list and then apply the desired function. “Clear List” removes all
elements. “Cancel” leaves the dialog without effects to the parent dialog. '

Adding and modifying elements works depending on-the complexity of the element. For
simple elements such as strings, integers etc., you can enter the element directly in the
line above the list of elements and add it by pressing the button. To modify it, select
it in the list, press “Modify element” upon which the element disappears from the list
and is displayed. Pressing “Accept Element” inserts the (modified) element again in

ch by

APPENDIX C. USER GUIDE FOR THE SUPPLY CHAIN DEMONSTRATOR 161

the list. For complex structures, there is no line to edit. Instead you just press “Add
Element” which pops up the structure of the element. IHere you will find either another
list or a form with the same way of interaction.

Some lists may require a.specific number of elements while others accept any number.
The former case leads to the effect that you cannot press “End of List” unless the list
has the required number. Once this is done, “Add Element” is disabled and you may
leave the dialog, and the value of the attribute you’ve started the list dialog from is
set to what you’ve specified. On the contrary, lists with arbitrary element number can
be left at any time. Analogous to form dialogs you may re-enter, add, delete, modify
elements as often as you like.

Once you have make your way through the nested dialog structure, you’ll end up in the
top dialog, where you may “Browse” what you’ve specified or “Submit” the completed
request to the agent. However, you may also leave the top dialog and the selection
frame without doing anything,

Note that some requests may be optional indicated by a corresponding attribute on top
level. You may but you don’t need to fill and submit them. ALL other requests must
be answered to cause an execution progress.

Effects of submitting a completed request When a completed request has been received,
it leads to updates on your screen: answered requests disappear, ongoing conversation
change, notifications from the application and /or new input requests arrive, Be patient!
This is not meant to be a high speed system.

All notifications or (intermediate) results received from the application appear in the
list “Messages from Agents” at the bottom of the main window. By clicking; on them.
you may inspect the content in a separated frame at any point in time. You rfay decide
whether you wanna keep or delete the message. Note that this decision is final. There

_ .is no retrieval! A !

7

During the interaction process The interaction process is mostly self expla.néitory and
transparent. However, if you have difficulties to understand the context, take:a look at
the description of the Supply Chain Demonstrator in chapter 8, Other than'that you
may feel free to play around with different decisions and wlfalues.

At any time, you may download the history including all interactions including requests
and responses by pressing “Get History” on top of the main window. Once again, be
patient, there might be lots of information to transfer.

You may also inspect how the initiated conversation changes through the execution
process by clicking on it in the list of “Ongoing Conversation”.

APPENDIX C. USER GUIDE FOR THE SUPPLY CHAIN DEMONSTRATOR 162

Unlinking the application Once you have gone through the complete customer order pro-
cess, meaning you’ve got a bill and delivery confirmation and you wanna leave, press
“Unlink Application” on top of the main window.

Choosing “Keep state” will have the effect that you can inspect your current history
at a later session again. If you do so, and you’ll have to provide a redirection address,
which will have no effects at all, as there is no time delay during the execution, hence
no offline messages are possible. After that you may close the main window.

However, normally you’ll choose “Finalize Interaction” when unlinking.

Shutdown the application With respect to other interested users and if you don’t wanna,
resume your session necessarily, it is better to shutdown the application completely.
This is done by pressing “Destroy Application” on top of the main window. After that
you may close the main window.

Terminating the Generic User Agent As the continuous listening of GenUA for incom-
ing requests is rather time-consuming, it should not run idlely for ages. We recommend
to stop it by pressing the corresponding button on the HTML page, which should be
still available to you.

Troubleshooting In some cases, after answering a request, nothing seems to happens at
all. You’ll need to press “Manage Conversations”. This forces the COOL protocols to
move on. Do it only once at a time and see what’s happening.

When errors occur during manage conversations (small red alarm window), you ha.ve .
no other chance than to unlink from the application, to destroy it and to start it aH
over again.) f%
Other errors (small yellow window) should not occur, 1f so, retry the a,ctlon you just
have made. ' L "_ J

There is an interaction blocking and time-out mechanism from the main ;vmdow to
the Generic User Agent. Time-out is after a,ppromma,tely 20-30 seconds upon which
the blocking mechanism is. stopped. However, this indicates network communication
problems or blocking of the Generic User Agent. There is no other chance than to close
the main window (as an X widget or Windows frame) to stop the agent and to start
from the beginning. '

