
An Architecture for Agents with ObligationsMihai BarbuceanuEnterprise Integration LaboratoryUniversity of Toronto,4 Taddle Creek Road, Rosebrugh Building,Toronto, Ontario, Canada, M5S 3G9mihai@ie.utoronto.caAbstract. We explore the view that coordinated behavior is driven bythe social constraints (e.g. obligations and interdictions) that agents inorganizations are subject to. In this framework, agents adopt those goalsthat are requested by their obligations, knowing that not ful�lling obliga-tions induces a price to pay or a loss of utility. Based on this idea we builda coordination system where we represent the organization, the rolesplayed by agents, the obligations imposed among roles, the goals andthe plans that agents may adopt. To consistently update an agent's obli-gations and interdictions we present an incremental propagation methodthat also helps with detecting and deciding between conicting obliga-tions. Once a goal adopted, a special brand of plans, called conversationplans, are available to the agents for e�ectively carrying out coordinatedaction. Conversation plans explicitly represent interactions by messageexchange and their actions are dynamically reordered using the theoryof Markov Decision Processes to ensure the optimization of various cri-teria. The framework is applied to model supply chains of distributedenterprises.1 Introduction and MotivationTo build autonomous agents that work coordinately in a dynamically changingworld we have to understand two basic things. The �rst is how an agent choosesa particular course of action and how its choices change in face of events hap-pening in the world. The second is how agents execute coordinated actions. Inthis paper we present a framework that answers these questions by construingagents as rational decision makers that exist within organizations. Organizationsare systems that constrain the actions of member agents by imposing mutualobligations and interdictions. The association of obligations and interdictions ismediated by the roles agents play in the organization. For example, when anagent joins a software production organization in the system administratorrole, he becomes part of a speci�c constraining web of mutual obligations, inter-dictions and permissions - social constraints or laws - that link him as a systemadministrator to developers, managers and every other role and member ofthe organization. Not ful�lling an obligation or interdiction is sanctioned by pay-ing a cost or by a loss of utility, which allows an agent to apply rational decisionmaking when choosing what to do.

Social laws are objective forces that provide the ultimate motivation for co-ordinated action at the organization level and to a large extent determine themental states at the individual agent level. Agents "desire" and "intend" thethings that are requested by their current obligations, knowing that otherwisethere will be a cost to pay. However, current models of collective behavior largelyignore this aspect, trying to explain coordination solely from the perspective ofsocially unconstrained individuals. For this reason they often impose restrictiveconditions that limit the generality of the models. For example, the Cohen-Levesque account of teamwork [Cohen & Levesque 91] requires team membersto have the same mutual goal. But this is not true in organizations, for exampleit is normal for supervisors to decompose and schedule work and assign teammembers di�erent goals which they can carry out coordinately often withoutbeing even aware of each other's goals. Similarly, dropping o� a team, accordingto the Cohen-Levesque model, requires an agent to make his goal to convinceevery member of the team that, e.g., the commonmotivation for the joint actionhas disappeared. Since common goals or motivations do not necessarily exist,this is also not true in general. Imagine an agent having to convince everybodyelse that he's got a better job elsewhere before he can leave the organization!To initiate a more realistic investigation of such social constraints and oftheir role in achieving coordinated behavior, we have built an agent coordi-nation framework whose building blocks include the entities social constraintsare made of: agents, organizations, roles, obligations, interdictions, permissions,goals, constraints, plans, etc. In this framework agents determine what obliga-tions and interdictions currently apply and on this basis decide on their goals,even when these obligations are in contradiction. Once an agent has chosen agoal, it selects a plan to carry it out. Plans are described in a planning for-malism that explicitly represents interactions with other agents by means ofstructured conversations involving message exchanges (hence the name of con-versation plans). Plan actions are dynamically ordered using a Markov DecisionProcess method to maximize certain kinds of rewards. Besides this empiricalline of work that enables us to put ideas to the test immediately and evaluatethe signi�cance of our solutions, we are also developing semantic accounts thatprecisely establish the meaning of our concepts. Details follow.2 The Vocabulary for Social ConstraintsWe start by briey introducing our application domain, the integration of sup-ply chains of manufacturing enterprises. A supply chain is a globally extendednetwork of suppliers, factories, warehouses, distribution centers and retailersthrough which raw materials are acquired, transformed into products, deliveredto customers, serviced and enhanced. The key to the e�cient operation of sucha system is the tight coordination among components. But the dynamics of theenterprise and of the world market make this di�cult: customers change or can-cel orders, materials do not arrive on time, production facilities fail, workersare ill, etc. causing deviations from plan. Our goal is thus to achieve coordi-

nated behavior in dynamic systems of this kind by applying agent coordinationtechnologies.At the highest level, the above de�nes an organization where agents play var-ious roles. An organization consists of a set of roles �lled by a number of agents.In the example below, customer, coordinator etc. are roles �lled respectivelyby agents Customer, Logistics, etc.(def-organization SC1:roles ((customer Customer)(coordinator Logistics)(assembly-plant Plant1)(painting-plant Plant2)(transportation Transp1)))An agent can be a member of one or more organizations and in each of themit can play one or more roles. An agent is aware of the existence of some of theother agents, but not necessarily of all of them. Each agent has its local store ofbeliefs (taken as a data base rather than mental states).A role describes a major function together with the obligations, interdictionsand permissions attached to it. Roles can be organized hierarchically (for exam-ple assembly-plant and painting-plantwould be both manufacturing roles)and subsets of them may be declared as disjoint in that the same agent can notperform them (like manufacturing and transport). For each role there may bea minimumand a maximumnumber of agents that can perform it (e.g. minimumand maximum 1 president).Obligation, Interdiction, Permission. An agent a1 in role r1 has an obligationtowards an agent a2 in role r2 for achieving a goal G according to some constraintC i� the non-performance by a1 of the required actions allows a2 to apply asanction to a1. Agent a2 (who has authority) is not necessarily the bene�ciaryof executing G by the obliged agent (you may be obliged to your manager forhelping a colleague), and one may be obliged to oneself (e.g. for the educationof one's children).In our language we provide a construct for de�ning obligations generically.The generic obligation exists between two agents in speci�ed roles, whenever agiven condition applies. The obligation requires the obliged agent to achieve agoal under given constraints. For example:(def-obligation Reply-to-RFQ:obliged coordinator:authority customer:condition (received-RFQ:from (agent-playing customer):by (agent-playing coordinator)):goal gReply-to-RFQ:enforced (max-reply-time 5))

The above requires the coordinator agent (the :obliged party) to reply toa request for quotation (RFQ) from the customer (the :authority party) in atmost �ve units of time (a constraint on the goal gReply-to-RFQ). This genericobligation becomes active when its condition is satis�ed, in this case when thecoordinator receives a RFQ from the customer which requires a reply timenot shorter than 5, because that is the best the obligation requires the agentto do. When this happens (checked by evaluating the :condition predicate),an actual obligation is created linking the coordinator to the customer andapplying to the actual RFQ received (if many RFQ-s are received, as manyactual obligations are created).In exactly the same manner, our language de�nes generic and actual inter-dictions (the performance of the goal is sanctioned) and permissions (neither theperformance nor non-performance are sanctioned). We represent permissions ex-plicitly because we do not assume everything not explicitly obliged or forbiddento be permitted. Agents may choose their goals from their explicit permissions,or requests that can not be proven as obligatory may be served as permissions.Finally, the obligations, interdictions and permissions (short OPI-s) of a role areinherited by sub-roles.Semantically, OPI-s are modeled using the reduction of deontic logic to dy-namic logic due to [Meyer 88] in a multi-agent framework. As this is ongoingwork, we only review a few elements that will be used later on to explain thepropagation method we use to infer the obligations, permisions and interdictionsof agents. We de�ne obligation, interdiction and permission as follows, where V ij�denotes a violation by i of a constraint imposed by j wrt � (associated with acost to be paid):� F ij � � [�]iV ij� : i is forbidden by j to execute �.� P ij � � :F ij �: i is permitted by j to execute �.� Oij � � F ij(-�): i is obliged by j to execute �.This reduction leads to a number of validities which, as will be shown imme-diately, allow us to apply a constraint propagation method to infer new OPI-sfrom given ones. In the following (indices dropped for clarity), ; denotes se-quential composition, [nondeterministic choice and & parallel composition ofactions.j= F(�; �) � [�]F�j= F(� [�) �F�^ F�j= (F�_ F�) � F(�&�)j= O(�; �) � (O�^ [�]O�)j= (O�_ O�) � O(� [�)j= O(� & �) � (O�^ O�)j= P(�; �) � < � > P�j= P(� [�) � (P�_ P�)j= P(� & �) � (P�^ P�).Goal. According to the dynamic logic framework, goals are either atomic(non-decomposable), or compositions of type seqence, parallel or choice.When the type indicates a composition, the goal will specify its components

as subgoals. The description of goals also includes the constraints that can beapplied to a goal and the optimizations that can be requested. For example:(def-goal gReply-to-RFQ:agent Logistics:type choice:subgoals (gReply-RFQ-heuristicallygReply-RFQ-by-scheduling):constraints(max-reply-time req-max-reply-time):optimizations (time accuracy))This speci�es that goal gReply-to-RFQ, belonging to agent Logistics, isof choice type and will be satis�ed by executing one of its two subgoals. Onesubgoal answers the RFQ by using heuristics estimating the time required andthe probable costs, while the other runs scheduling software to determine exactlyif the order can be delivered on time and cost. It can only be constrained by twoconstraints, max-reply-time and req-max-reply-time. Whatever plan is usedfor this goal, its execution may be optimized for both time and accuracy.Conversation Plan. Finally, agents have plans for achieving their goals. Atthe outermost level plans specify the goal they can be used for, the constraintsthey guarantee (a plan for gReply-to-RFQmay guarantee (max-reply-time 4)and thus be applicable for the above obligation) and the optimizations that theirexecution can provide. A plan is usable for a goal if the requested constraintsare satis�ed by the plan and preferably (but not necessary) if the plan executioncan provide the requested optimizations. More details to follow.3 Reasoning About What To Do (or Not)Suppose now the coordinator receives a message from the customer in whichthe latter requests a quotation for delivering 1000 widgets before some datewith a reply in less that 7 units of time and preferring that the coordinator'sresponse be as accurate as possible:(ask :from (customer Customer):to (coordinator Logistics):content ((RFQ :product widget:amount 1000:due-date 17-sept-97):satisfy (req-max-reply-time 7):optimize (accuracy)))This matches the Reply-to-RFQ obligation of Logistics and hence Logisticsinstantiates an actual obligation for replying to the RFQ. From this a goalgReply-to-RFQ to respond in less than 7 units of time and with (preferred)maximal accuracy is generated.

Because of the constraints amongst goals, asserting a goal as obliged orforbidden may have consequences over the other goals of the agent by chang-ing their deontic status. As a result, new goals may become obliged or for-bidden or the same goal may become contradictory (both obliged and forbid-den). For example, if goal gReply-to-RFQ becomes obliged and its subgoalgReply-RFQ-by-scheduling is forbidden because of some reason, it follows thatsubgoal gReply-RFQ-heuristically becomes obliged. If both subgoals are for-bidden, then the goal gReply-to-RFQ is also forbidden and attempting to makeit obliged later results in a contradiction.
g1: choice

g2: sequence g3: parallel

g4: choice

g8: atomic g6: atomic g7: atomic

g5: choice

(forbidden g4)

(obliged g5)

(forbidden g3)

(forbidden g6)

(forbidden g8)

(forbidden g2)

(forbidden g1)

(obliged g7)

Asserted:

Inferred:Fig. 1. Deontic propagation in a goal network.To address the general problem of updating the deontic status of goals weapply an incremental method for deontic constraint propagation. Figure 1 il-lustrates the process using an arbitrary goal network where we have asserted(forbidden g4) and (obliged g5). For each of these assertions the propaga-tion process traverses the network along supergoal and subgoal links and appliesthe deontic validities listed previously. For example, since g4 is a choice, makingit forbidden implies that all its alternatives are also forbidden. This makes bothg8 and g6 forbidden. Since g8 is forbidden, g2 is also forbidden as a sequencewith one action forbidden. Propagating along supergoals, g3 becomes forbiddenbecause of g4. Now both g2 and g3 are forbidden, and since they are all thealternatives of g1, g1 becomes forbidden as well. When g5 is made obliged, sinceg6 is forbidden, it follows that g7 must be obliged.Sequential composition of subgoals creates a new problem for deontic prop-agation in that if a (whole) sequence is forbidden (or obliged), the status ofsubgoals (sequence members) can not be determined in advance. As stated bythe previous deontic valitities, only after one subgoal has been executed we canpost an interdiction (or obligation) for the remaining part of the sequence. Thus,goal execution has to be monitored and for goals that belong to sequences newpropagations need to be performed when these goals are �nished.When goals are asserted as obliged or forbidden, we also allow specifying acost of violating the obligation or interdiction. This helps us handle conicting

situations. In �gure 2 we assert every subgoal of a choice as forbidden with agiven cost. Then the choice goal is asserted as forbidden with a cost equal tothe cost of the smallest cost alternative (this is just one possibility). If later thechoice goal is asserted as obliged with a greater cost, then we propagate thisupon the smallest cost subgoal. Now we have contrdictory assertions on g1 andg2, but since we also have the violation costs, the agent is justi�ed to do g1and g2 (accepting their obligatory status) because thus it will incur a smallerpenalty of 2 as opposed to a penalty of 5 otherwise. We consider this not as thede�nitive solution to the problem, but rather as our �rst shot at it.
g1: choice

g2:atomic g3:atomic g4: atomic

(forbidden g2 :cost 2)

(forbidden g3 :cost 3)

(forbidden g4 :cost 4)

(obliged g1 :cost 5)

(forbidden g1 :cost 2)

(obliged g2 :cost 5)

Asserted:

Inferred:Fig. 2. Deontic propagation with costs and conicts.Once the deontic status of goals updated, the agent knows what it can doand what it can't. The next step is to order goals (perhaps by violation costs)and select plans for each goal. A plan is selected for a goal if its applicabilitycondition allows it. Once selected, the requested constraints and optimizationsare passed to the plan as arguments (plans have a local data store where theseare held). Plans can be associated with any goal, not necessarily to atomic goals.A plan for a goal can trigger the execution of another plan for a subgoal of thatgoal, provided the goal is permitted. Thus, the plan for gReply-to-RFQ cantrigger the plan for gReply-RFQ-heuristically, wait for its completion andthen continue. The mechanisms for this are described later on.Finally, the operational architecture keeps track of how obligations are de-rived from events like received messages, how goals are derived from obligationsand how plans have been selected for goals, using a logical truth maintenancesystem. This allows agents to retract obligations and interdictions when agentschange decisions, like retracting an order or dropping an interdiction because of amore important incompatible obligation. In �gure 1 for example, if (forbiddeng4) is retracted, all inferred assertions will also be retracted as they all rely onthis premise.4 Plan Speci�cation and ExecutionWe now briey review the plan speci�cation and execution mechanisms in orderto connect them with the OPI architecture.

start proposed

ask

counterp

accepted

failed

rejected1

13

6,7

8

2 3

4

11

12

9

10

rejected 5

working
satisfiedFig. 3. Graph representation of Customer-conversation.Conversation plans [Barbuceanu & Fox 96] are descriptions of how an agentacts and interacts in certain situations. A conversation plan consists of states(with distinguished initial and �nal states) and rule governed transitions togetherwith a control mechanism and a local data-base that maintains the state of theconversation. The execution state of a plan is maintained in actual conversations.For example, the conversation plan in �gure 1 shows how the Customer interactswith Logisticswhen the former proposes an order to the latter. After proposingthe order, the Customer-conversation goes to state working where it waits forLogistics to either accept, reject or counter propose. If Logistics accepts,then the Customer waits for the �nished order (which can end in success orfailure). If Logistics counter proposes, a new iteration starts, or the counterproposal is rejected, or clari�cations are asked. In each non-�nal states rulesspecify how the agent interprets incoming messages, how it updates its statusand how it responds with outgoing messages. A conversation plan describes aninteraction from the viewpoint of an individual agent (in �gure 1 the Customer).For two or several agents to "talk", we assume that the conversation plans ofeach agent generate sequences of messages that the others' conversation planscan process.Conversation rules describe the actions that can be performed when theconversation is in a given state. The rule in �gure 2 for example, states that whenLogistics, in state start, receives a proposal for an order from the Customer,it should inform the sender that it has started working on the proposal andgo to state order-received. Note the liberal use KQML-like [Finin et al 92]communicative actions for describing the exchanged messages (the approachassuming that speci�c types of communicative actions can be freely introduced).Error recovery rules (not illustrated) specify how incompatibilities (caused byplanning or execution aws) among the state of a conversation and the incomingmessages are handled: for example by changing the state, discarding inputs,changing the plan, starting new conversations, etc.Control. The framework also de�nes mechanisms by which agents can carryout many conversations in parallel and a more complex typology of rules includ-

(def-conversation-rule 'lep-1:current-state 'start:received '(propose:from (customer Customer):content(customer-order:has-line-item ?li)):next-state 'order-received:transmit '(tell :from ?agent :to customer:content '(working on it):conversation ?convn):do '(update-var ?conv '?order ?message))Fig. 4. Conversation rule.ing various forms of event/condition triggered rules. But of particular interesthere is the mechanism allowing a conversation associated with a goal to be sus-pended (with preserved state), and conversations for the subgoals of this goalto be initiated and completed (provided the deontic state of the subgoals allowsit). When the child conversations reach a state satisfying certain conditions (e.g.termination in some state), the parent conversation can be resumed and will begiven access to the state of the children (for example to retrieve variables orcheck the state). In this way plans for supergoals can be writen to make use ofplans for subgoals while in the same time enforcing that deontic propagation se-lects those goals that can be executed. All these provide exible control handlesallowing the use of conversations as generalized plans and processes that captureboth interaction and local processing.5 Decision Theoretic PlanningConversations can be mapped to fully-observable, discrete-state Markov deci-sion processes (MDP) [Bellman 57]. In this mapping, conversation states becomeMDP states and conversation rules become MDP actions. Let S be the set ofstates and A the set of actions of a conversation plan. For each action (rule)a 2 A we de�ne the probability P (s; a; t) that action a causes a transition tostate t when applied in state s. In our framework, this probability quanti�es thelikelihood of the rule being applicable in state s and that of its execution beingsuccessful. For each action (rule), its reward (a real number) denotes the imme-diate utility of going from state s to state t by executing action a, and is writtenas R(s; a; t). Since conversation plans operate for inde�nite periods of time, weuse the theory of in�nite horizon MDP-s. A (stationary) policy � : s ! A de-scribes the actions to be taken by the agent in each state. We assume that anagent accumulates the rewards associated with each transition it executes. Tocompare policies, we use the expected total discounted reward as the criterion to

optimize. This criterion discounts future rewards by rate 0 � � < 1. For anystate s, the value of a policy � is de�ned as:V�(s) = R(s; �(s); t) + �Pt2S P (s; �(s); t)V�(t)The value of � at any state s can be computed by solving this system oflinear equations. A policy � is optimal if V�(s) � V�0 (s) for all s 2 S andall policies �0. A simple algorithm for constructing the optimal policy is valueiteration [Bellman 57], guaranteed to converge under the assumptions of in�nitehorizon discounted reward MDP-s.
1{1,1}

start proposed

rejected counterp

accepted

executed

failed

succeeded

5

6

3{0.4 1}

4
{0.3 1}

7

8

:

2{0.3, 1}

{0.3, 1}

{0.3, 1} {0.4, 2}

{0.5, 0}

{0.5, 8}
12

11

{0.4, 3}

9{0.3,4}

10{0.3,3}

accepted: 9, 8, 10
executed: 12, 11counterp: 7,4,6

proposed: 2,3,5Ordering produced by value iteration:Fig. 5. Using value iteration to reorder rules.The application of this theory to conversation plans is illustrated in �gure3. With each rule number we show the probability and the reward associatedto the rule. We use value iteration to actually order the rules in a state ratherthan just computing the best one. The result is the reordering of rules in eachstate according to how close they are to the optimal policy. Since the rules aretried in the order they are encountered, the optimal reordering guarantees thatthe system will always try the better behavior �rst. Of course, there are severalreward structures corresponding to di�erent criteria, like solution accuracy orexecution time. To account for these, we produce a separate ordering for eachcriterion. Then a weighted combination of criteria is used to produce the �nalordering. For example, if we have spent too much time in the current plan,when entering a new state we modify the global criterion giving execution timea greater weight. This dynamically reorders the rules in the current state, givingpriority to a rule that saves time and thus achieving adaptive behavior of theagent.6 Back to the Supply ChainOne typical round of interactions starts with the Customer sending an RFQabout some order to Logistics. To answer it, Logistics sets up an appropri-

ate run of its scheduling software that decomposes the order into parts doable bythe production units in the network and also provides an estimation of whetherthe order can be executed given the current workload. If the result is positive,Logistics tries to obtain tentative agreements from the other production unitsfor executing their part. In this interaction, units are obliged to respond. If thetentative team can be formed, the Customer is informed that it can place an or-der. If this happens (e.g. by using the conversation plan in �gure 1), Logisticsstarts another round of interactions in which it asks units to commit to their partof the order. When a unit agrees, it acquires an obligation to execute its part.If everybody agrees, Logistics becomes obliged to the Customer for executionand the Customer to Logistics for paying. Then, Logistics starts coordinat-ing the actual work by kicking o� execution and monitoring its state. Unitsbecome obliged to Logistics for informing about breakdowns or other eventsso that Logistics can try to replace a unit that can not �nish successfully. Ifbreakdowns occur and replacements can not satisfy the initial conditions of theorder, Logistics tries to negotiate an alternative contract with the Customer,e.g. by relaxing some conditions. We usually run the system with 5-8 agentsand about 40-60 actual obligations and conversations each. The speci�cationhas about 10-20 generic obligations and conversation plans each with about 200rules and utility functions. The scheduling software is an external process usedby agents through an API. All this takes less than 3500 lines of code to describein our language. We remark the conciseness of the representation given the com-plexity of the interactions and the fact that the size of this code does not dependon the number of agents and of actual obligations and conversations, showingthe exibility and adaptability of the representation.7 Conclusions and Future WorkWe believe the major contribution of this work is a unitary coordination frame-work and language that goes from the fundamental social constraints like obli-gations and interdictions to the actual structured conversations by which agentsdirectly interact. At the organization level, social constraints are objective forcesdetermining behavior for both human and arti�cial agents. As such, social con-straints are necessary components of any account of organizational behavior. Atthe individual agent level, obligations and interdictions can be viewed as mentalstates much like beliefs, desires and intentions. Our framework addresses bothlevels. By describing obligations and interdictions as relations among organiza-tion roles, we use them to shape social behavior. By endowing each agent withan internal representation and an engine for reasoning about their obligationsand interdictions we e�ectively integrate obligations and interdictions with theagent's beliefs, goals and plans, extending the BDI model in a new direction.Social constraints have been addressed to some extent previously. [Werner 89]describes a theory of coordination within social structures built from roles amongwhich permissions and responsibilities are de�ned. [Shoham and Tennenholtz 95]study the general utility of social laws. [Castelfranchi 95] stresses the importance

of obligations in organizations but does not advance operational architectures.AOP [Shoham 93] de�nes obligations locally, but does not really exploit themsocially. [Krogh 96] argues for the necessity of arti�cial agents with normativepositions in today's Internet world.Up to now, our focus has been on prototyping our ideas into systems thatcan be quickly evaluated and "falsi�ed" in applications. Most important evalua-tions include a suite of several supply chain coordination projects. One of thesedeals with dynamic team formation and monitoring (as previously illustrated).Others attempt to capture the dynamic behavior of more realistic supply chainsin a combined simulation/control fashion and to study the coordination mecha-nisms that help atenuate the perturbations and distraction caused by unexpectedevents and uncertainities. In all situations, the coordination language enabled usto quickly prototype the system and build running versions demonstrating therequired behavior. Often, an initial (incomplete) version of the system has beenbuilt in a few days, enabling us to immediately demonstrate its functionality.Moreover, we have found the approach explainable to and usable by industrialengineers interested in modeling manufacturing processes. The most interestingexperience in this sense is our latest supply chain system consisting of about 40agents modeling a realistic enterprise that has several plants, distribution centersand transportation facilities. This system is being developed by an industrial en-gineer without prior programming experience. In spite of that, a prototype ableto simulate the supply chain on a 100-150 weeks horizon during which thousandsof plan executions take place has been built in about 3 months.As for future work, it is clear that a system like this also needs clear semantics.Very briey, one thing we are looking at is using the adopted reduction of deonticlogic to dynamic logic to extend the Cohen-Levesque de�nitions of commitmentsetc. For example, a local commitment imposed by an obligation is de�ned as:(O-goal x y p) �1. (O x y p) ^2. (BMB x(intend y (later(done x p)))) ^3. (bel x :p) ^4. (goal x (later p)) ^5. (know x (prior(a) ((MB x y :(intend y (later(done x p)))) _(b) ((bel x p)^(goal x �(bel y p))) _(c) ((bel x (always :p))(goal x �(bel y (always :p))))):(goal x (later p)))))The new conditions for the O-goal to occur include the existence of an obli-gation and the obliged agent believing that there's a mutual belief that the agentin authority wants him to achieve the goal. To drop an O-goal, a new possibilityis added, the agent in authority can relieve the obliged agent from the obligation.Other future work includes workow modeling [Medina-Mora et al 92] as wellas using the representation of OPI-s to build "explicable" agents that provideservices in a telecommunications organization. In the latter case, besides activelyreasoning about their obligations and interdictions when requested to provide

services to internal or external customers, agents also use their representationsto explain their decisions to users and to their own human developers.8 AcknowledgmentsTom Gray and Serge Mankovski of Mitel Corp. contributed ideas regarding thepractical applications of this work. This research is supported, in part, by theManufacturing Research Corporation of Ontario, Natural Science and Engineer-ing Research Council, Digital Equipment Corp., Mitel Corp., Micro Electronicsand Computer Research Corp., Spar Aerospace, Carnegie Group and QuintusCorp.References[Barbuceanu & Fox 96] Barbuceanu, M. and Fox, M. S. 1996. Capturing and Mod-eling Coordination Knowledge for Multiagent Systems. International Journal ofCooperative Information Systems, Vol.5, Nos. 2 & 3 275-314.[Bellman 57] Bellman, R. E. 1957. Dynamic Programming. Princeton University Press,Princeton.[Castelfranchi 95] Castelfranchi, C. 1995. Commitments: From Individual Intentionsto Groups and Organizations. In Proceedings of ICMAS-95, AAAI Press, 41-48.[Cohen & Levesque 90] Cohen, P. R. and Levesque, H. 1990. Intention is Choice withCommitment. Arti�cial Intelligence 42, 213-261.[Cohen & Levesque 91] Cohen, P. R. and Levesque, H. 1991. Teamwork. Nous 15, 487-512.[Finin et al 92] Finin, T. et al. 1992. Speci�cation of the KQML Agent CommunicationLanguage. The DARPA Knowledge Sharing Initiative, External Interfaces WorkingGroup.[Krogh 96] Krogh, K. 1996. The Rights of Agents. In M.Wooldridge,J.P. Muller and M.Tambe (eds) Intelligent Agents II, Agent Theories, Architectures and Languages.Lecture Notes in AI 1037, 1-16, Springer Verlag.[Meyer 88] Meyer, J. J. Ch. 1988. A Di�erent Approach to Deontic Logic: DeonticLogic Viewed as a Variant of Dynamic Logic. Notre Dame J. of Formal Logic29(1) 109-136.[Medina-Mora et al 92] Medina-Mora, R., Winograd, T., Flores, R. and Flores, F.1992. The Action Workow Approach to Workow Management Technology. InCSCW 92 Proceedings, 281-288.[Shoham 93] Shoham, Y. 1993. Agent-Oriented Programming. Arti�cial Intelligence60, 51-92.[Shoham and Tennenholtz 95] Shoham, Y. and Tennenholtz, M. 1995. On Social Lawsfor Arti�cial Agent Societies: O�-line Design. Arti�cial Intelligence 73 231-252.[Werner 89] Werner, E. 1989. Cooperating Agents: A Uni�ed Theory of Communica-tion and Social Structure. In L. Gasser and M.N. Huhns (eds), Distributed Arti�cialIntelligence Vol II 3-36, Pitman.This article was processed using the LATEX macro package with LLNCS style

