An Architecture for Agents with Obligations

Mihai Barbuceanu
Enterprise Integration Laboratory
University of Toronto,
4 Taddle Creek Road, Rosebrugh Building,
Toronto, Ontario, Canada, MbS 3G9
mihai@ie.utoronto.ca

Abstract. We explore the view that coordinated behavior is driven by
the social constraints (e.g. obligations and interdictions) that agents in
organizations are subject to. In this framework, agents adopt those goals
that are requested by their obligations, knowing that not fulfilling obliga-
tions induces a price to pay or a loss of utility. Based on this idea we build
a coordination system where we represent the organization, the roles
played by agents, the obligations imposed among roles, the goals and
the plans that agents may adopt. To consistently update an agent’s obli-
gations and interdictions we present an incremental propagation method
that also helps with detecting and deciding between conflicting obliga-
tions. Once a goal adopted, a special brand of plans, called conversation
plans, are available to the agents for effectively carrying out coordinated
action. Conversation plans explicitly represent interactions by message
exchange and their actions are dynamically reordered using the theory
of Markov Decision Processes to ensure the optimization of various cri-
teria. The framework is applied to model supply chains of distributed
enterprises.

1 Introduction and Motivation

To build autonomous agents that work coordinately in a dynamically changing
world we have to understand two basic things. The first is how an agent chooses
a particular course of action and how its choices change in face of events hap-
pening in the world. The second is how agents execute coordinated actions. In
this paper we present a framework that answers these questions by construing
agents as rational decision makers that exist within organizations. Organizations
are systems that constrain the actions of member agents by imposing mutual
obligations and interdictions. The association of obligations and interdictions is
mediated by the roles agents play in the organization. For example, when an
agent joins a software production organization in the system administrator
role, he becomes part of a specific constraining web of mutual obligations, inter-
dictions and permissions - social constraints or laws - that link him as a system
administrator to developers, managers and every other role and member of
the organization. Not fulfilling an obligation or interdiction is sanctioned by pay-
ing a cost or by a loss of utility, which allows an agent to apply rational decision
making when choosing what to do.

Social laws are objective forces that provide the ultimate motivation for co-
ordinated action at the organization level and to a large extent determine the
mental states at the individual agent level. Agents ”desire” and ”intend” the
things that are requested by their current obligations, knowing that otherwise
there will be a cost to pay. However, current models of collective behavior largely
ignore this aspect, trying to explain coordination solely from the perspective of
socially unconstrained individuals. For this reason they often impose restrictive
conditions that limit the generality of the models. For example, the Cohen-
Levesque account of teamwork [Cohen & Levesque 91] requires team members
to have the same mutual goal. But this is not true in organizations, for example
it 1s normal for supervisors to decompose and schedule work and assign team
members different goals which they can carry out coordinately often without
being even aware of each other’s goals. Similarly, dropping off a team, according
to the Cohen-Levesque model, requires an agent to make his goal to convince
every member of the team that, e.g., the common motivation for the joint action
has disappeared. Since common goals or motivations do not necessarily exist,
this is also not true in general. Imagine an agent having to convince everybody
else that he’s got a better job elsewhere before he can leave the organization!

To initiate a more realistic investigation of such social constraints and of
their role in achieving coordinated behavior, we have built an agent coordi-
nation framework whose building blocks include the entities social constraints
are made of: agents, organizations, roles, obligations, interdictions, permissions,
goals, constraints, plans, etc. In this framework agents determine what obliga-
tions and interdictions currently apply and on this basis decide on their goals,
even when these obligations are in contradiction. Once an agent has chosen a
goal, it selects a plan to carry it out. Plans are described in a planning for-
malism that explicitly represents interactions with other agents by means of
structured conversations involving message exchanges (hence the name of con-
versation plans). Plan actions are dynamically ordered using a Markov Decision
Process method to maximize certain kinds of rewards. Besides this empirical
line of work that enables us to put ideas to the test immediately and evaluate
the significance of our solutions, we are also developing semantic accounts that
precisely establish the meaning of our concepts. Details follow.

2 The Vocabulary for Social Constraints

We start by briefly introducing our application domain, the integration of sup-
ply chains of manufacturing enterprises. A supply chain 1s a globally extended
network of suppliers, factories, warehouses, distribution centers and retailers
through which raw materials are acquired, transformed into products, delivered
to customers, serviced and enhanced. The key to the efficient operation of such
a system 1s the tight coordination among components. But the dynamics of the
enterprise and of the world market make this difficult: customers change or can-
cel orders, materials do not arrive on time, production facilities fail, workers
are 1ll; etc. causing deviations from plan. Our goal is thus to achieve coordi-

nated behavior in dynamic systems of this kind by applying agent coordination
technologies.

At the highest level, the above defines an organization where agents play var-
ious roles. An organization consists of a set of roles filled by a number of agents.
In the example below, customer, coordinator etc. are roles filled respectively
by agents Customer, Logistics, etc.

(def-organization SC1
:roles ((customer Customer)
(coordinator Logistics)
(assembly-plant Plantl)
(painting-plant Plant2)
(transportation Transpil)))

An agent can be a member of one or more organizations and in each of them
it can play one or more roles. An agent is aware of the existence of some of the
other agents, but not necessarily of all of them. Each agent has its local store of
beliefs (taken as a data base rather than mental states).

A role describes a major function together with the obligations, interdictions
and permissions attached to it. Roles can be organized hierarchically (for exam-
ple assembly-plant and painting-plant would be both manufacturing roles)
and subsets of them may be declared as disjoint in that the same agent can not
perform them (like manufacturing and transport). For each role there may be
a minimum and a maximum number of agents that can perform it (e.g. minimum
and maximum 1 president).

Obligation, Interdiction, Permission. An agent al in role r1 has an obligation
towards an agent a2 in role r2 for achieving a goal G according to some constraint
C iff the non-performance by al of the required actions allows a2 to apply a
sanction to al. Agent a2 (who has authority) is not necessarily the beneficiary
of executing G by the obliged agent (you may be obliged to your manager for
helping a colleague), and one may be obliged to oneself (e.g. for the education
of one’s children).

In our language we provide a construct for defining obligations generically.
The generic obligation exists between two agents in specified roles, whenever a
given condition applies. The obligation requires the obliged agent to achieve a
goal under given constraints. For example:

(def-obligation Reply-to-RFQ

:obliged coordinator

rauthority customer

:condition (received-RFQ
:from (agent-playing customer)
:by (agent-playing coordinator))

:goal gReply-to-RFQ

:enforced (max-reply-time 5))

The above requires the coordinator agent (the :obliged party) to reply to
a request for quotation (RFQ) from the customer (the :authority party) in at
most five units of time (a constraint on the goal gReply-to-RFQ). This generic
obligation becomes active when its condition is satisfied, in this case when the
coordinator receives a RFQ from the customer which requires a reply time
not shorter than 5, because that is the best the obligation requires the agent
to do. When this happens (checked by evaluating the :condition predicate),
an actual obligation is created linking the coordinator to the customer and
applying to the actual RFQ received (if many RFQ-s are received, as many
actual obligations are created).

In exactly the same manner, our language defines generic and actual inter-
dictions (the performance of the goal is sanctioned) and permissions (neither the
performance nor non-performance are sanctioned). We represent permissions ex-
plicitly because we do not assume everything not explicitly obliged or forbidden
to be permitted. Agents may choose their goals from their explicit permissions,
or requests that can not be proven as obligatory may be served as permissions.
Finally, the obligations, interdictions and permissions (short OPI-s) of a role are
inherited by sub-roles.

Semantically, OPI-s are modeled using the reduction of deontic logic to dy-
namic logic due to [Meyer 88] in a multi-agent framework. As this is ongoing
work, we only review a few elements that will be used later on to explain the
propagation method we use to infer the obligations, permisions and interdictions
of agents. We define obligation, interdiction and permission as follows, where Vi/
denotes a violation by ¢ of a constraint imposed by j wrt « (associated with a
cost to be paid):

o [l o = [a]'ViI: i is forbidden by j to execute a.

o Pl o = —~F% o i is permitted by j to execute «.

e O o = F(-a): i is obliged by j to execute a.

This reduction leads to a number of validities which, as will be shown imme-
diately, allow us to apply a constraint propagation method to infer new OPI-s
from given ones. In the following (indices dropped for clarity), ; denotes se-
quential composition, U nondeterministic choice and & parallel composition of
actions.
= F(0; 9) = [a]FB

(a UpB) =Fan F3
aVv FG) D F(a&p)

(a:8) = (0an [a]OB)
OaVv 0f) D O(a U)
& B) = (Oan 0f)
;B =<a>Pg
upg) = (Pav PB)
& B) O (Pan Pp).

Goal. According to the dynamic logic framework, goals are either atomic
(non-decomposable), or compositions of type seqence, parallel or choice.
When the type indicates a composition, the goal will specify its components

2RO OH=E
)

e R

T T

as subgoals. The description of goals also includes the constraints that can be
applied to a goal and the optimizations that can be requested. For example:

(def-goal gReply-to-RFQ
:agent Logistics
:type choice
:subgoals (gReply-RFQ-heuristically
gReply-RFQ-by-scheduling)
:constraints
(max-reply-time req-max-reply-time)
:optimizations (time accuracy))

This specifies that goal gReply-to-RFQ, belonging to agent Logistics, is
of choice type and will be satisfied by executing one of its two subgoals. One
subgoal answers the RFQ by using heuristics estimating the time required and
the probable costs, while the other runs scheduling software to determine exactly
if the order can be delivered on time and cost. It can only be constrained by two
constraints, max-reply-time and req-max-reply-time. Whatever plan is used
for this goal, its execution may be optimized for both time and accuracy.

Conversation Plan. Finally, agents have plans for achieving their goals. At
the outermost level plans specify the goal they can be used for, the constraints
they guarantee (a plan for gReply-to-RFQ may guarantee (max-reply-time 4)
and thus be applicable for the above obligation) and the optimizations that their
execution can provide. A plan is usable for a goal if the requested constraints
are satisfied by the plan and preferably (but not necessary) if the plan execution
can provide the requested optimizations. More details to follow.

3 Reasoning About What To Do (or Not)

Suppose now the coordinator receives a message from the customer in which
the latter requests a quotation for delivering 1000 widgets before some date
with a reply in less that 7 units of time and preferring that the coordinator’s
response be as accurate as possible:

(ask :from (customer Customer)
:to (coordinator Logistics)
:content ((RFQ :product widget
:amount 1000
:due-date 17-sept-97)
:satisfy (req-max-reply-time 7)
:optimize (accuracy)))

This matches the Reply-to-RFQobligation of Logistics and hence Logistics
instantiates an actual obligation for replying to the RFQ. From this a goal
gReply-to-RFQ to respond in less than 7 units of time and with (preferred)
maximal accuracy is generated.

Because of the constraints amongst goals, asserting a goal as obliged or
forbidden may have consequences over the other goals of the agent by chang-
ing their deontic status. As a result, new goals may become obliged or for-
bidden or the same goal may become contradictory (both obliged and forbid-
den). For example, if goal gReply-to-RFQ becomes obliged and its subgoal
gReply-RFQ-by-scheduling is forbidden because of some reason, it follows that
subgoal gReply-RFQ-heuristically becomes obliged. If both subgoals are for-
bidden, then the goal gReply-to-RFQ is also forbidden and attempting to make
it obliged later results in a contradiction.

g1: choice Asserted:
(forbidden g4)
g2: ence g3: paralle (obliged g5)

Inferred:
g4: chgice gS: choice (forbidden g3)
(forbidden g6)
(forbidden g8)
Q@ (forbidden g2)
g8: atomic g6: atomic 97+ &Omic (forbidden g1)
(obliged g7)

Fig. 1. Deontic propagation in a goal network.

To address the general problem of updating the deontic status of goals we
apply an incremental method for deontic constraint propagation. Figure 1 il-
lustrates the process using an arbitrary goal network where we have asserted
(forbidden g4) and (obliged gb). For each of these assertions the propaga-
tion process traverses the network along supergoal and subgoal links and applies
the deontic validities listed previously. For example, since g4 is a choice, making
it forbidden implies that all 1ts alternatives are also forbidden. This makes both
g8 and g6 forbidden. Since g8 is forbidden, g2 is also forbidden as a sequence
with one action forbidden. Propagating along supergoals, g3 becomes forbidden
because of g4. Now both g2 and g3 are forbidden, and since they are all the
alternatives of g1, g1 becomes forbidden as well. When g5 is made obliged, since
g6 is forbidden, it follows that g7 must be obliged.

Sequential composition of subgoals creates a new problem for deontic prop-
agation in that if a (whole) sequence is forbidden (or obliged), the status of
subgoals (sequence members) can not be determined in advance. As stated by
the previous deontic valitities, only after one subgoal has been executed we can
post an interdiction (or obligation) for the remaining part of the sequence. Thus,
goal execution has to be monitored and for goals that belong to sequences new
propagations need to be performed when these goals are finished.

When goals are asserted as obliged or forbidden, we also allow specifying a
cost of violating the obligation or interdiction. This helps us handle conflicting

situations. In figure 2 we assert every subgoal of a choice as forbidden with a
given cost. Then the choice goal is asserted as forbidden with a cost equal to
the cost of the smallest cost alternative (this is just one possibility). If later the
choice goal is asserted as obliged with a greater cost, then we propagate this
upon the smallest cost subgoal. Now we have contrdictory assertions on g1 and
g2, but since we also have the violation costs, the agent is justified to do g1
and g2 (accepting their obligatory status) because thus it will incur a smaller
penalty of 2 as opposed to a penalty of 5 otherwise. We consider this not as the
definitive solution to the problem, but rather as our first shot at it.

Asserted:
(forbidden g2 :cost 2)
(forbidden g3 :cost 3)
(forbidden g4 :cost 4)
@ Q@ (obliged g1 :cost 5)
g2:atomic g3:atomic g4: atomic Inferred:
(forbidden g1 :cost 2)
(obliged g2 :cost 5)

g1: choice

Fig. 2. Deontic propagation with costs and conflicts.

Once the deontic status of goals updated, the agent knows what it can do
and what it can’t. The next step is to order goals (perhaps by violation costs)
and select plans for each goal. A plan is selected for a goal if its applicability
condition allows 1t. Once selected, the requested constraints and optimizations
are passed to the plan as arguments (plans have a local data store where these
are held). Plans can be associated with any goal, not necessarily to atomic goals.
A plan for a goal can trigger the execution of another plan for a subgoal of that
goal, provided the goal is permitted. Thus, the plan for gReply-to-RFQ can
trigger the plan for gReply-RFQ-heuristically, wait for its completion and
then continue. The mechanisms for this are described later on.

Finally, the operational architecture keeps track of how obligations are de-
rived from events like received messages, how goals are derived from obligations
and how plans have been selected for goals, using a logical truth maintenance
system. This allows agents to retract obligations and interdictions when agents
change decisions, like retracting an order or dropping an interdiction because of a
more important incompatible obligation. In figure 1 for example, if (forbidden
g4) is retracted, all inferred assertions will also be retracted as they all rely on
this premise.

4 Plan Specification and Execution

We now briefly review the plan specification and execution mechanisms in order
to connect them with the OPI architecture.

13
1 @ r9j ected
O 67
start proposed

counterp

1
//fa:
working 4
satisfied
rejected . 5 accepted 1. ‘

Fig. 3. Graph representation of Customer-conversation.

2

Conversation plans [Barbuceanu & Fox 96] are descriptions of how an agent
acts and interacts in certain situations. A conversation plan consists of states
(with distinguished initial and final states) and rule governed transitions together
with a control mechanism and a local data-base that maintains the state of the
conversation. The execution state of a plan is maintained in actual conversations.
For example, the conversation plan in figure 1 shows how the Customer interacts
with Logistics when the former proposes an order to the latter. After proposing
the order, the Customer-conversation goes to state working where it waits for
Logistics to either accept, reject or counter propose. If Logistics accepts,
then the Customer waits for the finished order (which can end in success or
failure). If Logistics counter proposes, a new iteration starts, or the counter
proposal is rejected, or clarifications are asked. In each non-final states rules
specify how the agent interprets incoming messages, how it updates its status
and how it responds with outgoing messages. A conversation plan describes an
interaction from the viewpoint of an individual agent (in figure 1 the Customer).
For two or several agents to "talk”, we assume that the conversation plans of
each agent generate sequences of messages that the others’ conversation plans
can process.

Conversation rules describe the actions that can be performed when the
conversation 1s in a given state. The rule in figure 2 for example, states that when
Logistics, in state start, receives a proposal for an order from the Customer,
it should inform the sender that it has started working on the proposal and
go to state order-received. Note the liberal use KQML-like [Finin et al 92]
communicative actions for describing the exchanged messages (the approach
assuming that specific types of communicative actions can be freely introduced).

Error recovery rules (not illustrated) specify how incompatibilities (caused by
planning or execution flaws) among the state of a conversation and the incoming
messages are handled: for example by changing the state, discarding inputs,
changing the plan, starting new conversations, etc.

Control. The framework also defines mechanisms by which agents can carry
out many conversations in parallel and a more complex typology of rules includ-

(def-conversation-rule ’lep-1
:current-state ’start
:received ’ (propose
:from (customer Customer)
:content (customer-order
:has-line-item 71i))
:next-state ’order-received
:transmit ’(tell :from 7agent :to customer
:content ’(working on it)
:conversation 7convn)
:do ’(update-var 7conv ’Torder Tmessage))

Fig. 4. Conversation rule.

ing various forms of event/condition triggered rules. But of particular interest
here is the mechanism allowing a conversation associated with a goal to be sus-
pended (with preserved state), and conversations for the subgoals of this goal
to be initiated and completed (provided the deontic state of the subgoals allows
it). When the child conversations reach a state satisfying certain conditions (e.g.
termination in some state), the parent conversation can be resumed and will be
given access to the state of the children (for example to retrieve variables or
check the state). In this way plans for supergoals can be writen to make use of
plans for subgoals while in the same time enforcing that deontic propagation se-
lects those goals that can be executed. All these provide flexible control handles
allowing the use of conversations as generalized plans and processes that capture
both interaction and local processing.

5 Decision Theoretic Planning

Conversations can be mapped to fully-observable, discrete-state Markov deci-
sion processes (MDP) [Bellman 57]. In this mapping, conversation states become
MDP states and conversation rules become MDP actions. Let S be the set of
states and A the set of actions of a conversation plan. For each action (rule)
a € A we define the probability P(s,a,t) that action a causes a transition to
state ¢ when applied in state s. In our framework, this probability quantifies the
likelihood of the rule being applicable in state s and that of its execution being
successful. For each action (rule), its reward (a real number) denotes the imme-
diate utility of going from state s to state ¢ by executing action @, and is written
as R(s,a,t). Since conversation plans operate for indefinite periods of time, we
use the theory of infinite horizon MDP-s. A (stationary) policy m : s — A de-
scribes the actions to be taken by the agent in each state. We assume that an
agent accumulates the rewards associated with each transition it executes. To
compare policies, we use the expected total discounted reward as the criterion to

optimize. This criterion discounts future rewards by rate 0 < 8 < 1. For any
state s, the value of a policy 7 1s defined as:

Va(s) = Ris, n(s),8) + B3 ye5 Pls, 7(s), Vi (1)

The value of 7 at any state s can be computed by solving this system of
linear equations. A policy = is optimal if V;(s) > Vi/(s) for all s € S and
all policies 7’. A simple algorithm for constructing the optimal policy is value
iteration [Bellman 57], guaranteed to converge under the assumptions of infinite
horizon discounted reward MDP-s.

failed
9{034} 11

41,1} 2{0.3, 1} accep}edsf\ to

start

rejged (03,1} counterp

Ordering produced by vaue iteration: proposed: 2,3,5 accepted: 9, 8, 10
counterp: 7,4,6 executed: 12, 11

Fig. 5. Using value iteration to reorder rules.

The application of this theory to conversation plans is illustrated in figure
3. With each rule number we show the probability and the reward associated
to the rule. We use value iteration to actually order the rules in a state rather
than just computing the best one. The result is the reordering of rules in each
state according to how close they are to the optimal policy. Since the rules are
tried in the order they are encountered, the optimal reordering guarantees that
the system will always try the better behavior first. Of course, there are several
reward structures corresponding to different criteria, like solution accuracy or
execution time. To account for these, we produce a separate ordering for each
criterion. Then a weighted combination of criteria is used to produce the final
ordering. For example, if we have spent too much time in the current plan,
when entering a new state we modify the global criterion giving execution time
a greater weight. This dynamically reorders the rules in the current state, giving
priority to a rule that saves time and thus achieving adaptive behavior of the
agent.

6 Back to the Supply Chain

One typical round of interactions starts with the Customer sending an RFQ
about some order to Logistics. To answer it, Logistics sets up an appropri-

ate run of its scheduling software that decomposes the order into parts doable by
the production units in the network and also provides an estimation of whether
the order can be executed given the current workload. If the result is positive,
Logistics tries to obtain tentative agreements from the other production units
for executing their part. In this interaction, units are obliged to respond. If the
tentative team can be formed, the Customer is informed that it can place an or-
der. If this happens (e.g. by using the conversation plan in figure 1), Logistics
starts another round of interactions in which it asks units to commit to their part
of the order. When a unit agrees, it acquires an obligation to execute its part.
If everybody agrees, Logistics becomes obliged to the Customer for execution
and the Customer to Logistics for paying. Then, Logistics starts coordinat-
ing the actual work by kicking off execution and monitoring its state. Units
become obliged to Logistics for informing about breakdowns or other events
so that Logistics can try to replace a unit that can not finish successfully. If
breakdowns occur and replacements can not satisfy the initial conditions of the
order, Logistics tries to negotiate an alternative contract with the Customer,
e.g. by relaxing some conditions. We usually run the system with 5-8 agents
and about 40-60 actual obligations and conversations each. The specification
has about 10-20 generic obligations and conversation plans each with about 200
rules and utility functions. The scheduling software is an external process used
by agents through an API. All this takes less than 3500 lines of code to describe
in our language. We remark the conciseness of the representation given the com-
plexity of the interactions and the fact that the size of this code does not depend
on the number of agents and of actual obligations and conversations, showing
the flexibility and adaptability of the representation.

7 Conclusions and Future Work

We believe the major contribution of this work is a unitary coordination frame-
work and language that goes from the fundamental social constraints like obli-
gations and interdictions to the actual structured conversations by which agents
directly interact. At the organization level, social constraints are objective forces
determining behavior for both human and artificial agents. As such, social con-
straints are necessary components of any account of organizational behavior. At
the individual agent level, obligations and interdictions can be viewed as mental
states much like beliefs, desires and intentions. Our framework addresses both
levels. By describing obligations and interdictions as relations among organiza-
tion roles, we use them to shape social behavior. By endowing each agent with
an internal representation and an engine for reasoning about their obligations
and interdictions we effectively integrate obligations and interdictions with the
agent’s beliefs, goals and plans, extending the BDI model in a new direction.
Social constraints have been addressed to some extent previously. [Werner 89]
describes a theory of coordination within social structures built from roles among
which permissions and responsibilities are defined. [Shoham and Tennenholtz 95]
study the general utility of social laws. [Castelfranchi 95] stresses the importance

of obligations in organizations but does not advance operational architectures.
AOP [Shoham 93] defines obligations locally, but does not really exploit them
socially. [Krogh 96] argues for the necessity of artificial agents with normative
positions in today’s Internet world.

Up to now, our focus has been on prototyping our ideas into systems that
can be quickly evaluated and ”falsified” in applications. Most important evalua-
tions include a suite of several supply chain coordination projects. One of these
deals with dynamic team formation and monitoring (as previously illustrated).
Others attempt to capture the dynamic behavior of more realistic supply chains
in a combined simulation/control fashion and to study the coordination mecha-
nisms that help atenuate the perturbations and distraction caused by unexpected
events and uncertainities. In all situations, the coordination language enabled us
to quickly prototype the system and build running versions demonstrating the
required behavior. Often, an initial (incomplete) version of the system has been
built in a few days, enabling us to immediately demonstrate its functionality.
Moreover, we have found the approach explainable to and usable by industrial
engineers interested in modeling manufacturing processes. The most interesting
experience in this sense is our latest supply chain system consisting of about 40
agents modeling a realistic enterprise that has several plants, distribution centers
and transportation facilities. This system is being developed by an industrial en-
gineer without prior programming experience. In spite of that, a prototype able
to simulate the supply chain on a 100-150 weeks horizon during which thousands
of plan executions take place has been built in about 3 months.

As for future work, it is clear that a system like this also needs clear semantics.
Very briefly, one thing we are looking at 1s using the adopted reduction of deontic
logic to dynamic logic to extend the Cohen-Levesque definitions of commitments
etc. For example, a local commitment imposed by an obligation is defined as:

(O-goal x y p) =

1. (O xyp)A

2. (BMB x(intend y (later(done x p)))) A

3. (bel x =p) A
4. (goal x (later p)) A
5. (know x (prior
) ((MB x y —(intend y (later(done x p)))) V
) ((bel x p)A(goal x o(bel y p))) V
c) ((bel x (always —p))(goal x o(bel y (always —p)))))

—(goal x (later p)))))

The new conditions for the O-goal to occur include the existence of an obli-
gation and the obliged agent believing that there’s a mutual belief that the agent
in authority wants him to achieve the goal. To drop an O-goal, a new possibility
is added, the agent in authority can relieve the obliged agent from the obligation.

Other future work includes workflow modeling [Medina-Mora et al 92] as well
as using the representation of OPI-s to build "explicable” agents that provide
services in a telecommunications organization. In the latter case, besides actively
reasoning about their obligations and interdictions when requested to provide

(a
(b
(

services to internal or external customers, agents also use their representations
to explain their decisions to users and to their own human developers.

8 Acknowledgments

Tom Gray and Serge Mankovski of Mitel Corp. contributed ideas regarding the
practical applications of this work. This research is supported, in part, by the
Manufacturing Research Corporation of Ontario, Natural Science and Engineer-
ing Research Council, Digital Equipment Corp., Mitel Corp., Micro Electronics
and Computer Research Corp., Spar Aerospace, Carnegie Group and Quintus
Corp.

References

[Barbuceanu & Fox 96] Barbuceanu, M. and Fox, M. S. 1996. Capturing and Mod-
eling Coordination Knowledge for Multiagent Systems. International Journal of
Cooperative Information Systems, Vol.5, Nos. 2 & 3 275-314.

[Bellman 57] Bellman, R. E. 1957. Dynamic Programming. Princeton University Press,
Princeton.

[Castelfranchi 95] Castelfranchi, C. 1995. Commitments: From Individual Intentions
to Groups and Organizations. In Proceedings of [CMAS-95, AAAT Press, 41-48.

[Cohen & Levesque 90] Cohen, P. R. and Levesque, H. 1990. Intention is Choice with
Commitment. Artificial Intelligence 42, 213-261.

[Cohen & Levesque 91] Cohen, P. R. and Levesque, H. 1991. Teamwork. Nous 15, 487-
512.

[Finin et al 92] Finin, T. et al. 1992. Specification of the KQML Agent Communication
Language. The DARPA Knowledge Sharing Initiative, External Interfaces Working
Group.

[Krogh 96] Krogh, K. 1996. The Rights of Agents. In M. Wooldridge,J.P. Muller and M.
Tambe (eds) Intelligent Agents II, Agent Theories, Architectures and Languages.
Lecture Notes in Al 1037, 1-16, Springer Verlag.

[Meyer 88] Meyer, J. J. Ch. 1988. A Different Approach to Deontic Logic: Deontic
Logic Viewed as a Variant of Dynamic lLogic. Notre Dame J. of Formal Logic
29(1) 109-136.

[Medina-Mora et al 92] Medina-Mora, R., Winograd, T., Flores, R. and Flores, F.
1992. The Action Workflow Approach to Workflow Management Technology. In
CSCW 92 Proceedings, 281-288.

[Shoham 93] Shoham, Y. 1993. Agent-Oriented Programming. Artificial Intelligence
60, 51-92.

[Shoham and Tennenholtz 95] Shoham, Y. and Tennenholtz, M. 1995. On Social Laws
for Artificial Agent Societies: Off-line Design. Artificial Intelligence 73 231-252.
[Werner 89] Werner, E. 1989. Cooperating Agents: A Unified Theory of Communica-
tion and Social Structure. In L. Gasser and M.N. Huhns (eds), Distributed Artificial

Intelligence Vol 11 3-36, Pitman.

This article was processed using the ITEX macro package with LLNCS style

