005 AND TECRNTAUES

Resource Allocation in
Distributed Factory
Scheduling

Katia P. Sycara, Steven F. Roth, Norman Sadeh, and Mark S. Fox
Carnegie Mellon University

Both the operations research and the artificial intelli-
gence communities have investigated factory scheduling in
depth,’2 but almost noone has researched distributed
scheduling. While a few researchers in distributed AI have
studied this area,>* they have focused on problems where
machine agents contend only for computational resources,
such as computer time and communication bandwidth.5- In
most real-world situations, however, allocation of noncom-
putational resources — for example, machines — must be
made to various areas of the factory so that orders can be
scheduled. Factory managers need mechanisms to control
cooperative distributed-resource allocation over time —
that is, the distributed scheduling of resources. We have
initiated the Cortes project to construct a decentralized,
heterogeneous, multiagent production control system with
which to study the impact of different production control
architectures. In our system, factory areas are modeled as
machine agents, which perform the distributed factory
scheduling. Agents run on separate workstations and
communicate via networked message passing.

Both pragmatic and theoretical considerations motivated
our investigations. For example, scheduling takes place at
alllevels of a manufacturing organization (from scheduling
the factory floor to scheduling meetings of the board of
directors). Manufacturing organizations are inherently
distributed, so their various parts must be scheduled to

optimize the performance of the whole. The inherently
decentralized nature of the activities being coordinated
requires a corresponding decentralization of planning and
control mechanisms. From the theoretical viewpoint, we
are interested in investigating coordination techniques as
available information degrades or becomes incomplete,
and as each machine agent’s need to react increases due to
potentially conflicting scheduling decisions of other agents.

Our initial work focused on formalizing the concept of
constraint-directed search within a centralized framework.’
We identified a set of so-called texture measures that
quantify several characteristics of the problem space being
searched. We hypothesized that these textures can predict
the impact of local decisions on system goals and that they
express the expectations of agents’ resource needs. We
developed these textures into heuristics that direct the
searches conducted by scheduling agents. We successfully
applied these heuristics to direct the searches of a central-
ized activity-based scheduler, achieving good schedule
quality and minimizing the likelihood of backtracking.’
Our current model uses textures to direct distributed sched-
uling, optimizing decisions in the global search space by
allowing agents to focus and direct searches in their indi-
vidual search spaces.

Distributed scheduling is a process carried out by a group
of agents, each of which has

FEBRUARY 1991

0885/9000/91/0200-0029 $1.00 © 1991 [EEE 29

Manufacturing
organizations are
inherently distributed, so
their various parts must be
scheduled to optimize the
performance of the whole.

«limited knowledge of the environment,

«limited knowledge of the constraints and intentions of
other agents, and

«a limited number and amount of resources to produce a
system solution.

Many agents might share these resources. Agents make
local decisions about assigning resources to specific activ-
ities at specific time intervals, and a complete order sched-
ule is cooperatively created by incrementally merging agents’
partial schedules. No single agent has a global system view.
The distributed Al system arrives at global solutions by
interleaving local computations with the information ex-
changed among agents. The system goal is to find schedules
that are not only feasible, but that also optimize a global
objective — for example, minimizing order tardiness or
work in process. The global objective to be optimized
reflects the quality of schedule produced.

Another equally important concern is the efficiency of
schedule generation. Since backtracking is a fact of life in
scheduling, systems need approaches that incrementally
produce schedules while minimizing backtracking. Our
approach, based on texture measures, considers both opti-
mization components — the quality of schedules as well as
the efficiency of schedule generation.

Distributed scheduling has the following characteristics:

» The global system goal is to schedule a set of activities
in a distributed fashion to optimize global criteria and
minimize backtracking.

+To achieve global solutions, agents must consistently
allocate resources needed to perform system activities.
Because resources have limited capacity, system conflicts
arise in the form of contention over optimal allocation of
shared resources.

eDue to a limited communication bandwidth, it is not
possible to exchange a complete set of specific constraints.

*Because of conflicts over shared resources, agents gen-
erally cannot optimize the scheduling of their assigned
orders using only local information.

« All orders must be scheduled; in other words, agents
cannot drop any local goals.

«Certain constraints (for example, the precedence con-
straints among the operations of an order) cannot be relaxed.

« When local computations produce infeasible schedules,
the agent has to backtrack and try again. Backtracking can

invalidate resource reservations that other agents have
made, causing major ripple effects on the network.

At each stage of scheduling, agents need mechanisms to
predict and evaluate the impact of scheduling decisions on
global system goals, to form expectations and predictions
about the resource needs and behavior of other agents, and
to help focus attention opportunistically on specific parts of
their search space. Good predictive measures are very
important for several reasons. Because of ripple effects,
backtracking is more costly when it involves many agents.
Second, an agent might ask another agent to estimate its
needs for resources that it might not otherwise consider
until it has made many other reservations. Third, since they
operate asynchronously, agents must predict and take into
consideration the future needs of other agents that are in an
earlier stage of scheduling. Finally, since communication is
costly, predictive measures must be robust and accurate
over many scheduling decisions.

The distributed factory scheduling model

Consider a set of scheduling agents, I' = {a, B,...}. Each
agent o is responsible for scheduling a set of orders 0% =
{0%, ..., OF}. Each order Of consists of a set of activities
A= {A! ., A!*} to be scheduled according to a process
plan, or routing. The plan specifies a partial ordering among
these activities — for example, A'* before A}*. Each order
also has a release date and a latest acceptable completion
date, which might actually be later than the ideal due date.
Each activity Ai* requires one or more resources RS
(1<i< p,ﬂ"), and each resource can have one or more
alternatives (that is, substitutable resources) R‘,fi,j(l <j< q,ﬁ‘f .
The system contains a finite number of resources. Some
resources are required by only one agent and are said to be
local to that agent. Other resources are shared, in the sense
that they can be allocated to different agents at different
times.

We distinguish between two types of constraints: activ-
ity precedence constraints and capacity constraints. Activ-
ity precedence constraints, together with order release
dates and latest acceptable completion dates, restrict the set
of acceptable start times of each activity. Capacity constraints
restrict the number of activities to which a resource can be
allocated at any one time to the capacity of that resource.
For the sake of simplicity in this article, we only consider
resources with a capacity of 1. Typically, limited resource
capacity induces interactions between orders that are si-
multaneously competing for the same resource. These in-
teractions can take place between the orders of one agent or
different agents.

For each activity, we associate preference functions that

30

IEEE EXPERT

map each possible start time and
each possible resource alterna-

1o

Agent B monitors R, and its own
local resource, R,. R, is the only

tive onto a preference. These
preferences arise from global or-

resource required by four activi-

ties (one activity in each order).

ganizational goals, including

ereducing order tardiness
(meeting due dates),

*reducing order earliness
(reducing the finished-goods
inventory),

All other resources are required
by fewer activities.

Our model treats each activity
A as an aggregate variable (or
vector of variables). It also de-
fines a value as a reservation for

*reducing order flowtime (re-
ducing the in-process inventory),

an activity, consisting of a start
time and a set of resources for

that activity (that is, one resource

*using accurate machines, and
* performing certain activities

R’,f‘,. ; for each resource require-

during some shifts rather than
others.”

Local resource of

In the cooperative setting we are
P g agent B

assuming here, the sum of these

ment R{% of AR, 1 <i < pl®).

By iteratively selecting an ac-
tivity to be scheduled and areser-
vation (value) for that activity,

each agent asynchronously and

— = The precedence
relation "Before"

preferences over all agents in the
system and over all activities
scheduled by these agents defines
a global-objective function to be
optimized. We can view the sum
of these preferences over all the
activities under one agent’s responsibility as that agent’s
local view of the global-objective function. In other words,
individual agents do not know the global-objective func-
tion. Furthermore, because agents compete for shared re-
sources, it is not enough for individual agents to try to
optimize their own local preferences. Instead, agents need
to consider the preferences of other agents when they
schedule their activities.

Figure | shows a simple example with two agents, & and
B. Agentothas two orders, Of*and OZ. Agent B has two orders
as well, OP and O5. The figure shows each order’s required
activities and resource requirements. For instance, order
O has a process plan with three activities: A% (which re-
quires resource R,), A}* (which requires resource R,), and
A}* (which requires resource R;). The arrows between ac-
tivities represent precedence constraints — for example,
A1“ has to be performed before A2,

In this example, each activity has only one resource
requirement, and each requirement has only one alternative
(for example, Rl'j’ =R)). In other words, the only variables
in this problem are the activity start times. For the sake of
simplicity, we will also assume that time has been repre-
sented in discrete units with a granularity of 1, that all
activities have the same duration of three time units, that all
orders are released at time 0 and have to be completed by
time 15. Resources Ry, R,, and R, are shared, since they are
required by both agents, and R, is local to agent . We also
assume that agent o is responsible for monitoring R, and R,

and four resources.

Figure 1. A simple problem with two agents, four orders,

incrementally builds a schedule
for the orders assigned to that
agent. Each time an agent sched-
ules a new activity, new con-
straints are added to the distrib-
uted Cortes system that reflect
the new activity reservation. The system propagates these
new constraints both within the agent (in a local constraint
propagation step) and across agents (a constraint communi-
cation step followed by alocal constraint propagation step).
The system backtracks if it detects an inconsistency (that is,
a constraint violation) during propagation. Otherwise, the
agent moves on and looks for a new activity to schedule and
a reservation for that activity. The process continues until
all activities have been successfully scheduled.

If an agent could always make sure that the next reserva-
tion to be assigned will not result in some constraint
violation — forcing that agent or others to undo earlier
decisions — the system could schedule without backtrack-
ing. Because scheduling is NP-hard, most researchers be-
lieve that such look-ahead cannot be performed efficiently.
Our system uses the constraint propagation mechanism
described by LePape and Smith.? For the sake of efficiency,
this mechanism does not try to guarantee total consistency,
but instead looks for two types of inconsistency that are
easy to spot: violations of precedence constraints within an
order, and violations of capacity constraints between a
group of scheduled activities and one unscheduled activity.

This mechanism does not immediately detect violations
of capacity constraints between unscheduled activities.
These are usually detected later, when the system has
scheduled all but one of the activities involved in the
conflict. This type of conflict appears to be more difficult
to detect (possibly requiring exponential time). Under these

FEBRUARY 1991

31

heuristic (for reservations). The mea-
sures assigned by these techniques are
examples of texture measures.

Ordering activities. The variable-
ordering heuristic assigns a criticality
measure to each unscheduled activity,

‘ g 150 so that the system schedules the activ-
1 5 1(21(5) ity with the highest criticality first.
= 075 The criticality measure approximates
2 y
| g 0.50 ,__f_'r the likelihood that the activity will be
j g o2 involved in a conflict. This technique
‘ < 0.00r T T t T T T T T T T T T T T R .
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 only deals with conflicts that cannot
} (c) Time | be detected by constraint propagation.

| Figure 2. Building agent o.’s demand for resource Ry: (o) activity A)* ‘s demand for R;;

| {b) activity A2*’s demand for Ry; (c) agent o’s demand for R,.

By scheduling the most critical activ-
ity first, agents reduce their chances
of wasting time building partial
schedules that cannot be completed,
thereby reducing the frequency and
the damage of backtracking.

Sadeh and Fox describe a technique
to identify critical activities, whose
resource requirements are likely to
conflict with those of other activities.’

| . .
: €4 The technique starts by building a
| % 0.95 probabilistic activity demand for each
&8 0.00F——1— :“"‘:'—-‘r ———— T T T) unscheduled activity. We determine
‘ 0 1 2 3 4 5 & 7 8 9 10 1 1213 14 15 the demand of activity A, for a re-
(b) Time source R'®, .at time t by calculating the
k.ij y g
‘ © 150 number of possible reservations for
! 2125 Al that require R, ; at time 7, divided
D) .
‘ b égg by the total number of possible reser-
% 050 vations forAi.“. Clearly, activities with
| =3 8(2)3 many possible start times and resource
<< 0.00r T T 1 T T T T T T T T T T T 1 H de-
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 reservations tend to ha\'/e s.maller le
(©) Time mands at any moment in time, while

| Figure 3. Building agent 3’s demand for resource R;: (a) activity AlP's
{b) activity A2’s demand for R, ; () agent 3’s demand for R,.

. conditions, a reservation can force agents (even the agent
| who made the original reservation) to backtrack later. This
was the case in the centralized version of our model and,
‘ because of the additional cost of communication, it is even
‘ more deleterious in the distributed case. Consequently, it is
important to focus search in a way that reduces the chances
| of needing to backtrack and minimizes the work to be
undone when backtracking occurs.
‘ We accomplish this via two techniques, the variable-
ordering heuristic (for activities) and the value-ordering

activities with fewer possible reserva-
tions tend to have higher demands.

In the technique’s second step,
agents aggregate their activity demands
as a function of time, each obtaining
an agent demand. This demand re-
flects an agent’s need for a resource
over time, given the activities still to be scheduled. We
obtain an agent’s demand for a resource at time ¢ by simply
summing the demands of all of that agent’s unscheduled
activities at time . Because these probabilities do not ac-
count for limited resource capacities, their sum can be
larger than 1.

Figures 2 and 3 illustrate the process by which agents o
and B compute their total agent demands for resource R,. For
instance, agent oL has two activities requiring R,: A} and A3".
First, oo computes the probabilistic demand of each of these

demand for R,;

L32

BT

two activities (see Figure 2) and then
sums these two numbers, producing
o’s total demand for R,. Activities A3
and A2* have the same total demand,
which equals their duration, but it has
been spread over the different possi-
ble start times of each activity. Be-
cause A)*has fewer possible start times
than A%%, its demand is more compact
than that of A3*.

Finally, for each shared resource,
the system aggregates all agent de-
mands, producing aggregate demands
that indicate the degree of contention
among agents for each shared resource
as a function of time. Time intervals
over which a resource’s aggregate
demand is very high correspond to
capacity constraint violations that are
likely to go undetected by constraint
propagation. The contribution of an
activity’s demand to the aggregate
demand for a resource over a highly
contended time interval reflects that
activity’s reliance on that resource in
that time interval. We define this as
the criticality of the activity.

In our example, agent o0 communi-
cates to B its total agent demand for
resource R, and agent § communicates
to ot its total agent demands for R, and
R;. In the next step, o and 3 compute
aggregate demand profiles for each
shared resource, thereby obtaining the
system’s global demand for each re-
source as a function of time. Figure 4
illustrates the aggregation process for
R,:agentoaggregates its own demand
for that resource together with the
demand it received from agent 3. The
computed aggregate demands are then
communicated back to each contrib-
uting agent. (Communication is un-
necessary for R,, since it is a local
resource of B.) Atthe end of this phase,
agent o has three aggregate demand
curves (one for each of the three shared
resources), and agent 3 has four (three
for the shared resources, and one for
its local resource). Figure 5 presents
these curves. Resource R, has the
largest peak of demand, indicating it
is the resource for which the highest

FEBRUARY 1991

g 125

3 1.00

£ 075

S 050 ’_'_'_,—l—'

= 0.25 ‘

< 0.00 T T T T T T T T T T T T T +
0 1" 2 3 456 7 8 9 10 1112 13 1415

(b) Time

—
N O
(S~

—
f=4
o

Contention peak

OO
N o
adS

Aggregate demand
o
S

0.00 T T 1 T T T T T T T T T T T
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time

_—
2

Figure 4. Agent o aggregates its demand for R, together with that of B, thereby obtaining the
system’s aggregate demand for R,: (a) agent c:’s demand for R,; (b) agent B’s demand for
R,; (¢) aggregate demand for resource R,.

Contention peak

2.1.50
2125
$1.00
%0.75
20.50
20.25 |
< 0.00 T T T T T T T T T T T T T T

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(c) Time
2150
£1.25
2 1.00
£075
20.50
025 peed by
Z0.00 T T T T T T T T T T T ? i T

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(d) Time

Figure 5. Aggregate demands for the three shared resources R,, Ro, and R, and the local

- resource R,: (a) aggregate demand for R, ; (b) aggregate demand for R,; (c) aggregate demand

for R;; (d) aggregate demand for R,.

other activities from being scheduled
by itself or by other agents. This heu-
ristic results in the agent behaving
altruistically.

» A greedy-value ordering strate-
gy (GV) — At the other extreme, an
agent can select reservations based
solely on its local preferences, irre-
spective of its own future needs or
those of other agents. This heuristic
results in the agent behaving egotisti-

(b) Start time

cally and myopically.

A continuum of strategies lies be-

Figure 6. Reservation ordering Ibﬁy agent o, and f: (a) reservation survivability for A3%; (b)

reservation survivahility for A3".

contention exists — that is, it is the main bottleneck
resource.

To choose the next activity to schedule, each agent looks
among the resources it might need within a certain time
interval, and picks the one with the highest aggregate
demand. It then picks the activity with the highest contribu-
tion (that is, the highest criticality) to the aggregate demand
for that resource/time interval. In other words, each agent
inspects all the resource/time intervals for which it still has
some demand, and selects the time interval that it deems
most likely to be involved in a capacity constraint violation.
It then picks the activity with the highest probability of
being involved in the conflict.

In our example, both agents o and B require resource R,.
Agents only consider time intervals whose duration equals
the average duration of the activities requiring the resource
— three time units in this example. While two time inter-
vals actually qualify as most contended — [7,10] and [8,11]
— we will assume that the agents both pick [8,11] as their
most contended one. Agent 0. picks activity AJ* as its most
critical activity, since it is the activity (among the two
needing R,) that relies most on that time interval. That is,
the contribution of A}%to the demand peak is larger than that
of A2 (see Figure 2). Similarly, agent B picks AP as its most
critical activity (see Figure 3).

Ordering reservations. Once an agent has selected the
activity to schedule next, it must decide which reservation
to assign to that activity. The system can consider several
strategies, including the following two extremes:

* A least-constraining-value ordering strategy (LCV) —
Agents try to select the reservation least likely to prevent

tween these two extremes, combining
features of both LCV and GV ap-
proaches. These intermediate strate-
gies factor in areservation’s contribu-
tion to the global-objective function,
together with the likelihood that se-
lecting that reservation will result in backtracking (either
locally or for another agent). Experiments in centralized
scheduling indicate that LCV heuristics are best at mini-
mizing searches but usually result in poor schedules, since
this method selects reservations irrespective of their contri-
bution to the objective function.” GV heuristics usually
produce significantly better schedules, but result in extra
backtracking, so the search takes longer.

However, we can reduce backtracking considerably by
combining the GV value-ordering heuristic with the vari-
able-ordering heuristic, reflecting the compensatory rela-
tion between these heuristics. Because agents in the decen-
tralized case schedule asynchronously, we expect the effect
of the variable-ordering heuristic to be weaker. Also, the
cost of backtracking in a distributed system is higher than
in a centralized one due to the overhead in coordinating
agents whose earlier decisions are interdependent. We
expect a higher need for least-constraining behavior in a
distributed scheduling environment. The ultimate choice of
an intermediate strategy depends on such factors as the time
available to come up with a solution, the load of the agents,
and the amount of resource contention.

Figure 6 illustrates the behavior of agents o and 3 when
they both use an LCV heuristic. Each agent assigns a
survivability measure to each possible start time of the
activity to be scheduled. This measure simply estimates the
probability that assigning this start time to the activity will
not result in a capacity constraint violation. For each pos-
sible start time, the agent looks at the time interval that it
would need to reserve on R,’s calendar. The heuristic de-
termines the likelihood of another activity requiring that
same time interval by considering the number of other
activities contributing to the demand for that time interval

34

IEEE EXPERT

and their total demand. Intervals in which other activities
have low demands are usually the least likely to result in a
conflict, so they correspond to the least constraining start
times.’

Figures 2 and 3 show that the earlier agent o schedules
activity A;“, the less likely this reservation will conflict
with agent B’s resource requirements (since 3’s demand for
R, is the lowest over these time intervals). This is reflected
by the survivability measures computed by a for the dif-
ferent possible start times of A}*. The least constraining of
these start times is time 3. Accordingly, agent o decides to
schedule A} to start at that time, reserving R, over the in-
terval [3,6]. Similarly, agent P selects time 12 as the least
constraining start time for A, and reserves R, over the
interval [12,15]. The LCV heuristic works as expected, and
the agents end up selecting nonoverlapping intervals. All
this occurs without the agents knowing about each other’s
activities. The agents only exchanged their total agent
demands, not their individual activity demands.

Applying textures to multiagent scheduling

Additional theoretical concerns arose as we applied the
texture approach to decentralized, multiagent, resource-
constrained scheduling. We addressed several difficulties
in the multiagent situation, including

ereasoning with incomplete information about the in-
tentions and future behavior of other agents;

*scheduling with uncertain or changing information —
even when detailed information regarding other agents’
intentions is communicated, this information is not stable
over time, since agents are scheduling asynchronously; and

* scheduling without coordinating agents helping to avoid
conflicts and achieve global goals.

Multiagent scheduling with incomplete information.
In a multiagent system, complete information is unavail-
able to each agent about the constraints, partial plans,
schedules, and heuristic analyses of other agents. Only
limited interagent communication can reasonably occur,
since a narrow communication bandwidth requires some
summarization and abstraction. OQur approach expresses
summarization information in terms of the texture measures
that have been effective for centralized problems. Specif-
ically, we represent an agent’s intended resource use in
terms of that agent’s demand density for the resource for
different time intervals; that is, the extent to which an agent
expects to use aresource is expressed as the aggregate of its
expectations that each of its activities will require the
resource over the time period for which it is available. We
further abstract all agent densities to produce an aggregate

The system goal is to find
schedules that are not only
feasible, but that also
optimize a global objective —
for example, minimizing order
tardiness or work in process.

density, which represents the system-wide expectation for
resource utilization over time.

Because of the abstraction process, agents cannot con-
sider the specific quantities underlying aggregate densities
while solving problems (as they could in the centralized
case). For example, while agents can determine that a high
collective demand exists for a resource for some interval,
they cannot determine whether that demand results from a
single activity with high criticality or from many less-
critical activities (or even if the demand originates with one
agent or many).

Multiagent scheduling with rapidly changing infor-
mation. The continuous, asynchronous behavior of agents
can reduce the validity of exchanged information, regard-
less of how complete that information is. Therefore, an
agent cannot depend on the certainty of information, be-
cause other agents’ decisions interact with already con-
structed partial schedules as well as with future scheduling
decisions, repeatedly producing new expectations. Also,
because of the associated communication costs, agents
cannot afford to communicate, update, and evaluate infor-
mation with every change that occurs. The information
communicated must remain robustly predictive in the face
of communication lags.

Several aspects of the texture approach address this
problem of rapid information obsolescence. First, texture
measures produce relatively accurate early predictions of
agent behavior, as long as all agents communicate their
expectations at the beginning of scheduling and as long as
constraints remain constant. Second, the uniform represen-
tation of expectations as densities and the incremental
nature of activity scheduling allows the system to incorpo-
rate changes in expectations as soon as it receives them.
Third, agents can monitor their own current expectations to
determine when these have changed significantly from
those that were last communicated.

Heuristics that minimize the undoing of planning deci-
sions, thereby avoiding the ripple effects of backtracking,
are crucial to maintaining stability in distributed schedul-
ing. Variable-ordering strategies focus on the most con-
strained resources and activities first. Since these are activ-
ity-scheduling decision points for which the fewest initial
alternatives exist, it becomes less likely that these will be
undone later. Our LCV value-ordering heuristic helps pro-
duce stable, incrementally refined schedules, in that agents

FEBRUARY 1991

35

in the texture approach, we
can coordinate multiagent
scheduling by having agents
accept and adhere to shared
decision-making policies.

can react flexibly to changes in other agents’ future deci-
sion-making behavior (as reflected in changing demand
densities) with minimal backtracking.

Agents can reduce the effects of rapid information obso-
lescence by monitoring their expectations to determine the
most opportune time to communicate. Agents can initiate
the exchange of densities either when they determine that
their own plans for future decisions have changed signifi-
cantly or when they infer that other agents’ plans have
changed. Agents determine when to communicate expected
changes in their own plans by heuristically comparing their
current densities with those last communicated to other
agents. For example, we can use the mean-squared differ-
ence between the previous and current densities over time
as a measure of uncertainty.

Agents must also reason about the collective effects of
changes in the expectations of other agents. This is espe-
cially important when no single agent has changed its
expectations sufficiently to warrant communication to others,
but significant net changes have occurred across all agents.
For example, an agent can request others to exchange
densities when many reservations have been made on
globally critical resource/time intervals. This lets agents
take advantage of change, rather than adhering to rigid
communication protocols.

The changeable and incomplete nature of expectations
can have additional adverse effects, requiring extensions to
previous search techniques. Since LCV is only a heuristic,
it cannot always prevent agents from making reservations
that cause constraint violations for other agents. For exam-
ple, an agent might reserve aresource in an interval that was
the only potential interval within which another activity
(belonging to another agent) could be scheduled without
causing other activities to be late (that is, causing other
activities to violate their due-date constraints). In other
words, the second agent’s activity still could be scheduled
on its required resource prior to its own due date, but not
without delaying subsequent activities past their due dates.

Agents detect these indirectly produced violations of
their own constraints during the normal course of consis-
tency checking, which occurs after making éach reserva-
tion. At these points, the system propagates temporal con-
straints and partially checks capacity constraints to determine
the impact of the new reservation on the rest of the sched-
ule. In a centralized system, we can attribute constraint
violations to the most recent reservation, since the system

validates all previous reservations as new ones are made. As
aresult, a centralized system can handle violations simply,
using chronological backtracking to undo the last reservation
for an activity and then trying another one for that activity.
In a multiagent system, other agents can make reservations
throughout an agent’s search, making it difficult to deter-
mine which set of previous reservations were responsible
for a constraint violation when it is eventually detected.

At this point, an agent must find the last set of reserva-
tions it made that, together with those made by other agents,
does not violate constraints. A simple backtracking proce-
dure will eventually find this state, but this is extremely
inefficient, because chronological backtrackinyg requires
trying every value (reservation) for a variable (activity)
before backtracking to a previous variable (trying a different
reservation for a previous activity). If an earlier-scheduled
reservation combines with other agents’ reservations to
cause a constraint violation, the system has to try all
alternative reservations for all activities scheduled since
then before it reaches the relevant point. This produces
computational loads that increase exponentially with the
number of activities searched.

To deal with this problem, we have developed a varia-
tion of backjumping®!° for uncertain, multiagent environ-
ments. Our approach involves iteratively undoing each
activity’s scheduled reservation and determining whether
constraint violations remain, until the set of acceptable
activity reservations has been partitioned. We do not try
any alternative values for any one activity until we have
determined this set.

In other words, whenever we find a constraint violation,
we do not try to undo other agents’ reservations. An agent
can only undo the reservations it has made (in backward
chronological order) until it finds a set of reservations that
are still feasible with all other agents’ reservations. The
scheduling process then resumes for the activities remain-
ing to be scheduled.

This procedure avoids testing alternate values for vari-
ables when violations already exist for values assigned to
previously addressed variables. Our version of backjump-
ing locates the appropriate search point by incurring a
computational load that is a linear function of the number
of variables already traversed. This is a tremendous saving
over chronological backtracking, which is a multiplicative
function of the number of variables traversed times the
number of possible reservations to be tried on each.

Multiagent scheduling without coordinating agents.
In the texture approach, we can coordinate multiagent
scheduling by having agents accept and adhere to shared
decision-making policies. Through three policies, agents
support each others’ attempts to solve their portions of the
global scheduling problem. First, by applying LCV value-

36

IEEE EXPERT

ordering heuristics, agents use information about other
agents’ expectations to avoid overconstraints. Second, the
system grants agent requests to reserve uncontested re-
sources on a first-come, first-served basis. Also, agents
promptly surrender reservations if they decide not to use
them as a result of local constraint violations. Third, once
an agent has made a reservation, that agent does not have to
surrender it — one agent cannot ask another to backtrack.
An important principle is that all agents assume they can
best realize the global good by applying these policies and,
therefore, do not depart from them to maximize local
objective functions.

A communication protocol for coordinating multi-
agent scheduling. In the decentralized case, agents com-
municate asynchronously by passing messages, and each
agent has a set of orders to schedule on a set of resources.
Each order consists of several activities. Several agents
usually need the same resources and, conversely, each
agent needs some resources that are also needed by others.
Which resources are shared can change with the set of
orders to be scheduled. In our model, resources are passive
objects monitored by active agents. Resource monitoring
does not give an agent preferential treatment in resource
allocation; it simply helps the system balance loads and
detect capacity constraint violations. This detection occurs
when an agent requests a resource reservation for a time
interval that is already reserved for another activity. To
avoid duplication of effort, only monitoring agents inte-
grate certain information for shared resources and keep the
calendar of the resources they monitor. Typically, each
agent is a monitoring agent for some shared resources, and
each resource is monitored by some agent. Since no single
agent has a global system view, the system must allocate
shared resources through collaboration of the agents that
need these resources — the monitoring agent is usually one
of those that require the shared resource. This model mir-
rors actual situations where the factory floor is divided into
work areas that might share resources (for instance, ma-
chines, fixtures, and operators) to process orders.

We have identified two levels of agent interaction: the
strategic level, where aggregate information is communi-
cated, and the tactical level, where information about spe-
cific entities is communicated. Strategic information con-
sists of the demand profiles out of which agents calculate
criticality measures for their decision making. At the tac-
tical level, agents make specific scheduling decisions and
negotiate if needed.

Because they can contend for the same resources, sched-
uling agents must build their schedules cooperatively.
The two texture measures we have identified provide a
framework for cooperation in which agents exchange de-
mand profiles and reservations. The system periodically

Several agents usually need
the same resources and,
conversely, each agent needs
some resources that are also
needed by others.

aggregates demand profiles and computes textures to help
agents form expectations about other agents’ resource de-
mands. Because of communication overhead, the demand
profile information is restricted. Agents communicate de-
mand profiles for only the resources they share, although
reservations on nonshared resources can affect scheduling
decisions on the shared ones. Since several agents are
scheduling asynchronously and the communicated demand
profiles are limited to the subset of shared resources, this
system architecture involves a higher uncertainty. This
uncertainty also varies inversely with the frequency at
which demand profiles are communicated. Moreover, the
cost of backtracking is greater, since any scheduling change
due to backtracking can ripple through to other agents and
cause them to change their reservations.

Specifically, our multiagent communication protocol
works as follows:

(1) Each agent determines its required resources by
checking the process plans for the orders it has to schedule.
It sends a message to all monitoring agents (as specified in
atable) informing them that it will be using shared resources.

(2) Each agent calculates its demand profile for the (local
and shared) resources that it needs.

(3) Each agent determines whether its new demand profile
differs significantly from its previous ones. If ithas changed,
the agent sends the new profile to the monitoring agent.

(4) The monitoring agent combines all agent demands
and communicates the aggregate demand to all agents that
share the resource. Except for the first time demands are
exchanged, agents do not wait for aggregate demands to be
computed and returned before continuing their scheduling
operations, although they can postpone further scheduling
if desired.

(5) Using the most recent aggregate demand, each agent
finds its most critical resource/time-interval pair and its
most critical activity — the one with the greatest demand on
this resource for this time interval. Since agents typically
need to use a resource for different time intervals, the most
critical activity and time interval for a resource usually
differs for different agents. Each agent communicates its
reservation request to the resource’s monitoring agent and
awaits a response.

(6) The monitoring agent checks the resource calendar
for resource availability. If the resource is available
for the requested time interval, the monitoring agent

FEBRUARY 1991

37

Texture measures allowed near-
perfect performance (solving
the problem in 40 states) when
the texture information was
vpdated frequently.

communicates “reservation OK” to the requesting agent,
marks the reservation on the resource calendar, and com-
municates the reservation to all the agents that had sent
positive demands on the resource. If the resource had
already been reserved for the requested interval, the mon-
itoring agent denies the request. The agent whose request is
denied tries to substitute another reservation, if feasible;
otherwise, it performs backjumping.

(7) Hearing that its request is granted, the agent performs
consistency checking to search for constraint violations.
If it detects none, the agent proceeds to step 2. Otherwise,
it backjumps, withdrawing reservations until the system
reaches a search state with no constraint violations. Any
reservations withdrawn during this phase are communi-
cated to the monitor for distribution to other agents. Once
the system reaches a consistent state, the agent proceeds
to step 2.

The system terminates when it has scheduled all the
activities of all agents. We have based backjumping in this
version of the protocol on two design decisions. First, once
the system grants a reservation to an agent, it does not
automatically undo this reservation when another agent
(who had to backjump) needs it. This design decision can
lead to situations where one agent solves its local schedul-
ing problem but another agent cannot due to unresolvable
constraint violations.

We also decided that when an agent backjumps and frees
up resources, other agents’ reservations on these resources
remain as they were. This policy can result in nonoptimal
reservations since agents cannot take advantage of can-
celed reservations, but it results in less computationally
intensive performance.

Experimental results

We wanted to compare the performance of multiagent
and centralized schedulers. We also wanted to

edetermine the feasibility of the texture approach to
multiagent scheduling,

« test specific mechanisms and parameters that influence
system performance, and

»study the heuristics’ roles in the tradeoff of solution
quality versus amount of searching and the influence of
frequency of texture communication on system performance.

We created our experiments based on problems found to
be difficultin previous research on centralized scheduling.”
These experiments reflect system performance with respect
to search efficiency rather than schedule optimality. We
implemented the testbed in Knowledge Craft running on
top of Common Lisp. It can be run on networked Mi-
croVAX 3200s under VMS.

Specifically, our experiments considered

o the effects of agents’ incomplete knowledge of each
other’s plans — that is, the robustness of texture measures
when aggregated across multiple agents and with the result-
ing loss of detailed information;

« the effects of rapidly changing expectations on perfor-
mance — that is, the robustness of these measures with
respect to delays in communicating densities; and

« the consequences of asynchronous scheduling (for ex-
ample, asynchronously using variable-ordering strategies)
without external coordination.

We selected all our experimental problems such that
orders could be distributed evenly between two agents, all
resources were shared by the two agents (high interagent
resource coupling), every order used all resources, and
problems ranged from 40 to 100 activities. Varying several
properties in each problem, we ran more than 90 experi-
ments. In each case, the dependent variable was the effi-
ciency with which the scheduling system found a solution,
expressed by the total number of states needed to reach a
solution. For example, for a problem with 40 activities, the
minimum number of states needed to assign areservation to
each activity is 40. Every reservation that needed to be
redone added an additional state to the total. This let us
compare a 40-activity one-agent problem to a pair of 20-
activity problems solved simultaneously by two agents.

Problem versions differed in several ways. First, to
establish a baseline, we created a one-agent system that
resembled the two-agent system in every way except that
aggregate densities were constructed from a single agent.
This was still different from the original centralized system
in that decisions were based on an abstract aggregate (for
example, the aggregate did not include detailed informa-
tion about the number of activities contributing to the
densities). Furthermore, we were able to vary the frequency
with which the aggregate was computed, thereby isolating
the effect of uncertain expectations caused by infrequent
and delayed communication of densities in the two-agent
system.

We implemented several simplified versions of the heu-
ristic used by agents to determine when to communicate
their changed densities. In the zero-delay condition, any
agent’s reservation on any resource initiated the exchange
of densities for all resources. For increased delays, agents
independently exchanged densities for each resource

38

|EEE EXPERT

whenever N reservations were made
(N=1,3,and5). This gave us a way to
observe the effects of wide variation
incommunication bandwidth in a two-

One-agent,
semirandom
variable ordering

Two-agent

One-agent

agent system and comparable condi-
tions in a one-agent system.

Another version of the one-agent
system used a semirandom-version

Delay between successive exchanges of resource demand densities

T T T T
. Minimum 1\ 3 53
delay condition Number of reservations

variable-ordering heuristic. We want-
ed to isolate and assess the effects of
less accurate variable ordering that
might occur in a multiagent system.
Recall that our multiagent system per-
forms variable ordering in parallel,
each agent selecting the best activity to schedule from its
subset of activities requiring a critical resource. Agents do
not coordinate activity selection to ensure that the globally
most critical ones are scheduled first. By selecting activi-
ties to schedule from those requiring the most critical
resource/time interval, the semirandom heuristic narrows
selection to a maximum of 20 percent of the activities in
these problems. However, it randomly selects from this
subset instead of selecting the activity with the greatest
demand for the critical resource.

Finally, we created two scheduler versions to compare
backtracking and backjumping search techniques. Figure 7
shows the results for a representative group of 40-activity
experiments. Each data point is the average of three exper-
imental runs, since exact experimental replication is impos-
sible in asynchronous decentralized processing. The three
curves represent the effects of increasing delays in updating
aggregate demand densities for one- and two-agent config-
urations and for a one-agent case with a semirandom variable-
ordering strategy.

Texture measures allowed near-perfect performance
(solving the problem in 40 states) when the texture informa-
tion was updated frequently. Thus, despite incomplete
information in the two-agent system, texture measures
provide satisfactory summaries. Second, as expected, the
performance of the multiagent system deteriorates as the
communication of changing texture information is delayed.
Since each agent uses current texture information to per-
form both variable and value ordering, it is likely that both
these processes deteriorate.

The effects of delaying communication and computation
of demand densities are greater for the two-agent than the
one-agent system. This interaction may reflect the compen-
satory relation between variable and value ordering.” In the
two-agent case, variable ordering might be less effective
because variables are chosen asynchronously. When the
system renews texture measures frequently, it can select
effective values for variables, thereby using valid informa-
tion to compensate for poorer variable ordering. However,

Figure 7. Experimental comparisons of one- and two-agent systems.

delaying density communication weakens value ordering,
and performance declines. In the one-agent system, vari-
able ordering is more effective, so the delay does not hurt
performance as much. Results of the one-agent semiran-
dom variable-ordering test support this view: the effect of
partially disabling variable ordering accelerates with in-
creasing delay, as it does in the two-agent case. Two-agent
performance is still better than the semirandom condition,
suggesting that a variable-ordering strategy is robust in
multiagent environments, which deal with incomplete,
changeable information and asynchronous behavior with-
out external coordination.

The semirandom condition is still highly selective rela-
tive to completely random variable ordering (in that only
activities using the most critical resource/time interval are
considered). In fact, we found that random variable order-
ing resulted in terrible performance, even in the one-agent
case. Finding a solution required more than 500 states.

Finally, as expected, the backjumping strategy substan-
tially reduced search in the two-agent system. Performance
using chronological backtracking was highly variable and
degraded exponentially with delayed communication.
Searches exceeded 300 states when the system waited for
three reservations before initiating communication.

o ur research shows that texture measures can play four
important roles in distributed search.

(1) They provide guidance in making decisions.

(2) They focus each agent’s attention on globally critical
decision points in its local search space.

(3) They are good predictive measures of the impact of
local decisions on system goals.

(4) They can be used for modeling the beliefs and inten-
tions of other agents.

Texture measures represent plan expectations robustly,
even when more detailed information is lacking. Although

FEBRUARY 1991

39

the frequency with which texture measures are communi-
cated affects the efficiency with which schedules are pro-
duced, the measures are robust enough to complete sched-
uling efficiently.

Acknowledgments

This research has been supported, in part, by the Defense Advance
Research Projects Agency under contract F30602-88-C-0001, and in part
by grants from McDonnell Aircraft Company and Digital Equipment
Corporation.

1. S.F. Smith, M.S. Fox, and P.S. Ow, “Constructing and Maintaining
Detailed Production Plans: Investigations into the Development of
Knowledge-Based Factory Scheduling Systems,” Al Magazine, Vol.
7, No. 4, 1986.

2. S.C. Graves, “A Review of Production Scheduling,” Operations
Research, Vol. 29, No. 4, 1981, pp. 646-675.

3. H.V. Parunak et al., “A Distributed Heuristic Strategy for Material
Transportation,” Proc. 1986 Conf. Intelligent Systems and Machines,
1986. This reference can be obtained from the authors.

4. S.F. Smith and J.E. Hynynen, “Integrated Decentralization of Pro-
duction Management: An Approach for Factory Scheduling,” Proc.
ASME Annual Winter Conf.: Symposium on Integrated and Intelligent
Manufacturing, American Society of Mechanical Engineers, New
York, 1987.

5. S. Cammarata, D. McArthur, and R. Steeb, “Strategies of Coopera-
tion in Distributed Problem Solving,” Proc. Eighth Int’l Joint Conf.
AI (IJCAI-83), Morgan Kaufmann, San Mateo, Calif., 1983, pp. 767-
770.

6. E.H. Durfee, A Unified Approach to Dynamic Coordination: Plan-
ning Actions and Interactions in a Distributed Problem-Solving
Network, doctoral dissertation, Dept. of Computer and Information
Sciences, Univ. of Massachusetts, Amherst, Mass., 1987.

~

. N. Sadeh and M.S. Fox, “Focus of Attention in an Activity-Based
Scheduler,” Proc. NASA Conf. Space Telerobotics, NASA, Bethesda,
Md., 1989.

8. C.LePape and S.F. Smith, “Management of Temporal Constraints for
Factory Scheduling,” TAIS 87: Proc. IFIP TC 8/WG 8.1 Working
Conf. on Temporal Aspects in Information Systems, Elsevier Science,
New York, 1987.

9. J. Gaschnig, “Performance Measurement and Analysis of Certain
Search Algorithms,” Tech. Report CMU-CS-79-124, Computer
Science Dept., Carnegie Mellon Univ., Pittsburgh, Penn., 1979.

10. R. Dechter, “Enhancement Schemes for Constraint Processing:
Backjumping, Learning, and Cutset Decomposition,” Artificial In-
telligence, Vol. 41, 1989, pp. 273-312.

Katia P. Sycarais aresearch scientistin Carnegie
Mellon University’s Robotics Institute and the
director of the Laboratory for Enterprise Integra-
tion. Her research interests include knowledge-
based systems, case-based reasoning, distributed
systems, negotiation models for multiagent plan-
ning, and constraint-directed reasoning, with spe-
cial emphasis on integrating operations research
and Al methods to address manufacturing problems.
She received her PhD in computer science from
the Georgia Institute of Technology, her MS from
the University of Wisconsin, and her BS from Brown University. She isa
member of the IEEE Computer Society, AAAI, ACM, and the Institute for
Management Science.

Steven F. Roth is director of the Information
Presentation and Interfaces Lab at Carnegie Mel-
lon’s Robotics Institute. He received his PhD in
cognitive psychology from the University of Pitts-
burgh and his AB in psychology from the State
University of New York at Stony Brook. His inter-
ests have included applying Al technologies to
project management, transportation scheduling,
distributed factory scheduling, and computer-
assisted instruction. He is currently working on the
System for Automatic Graphics and Explanation,
investigating intelligent interfaces that automatically design graphical
displays of information. He is a member of AAAI, ACM, the American
Psychological Association, and the American Educational Research
Association.

Norman Sadeh is a PhD candidate in computer
science at Carnegie Mellon University, where he
expects to graduate in early 1991. He is a member
of the Production Control Laboratory and the
Manufacturing Architecture Laboratory at Carne-
gie Mellon’s Center for Integrated Manufacturing
Decision Systems, where he developed the Cortes
factory scheduler. His research interests include
the application of Al and operations research
techniques to engineering and management prob-
lems, centralized and decentralized planning and
scheduling, distributed problem solving, constraint satisfaction, and con-
strained optimization. He received an engineering degree in electrical
engineering and physics from the Ecole Polytechnique at the Université
Libre de Bruxelles, and an MS in computer science from the University of
Southern California. He is a fellow of the Belgian American Educational
Foundation.

Mark $. Fox is associate professor of computer
science and robotics at Carnegie Mellon Universi-
ty and director of the Center for Integrated Manu-
facturing Decision Systems. His research interests
include knowledge representation, constraint-
directed reasoning, and applications of Al to engi-
neering and manufacturing problems. He received
his PhD from Carnegie Mellon University and his
BSc from the University of Toronto, both in
computer science. He is a member of the IEEE,
AAAI, ACM, the Society of Manufacturing Engi-
neers, the Institute for Management Science, and the Canadian Society for
Computational Studies of Intelligence.

The authors can be reached in care of Katia Sycara, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213.

40

1EEE EXPERT

