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me thod is presented for constructin
consistent 1intepretations of errorfu
method appears applicable Lo many
tasks (speech understanding, natural language
understanding, vision, medical diagnosis)
requiring partial-matching of errorful data
against complex, hierarchically defined patterns.
The data 1is represented as symbolic structures
word sequences, line segment configurations,
isease symptoms}. Errors consist of missing data
(unrecognized words, occluded lines, undetected
symptoms) and extra (possibly inconsistent} data
(incorrectly recognized words, visual doise,
spurious symptoms) . Lata interpretations
correspond te substructures of a hierarchy of
predefined concepts. Constraints on consistent
conceptual structures are emhedded in the
hierarchy. An lmpiementation of the method has
correctly interpreted errorful sets of sentence
fragments recognized by the HEARSAY-IT
speech  understanding systen. The
‘Implémentation has also correctly iaterpreted
typed-in  ungrammatical sentences. Detailed
examples {llustrate operation of me thod on
real data.

1. TINTRODUGTION

The application of Al methods to
domains (e.g., speech, vision, wmedical diagnosis}
has expanded the dimensions o data
interpretation to incorporace some novel phenomena.
Two of these phenomena are data error and
hierarchically defined data patterns.

Many complex domzins are characterized by
errorful data. Errats such as insertion,
deletion, subs titution, and repetition of
information dncrease as the wuncertainty of
S0ut ce data transduction and interpretation
increases. Data may be outually inconsistent
in that two or more " pieces of information cannot
be explained consistently. Tolerating error and
inconsistencies in the data requires robust
methods that can not only find the best
interpretation but are able to distinguish the
énccnsistent and errorful data from the consistent

ata.

maximal
data., The

the

complex

Another aspect of
complex demains is that
complex, hierarchically
rules, patterns) rather
concepts {features}.
interpretations can

data interpretation in
interpretations represent
defined concepts (ideas,
than simple, independent

Cfren the concepts used in
be placed in a hierarchy where

each concept is defined in terms of its
subconcepts. This structure of concepts is
called a conceptual hierarchy. A cellection of

data can then be interpreted by the highest concept
in the hierarchy supported (validated} by the data.
The interpretation of the data is defined by the
concept s descendeats (subconcepts, subsubconcepts,
etc.} and the data which supports them. These
descendants form a substructure of the conceptual
hierarchy.

The general data interpretation problem can
now be restated as a search for the concept in ‘the
conceptual hierarchy that explains (is supported
by) the most data. The data supporting the
structure underlying this maximal concept can
Ee described as ~the maximal consisteat subset of

ata.
I this ‘define

paper we conceptual
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hierarchies and maximal consistent
interpretations. We then describe a method for
interpreting data in such an environment, i.e.,
finding maximal consistent interpretations in a
conceptual hierarchy. Examples llustrating the
method are shown. Finally, we show the actual
application of the methed teo the problem of

interpreting errorful sentence fragments recognized

bg the HEARSAY-I1 speech understanding system
(Erman, 1975},
2. A REAL EXAMPLE

The matching preblem used as an example

thrDUﬁhout this paper is taken from the HYARSAY-II

speec understanding system. When HREARSAY-II is
unable to completely recognize a spoken
sentence (utterance), ~it enerat~=s a set of
sentence fragments (Hayes~Roth et al, 1976c) which
must be interpreted by the semantic interpretation
module, named SEMANT. The generated ragments
can be both errorfu and mutual Ly

inconsistent {Example 2.l1). A sentence fragment is
a chunk of consistent data in that it consists of a
grammaticail laysible sequence of recognized
words. HEKRSKY—II mechanisms effective in
identifying suck chunks are not suited te combinin
them inte "an overall consistent interpretation o
the utterance.

EXAMPLE 2.1

l: <0> [ WHAT HAS HERBERT <75>

21 <18> PAPER ABQUT PATTERN MATGHING }<l77>
3: <29> IN LEARNING OR PATTERN MATCHING ]
4: <G> [ WHO <24>

<177>

Correck Sentence:
<0>[ WHO HAS WRITTEN ABOUT PATTERN MATCHING 1<177>

Example 2.1 shows four sentence fragments
generated when HEARS5AY-IT was unable to recognize
the sentence [ WHOQ UAS WRITTEN ABOUT PATTERN

MATCHING ]. The squave brackets denote the start
and finish of the spoken utterance. The numbers
enclosed in angle brackets specify, in
centiseconds, how long after the start of the
utterance each fragment begins and ends. Fragment
4 correctly matches the initial portion of the
spoken sentence. Fragments =3 contain
substitution errors. Fragments 1 and 2 are
mutually inconsistent in that chey rovide
different interpretations of the the over apping

time period <18§: pairs 1 & 3, 1 &
the same reason.
question whereas
WHO iuestiou. Thus
semantically inconsistent,
their times. Each fragment is
semantically described by a hierarchicall

structured collection of  concepts. Figure 2.

shows a portion of the conceptual hierarchy used by
the SEMANT module in HEARSAY-II. Figure 2.2 shows
the  hierarchical description of the correct
sentence.

The problem of interpreting these fragments
illustrates the phenomena of data error and
hierarchically~structured interpretations. The
method used " for solving this problem appears
apglicable te a significant class of problems
exhibiting these two phenomena.

5>. The fragment
4, and 2 & 3 are inconsistent for
Aism, Fragment 1 specifies a WHAT
fragment 4 specifies a
Fragments 1 and 4 are
irregardiess of

3. ;
A conceptual hierarchy can be represented by
a directed %raph of concepts. This graph is tree

structured In that it has a root at the to and
leaf nodes at the bottom; however, cycges are
permitted. The sons of a node define the
subconcepts that compose the father. The root
of the graph defines the highest level (most
general) interpretation of all the concepts

beneath it.
A given interpretation task has a set of
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prespecified patterns, modelling possible data-
ﬁenerating events @ufe, utterances, scenes,
iseases}. Each attern has its own underlying
hierarchy. These hierarchies are collapsed into
a single hierarchy (for computational purposes) by
adding a new root concept. The sons of ~the rosot
concept are called the primary concepts of the
hierarchy. The primary concepts are the rooks
aof the original disjoint hierarchies. A
collection of data 1is interpreted by choosing one
or more primary concepts matched by the data.
Whether a primary concept can be considered to
be matched by tge data depends on which (if any) of
its subconcepts have matched and on the
relationship between the primary concept and its
subconcepts. A& conecept that requires all its
subconcepts {sons) to be matched "as a necessary
condition for itself to be matched is a
conjunctive concept. The subconcepts are related
to the conjunctive concept by the constituent (IS-—
PART-0F) relationship. A concept requiring any
non-empty subset of 1its subconcepts to be matched
is a union concept. The subconcepts are related to
the union concegt by the optional constituent (IS5-
OPT IONAL-PART-0¥) relationship. A concept which
requires one of its subconcepts to be matched is
a disjunctive concept. The  subconcepts are
telated to the disjunctive concept by the taxonomic
(E5-A) relationship. Other, more complex
relationships can be defined on the subconcepts of
a concept by defining parameterized constraicts on
the data suppeorting the subconcegts. L Figure 2.1
“shows part of the conceptual hieéraréhy used to
describe the types of sentences expected by the
HEARSAY-IT speech understanding system. The
method used to match sentence fragments to concepts
is parameterless but successful nonetheless. This
methed is described in Section 6.

been

a maximal
defined
subtree

Based on the above definitions,
consistent interpretaticn of the data is
as the primar concept and the
underlying it that is matched by a maximal
consistent subset of the data. A  maximal
consistent subset contains the greatest amount
of domain  information (measured by some
function) that 1is mutually consistent. If the
subconcepts of a concept are mutually consistent,
it follows that the domain information that
supports (matches) these subconcepts is
mutual ly consistent, with an important
qualification. This qualification is necessary
because two or mo re competing (mutually
inconsistent) pieces of domain data may
support the same concept . A consistent
interpretation must choose only one of these
pleces of data to support the concept. Since
there is a choice of which data to incorporate in
the interpretation, there are many possible
interpretations derivable from the data” supportia
the subtree. These interpretations can be ordere
by the function that measures the quantity of
data incorpotated in (explained by) an
interpretation. Thus - once concept matching has
been carried ocut, any subtree within the
conceptual hierarchy defines consistent data sets.
Furthermore the distinction between conjunctive,
union, and disjunctive concepts allows us to
identif{ which information is wmissing in a
particular interpretation. Hissing dinformaticn
corresponds Lo unsupported sons of ‘partially
supported conjunctive concepts.

Data consistency must be defined relative to a
particular - application. A set of - data is
considered consistent if it satisfies some set of
application-specific constraints. Some of these
constraints can be incorporated in the structure of
the conceptual hierarchy; a given hierarchy
implicitly defines a e¢lass of permissible data
combinations. For example, the data configuratious
supporting the sons of a node are mutually
censistent if the node is conjunctive but not if it
is disjunctive. Other constraints can  be
incorporated in the chunking process which
generates configurations of data. Data chunks
incorporate dinformation about data consistency
insofar as the data_ in a_ chunk is mutually
consistent, and subconfigurations of the chunk are
consistent with the chunk itself. This information
is incomplete in that it doesn’t specify whether
different chunks are mutually censistent.  Finally,
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constraints

the chunking process

tests on appropriate properties of

supporting 4 potential 1interpretation.

constraint in the HEARSAY-TI example

consistency between the wvarious data

supporting the dinterpretation of an

Fragments which assign different transcription

the same time interval are mutually inconsistent
The measure of an interpretatioa must

defined relative te a particular application. T

measurin function should refiect the differ

credibil%ty of alternative interpretatioc

Several this credibility. Orte

not incorporated in the
must be satisfied

factors affect

- them is the amount of data satisfactorily expla

by a given interpretation. An interpretation wh
accounts for a large subset of the data may be'mg
credible than an interpretation which accounts:
only a small subset. Another factor affecting:
credibility of an interpretation is the cogency:
its conceptual structure, For axample;
interpretation with many missing piece
(unsugforted sons of conjunctive nodes} ma
credible than an interpretation with

pieces. An extensive interpretation

many concepts) may be more credible than
interpretatica (involving ver few concepts)is
third factor is the individua{ credibility of:
data chunks supporting the interpretation.
number of consistency “constraints satisfied by
chunk increases with its size. If the
constraints are reasonably rigorous, larger chink
may be more credible than smaller chunks. Thus' g
credibility of a particular datum may Dbe sensit
to the context (chunk) irn which it occurs.:
more accurately these varlous credibility fac
are represented in the function which
alternative interpretations, the more often
maximal (highest-rated)
will in fact be correct.

consistent interpretat

ING
described, the conceptu
nodes are concepts
act as a repositor
matching . van
maximal consiste

As previously
hierarchy is a graph whose
We allow - each node to
of information during the
interpretation. Finding the
interpretation is a three part process. :

he first phase matches the concepts again
the data. We assume that the initial part
process is Rerformed by some nechanism
structures the data by identifying
local configurations of mutuall consistent dat
Irn the current example, this mechanism 1
I1, and the chunks are sentence
watch may be full or partial in
concepts may be completely or partially matche
When a concept is successfu{ly matched, " the doma
information matching the concept is stored at Eh
corresponding node. This Information is said
directly support the concept, -

The second phase integrates
finding concepts which explain combinations -of
chunks. This is accomplished by 'notehing'
matched concept and all 1its ancestors, i.e43
increasing their credibility scores according to
the amount of data supporting the matched coacep
The notching process assigns a metric of how we
each concegt is supported by data. Various metrics
are possible. The metric used ir this 3
defined as follows. The score of i
concept is the size of the largest
supporting the <concept plus the
concept’s highest-rated son. The score
or union concept 1is the sum
sizes of the chunks supporting it directly,
the sum of the scores of its sons. The score ¢ t
unsupported concept is zero. Scoring is computed
by a one-pass notching process which propa ates
scores bobtom-up starting at the leaves of the
hierarchy. The notching process can be viewed as a
flow of support from the data through th
coaceptual hierarchy.

The last phase
interpretation by walking
hierarchy starting at the
incorporating the wvisited t
interpretation, The maximally supported subtree
ia the hierarchy is found by interrogating the
score of each concept. When the walk encounters a
disjunctive concept, onlﬁ its highest-scored son
is = dincorporated im the interpretation and

the chunks B

chunk directly
scote of the

consistent::
though the
root concept, and
concepts into the

selects a
top-down
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subsequently visited, since che sons of a
disjunctive councept are mutually exclusive. When a
conjunctive or union concept is encountered, all of
its sons wikh non-zero scores are included in the
interpretation and subsequently visited, since the
are mutually consistent. Unsupported (zero~scored

sons of conjunctive concepts in the interpretation
identify missing data. (More complex
relationships between concepts and their sons
would allow morve complex deductions.) The subtree
praoduced in this Fashion represents an
interpretation supported by a maximal
consistent subset o the data. This consistent

subset can he readilg identified since the subtree
points to the data that supports it.

The nature of the interpretation generated

depends on whether the reot of the conceptual
hierarchy 1is disjunctive or union. I£f the root is
disjunctive, only one of the primary concepts is

incorporated in the interpretation. ~This propercy
is useful when the putpose of wmatching 1is to
classify an event according to which siagle concept
best models it. If the root is union, the
interpretation can iategrate multiple primary
coacepts in order to explain the data. This
capability is useful in domains such as medical
diagnosis where the primary concepts model
different events (diseases) which can occur
simultaneously.

A DETAILRD EXAMPLE

SEMANT s matchiong domain is composed of
errorful, sometimes mutually iaconsistent sentence
fragments (chunks)., A portion of the conceptual

hierarchﬁ is shown in Figure 2.1.
The initial process of matching the domain
i.e., interpretinﬁ
bg parsing.
1077y, taken from

(Fragments) to the
individual chunks, is done

parser called PPARSE (Erman,
the  UHEARSAY-II syntax  and semantics module
(Hayes=Roth, Mostow, and Fox, 1977; Hayes-Roth et
al, 1976a), is used to parse eac sentence
fragment. PPARSE generalizes existing parsin

techniques to parse connected subsequences o

sentences generated by the grammar. Such a
sequence maﬁ cress the boundaries of the
grammatical ierarch in that it may not be
grammaticall, derivable from_ any single non-
terminal. PARSE produces all derivat%on trees
for each fragment. (An ambiguous fragment has
more than one derivation free.) The rammar used
by PPARSE is a semantic rammar (Hayes-Roth,
Mostow, and Fox, 1977) in which some of ~ the non-
terminals have associated semantic meanings.
These non~terminals, called semantic nodes ,
correspond to matched concepts in the hierarchy.
In the present grammar, a semantic node has the
same name as the corresponding concept. Thus the
derivation tree for a sentence fragment points
directly to the concepts it matches.
The matching process can be described as

1} The data is chunked by HEARSAY-II into
possibly overlapping sentence fragments.

2) The process of single~chunk
interpretation determines how each
into the conceptual hierarchy:

concepts,

Zag Each fragment is parsed by PPARSE.
2h For each semantic node in the
arse, the corresponding concept in the
ierarchy is found, and a pointer to the
semantic node is laced at the concept.
Thus one can retrieve the word sequence(s)

sug orting any given coacept.
? The concept and its ancestors are
notched by the number of words underlying the
semantic node in the parse of the fragment.

The details of the nctching metric have

already been discussed (Section 5).

Figure 6.1 shows the arse trees for the
fragments ""PAPERS ARBOUT PATTERN MATCHING™ and
VARTIFICIAL INTELLIGENGCE'". Nonterminals are
distinguished by che "$" prefix. Only the circled
nodes are matched into the conceptual
hierarchy: STOPIC because it 18 semantically
meaningful and SMENTION!TOPICS because it is
the root node of a parse. Wher the root node of a
derivation tree is not a semantic node, it matches
the concept(s) corresponding to its mnearest
semantically meaningful ancestor(s) in the grammar.
In this example, the nearest such ancestors of the
root  node EMENTION!IOPICS are SQUERY!TOPIC and
$QUERY ITOPLIC ! AUTHOR,
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Figure 6.2 shows the matching of the TOPIC
concept by the STOPIC node. (Nofe that concept
names are nct prefixed by "S"), The score of the
STOPIC node is 2 because the sub-fragment "PATTERN
MATCHING" underiying it is two words leng. Thisa
score contributes to the scores of all the
ancestors of TOPIC in the conceptual hierarchy.
Figure 6.3 shows the matchin of

QUERY!TOPIC and QUERY!TOPIC!EUTHOR
concepts by the SMENTIONITOPICS node. The score
far this node 1is &4, since S$MENTLON!TOPICS is
sug%orted bg the 4-word sequence PAPERS ABOUT
PATTERN MATCHING. All concepts supported by the
SMENTION!TOPICS node are accordinglﬁ notched gy 4.
Figure 6.4 shows the matching of the TOPIC concept
the fragment

concept and

the

b the STOPIC node supported bE
”XRT[FICI L INTELLIGENCE.," The TOPILC
all 1its ancestors are unotched by 2. Note that
while the Ffragment parse trees comtain more than
one $TOPIC node, the conceptual hierarchy contains
a single canonical TOPIC node.

The construction of the maximal coasistent
interpretation starts at the root af the
hierarchy. AL a disjunctive concept SEMANT chooses
the highest-scored son to be in the interpretation.
In Figure 6.4 the highest-scored primary coacept
is REQUEST and 1s therefore chosen instead of
PRUNE. SEMANT next looks at the sons of the
REQUEST concept, which is also disjunctive. The
QUERY concept 1s chosen since it is the highest—
scored son of REQUEST. The highestwscored sons of

?UERY are QUERY!TOPIC and QUERY!TOPICIAUTHOR
both are supported by SMENTION!TOPICS). Either
one can ge chosen to be art of the
interpretation. When SEMANT reaches the TUPIC

must choose which supporting data to

concept, it
I the interpretation. Since SEMANT

incorporate in

has traversed a concept supported by the node
SMENTILON!TOPICS in order to reach the TOPIC
concept, the cheice of topic is carried ocut
in the context of the SMENTIONITOPICS. Hence

PATTERN MATCHING is chosen since it is part of that
context (i.e., is part of the fragment supporting
SMENTION!TOPICS). Figure 6.5 depicts a
resulting interpretation and its corresponding
SuppoTLa (Note  that choosing the concept
QUERY!ITOPIC!AUTHOR instead of QUERY!TOPIC yields an
equally weil—gugpcrted interpretation.)

Figure shows the matching of fragments
generated when HEARSAY=-TIL was unable Lo
recognize th sentence  "LETS RESTRICT OUR

e
ATTENTION TO PAPERS SINCE NINETEEN SEVENTY FOUR".
The fragments "TO PAPERS SINGE NINETEEN SEVENTY
FOUR" and "LET'S RESTRICT QUR ATTENTION TO" are
mutually consistent while the fragment "DESIGN IN
THE ARTS" is not consistent with either of the
other two fragments acecording to the structure of
the conceptual hierarchy. The figure shows the
state of the conceptual hierarchy after notching
has taken place. The maximal consistent
interpretation generated is shown in Figure 6.7.
This interpretation is the same as that of the
correct sentence. Thus the inconsistent
information is dgnored and the two consistent
fragments are semantically combined to
form a maximal consistent interpretation of
the utterance.

SEMANT can use contextual
discard cthe incorrect portion of a
correct fragment. This capability is
illustrated by a hypothetical problem.
HEARSAY-II fails to recognize the utterance "DID
REDDY WRITE ANY ARTICLES ABOUT  LEARNING" but
generates the fraguents '"DID REDDY WRITE ANY
ARTICLES ABOUT" and "INTERESTED IN LEARNING."
Figure 6.8 shows how these fragments are matched
into the conceptual hierarchy. he first fragment
supports AUTHOR and QUERY!AU%HOR!TGPIC. The second
fragment supports  TOPIC and SELECTION. The
%enerated interpretation is shown in Figure 6.9.

t incorporates the highest—scored primary concept
REQUEST, in lower—scored

information to

partially
most clearly
Suppose

preference to the

SELECTLON. The incorporated conjunctive concept
UERY!TOPLIC{AUTHOR is supported by both AUTHOR and
0PIC. Since these two concepts are mutually

consistent, they are both inciuded in the

interpretation, even though they are sugported by
different Era%ments. Consequently the
interpretation ncorporates the correct word

but discards
IN," since
the

the second fragment,
sub-fragment "INTERESTED
concept is not part of

“LEARNING" from
the incorrect

the SELECTION
interpretation.
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Another feature of SEMANT is its ability to
identify which data 1s missing. Suppose in the Thus one indicationm
reevaluated in context
with a data set as large as its score.
. . approaches have
'maximal consistent interpretations”
may fall to satisfy certain consistenc
not represented in the structure of
hierarchy.
interpretation
supported by
sgquences) spanning

Ereceding example HEARSAY~I generates
ragment 'PUBLISHED 1IN TIJCAL'" instead of

TOPIC is wunsupporte

that the wissing data (unrecognized portion of the
utterance) includes data which would support TOPIC.
Such a semantic prediction could be used to guide
further efforts by HEARSAY-II to recognize the
utterance (Hayes—Roth et al, 1976b; Hayes-Roth,
Mostow, and Fox, 1977). Alternatively, it could be
used as grounds for asking the user to__repeat the

topic (Hayes-Roth, Gill, and Mostow, 1377).

The problem of finding a maximal consisgent
y a

conflict between maximality and consistency.
Maximality is defined in terms of a scoring metric Each token
on concept suppert. A correct metric function will
score the nodes in such a way that a simple top-
Kighest—rated son of

every disjunctive node will in fact generate the
maximal consistent interpretation. ldeally, the
scorinﬁ.process should Fequire a single bottom=up

i

interpretation of the data 1is coenmplicated

down walk that selects the
ch visits each node at most once.

pass w

support for a high-~level concept in

interpretation creates a commitment to incorporate
subparts of that data chunk as support for lower-
level concepts. This idea is illustrated in Figure
7.1. The igh-level disjunctive concept QUERY is
supported by the S5-word fragment (chunk) 'DO ANY
AR% CLES MENTION LEARNING,'" and has score 8. QUERY by their
rocessed
ostow, 1975;
QUERY!SOURCE, which is supported by the ~word it may be desirable to
fragment YEN - TJCAT PROCEEDINGS." Accordingly,

QUEBYITOPIC has score 2 and QUERYISOURCE has scote in a parameterless
constraints

has two sons: QUERY!ITOPTC, which is supported by
NgNG " and

the 2-word sub-fragment "MENTION LEAR

the
the
fragment "INTERESTED 1IN LEARNING." Figure 6.10
shows the matching of the genetated fragments.
This example differs from the pfeceding example in
that the second fragment contalns ne information
consistent with the first, The maximal consistent
interpretation, shown in Figure 6.11, 1is supported
only by the first fragment, Tt incorporates the
conjunctive concept SUERY!?OPIC!AUTHUR, whose son
. Thus SEMANT can predict the utterance.
interpretation
conflicting
Representaticn
conceptual
propagation
through the

The

These

context. can only

hierarchy
of
higrarchy and the
node relations {currently AND,
such information fer cousistency.
third

development,

concept.

Unfortunately, the context-sensitive nature of is split
consistenc may preclude the realizatien of this
ideal. The incorporation of a chunk of data as
an provide
additional
experience
shows that

supportin
propagate
it to the

Such

nierarchy.
approptiate nodes in the hierarchy,
are preopagated up from the leaves of the hierarth
represents a di

{instantiating}
upward from a node by passing
node”s parents.
to a coniunctive or union node from several:i'g
subconcept

representin

a

After

nodes,

T .

scheme that tests

3. Consider the behavior of a top-down walk which CLests residual
selects the highest-rated son of every disgunctive fourth

node. Such.an algorithm incorporates the
morally committing itself to incorperate

then violates its commi tment b

QUERY!SOURCE over the lower—scored QUERY!TOPIC an A 2
consequently generates the inconsistent scored interpretation.
interpretation shown in Figure 7.2, The correct
maximal consistent interpretation, shown in Figure
7.3, is constructed by fulfilling this cc)rnmitment:l.1
The
inclusion ‘of a chunk -of data as support -for a
concept in an interpretation creates a commitment
to inciude concepts supported by subchunks of that

What exactly is the problem  here?

ragment

supporting QUERY “into the interpretation, theregy
the

subfragment supporting QUERY!TOPIC. The algerithm

data. In short, the selection of support for a

concept is context-sensitive, since it ~depends on 8.1 Imﬁortance of Chunking
the data chosen to support the concept’s ancesters G
in the ceaceptual hierarchy. However, the scores
assigned by a one-pass bottom-up notching algorithm
are context-free, Consequently the{ do “not always
consistent)
interpretation, as the preceding example
illustrates. We see several possible appreoaches to

select ' the correct {maxima

solvinﬁ'this problemy - S
The first approach compensates

for

functions
matching process
generating maximal interpretations
the constraints embedded in the hierarch
selectin an interpretation
constraints,

is found.
interpretation.

approach,

as

until an interpretation satisfying

This is the desired wmaximal consistéd

Several points
should be emphasized.

Chunking

deficiencies of the context—free scoring function mutual ly

by introducing some search in the top-down
selection of aa interpretation. If incorporating
the highest—scored son of a disjunctive node leads
to an Inconsistent interpretation, -the mext—highest

node can be tried.

The second approach uses a coatext-sensitive
scoring scheme so that a non-backtracking top—down

walk will work correctlg. One way to do this is to
ot

notch concepts using a

om-up process, but under .
certain circumstances to reevaluate descendants of
a concept in the context of its _supperting data.

Mote that the context-free score of a concepft is an on data

upper bound on the size of the largest comsistent
The are model Led
as conjunctive, and union necdes.

set of data supporting that concept.
application of additional constraints such
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consistency

unking
method in
identifies
of data,
(subs tructures
structuring
construction

i.e.,

incorporated

Another important aspect of the method 1s 1its
use of hierarchical structure to
congistency.
necessity, and mutual consistency
respectively

Fox

decrease the

is a failure to

two conflicting data

fragments:ityn
the same temporal al

consgtraints
arameter%zat ol

currently.”
parameterized

When tokens

his data is mutually inconsiste
into
represented by a new token.
parameterized
stronger
conslstency
with
they invelve
unparameterized’ hierarchies,
instances {(tokens)
different
e.g., scored) separately (Ha
Hostow and Hayes-Rath,
develop a hybrid maté
as many constraints
conceptual hierarchy
afterwards.

conceptual hierarchis
by ilncorporatin
constraints.
parameterized hierar
mpre computation

concept (distinguishe

ef ficiently

the matcher next highest:

all constra

about the presented metho

to the success of our
chunking proces
semantically meaningful configurations
configurations

contributes
several

corresponding

of

provides
insofar
consistent.
incorporated in
interpretation.
about the contextual cre
the data in a chuunk is mutwally confirmatory.
information, represented by varying chunk
scoring metric
discriminate between alternative interpretations.

interpretationi
information

information

constructing an
also provides information
bility of data insofar a

embed constraintg

of subconcepts.:
disjunctive,
Any subgraph




hierarchy in whieh no disjunctive node has more programs performing real-world tasks. Such

than one son constitutes a consistent (possibly programs will have to handle uncertain,
incomplete) conceptual structure, The data inconsistent data corresponding only approximately
supporting such a structure consequently satisfies te known concepte. The problem of identifying
many constraints on data consistency. consistent subsets of data and integrating them

The hierarchical structure a{so ermits the into a  hierarchically organized conrceptual
identification of missing data. EMtua§ necessity |knowledge base can accordingly be expected to
of cancept constituents is represented by assume Increasing importance.
conjunctive nodes., Unsupported sons of conjunctive
concepks incorporated in an interpretation LG, BIBLIOGRAPHY
therefore represent missing constituents. Erman, L.h., 1975, Overview of the HEARSAY

. Speech Understanding Research. Computer
8.3 Copastraint Reduction Science Research Review (1974-1975), Computer

The parameterless nature of the conceptual Science Department, Carnegie-Mellon
hierarchy precludes the embedding of certain types University, Pitktsburgh, PA.
of constraints. In the speech understandin Erman, L.0., 1977 A Functional Description of
example, since temporal information is  no the HEARSAY-11 Speech Understanding System,
propagated through the hierarchy, temporal Proc. 1977 TEEE Inter. Conf. on Acoustics,
constraints such as adjacenrcy, ordering, and non- Sgeech and Signal Processing (to appear).
overlap are not represented in the bhierarchy. In Hayes—Roth F. L.0.Erman, M.S. ox, and D.J.
the vision dowain, since location information is Mostow, { 76a, Syntactic processing in
not propagated cthrough the  thierarchy, spatial HEARSAY-1T, Speech  Understanding Systems:
constraints such as allignment, ad jacency, Summary of Results of the Five-Year Research
proximity, ordering, and non-overlap are nat Efforc, Department of Computer
represented. This reduction of constraint allows Science, Carnegie-tellon University,
semantically consistent chunks te be incorporated Pittsburgh. .
in an lnterpretation even if they don’t conform to Hayes-Roth F., M.8. Fox, G. Gill, and D.J. Mostow,
a stronger (more constrained) model of the domain. 6 Semantics and pragmatics in the
This aspect of the representation permits increased HEARSAY-T1 speech understanding system,
flexibigity in the matching process, in that the Speech  Understanding Systems: Summary of
constraints on the integration of multiple chunks Results of the Five=Year Research Efforc,
into an interpretation are weaker than the Department of Computer Science,
coastraints on the local integration of data into Carnegie~Mellon University, Pittsburgh. |
individual chunks. Furthermore, the simplicity of Hayes-Roth  F., V. Lesser, D.J.” Mostow, and L.D.
the representation should make the matching protess Erman, 1976¢c, . Policies for rating
faster than wethods which represent consisteacy hyﬁotheses, halting, and  selecting a |
constraints as tests on  propagated parametric solution =~ in the HEARSAY-TT speech
informaticn. The disadvantage of the simpler understanding system, Speech Understanding
representation is its greater petential " for : Systems: Summary of Results of the Five-~
eonstructing lnconsistent interpretations. Year Research  Effort, Department  of

Computer Science, Carnegie-Mellon University,
8. Pittsburgh.

The presented method interprets sets of Hayes-Roth F., and 0.J. Mos tow, 1975, An
hierarchically structured, possibly mutual ly automatically compilable recognitien network
inconsistent chunks of data. Although it expioits for structured patterns. Proceedings of the
information incorporated in the chunk structure, Fourth International  Joint Conference on
the methed 1is not vrestricted te accepting or Artificial Intelligeunce. Cambridge: MIT.
rejecting chunks 1in an ali-or-none fashion; the Hayes-Roth F., G. Gill, and D.J. flostow, 1976,
method can discard part of a chunk in order to "Discourse analysis & task performance in
construct a consistent interpretation  which the BEARSAY-II speech understanding system,
incorporates the remainder of the chunk. The " Sieech Understanding Systems: Summary of
constructed interpretation corresponds te a highl Results of the Five-Year Research Effort,
Eartialwmatched substructure of the conceptua{ Department of Computer Science, Carnegie—

ierarchy. Unsupported constituents of the Mellon University, Pittsburgh.
substructure identify missing data. Hayes-Roth F., D.J. Mostow, and M.5, Fox, 1977,
Understanding Speech in the HEARSAY-II System
Ba5  Apnlications of the Current Implementation To appear: Natural Language Communication With

SEMANT was originally developed tec interpret Computers, L. Bolc (Ea.), Berlin: Springer=
sentences and sentence fragmeats recognized by Verlag.
HEARSAY-I1 (Hayes-Roth et al,l976b). In addition Mostew D.J., and F. Hayes—-Roth, 1977, A Froduction
to this task, SEMANT has been applied to the system for speec understanding. n - Al
interpretation of wungrammatical sentences. A Waterman and F. Hayes-Roth (Eds.), Pattern
sentence 1is chunked 1into its maximal grammatical Directed Inference  Systems. New  York:
subsequences, which are input te SEMANT as Academic Press, (in press).
fragments. SEMANT then integrates the fragments
into an interpretation of the sentence. This
methed has been used to correctly interpret
sentences containing errors of insertion, deletiom, RRQUEST
subs titution, repetition, and re-ordering. ‘

We have designed and implemented a method . QuERY

for identifying and interpreting maximal
consistent subsets of data in hierarchically
modelled domains characterized by data error and
inconsistency. The implementation has correctly
interpreted spoken sentence fragments recognized by QUERVIVDRICIAUTHOR
the H'ARSAY—I% speech understanding system, It has
also been used successfully to interpret typed-in
ungrammatical sentences. -
The method appears applicable to mapny tasks : - Torlc
{e.g., speech understanding, natural language
understanding, scene analysis, medical analysis)

reguiring matchinﬁ of errorful data againse __M,Mi_.

ﬁgmplei, higrarc icallg desgribable structuref. ‘ T
en missing data or the inherent nature of the [ WHO HAS WRITTLM A5c T pretos 1rae

task causes the structures Lo be ’ RITTA A5G0 AT AT

incompletely instantiated, partial-matching of

these structures provides consistent, meaningful
interpretations of the data.

The continuing progress of AI beyond toy -
problems will be characterized by intelligent Flowe 2.4
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