An Investigation into Distributed
Constraint-directed Factory Scheduling

K Sycara

S.Roth

N.Sadeh M.Fox

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

1We present an approach to focus search in a
distributed system in individual agent search spaces
so as to optimize decisions in the global space. The
chosen domain is distributed factory scheduling. The
importance of distributed decision-making in factory
environments arises from the fact that factories are
inherently distributed, and from the need of effective
responsiveness to change. The approach relies on a set
of texture measures that quantify several
characteristics of the space being searched. These
texture measures play four important roles in
distributed search: (1) they focus the attention of an
agent to globally critical decision points in its local
search space, (2) they provide guidance in making a
particular decision at a decision point, (3) they are
good predictive measures of the impact of local
decisions on system goals, and (4) they are used to
model beliefs and intentions of other agents. The
development of the presented texture measures is the
result of extensive experimentation in a single agent
setting. We have completed the implementation of a
distributed testbed and are currently performing
experiments involving multiple agents.

AI TOPIC: Reasoning, Search

DOMAIN AREA: Factory Scheduling

LANGUAGE TOOL: Common Lisp and KnowledgeCraft
STATUS: Three versions of the single agent system have been
completed and extensive experimentation performed as to
schedule quality and system performance. The distributed testbed
has been completed. Communication and negotiation protocols
are being researched. Experimentation with the distributed
multi-agent system is currently under way.

EFFORT: Single-agent system: 2 person years. Multi-agent
system: 1.5 person years.

IMPACT: This research is of both theoretical and practical
interest. Providing algorithms and protocols that enable efficient
distributed search is of major importance in many domains. In
the practical arena, realizing the goal of efficient distributed
scheduling will enable factories to increase performance and
robustness in the face of the unpredictability of the factory
environment,

This rescarch has been supported, in part, by the Defense Advance Research
Projects Agency under contract #F30602-88-C-0001, and in part by grants from
McDonnell Aircraft Company and Digital Equipment Corporation.

1. Introduction

In this paper we present mechanisms that enable a set of agents
to focus and direct search in their individual search spaces so as
to optimize decisions in the global search space. Our
investigation is conducted in the domain of distributed scheduling
and in particular in distributed factory scheduling. Factory
scheduling has been the subject of intense investigation by both
Operations Research and Al communities (e.g., {1, 2, 3)). With few
exceptions [4, 5], there has been almost no research in distributed
scheduling. On the other hand, the Distributed Al community has
focused its attention on problems where agents contend only for
computational resources, such as computer time and
communication bandwidth (e.g.,[6,7)). In most real world
situations, however, allocation of (non-computational) resources
that are needed by a planner to carry out actions in a plan is of
central concern. Hence, approaches and mechanisms are needed
to allow for cooperative distributed resource allocation over time
(i.e., distributed scheduling of resources). The CORTES project
has undertaken the construction of a decentralized heterogeneous
multiagent production control system in order to study the impact
of different production control architectures. A first version of the
system has been implemented that allows for both planning and
scheduling agents. Planning agents start with a set of orders to
be produced. Each planning agent generates a process plan for
each of its orders, and sends the plan to a scheduling agent along
with a release date, a due date, and a set of preferences to be

‘optimized. The scheduling agents have to attempt to build a good

schedule for each of the orders that they receive. The architecture
allows for two types of agent interactions: interactions between
scheduling agents competing for shared resources, and
interactions between planning and scheduling agents. In
particular a scheduling agent may request an alternative process
plan from a planning agent if it finds it too difficult to schedule
the one that it currently has. In this paper, we concentrate on the
interactions among the schedulers.

In investigating decentralized multi-agent scheduling, we are
motivated both by pragmatic and theoretical considerations.
Scheduling takes place at all levels of a manufacturing
organization (from scheduling the factory floor to scheduling
meetings of the board of directors). Manufacturing organizations
are naturally distributed so there is need to schedule the parts of
an organization in such a way as to optimize the performance of
the whole. Typically a factory is divided into work areas that
might share resources needed (e.g., machines, fixtures, operators)
to schedule orders. The inherently decentralized nature of the
activities that are being coordinated requires a corresponding
decentralization of planning and control mechanisms. From the

To appear in proceedings "The Sixth Conference on Artificial Intelligence Applicatio
Fess Parker's Red Lion Resort, Santa Barbara, California. March 5-9, 1990

CH2842-3/90/0000/0094$01.00 © 1990 IEEE

94

theoretical point of view, we are interested in investigating
coordination techniques within our framework (1) as the available
information degrades (becomes incomplete) (2) as the need for
reactivity on the part of each agent grows due to possibly
conflicting scheduling decisions of other agents.

Distributed scheduling is a process carried out by a group of
agents each of which has (2) limited knowledge of the
environment, (b) limited knowledge of the constraints and
intentions of other agents, and (c) limited number and amount of
resources that are required to produce a system solution. Some of
these resources may be shared among many agents. Global
system solutions are arrived at by interleaving of local
computations and information exchange among the agents. There
is no single agent with a global system view. In such an
environment, schedules are constructed in an incremental
fashion. Agents make local decisions about assignments of
resources to particular activities at particular time intervals and
a complete schedule for an order is formed by incrementally
merging partial schedules for the order. The system goal is to find
schedules that are not simply feasible but attempt to optimize
some global objective function (e.g., minimize order tardiness,
minimize Work in Process). The global objective function to be
optimized reflects the quality of schedule that is produced.
Another, equally important concern, is the efficiency of schedule
generation. Since backtracking is a fact of life in scheduling, there
is a need for approaches that incrementally produce schedules
while minimizing backtracking. Our approach, based on so-called
texture measures endeavors to take into consideration both
optimization components (quality of schedule and efficiency of
schedule generation).

The distributed scheduling problem has the following
characteristics:

« The global system goal is to schedule in a distributed
fashion a set of activities (operations) to optimize a
set of global criteria and minimize backtracking.

To achieve global solutions, agents have to make
consistent allocations of resources that are needed to
perform system activities. Because resources have
limited capacity, conflicts in the system arise in the
form of contention over optimal allocation of shared
resources.

Due to limited communication bandwidth, it-is not
possible to exchange a complete set of specific
constraints.

Because of the conflicts over the shared resources it is
in general impossible for each agent to optimize the
scheduling of its assigned orders using only local
information.

Because the scheduling problem is NP hard it is
impossible for each agent to have precomputed a set
of local schedules that it then could exchange and try
to make compatible with the schedules of other
agents.

« All the given orders have to be scheduled. In other
words, agents cannot drop any local goals.

Certain constraints (e.g., precedence constraints
among the operations of an order) cannot be relaxed.
Local computations could produce infeasible
schedules. When this happens the agent has to
backtrack and try again. Backtracking can have
major ripple effects on the network since since it may
invalidate resource reservations that other agents
have made.

.

.

A consequence of the above characteristic is that agents, at each

95

stage of scheduling, need mechanisms to (1) predict and evaluate
the impact of scheduling decisions on global system goals, (2)
form expectations and predictions about the resource needs and
behavior of other agents, and (3) help focus the attention of the
agents on particular parts of their search space opportunistically.
Having good predictive measures is very important in the
distributed case because: V

1. backtracking is more costly when it involves many
agents (ripple effects)

2. agents may be called upon to estimate their resource
needs for resources that they may not need to
consider until they have made many other
reservations

3. since the agents operate asynchronously, they have
to predict and take into consideration in their local
decision-making the future needs of other agents
that are in an earlier stage of scheduling

4.since communication is costly the predictive
measures must be robust/predictive over many
scheduling decisions

Our initial work [8] has focused on the formalization of the
concept of constraint-directed search within a centralized
framework. In particular we have identified a set of texture
measures that quantify several characteristics of the problem
space within which search is being performed. Our hypothesis is
that these textures are good predictive measures of the impact of
local decisions on system goals and express expectations of the
resource needs of agents. We have operationalized these textures
into a set of heuristics that direct the search of the scheduling
agents. These heuristics have been successfully applied to direct
the search of a centralized activity-based scheduler {9], so as to
achieve good schedule quality and minimize the likelihood of
backtracking. In this paper we discuss how these textures can be
used to direct distributed scheduling.

2. The Model

Formally, we will say that we have a set of scheduling agents,
I'={o, B, ...). Each agent o is responsible for the scheduling of a set
of orders O“:(of,...,o;a}. Each order 0;1 consists of a set of

activities A‘“:[Alla,,..,ALa} to be scheduled according to a process
plan (i.e. process routliang) which specifies a partial ordering
among these activities (e.g. AI: BEFORE Alu). Additionally an
order has a release date and a latest accepta%le completion date,
which may actually be later than the ideal due date. Each activity
A}(a also requires one or several resources R]lz (1<i Spiu), for each.
of which there may be one or several alternatives (ie.
substitutable resources) RL(% asj< ‘753)- There is a finite number
of resources available in the system. Some resources are only
required by one agent, and are said to be local to that agent.
Other resources are shared, in the sense that they may be
allocated to different agents at different times.

We distinguish between two types of constraints: activity
precedence constraints and capacity constraints. The activity
precedence constraints together with the order release dates and
latest acceptable completion dates restrict the set of acceptable
start times of each activity. The capacity constraints restrict the
number of activities that a resource can be allocated to at any
moment in time to the capacity of that resource. For the sake of
simplicity, we only consider resources with unary capacity in this
paper. Typically the limited capacity of the resources induces
interactions between orders competing for the possession of the

same resource at the same time.

With each activity, we associate utility functions that map each
possible start time and each possible resource alternatives onto a
utility value (i.e. preference). These utilities [10, 11] arise from
global organizational goals such as reducing order tardiness (i.e.
meeting due dates), reducing order earliness (i.e. finished good
inventory), reducing order flowtime (i.e. in-process inventory),
using accurate machines, performing some activities during some
shifts rather than others, etc. In the cooperative setting assumed
in this paper, the sum of these preferences over all the agents in
the system and over all the activities to be scheduled by each of
these agents defines a common objective function to be optimized.
The sum of these preferences over all the activities under the
responsibility of a single agent can be seen as the agent’s local
view of the global objective function. In other words, the global
objective function is not known by any single agent. Furthermore,
because they compete for a set of shared resources, it is not
sufficient for an agent to try to optimize his own local preferences.
Instead, agents need to consider the preferences of other agents
when they schedule their activities. This is accomplished via a
communication protocol, which we describe in section 3.

2.1. Activity-based Scheduling Agents

In our model we view each activity At‘ as a variable. A variable’s

value corresponds to a reservation for an activity. A reservation

consists of a start time and the set of resources needed by the
.. - la . o

activity (i.e. one resource Rkii for each resource requirement Ry;,

1<i<pp, of A,

Each agent asynchronously builds a schedule for the orders he
must schedule. This is done incrementally by iteratively selecting
an activity to be scheduled and a reservation for that activity.
Each time a new activity is scheduled, new constraints are added
to the agent’s initial scheduling constraints that reflect the new
activity reservation. These new constraints are then propagated
(consistency checking). If an inconsistency (i.e. constraint
violation) is detected during propagation, the system backtracks.
Otherwise the scheduler moves on and looks for a new activity to
schedule and a reservation for that activity. The process goes on
until all activities have been successfully scheduled.

If an agent could always make sure that the reservation that he is
going to assign to an activity will not result in some constraint
violation forcing him or other agents to undo some earlier
decisions, scheduling could be performed without backtracking.
Because scheduling is NP-hard, it is commonly believed that such
look-ahead cannot be performed cheaply. The most efficient
constraint propagation techniques developed so far[12] for
scheduling do not guarantee total consistency. In other words the
reservation assigned by an agent to an activity may force other

agents or the agent himself to backtrack later on2. Consequently
it 3s important to focus search in a way that reduces the chances
of having to backtrack and minimizes the work to be undone
when backtracking occurs. This 1s accomplished via two
techniques, known as variable (i.e. activity) and value (i.e.
reservation) ordering heuristics.

2This is already the case in the centralized version of the scheduling problem.
Because of the additional cost of communication it is even more so in the
distributed case.

96

The variable ordering heuristic assigns a criticality measure to
each unscheduled activity; the activity with the highest criticality
is scheduled first. The criticality measure approximates the
likelihood that the activity will be involved in a conflict. The only
conflicts that are accounted for in this measure are the ones that
cannot be prevented by the constraint propagation mechanism.
By scheduling his most critical activity first, an agent reduces his
chances of wasting time building partial schedules that cannot be
completed (i.e. it will reduce both the frequency and the damage
of backtracking). The value ordering heuristic attempts to leave
enough options open to the activities that have not yet been
scheduled in order to reduce the chances of backtracking. This is
done by assigning a goodness measure to each possible
reservation of the activity to be scheduled. Both activity
criticality and value goodness are examples of fexture measures.
The next two parsgraphs briefly describe both of these
measures®. A protocol to exchange the information required to
compute these measures is then presented in the next section.

2.1.1. Activity Ordering

Each agent’s constraint propagation mechanism is based on the
technique described in {12). It always ensures that unscheduled
activities within an order can be scheduled without violating
activity precedence constraints. This is not the case however for
capacity constraints: there are situations with insufficient
capacity that may go undetected by this constraint propagation
technique. Accordingly a critical activity is one whose resource
requirements are likely to conflict with the resource requirements
of other activities. (11, 9] describes a technique to identify such
activities. The technique starts by building for each unscheduled
activity a probabilistic activity demand. An activity Ai(u's demand

for a resource R::, at time t is the probability that A:(a uses jo at

time t (to fulfill its resource requirement Rig). Clearly activities
with many possible start times and resource reservations tend to
have smaller demands at any moment in time, while activities
with fewer possible reservations tend to have higher ones. In a
second step, each agent aggregates his activity demands as a
function of time, thereby obtaining his agent demand. This
demand reflects the need of the agent for a resource as a function

of time?. Finally, agent demands are aggregated for the whole
system thereby producing aggregate demands that indicate the
degree of contention among agents for each of the (shared)
resources in the system, in function of time. Time intervals over
which a resource’s aggregate demand is very high correspond to
violations of capacity constraints that are likely to go undetected
by the constraint propagation mechanism. The contribution of an
activity’s demand to the aggregate demand for a resource over a
highly contended-for time interval is the activity criticality.

To choose the next activity to schedule, each agent looks for the
resource/ time interval that it may need with the highest
aggregate demand. He then picks his activity with the highest
contribution (i.e. highest criticality) to the aggregate demand for
that resource/time interval. In other words, each agent looks for
the resource/time interval over which he has some demand that is

3For a more complete description of these measures, the reader is referred to
(11, 9l

“Notice that, an agent’s demand at some time t for a resource is obtained by
simply summing the demand of all his unscheduled activitjes at time t. Because
these probabilities do not account for limited capacity, their sum may actually be
larger than 1

the most likely to be involved in a capacity constraint violation.
He then picks his activity with the highest probability of being
involved in the conflict.

2.1.2. Reservation Ordering

Once an agent has selected the activity to schedule next, he must
decide which reservation to assign to that activity. Here several
strategies can be considered. In particular, we distinguish
between two extreme strategies:

1. A Least Constraining Value Ordering Strategy
(LCV): One type of value ordering heuristic is a
least constraining one. Agents using such heuristic
attempt to select the reservation that is the least
likely to prevent other activities to be scheduled. In
other words an agent will select the reservation that
will be the least constraining both to himself and to
other agents. This heuristic results in altruistic
behavior on the part of the agent.

2. A "Greedy" Value Ordering Strategy (GV): At
the other extreme, an agent can select reservations
based solely on his local preferences, i.e.
irrespectively of his own future needs as well as
those of other agents. This heuristic results in
egotistic /myopic behavior on the part of the agent.

In between these two extremes, there is a continuum of strategies
that combine features of both LCV and GV. These intermediate
strategies attempt to factor in the contribution of a reservation to
the global objective function together with the likelihood that
selecting a reservation will result in backtracking (either locally
or for another agent). Experiments in centralized scheduling
[9] indicate that LCV-type heuristics are best at minimizing
search, but usually result in poor schedules since reservations are
selected irrespectively of their contribution to the objective
function. Value ordering heuristics of the greedy type usually
produce significantly- better schedules, but they result in extra
backtracking (i.e. search takes longer). The amount of extra
backtracking is however significantly reduced when the GV value
ordering heuristic is combined with the variable ordering
heuristic described in the previous paragraph. Because agents in
the decentralized case schedule in an asynchronous fashion, we
expect the effect of the variable ordering heuristic to be weaker.
Additionally the cost of backtracking in a distributed system, is
known to be higher than in a centralized one due to the overhead
in coordinating agents whose earlier decisions are
interdependent. Accordingly, we expect a higher need for least
constraining behavior in a distributed scheduling environment.
The ultimate choice of an (intermediate) strategy is likely to
depend on such factors as the time available to come up with a
solution, the load of the agents, and the amount of resource
contention.

3. Using Texture Measures in a Decentralized
Multiagent Scheduling System

In the decentralized case, we have a set of agents that
communicate in an asynchronous manner via message passing
and each of which has a set of orders to schedule on a set of
resources. Each order consists of several activities. Typically some
of the resources are required by several agents and conversely,
each agent requires some resources that are also needed by
others. Which particular resources are shared may change with
the set of orders to be scheduled. In our model, resources are
passive objects that are monitored by active agents. Monitoring
resources does not give an agent any preferential treatment

97

concerning the allocation of the monitored resources but is simply
a mechanism that enables the system to perform load balancing
and efficient detection of capacity constraint violations. A
capacity constraint violation (resource conflict) is detected when
an agent requests a resource reservation for an activity for a time
interval that is already reserved for another activity. Monitoring
agents perform the additional tasks of (a) integrating certain
pieces of information for shared resources (see step IV of protocol
below) so as to avoid duplication of effort, which would be the case
if all agents were doing this information integration, and (b)
keeping the calendar of the resources they monitor. Typically,
each agent in the system is a monitoring agent for some shared
resources and conversely each resource is monitored by some
agent. Since there is no single agent that has a global system
view, the allocation of the shared resources must be done by
collaboration of the agents that require these resources (the
monitoring agent is usually one of those that require the shared
resources)’.

We have identified two levels of interaction of the agents: the
strategic level where aggregate information is communicated and
the tactical level where information about specific entities is
communicated. The information communicated at the strategic
level is the demand profiles out of which the agents calculate
criticality measures for their decision making. At the tactical

level, particular scheduling decisions are made and, if needed,
negotiation takes place.

Because they may contend for the same resources, it is important
that the scheduling agents build their schedules in a cooperative
manner. The two texture measures identified in the previous
section provide a framework for cooperation where the agents
exchange demand profiles, and reservations. Demand profiles are
aggregated periodically to compute textures that allow agents to
form expectations about the resource demands of other agents.
Because of communication overhead, the demand profile
information is restricted. Subsets of the agents communicate only
demand profiles for the resources that they share, although
reservations on the non-shared resources may impact scheduling
decisions on the shared ones. Since several agents are scheduling
asynchronously, and the communicated demand profiles are only
those of the subset of shared resources, there is higher
uncertainty in the system. This uncertainty also varies in an
inversely proportional manner with the frequency at which the
demand profiles are communicated. Moreover, the cost of
backtracking is greater, since if an agent backtracks, the change
in scheduling reservations may ripple through to the other agents
and cause them to change their reservations.

In particular, the multi-agent communication protocol is as
follows:
L. Each agent determines required resources by checking
the process plans for the orders it has to schedule. It
sends a message to each monitoring agent for needed
shared resources informing it of the need®.

5This model mirrors actual factory {loor situations where the factory is divided
into work areas that might share resources, such as machines, fixtures and
operators in order Lo process orders.

This is done so that the monitoring agent will know which agents will be
sending demand profiles for a resource, 80 it can ascertain the completeness of the
information before aggregation.

1I. Each agent calculates its demand profile for the
resources (local and shared) that it needs.

II. An agent sends its demand profiles (agent demands)
for the shared resources it needs to the agent(s) that
monitor those shared resources.

IV. Based on the agent demands for a resource, the
monitoring agent aggregates the agent demands to form
the aggregate demand for the resource and sends it to all
the agents that share the resource.

V. Upon receipt of the aggregate demand for each of the
shared resources that it needs, an agent finds its most
critical resource/time-interval pair and its most critical
activity (the one with the greatest demand on this
resource for this time interval). Since agents in general
need to use a resource for different time intervals, the
most critical activity and time interval for a resource will
in general be different for different agents. The agent
calculates a desired reservation for its most critical
activity using either LCV (the least constraining time
interval heuristic), or GV (the egotistic/myopic heuristic)
depending on whether it wants to minimize conflicting
with other agents for resource reservations, thus

minimizing backtracking, or whether it wants to increase
the quality of its schedule. The agent communicates this
reservation request to the resource’s monitoring agent.

VI. The monitoring agent upon receiving these
reservation requests checks the resource calendar for the
event of conflicting reservations (i.e. an agent requests a
reservation on a resource for an already reserved time
interval). There are two cases:

1. If there are no conflicts, the monitoring agent (a)
communicates “"Reservation OK" to the
requesting agent, (b) marks the reservation on
the resource calendar, and (c¢) communicates the
reservation to all concerned agents (i.e. the
agents that had sent positive demands on the

resource).
2.If there is a conflict, it communicates the
conflicting resource/time interval to the

conflicting agents.

VII. Upon receipt of the information about the conflicting
reservation, the conflicting agents have to decide how to
resolve the conflict. There are two ways:
1. The agent that has secured the reservation first,
does not relinquish it. The second agent has to
“calculate an alternative, if there is one left, else
" he has to backtrack.
2.The agents negotiate a new mutually
satisfactory assignment of time intervals to the
competing activities. These new reservations are
communicated to the monitoring agent who
undoes the previous reservation and installs the
new ones.
The system terminates when all activities of all agents have been
scheduled i.e. when all demands on resources become zero. In
this version of the protocol we assume that reservations are not
changed because of backtracking. This assumption has two
consequences: 1) Once an agent has been granted a reservation,
this reservation is not automatically undone because some other
agent had to backtrack and may now need the reservation. In
such situations, the two agents have to negotiate to decide
whether the reservation will get undone. 2) If an agent
backtracks after it finds out that a schedule that it was
constructing is infeasible (i.e., it cannot satisfy the problem
constraints), it frees up resources but the reservation of other

98

agents on these resources remain as they were. This policy may
result in non-optimal reservation for other agents since it denies
the other agents the opportunity to take advantage of the
canceled reservations of the backtracking agent, but it results in
less computationally intensive performance.

4. An Example

We present an example that illustrates the use of textures to
predict resource utilization and make reservations in a
distributed environment. For simplicity, the example assumes a
fwo—agent system with a single shared resource, R1. We further
assume that both agents have calculated demand profiles for R1
and have communicated them to Rl’s monitor-agent. The
remaining steps involve (1) calculation of the aggregate demand
profile for R1, (2) determination of the most critical resource

interval from the aggregate-demand profile, (3) determination of
the most critical activity for each agent within this interval, and
(4) application of heuristics by each agent to select a reservation
for its critical activity.

The curves in Figure 1 show the aggregate-demand profile (1a),
agent demand (1b) and activity profiles (ic, 1e). The vertical axis
in each picture expresses demand and the horizontal axes
intervals of time. Figure la illustrates the aggregate demand-
density which is the simple sum of agent-demands at each time
point for agents o, B and the demand of the monitoring agent.
Recall that each agent demand is calculated from the activity
demands for all its activities that use R1. Agents a and B detect
that the most critical resource/time-interval for R1 occurs at *
interval {30, 40] (the peak of the aggregate-demand = 1.3). Had
there been more resources, the aggregates for these would be
caleulated in a similar manner and the resource with an interval
which has the most demand would have been determined.

Having selected the most critical resource/time-interval, agents a
and B use this to select an activity to schedule. In this case, the
agents are focusing on the same critical resource interval.
Typically, agents often focus on different resources because they
proceed asynchronously and Thave different resource
requirements. Figures lc and le show the activity demands for
activities which have non-zero demand in the critical
resource/time-interval. In this step, referred to as variable
selection, each agent determines the activity with the greatest
demand within the critical resource/time-interval [30, 40].
This is activity A;I for agent a and Ag for agent B (agent B has

. only one activity with non-zero demand in this interval). Note

that the only interval considered at this point is {30, 40], so other
activities can have much higher demand in other intervals, but
are not selected.

Finally, each agent chooses a reservation for its selected activity
(i.e. performs value-selection). Figures 1d and 1f illustrate how
comparison of an activity’s demand and the aggregate demand
predict the degree of conflict that can be expected for each time
interval. For example, at interval {30, 40] in Figure 1f, the
demand difference between the aggregate demand and agent p’s
activity Ag is 0.7 (1.3 - .6), indicating that a reservation at this
interval is likely to result in conflict with another activity. In
contrast, for interval {50, 60}, the demand difference is only 0.3 (.5
-.2). In general, the interval for which a reservation is least likely
to conflict with other activities is the minimum of the difference
between the aggregate demand and the activity demand (for all

Aggregate Demuand
ey et MUAMRG

Agent Demands

(a) 1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0 T T
0 10 20
(b) 1.0
0.8
0.6
0.4
0.2
0.0
(c) o A<
0.2
0.0 T T T T L
0 10 20 30 40 s0 60
(d) 1.4+
12 J’"~—I ________
1.0 1 [
0.8 _ A -
0.6 - A
0.4 o oo !
0.0 t [—— v v o
0 10 20 30 40 50 60

Activity Demands

(e) 0.6
0.4
0.2
0.0 T
0
(f) 1.4

12 —

1.0 1 __J ------------ -

0.8 4 Y-

A

0.6 - 3o
t +
' ;
L : .
0.2 1 Lmmm oo - ‘r
' 4
0.0 T T T T ¥ T
0 10 20 30 40 50 60

Figure 1: Demand for a single resource as a function of time. These
curves are used for variable and value selection,

intervals where the activity’s demand is non-zers). The LCV
heuristic, which selects the least constraining value, will select
interval {50, 60] for activity Aj. Similarly, agent o will select
interval (10, 20] (the agents have selected non-overlapping time
intervals).

5. Preliminary Experiments and Concluding
Remarks

In this paper we have presented mechanisms to guide distributed
search. The domain of Investigation is distributed factory
scheduling. In particular, we have presented measures of
characteristics of a search space, called textures, that are used to
focus the attention of agents during search and allow them to
make good decisions both in terms of quality of system solution
and performance. In addition, the textures express the impact of
local decisions on system goals and allow agents to form
expectations about the needs of others. We have presented two
types of textures, their operationalization into variable and value

ordering heuristics and their use in distributed problem solving.
In addition, a communication protocol that enables the agents to
coordinate their decisions has been presented. We have
experimented with the variable and value ordering heuristics in a
single agent case obtaining good results. A testbed has been
implemented that allows for experimentation with a variety of
distributed protocols that use variable and value ordering
heuristics based on the probabilistic framework described in
subsection 2.1. The testbed is implemented in Knowledge Craft
running on top of Common Lisp, and can be run either on a
MICROVAX 3200 or on a VAX 8800 under VMS.

Preliminary experiments indicate that solutions to distributed
scheduling problems can be found using these texture measures
for several of the problems previously used to test the centralized
scheduler. In particular, two important variables affecting system
performance are (1) the degree to which schedulers share
resources and (2) the frequency with which they exchange texture
information. We have also discovered several cases in which

solutions were not found by the distributed system for problems
which could be solved by the centralized scheduler. These occur
primarily when one agent has made reservations which allow it to
schedule all its activities, but creates an over-constrained
problem for another agent. This situation is unresolvable under
the current protocol, which does not provide a mechanism for
agents to request reservations to be undone.

The preliminary results suggest the need for mechanisms to alter
previous reservations even when they lead to local solutions by:
requesting backtracking (undoing reservations and restarting
search), requesting local shifts in reservations which do not
produce conflicts, and/or allowing relaxation of constraints.
These solutions will require the expansion of the negotiation
component of the protocol described previously.

Acknowledgements

We wish to thank Joe Mattis for developing the KM Message
Passing Utility, which was used to implement the distributed
testbed. We also wish to acknowledge his work in developing the
user-interfaces for both the distributed and centralized systems
and his substantive contributions to the design and
implementation of the testbed.

References

(1] Stephen F. Smith and Peng Si Ow, “The Use of Multiple
Problem Decompositions in Time Constrained Planning
Tasks”, Proceedings of the Ninth International Conference on
Artificial Intelligence, 1985, pp. 1013-1015.

(2] Ow, PS. S.F. Smith, and A. Thiriez, “Reactive Plan
Revision”, Proceedings AAAI-88, St. Paul, Minnesota, August
1988.

[3] Karmarkar, US., “Alternatives for Batch Manufacturing
Control”, Tech. report QM 86-13, University of Rochester,
June 1986.

(4] Parunak, H.V., P.W. Lozo, R. Judd, B.W. Irish, “A
Distributed Heuristic Strategy for Material Transportation”,
Proceedings 1986 Conference on Intelligent Systems and
Machines, Rochester, Michigan, 1986.

(51 Smith, S.F. and J.E. Hynynen, “Integrated Decentralization
of Production Management: An Approach for Factory
Scheduling”, Proceedings ASME Annual Winter Conference:
Symposium on Integrated and Intelligent Manufacturing,
Boston, MA, December 1987.

[6] Cammarata, S. McArthur, D. and Steeb, R, “Strategies of
cooperation in distributed problem solving”, IJCAI-83,
1JCAI Karlsruhe, W. Germany, 1983, pp. 767-770.

[7] Durfee, E.H., A Unified Approach to Dynamic Coordination:
Planning Actions and Interactions in a Distributed Problem
Solving Network, PhD dissertation, COINS, University of
Massachusetts, 1987.

[8] Mark S. Fox, Norman Sadeh, and Can Baykan, “Constrained
Heuristic Search”, Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, 1989, pp. 309-315.

[9] N. Sadeh and M.S. Fox, “Focus of Attention in an Activity-
based Scheduler”, Proceedings of the NASA Conference on
Space Telerobotics, 1989.

{10] Fox, M.S., Constraint-Directed Search: A Case Study of Job
Shop Scheduling, PhD dissertation, Computer Science
Department, Carnegie-Mellon University, 1983.

(11]N. Sadeh and M.S. Fox, “Preference Propagation in
Temporal/Capacity Constraint Graphs”, Tech. report CMU-
CS5-88-193, Computer Science Department, Carnegie Mellon
University, 1988, Also appears as Robotics Institute
technical report CMU-RI-TR-89-2

[12] LePape, C. and S.F. Smith, “Management of Temporal

Constraints for Factory Scheduling”, Proceedings IFIP TC
8/WG 8.1 Working Conference on Temporal Aspects in
Information Systems (TAIS 87), Elsevier Science Publishers,
held in Sophia Antipolis, France, May 1987.

