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W E N  CUSTOMERS ORDER 
specific quantities of products with partic- 
ular features or components, inventory man- 
agers must perform two tasks: first they 
design feasible product configurations of 
component parts based on physical com- 
patibilities and user-specified preferences, 
and then they try to allocate optimal quan- 
tities of components to those specified con- 
figurations based on available inventory. 
If a component can be used across multiple 
configurations, supplying one configura- 
tion can affect an inventory manager’s 
ability to supply other configurations. The 
manager must project how many orders 
can be configured from an inventory and 
whichcomponents will need to be ordered- 
a time-consuming job. 

These tasks are difficult because feasi- 
ble product configurations are limited by 
interactive constraints (electrical, thermal, 
geometric, and so on), and because limited 
inventory and alternative configurations 
increase the complexity of allocating re- 
sources. Alternative configurations repre- 
sent alternative ways a single product can 
be supplied, and an order for n products can 
be and often is satisified by more than one 
configuration. 

We have applied constrained heuristic 
search techniques’ to the problems of product 
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CORAL IS A REAL-TIME, LITERACTIVE DECISION- 
SUPPORT SYSTEM THAT HELPS INVENTORY 

MANAGERS CONFIGURE AND ALLOCATE 
COMPONENTS TO CUSTOMER ORDERS. 

USING CONSTRAlNED HEURISTIC SEARCH, CORAL 
PRODUCES NEAR-OFT’ SOLUTIONS QUlCIUY. 

configuration and inventory planning. Our 
interactive, real-time decision support sys- 
tem, called Coral, maximizes the total num- 
ber of products requested, given one or 
more substitutable configurations. This 
gives inventory managers a tool for man- 
aging and allocating component invento- 
ries and thus maximizing the number of 
complete orders. Coral is also intended to 
perform “what-if’ analyies on possible 
order demands. This approach views con- 
figuration and allocation as constraint- 
satisfaction and optimization problems, 
where constraints guide the problem solv- 
ing (that is, searching). Spex, a problem- 
independent version of the configuration 
module, has been developed and applied to 
other configuration problems. 

Problem definition: Planning 
ammunition rounds 

Configuring complete ammunition 
rounds and allocating inventory can be a 
problem for army logistim2 A complete 
round of ammunition contains projectiles, 
cartridge cases, propelling charges, prim- 
ers, and fuses. An army unit’s mission and 
environment dictate the requirements for a 
complete round. For example, an area with 
reduced visibility might require Illum (il- 
lumination) rounds consisting of Illum pro- 
jectiles fitted with time fuses. Similarly, 
material targets require HE (high-energy) 
projectiles. For maximum tactical flexibil- 
ity, planners can use different components 
across different types of rounds. For example, 
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for a 155-mm towed Howitzer artillery, 
an HE project i le  with a normal cavi ty  
can be f i t ted with any of six types of 
fuses:  three PD (point-detonating) mod- 
els, two MTSQ (mechanical-time super- 
quick)  models ,  or a Prox (proximity)  
model. Similarly, one kind of PD fuse can 
be used across various projectile types 
(Agent, HE, or Hera) for the same How- 
itzer. Thus, the same components can be 
used to configure different types of rounds. 
This interchangeability increases the dif- 
ficulty of determining the impact of one 
type of round on inventory and thereby its 
effect on the availability of other types of 
rounds. 

The configuratiodallocation problem is 
made more difficult, from a decision-sup- 
port perspective, by the way that problems 
can be posed. The following are common 
planning problems in field situations: 

termining how many 155-mm HE rounds 

Maximize the number of 155-mm HE, 
Illum, and Smoke rounds available at 
ATP- 1 (the ammunition transfer point, 
where ammunition from the rear is trans- 
ferred to the front), using any combina- 
tion of compatible components. 
Configure the maximum number of 105- 
mm Smoke rounds with 20 percent PD 
fuses, 50 percent Prox fuses, and 30 
percent MTSQ fuses. 
Conf igure  the maximum number  of 
155-mm HE, 105-mm Smoke, and 105- 
mm Illum rounds from the inventory at 
ATP- 1 and ATP-2 storage locations. If 
different rounds compete for compo- 
nents, maintain the following propor- 
tion: 40 percent HE rounds, 30 percent 
Smoke rounds,  and  30  percent  I l lum 
rounds.  
Configure the maximum number of 
rounds from the inventory at ATP-3. If 
different rounds compete for components, 
maintain the following proportions: 

certain types of rounds with a given 

40 percent 155-mm HE rounds: 20 
percent use PD fuses, 50 percent use 
Prox fuses, and 30 percent use MTSQ 
fuses; half use percussion primers and 
half use electric-percussion primers; 
30 percent 105-mm Smoke rounds, 
with 10 percent CP fuses, 40 percent 
Delay fuses, and 50 percent Prox 
fuses; and 
30 percent 105-mm Illum rounds with 
a default mix of fuse, primer, and 
propelling-charge components. 

Problem. Maximize total number of ammunition rounds by suggestlng feasible 
configurations of each round (with specific components to use in each configuration) 
and how many of each configuration to use 

Parts Ammunition components 

Inputs 
Inventory map I ( A ,  Q,) for (/=1,2 n) where 

A, - Ammunition component model 
Q, - Ammunition component quantity 

Description of round R, IN ,  C, P, F, PC, Pr,) for ( /=l  2 n) 
N,- Compositlon of the round 
C,- Cannon size or model number of the weapon 
P,- Projectile or cartridge type (by function only1 
f - Fuse types and compositions 
PC - Propelling-charge types and compositions 
PR - Primer types and cornpositions 

Constraints 
Maximum inveqtory for each ammunition component 
Ouantiti or composition constraint on round or component 
Ani m u n i t i o n c o m pa t i b i I itv cons t ra i n ts 

Legal configurations 
Assignment a n 0  allocation of component inventor) to feasible configurations 
Analysis o f  planning results 

Maximum use of storage inventory 

outputs 

Criteria of evaluation 

- ~- 

Figure 1. Problem description for ammunition round planning. 



Previous research 
Configuration planning has been ap- 

proached using pattern-directed inference1 
and problem decomposition combined with 
constraint propagati~n.~.~ 

Recently applications of AI to design con- 
figuration follow one of two approaches. 
The decomp~sitional~.~-~ (or abstract refine- 
ment7) model represents the configuration 
process as a sequence of hierarchical refine- 
ments. Each successive refinement pro- 
duces a more detailed description of the 
artifact, without altering its initial struc- 
ture. The transformational models-’0 rep- 
resents the design configuration process as 
a sequence of restructuring steps. Each suc- 
cessive transformation replaces a part of the 
design structure (for example, a group of 
components and their connections) with a 
different substructure, but essentially at the 
same level of detail.” Example configura- 
tion problems include the configuration of 
manufacturing equipment, manufacturing 
systems, group technology cells, part groups, 
orders, shipments, and products. 

Coral’s approach to configuration is most 
related to the DSPL implementation of an air 
cylinder design system? Both approaches 
handle design problem solving through hier- 
archical decomposition, contain specialists 
that guide design at each level, and use 
constraints as a means of determining ad- 
missible design decisions. 

On the other hand, the DSPL approach 
encodes the routine design process by hier- 
archically decomposing the artifact’s func- 
tion. Coral takes a structural approach, de- 
composing the artifact (family) itself, and 
represents all possible combinations of the 
artifact in a configuration tree. Also, DSPL 
admits arbitrary problem-solving methods 
at each node in the tree, whereas Coral relies 
primarily on constraint knowledge to deter- 
mine the admissability of design decisions. 
Coral is more limited in the design problems 
it can tackle, but by limiting the set, the 
design knowledge becomes more declara- 
tive and easier to encode. 

Example resource-allocation problems in- 
clude the allocation of workstations among 
engineering managers; classrooms among 
professors or department administrators; 
troops, artillery, or hardware in a battle situ- 
ation; airport gates to incoming and outgo- 
ing flights; and so on. In a typical resource- 
allocation situation, there are sets of agents, 
each with a set of allocated resources em- 
ployed against a set of activities requiring 
resources. Some researchers have focused 
on the resource allocation and reallocation 
aspect rather than on config~ration.’~.~~ Oth- 
ers have applied mathematical programming 
techniques to resource allocation by treating 
it as an assignment problem with linear 
constraints. I4 
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(composed of states, operators, and an evalu- 
ation function) by refining a state to include 

( 1 )  the problem topology, or structural 
characterization; 

(2) problem textures, which measure a 
problem topology to focus search and 
reduce backtracking; and 

(3) the problem objective, a means for 
rating alternative solutions. 

A problem’s topology is defined by a 
constraint graph in which nodes are vari- 
ables and arcs are constraints. Problem 
objectives are embedded in the topology as 
utilities (that is, a number between 0 and 1 
that reflects how well the value optimizes 
the objective) associated with values in a 
variable’s domain. Propagation across con- 
straints within a topology (also known in 
the constraint-satisfaction literature as arc 
consistency) reduces the doEain of vari- 
ables and alters the utilities associated with 
the remaining values. After propagation, a 
value’s utility is no longer locally defined 
but reflects its global interaction, via con- 
straints, with other variables. 

Search operators in constrained heuris- 
tic search have many roles. They refine 
problems by adding new variables and con- 
straints, reduce the number of solutions by 
reducing the domain of variables (for ex- 
ample, by assigning a value to a variable), 
and reformulate problems by relaxing or 
omitting constraints or variables. 

For constrained heuristic search to be 
well focused, we must decide where to 
apply an operator in the problem topology. 
Features of the topology must exist that 
differentiate one subgraph from another, 
and these features must be related to the 
problem’s goals. Seven features, called 
problem textures, have been identified and 
are being a n a l y ~ e d . ~  

Given these definitions of problem to- 
pology and textures, the problem-solving 
model begins the search process with a 
single state that includes the initial prob- 
lem topology. The model propagates con- 
straints through the graph, computes tex- 
ture measures, and selects a decision node 
(described in more detail below). The sys- 
tem then generates a new state by selecting 
an operator that either adds structure to the 
topology or further restricts a variable’s 
domain at the decision node. Thus, through 
the search process, the constraint graph is 
successively transformed into a solution. 
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With this approach we can construct a 
nearly optimal solution more quickly, ma- 
nipulate the goals interactively, and gauge 
the impact of changes. 

Coral architecture 

Coral’s architecture has three major mod- 
ules, shown in Figure 2: a configurator, a 
resource allocator, and a plan analysis 
module. 

The configurator creates all feasible con- 
figurations of a product based on compat- 
ibility constraints. These configurations 
are then given to the resource allocator, 
which assigns quantities to each feasible 
configuration based on component inven- 
tory and quantity and composition con- 
straints. The analysis module identifies 
bottleneck components and analyzes user- 
specified constraints on composition. For 
example, if a user-specified composition 
can be relaxed, the module can determine 
how many more orders can be filled. 

The configurator. We use a technique 
that is well suited for configuring “decom- 
posable” artifacts with reasonably well de- 
fined structures and con~t ra in ts .~  This meth- 
odology is one of the decompositional 
approaches to configuration, and is intend- 
ed for a weakly connected, “nearly decom- 
posable” configuration a r t i f a ~ t . ~ . ~  Such an 
artifact can be subdivided into parts or 
characteristics with relatively weak inter- 
actions. Some of these parts or characteris- 
tics can, i n  turn, be decomposed into sub- 
characteristics or parts, and so on. Similarly, 
the task of configuring an order can be 
subdivided into the tasks of configuring its 
major modules (or major features); the task 
of configuring a major module can be de- 
composed into tasks of configuring its major 
components or subfeatures; and so on, un- 
til we reduce the problem to the task of 
choosing between standard arrangements 
or parts. 

The decompositional model represents 
the configuration process as a sequence of 
refinements, each of which starts with an 
incomplete configuration state and produc- 
es a configuration state of a greater com- 
pleteness (in the sense that the new state 
contains more information about the con- 
figuration object). It does this by adding to 
one of the components its more detailed 
description (either its specific “committed” 

~~ 
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Preferences/ 
composition 

I 

Ammunition compatibility 

Figure 2. The Coral architecture. ATP is  the ammunition transfer point, where ammunition from 
the rear is transferred to the front. ASP i s  an ammunition storage point, which supplies an 
ATP. CSA i s  a corps storage area, which supplies an ASP. 

._.. 

Alternatives 

Figure 3. Problem topology. 

implementation, or its decompositional 
description). The new configuration state’s 
structure is the same as the initial state’s 
structure, at least at the level of abstraction 
found in the initial state. 

Problem topology. Decomposition treats 
the artifact as a tree-like structure. The root 
of the tree corresponds to the final configu- 
ration artifact. The leaves are elementary 

g n d - n o d e  x - n o d e  

objects, which are either predefined or are 
simple enough to be configured by pre- 
defined procedures. In general, each part of 
the tree can be configured in more than one 
way and, correspondingly, can have more 
than one decomposition. Hence. the prob- 
lem topology is represented by an And-Or 
tree, as shown in Figure 3. and is known 
before the configuration process begins. In  
a decomposable configuration problem, all 
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possible configurations of the artifact are 
implicitly defined by the problem topology 
(also known as the configuration knowl- 
edge tree). However, the space of all possi- 
ble configurations is usually very large, and 
finding a configuration that satisfies a cer- 
tain set of requirements (constraints and 
goals) is a computationally explosive prob- 
lem. (It is an example of a disjunctive con- 
straint graph: which can also be represented 
as a dynamic constraint graph.8) 

The topology is traversed hierarchically 
from top to bottom; higher level disjunc- 
tive decisions activate lower level vari- 
ables and constraints. Constraint checking 
takes place only among active variables. 
Each constraint acts on one or more com- 
ponents, either by checking that the con- 
strained component satisfies a certain con- 
dition encoded in the constraint, or by 
verifying proper relations between two or 
more components (for example, their com- 
patibility). The constraint’s primary role is 
to evaluate the choice of values for the 
decision variables. This procedure accepts 
the values of one or more decision vari- 
ables and returns the utility associated with 
this combination of values. 

Operators. Opera tors  use domain-  
specific knowledge to guide their search 
through the space of possible configura- 
tions. They are expected to guess which 
value of the decision variable should be 
tried first when constraints do not have 
enough information to provide the answer, 
or to guess which variable should be as- 
signed next when there are no fully con- 
strained variables. Because there are two 
kinds of nodes (And-nodes and Or-nodes), 
there are two kinds of operators, And- 
specialists and Or-specialists. 

And-specialists choose the sequence in 
which the components defined in an And- 
node are to be instantiated. Depending on 
the active goals and constraints for a given 
configuration session, the sequence can 
vary, leading to different configurations. 
In choosing a sequence, an And-specialist 
refers to previous decisions, the constraints 
relevant to its node, and the configuration 
goals. To order the And-node parts, Coral 
enters all this information into the And- 
specialist’s rule or procedure and then pro- 
cesses it. 

Or-specialists select the most appropri- 
ate alternative among several that are asso- 
ciated with their respective Or-node. Each 

Or-specialist contains procedures or rules 
that consider previous decisions, constraints 
on its node, and configuration goals when 
making a selection. These procedures and 
rules can be used to 

rank all available alternatives and pick 
the one with the highest ranking, 
name a single alternative that is suitable 
under current conditions, or 
generate an alternative (for example, by 
looking up a parts list). 

SINCE CORAL RECORDS 
EACH DECISION AND ITS 

ALTERNATIVES, THE SYSTEM 
CAN ANSWER “WIMT-IF” 

QUESTIONS AFTER THE USER 
CHANGES CONSTRAINT 

GRAPH PARAMETERS. 

Search. The process of defining a valid 
configuration is a search for a consistent 
subtree of the configuration knowledge 
tree, where each Or-node is assigned a 
single alternative. The initial state is com- 
posed of the problem topology, that is, the 
configuration knowledge tree. 

( 1  ) The configurator begins the search by 
selecting one of the states (a partial 
configuration). When a single opti- 
mum configuration is sought, it is ben- 
eficial to select a state in a “best-first” 
fashion. If all feasible configurations 
need to be defined, the selection can be 
made at random. 

(2) The local And-specialists rank the chil- 
dren of And-nodes, thereby selecting 
the branch where the next configura- 
tion decision should be made. The first 
unresolved Or-node found is the deci- 
sion node. 

(3) The local Or-specialist then selects and 
assigns the most promising alternative 
to the decision Or-node. If all alterna- 
tives have been exhausted, the partial 
configuration is deleted and the pro- 
cess returns to step 1. 

(4) The configurator adds the new assign- 
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ment to the partial alternative, creating 
a new state with an extended partial 
configuration. The module identifies 
and checks all constraints relevant to 
the last assignment. A constraint is 
potentially relevant if it is related ei- 
ther to the decision node itself or to any 
of its ancestors (either an And-node or 
an Or-node). If the new partial config- 
uration passes all the constraints, it is 
added to the list of partial configura- 
tions, and the process iterates from 
step 1. 

( 5 )  If the partial configuration violates a 
constraint, the configurator can recon- 
sider previous decisions through de- 
pendency-based and knowledge- based 
backtracking, since a specific constraint 
can be associated with information 
about ways to fix that v i o l a t i ~ n . ~ . ~  

(6) Search ends when a feasible subtree is 
found. 

The resource allocator. For each re- 
quested product, the configurator provides 
the resource allocator with one or more 
configurations that satisfy the product re- 
quirements. Each acceptable product con- 
figuration requires the conjunctive alloca- 
tion of one or more of each component. 
Maximizing the total number of product 
configurations depends on the allocator’s 
ability to allocate bottleneck components. 
We can optimize the solution to this prob- 
lem using constrained heuristic search. 

Problem topology. The problem topology 
is composed of nodes representing user- 
defined product specifications, acceptable 
product configurations generated by the 
configurator, and components. Links be- 
tween nodes represent demand. 

For the problem of planning complete 
ammunition rounds, let’s assume the user 
has specified the following composition: 

Round, (155-mm HE): 40 percent 
Round,, (105-mm Apers): 60 percent 

For Round,, the user wants to maintain 
this component composition: 

Projectiles: 100 percent 
PD fuses: 60 percent 
MTSQ fuses: 40 percent 

For Round,, the user requests 20 per- 
cent more fuses than projectiles, and wants 
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Ammunit ion Order Configuration 
order 

~ specification I types 

PD fuses: 60  percent 
MTSQ fuses: 60  percent 

The configurator generates two feasible 
configuration types for each round: CT, 

Round 1 
155mm-HE 

(40%) 

mine the demand by summing each 
configuration’s demand for the 
component. 
Calculate max-rounds. Foreachcon- 
figuration, determine how many 

-- 
Configuration Configuration 

step 1 step 2 

this problem i s  shown in Figure 4. 

The solution process. The allocator first 
constructs the initial state using the con- 
straint graph as the state’s problem topol- 
ogy (see Figure 5 ) .  The allocator then per- 
forms the following actions: 

Figure 4. Constraint graph for the ammunition example. 

Calculatecomponent contention. For 
each component,  determine the 
amount of contention by dividing 
demand for each component by avail- 
able quantity. The greater the num- 
ber, the greater the contention. 

* Calculate configuration reliance. A 
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General new state 

t 
Step 

Figure 5. Algorithm for resource allocator. 

(3) Select a decision node by choosing a 
componentandaconfiguration ofwhich 
it is a member. For example, we can 
start with the most or the least conten- 
tious components, or with the configu- 
ration that requires the most compo- 
nents. The heuristics for selecting a 
decision node include: 

Select the component with the great- 
est contention. 
If there is mnre than one component 
with the same contention, select the 
one with the smaller number ofcon- 
figurations. 
Foragivencomponent, select the con- 
figuration with the greatest reliance. 

(4) Generate a new state. Once the alloca- 
tor ha5 selected a component, it gener- 
ates a new state and allocates the quan- 
tity to the chosen configuration. Coral 
changes the constraint graph in the 
new state as follows: 

Decrement the component node‘s 
quantity by the amount allocated. 
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Figure 6. Input interface for specifying order-composition histograms. 
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Figure 7. Input interface for specifying round definitions. 

Append the component node's allo- 
cation in the form (<configuration>, 
<amount allocated>). 
Set the configuration node's allo- 
cated amount to the specified amount. 
Assign and allocate other compo- 
nents to the chosen configuration 
node. 

The analysis module. After running the 
resource allocator. Coral collects data for 
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analysis and presentation to the user. The 
analysis module reports the results of the 
planning process, analyzes and reports on 
bottleneck components and remaining in- 
ventory, and replans through selective vio- 
lation of constraints. 

There are cases where none of the alter- 
native configurations can be used. This 
means that either the user requirements 
have overconstrained the problem so that 
no solution is possible (in which case we 

~ ~ ~ ~~~~ ~~~~ 

~ ~ 

relax the constraints), or bad choices have 
been made earlier in the solution process. 
For this reason, the system must record 
each decision and its alternatives so that 
dependency-directed backtracking can 
take place. The user can then answer 
"what-if' questions by reexecuting the 
algorithm after changing constraint graph 
parameters. 

An example 

We developed a histogram-based input 
interface to enter order-composition spec- 
ifications (see Figure 6), and used a tabular 
report (see Figure7) to enter definitions of 
ammunition rounds. 

Configuration. Figure 8 presents the 
configuration knowledge tree for the a n -  
munition problem. Since a specification for 
separate loading rounds requires differ- 
ent ammunition components such as pro- 
jectiles, propelling charges, primers, and 
fuses, we formed an And-node schema 
called Separate-loading-round and in- 
cluded all its parts. To include the different 
types of projectiles, we formed an Or-node 
schema called Projectile and listed alterna- 
tives such as HE, Hera, and Illum types. 

In this problem, the constraints almost 
exclusively deal with the compatibility of' 
components and characteristics. The most 
important sources of constraints are the ex- 
isting compatibility charts that list binary 
or higher order compatibility constraints. 
For example, PD fuse model number MK27 
is Compatabile-only-with model MK11 or 
M3A1 ofHEprojectile, ifmodel M1 orM2 
of a 40-mm artillery cannon is used. 

User preferences on round type, compo- 
nent type, or component model provide 
another source of constraints. For exam- 
ple, at the level of rounds. the user might 
specify all 155-mm HE rounds (leading to 
many feasible configurations). At the coni- 
ponent type level. the user might specify 
only PD or Prox fuses in 155-mm HE 
rounds. At the component model level. the 
user might specify only model MI07 pro- 
jectiles in 155-mm HE rounds (leading to 
the fewest feasible configurations). 

Example operators include the compo- 
nent-round local specialist ( a  heuristic for 
obtaining an optimal sequence of compo- 
nent classes for a given class of round) and 
the component-class local specialist ( a  

, 
~ 
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Configuration knowledge tree 

Ammunition 
-or 

component-round 

-and- 

-or -  
component -t y De 
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Figure 8. Disjunctive Constraint graph for complete ammunition roun&. 
~~ 

heuristic for obtaining a reduced set of 
components, or model numbers, to match). 

The configuration process traverses the 
disjunctive constraint graph, in a best-first 
manner from top to bottom, using opera- 
tors to order the instantiation of disjuncts 
and conjuncts. Only selected nodes have 
their constraints checked. 

Resource allocation. Each acceptable 
configuration of a complete round requires 
the conjunctive allocation of one or more 
projectiles, fuses, primers, and propellants. 
Specifications of the rounds define the de- 
mand for each component, which defines 
the demand for each configuration type, 
which defines the demand for each config- 
uration, which defines the demand for each 
component resource. 

Different types of constraints apply dur- 
ing resource allocation. The availability of 
the total number of components at given 
storage areas can affect the total number of 
rounds that can be configured from those 
locations. 

Also, the user can specify preferences 
for configurations or compositions with 
different levels of detail. The user can also 
specify an absolute number, a relative per- 
centage, or an objective, like “maximize.” 
At the level of rounds, the user might 
specify 100 155-mm HE rounds. At the 
component type level, the user might also 
specify 60 percent of PD fuses and 60 
percent of Prox fuses per round (that is, 1.2 
fuses per other components). 
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Figure 9. Output interface of planning results. 

We constructed a linear-programming 
model of the allocation portion of this 
problem. Tests demonstrated that optimal 
solutions could be obtained in those cases 
where a solution existed. But the nature of 
the ammunition configuration problem is 
such that a problem specification often 
does not entail a feasible solution. The 
linear-programming approach fails to pro- 
vide a solution when the component inven- 
tory cannot satisfy all the orders. To make 
the allocator “user-friendly,” it relaxes less 
important constraints or user preferences 

to compute the solution that matches the 
user’s needs most closely. 

Figure 9 shows an example system out- 
put of the maximum number of configu- 
rable ammunition rounds. It shows that 
Coral has met percentage, quantity, and 
maximization goals effectively. 

Analysis. Coral performed the analysis 
tasks mentioned earlier: reporting the re- 
sults of the planning process, analyzing 
and reporting on bottleneck components 
and remaining inventory, and replanning 
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Figure 10. Replanning analysis on m a x i m i  number of rounds with relaxed constraints. 

Table 1. System performance. 

TEST SIZE ROUNOS CONFIGURATIONS CONSTRAINTS CPU T I M E  (SECS.) 
CONFIGURATOR RESOURCE ALLOCATOR 

1 15,000 2 84 508 9.14 3.4 
2 60,000 3 100 590 16.85 8.6 
3 200,000 8 198 1,026 16.31 11.3 

through selective constraint violation. 
Figure 10 shows a replanning analysis, 
including how many more rounds can be 
configured by selectively violating unim- 
portant constraints. 

System performance. We developed 
three test cases with increasing complexity 
to validate system performance, and ran 
them on a Symbolics 3640. The first test 
case specified two rounds. The objective 
was to maximize the number of rounds 
while keeping the percentage relationship 
between the two rounds constant. The sec- 
ond test case specified three rounds, and its 
objective was to maximize the number of 
rounds. The third test case specified eight 
rounds: Six rounds had a percentage rela- 
tionship with each other, and two rounds 
had a specified quantity. The objective was 
to maximize the number of rounds while 
meeting these constraints. 

Table 1 presents the performance of Cor- 
al's configurator and resource allocator 
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modules in these test cases. In the third 
test, with a search space of 200,000 items 
and more than 1,000 constraints, the sys- 
tem needed less than 30 seconds of proces- 
sor time to generate all feasible configura- 
tions, as well as allocations of components 
to feasible round configurations, for given 
ammunition round descriptions. The over- 
all statistics show that processor time does 
not relate monotonically to the number of 
configurations, but instead depends on the 
number of constraints and the complexity 
of underlying compatibility constraints. 

C O R A L  DEMONSTRATES THE 
power of constrained heuristic search to 
solve configuration and allocation prob- 
lems. Carnegie Group has created a ge- 
neric version of the configurator, called 
Spex. It is a reusable shell for developing 
applications that access parts databases 

for rapid product configuration. Spex has 
been applied to domains such as motor 
configuration, thus demonstrating the gen- 
erality of our approach." 

Research on the constrained heuristic 
search problem-solving paradigm contin- 
ues. Major areas of concern include the 
development of additional textures, auto- 
mating the process of problem reformula- 
tion through topological transformation, 
and distributed constrained heuristic search. 
Concurrently, we have successfully ap- 
plied the paradigm to spatial planning, trans- 
portation planning and scheduling, and fac- 
tory scheduling. 
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