Proceedings of 4th International
Conference on Expert Systems in
Production & Operations Mgmnt
Hilton Head, Sth Carolina,

May 1990.

VARIABLE AND YALUE ORDERING HEURISTICS
FOR ACTIVITY-BASED JOB-SHOP SCHEDULING

Norman Sadeh and Mark S. Fox

Center for Integrated Manufacturing Systems
The Robotics Institute
School of Computer Science
Camegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

Earlier research in job shop scheduling has demonstrated the advantages of opportunistically combining
order-based and resource-based scheduling techniques. In this paper we investigate an even more flexible approach
where each activity is considered a decision point by itself. Within this framework, we introduce a probabilistic
model that combines both resource-based and order-based insight at the activity level. The model is used to define
heuristics that opportunistically select the next decision point on which to focus attention (i.e. variable ordering
heuristics) and the next decision to be tried at this point (i.. value ordering heuristics). Preliminary experimental
results indicate that our variable ordering and value ordering heuristics greatly increase search efficiency. While
- least constraining value ordering heuristics have been advocated in the literature [Keng 89], our experimental results
suggest that other value ordering heuristics combined with our variable-ordering heuristic can produce much better
schedules without significantly increasing search.

1.0 Introduction

We are concerned with the issue of how to opportunistically focus an incremental job shop scheduler’s
attention on the most critical activities!(variable ordering heuristics) and the most promising reservations for these
activities (value ordering heuristics) in order to reduce search and improve the quality of the resulting schedule.

So called order-based [Fox 83] and resource-based [Adams 88] scheduling techniques have been at the
origin of several incremental scheduling schemes. In an order-based approach, each order is considered a single
decision point, i.e. orders are prioritized and scheduled one by one. In a resource-based approach, resources are rated
according to their projected levels of demand. Resources are then scheduled one by one, starting with the ones that
have the highest demand. Order-based scheduling has proven to be a viable paradigm in problems where slack (i.e.
precedence constraint interactions) is the dominating factor. On the other hand resource-based scheduling is likely
to perform better in situations where resource contention (i.e. resource requirement interactions) is critical. Neither
approach is perfect. Indeed a lot of real life scheduling problems contain a mix of critical orders and critical
resources. In the past few years it has become clear that in order to perform well in a wider class of problems,
schedulers need the ability to opportunistically combine insight from both problem decompositions. The
OPIS [Smith 85, Ow 88} scheduler was the first one to combine both approaches by dynamically combining two
problem solving perspectives: an order-based perspective and a resource-based perspective. When OPIS identifies a
bottleneck resource with a projected demand higher than some threshold, it switches to its resource-based
perspective. Otherwise, by default, the system uses an order-based perspective, where orders are scheduled one at a
ume.

Even such an approach has its shortcomings. Indecd, once a critical order or a critical resource has been
identified by OPIS, all the activities within that order or competing for that resource are assumed 10 be sufficiently

n this section, the criticality of a scheduling entity such as an order, a resource, or an activity, is informally defined as the difficulty in finding
2 good schedule for that entity.

critical to deserve to be immediately scheduled. This is not necessarily the best possible strategy. Instead some
activities within a critical order or contending for a critical resource may not be that critical themselves. This is
because, in general, the criticality of an activity should be determined both by the order to which it belongs and the
resources for which it competes. By scheduling less critical activities before more critical ones, a scheduler will
prematurely restrict its remaining options. This in turn will typically translate into poorer schedules and more
backtracking (i.e. partial schedules that cannot be completed).

These considerations lead us to investigate a new scheduling framework where the decision points are no
longer entire resources or entire orders but instead where each activity is a decision point in its own right. Within
this framework, activity criticality accounts for both precedence constraint interactions (i.e., so-called intra-order
interactions [Smith 85]) and resource requirement interactions (i.e., so-called inter-order interactions). By
simultaneously accounting for both types of interactions the approach opportunistically combines advantages of both
order-based and resource-based scheduling techniques.

In this paper, we introduce a probabilistic model that allows to simultaneously account for both intra-order
and inter-order interactions. A similar model was first proposed in [Muscettola 87], where it was used to perform
bottleneck analysis given a predetermined variable ordering. Our model does not require such assumptions. Instead
we show that it can precisely be used to decide which activity to schedule next (variable ordering heuristic) and
which reservation 1o assign to that activity (value ordering heuristic). Experimental results are presented that
indicate that our variable ordering heuristic allows for significant reductions in search. We also compare the
performance of three different value ordering heuristics. While least-constraining value ordering heuristics had been
advocated in the literature [Keng 89] , our study indicates that it is possible to produce much better schedules
without significantly increasing search.

In the next section we describe our model of the job-shop scheduling problem. The following section gives
an overview of the activity-based approach to scheduling that we are investigating, and introduces a probabilistic
model to account for both intra-order and inter-order interactions. Section 4 presents a variable-ordering heuristic
based on this probabilistic model. In section 5 we present three value-ordering heuristics: a least constraining
heuristic, a greedy heuristic, and an intermediate heuristic. Preliminary experimental results are reported in section
6. Section 7 discusses these results. Section 8 contains some concluding remarks.

2.0 The Model

Formally, we will say that we have a set of N jobs (i.e. orders) to schedule. Each job has a predefined
process plan that specifies a partial ordering among the activities (i.e. operations) to be scheduled. Each activity A,
(1<k<n) may mquim one or several resources Ry; (1 <i <p,), for each of which there may be several altemnatives
R,u-j (a<j Sq,u-)?. We will use st et, and du, to respectively denote A,’s start time, end time, and duration.

We view the scheduling problem as a constraint satisfaction problem (CSP).

The variables of the problem are the activity start times, and the resources allocated to each activity. An
activity’s end time is defined as the sum of its start time and duration. Each variable has a bounded set of admissible
values. For instance, the start time of an activity is always restricted at one end by the order release date and at the
other end by the order latest acceptable completion tme3 according to the durations of the activilies that
precede/follow the activity in the process plan.

We differcntiate between two classes of constraints: activity precedence constraints and resource capacity
constraints. The activity precedence constraints are the ones defined by the process plans. Our model {Sadeh
88) accounts for all 13 of Allen’s temporal constraints [Allen 84). Capacity constraints restrict the number of
reservations of a resource over any time interval to the capacity of that resource. For the sake of simplicity, we will

2]t is important 10 keep in mind that several activities may require the same resource. For instance if two activities A, and A, both require a
unique resource which hasto be R, we have R, |, =R | =R,.

3This is not necessanly the order’s due date.

assume in this paper that all resources are of unary capacity.

We assume scheduling problems with a discrete time granularity A, i.e. activity start times and end times
have to be multiples of A.

Additionally our model allows for preferences on activity start times as well as on the resources that
activities can use. Preferences are modeled with preference functions. These functions map each variable’s possible
values onto preferences ranging between O and 1. Preferences on activity start times allow for the representation of
organizational goals such as reducing order tardiness, or reducing inventory (both in-process and finished-goods
inventory) [Fox 83,Sadeh 88). Resource preferences are very useful to differentiate between functionally
equivalent resources with different characteristics (e.g. different operating costs). In this paper we assume that the
sum of the preference functions defines a (separable) objective function to be maximized. '

3.0 The Approach

3.1 An Activity-based Scheduler

In an activity-based approach, each activity is treated as an aggregate variable, or decision point, that is
comprised of the activity's start time, and its resources. The schedule is built incrementally by iteratively selecting
an activity to be scheduled and a reservation for that activity (i.e. a start time and a set of resources). Every time a
new activity is scheduled, new constraints are added to the initial scheduling problem, and propagated. If an
inconsistency is detected during propagation, the system backtracks. The process stops either when all activities
have been successfully scheduled or when all possible alternatives have been tried without success.

The efficiency of such an incremental approach critically relies on the order in which activities are
scheduled and on the order in which possible reservations are tried for each activity. Indeed, because job-shop
scheduling is NP-hard, search for a schedule may require exponential time in the worst case. Both empirical and
analytical studies of constraint satisfaction problems reported in {Haralick 80, Freuder 82, Purdom 83, Nadel
86a, Nadel 86b, Nadel 86c, Stone 86, Fox 89] indicate however that, on the average, search can significantly be.
reduced if always focused on the most critical decision points and the most promising decisions at these points.
Such techniques are often referred to as variable and value ordering heuristics [Dechter 88].

In this paper we assume that critical activities are the ones whose good (overall) reservations are most
likely to become unavailable if one were to start scheduling other activities first. In general reservations may
become unavailable because of operation precedence constraints, because of resource capacity constraints, or
because of combinations of both types of constraints. Clearly criticality measures are probabilistic in nature, as their
computations require probabilistic assumptions on the values that will be assigned later on to each variable (i.e. the
reservations that will later on be assigned to each unscheduled activity). In the next subsection we introduce a
probabilistic framework that accounts for the interactions of start time and resource preferences induced by both
activity precedence and resource capacity constraints. We will use this model throughout the remainder of the paper
to define several variable and value ordering heuristics for activity-based scheduling.

3.2 A Probabilistic Framework to Account for Constraint Interactions

In this subsection we outline® a probabilistic model that we will use throughout the remainder of the paper
to define several variable and value ordering heuristics for activity-based job-shop scheduling. We justify the modcl
by its ability to account for both intra-order and inter-order interactions and by its relatively low computational
requirements.

In our model a priori probability distributions are assumed for the possible start times and resources of cach

4 A more detailed decerintinn ran ha fanad in 1Qadah 281

unscheduled activity. These probabilities are then refined to account for the interactions induced by the problem
constraints (i.c. both intra-order and inter-order interactions). Finally the results of this propagation process are
combined to identify critical activities and promising reservations for these activities. In their simplest form the a
priori probability distributions are uniform. This amounts to assuming that, a priod, all possible reservations are
equally probable. A slightly more sophisticated model consists in biasing the a priori distributions towards good
values as defined by the preference functions {Sadeh 88). This allows to give more weight to reservations that are
more likely to result in good schedules.

Once the a priori distributions have been built, they can be refined to account for the interactions of the
problem constraints. In our model, the propagation is performed in two steps. The probability distributions are first
propagated within each order, thereby accounting for intra-order interactions, and then across orders to account for
inter-order interactions. Accounting simultaneously for both types of interactions seems indeed very difficult as
much from a theoretical point of view as from a purely computational point of view. As a matter of fact the number
of ways in which a set of activities can interact is combinatorial in the number of these activities>. Instead, by
separately accounting for intra-order and inter-order interactions, one greatly reduces the amount of computation to
be performed. The experimental results reported at the end of this paper indicate that such two-step approximation
is sufficient to guide our scheduler.

Concretely, once the a priori distributions have been generated, our propagation process involves the
following two steps:
1.

a. The a priori start time probability distributions are refined to account for activity precedence
constraints. The resulting (a posteriori) probability distributions associate to the possible start
times of each activity the probability that these start times will be tried by the scheduler and
will not result in the violation of an activity precedence constraint. These a posteriori start time
distributions can be normalized to express that each activity will occur exactly once, and hence
will start exactly once.

b. For each resource requirement R; of each activity A, and for each resource altemative R;: 1o
fulfill R;;, we compute the probabilistic demand Dy;; of A, for R,; as a function of time. is
probability is obtained using A,’s normalized a posteriori start time distribution and the a priori
probability that A, uses Ry to fulfill its requircment R,;. Hence Dh-/(t) represents the
probabilistic contribution of f{ ¢ 10 the demand for R at time t, if activity reservations were
only checked for consistency with respect to the activity precedence constraints. Later on we
will refer to D ,a-j(t) as A,’s (probabilistic) individual demand forR g at time 2.

2. Finally the individual demand densities of all activities are aggregated (i.e. summed at each point in
time) to reflect the probabilistic demand for each resource in function of time. The resulting aggregate
demand- densities may get larger than one over some intervals of time, as the individual demand
densities from which they originate have not been checked for consistency with respect to the capacity
constraints. High demand for a resource over some time interval indicates a critical resource/time
interval pair, which requires prompt attention from the scheduler. This is the basis to the vaniable-
ordering heuristic presented in this paper. Additionally, we also record the number of activities
contributing to the aggregate demand for a resource as a function of time. This provides for more
accurate value ordering heunstics.

SIn any realistic problem, Monte Carlo simulation would indeed require tremendous amounts of computations if onc were to simultancously
account for all the activities and all the constraints. This is because the probability of randomly gencrating a schedule for all the activities, that
satisfy all activity precedence and resource capacity constraints, is in general extremely small.

Notations

In the remainder of the paper the following notations will be used:
o PPRIOR(s1,~() will denote the a priori probability that A, will be scheduled to start at time ¢,

o PPOST(st,=¢) will be the a posteriori probability that A, starts at time ¢, i.e. after accounting for activity
precedence constraints,

. P;Oﬂ(stkﬂ) represents the same probability distribution after it has been normalized to express that A,
will start exactly once,

oD k;,(‘) represents A,’s individual demand for R 4 at time ¢
o D8¥(1) will denote the aggregate demand for R,;attime £.and
Ej

°n Ru,-(l) will denote the number of activities contributing to the aggregate demand D;fj’(t).

4.0 ARR: A Variable Ordering Heuristic Based on Activity Resource Reliance

ARR, the variable ordering heuristic that we study in this paper, consists in looking for the resource/time
interval pair that is the most contended for and the activity that relies most on the possession of that resource over
that time interval. This activity is selected as the most critical one and hence is the next one to be scheduled.

The intuition behind this heuristic is the following. If activities that critically rely on the possession of
highly contended resources were not scheduled first, it is very likely that, by the time the scheduler would turn its
attention to them, the reservations that are the most appropriate for these activities would no longer be available.

The aggregate demand densities introduced in subsection 3.2 are used to identify the most demanded
resource/time-interval pair. The activity that contributes most to the demand for the resource over the time interval
(i.e. the activity with the largest individual demand for the resource over the time interval) is interpreted as the one
that relies most on the possession of that resource. Indeed the total demand of an activity A, for one of its resource
requirement R; is equal to A,’s duration and is distributed over the different alternatives, R K for that resource, and
over the different possible times when A, can be carried out. Consequently activities with a lot of slack or several
resource alternatives tend to have fairly small individual demand densities at any moment in time. They rely less on
the possession of a resource at any moment in time than activities with less slack and/or fewer resource alternatives.
This allows ARR to account not only for inter-order interactions but also for intra-order interactions.

The advantage of this heuristic lies in its simplicity. In practice, its computational cost is significantly lower
than that of Keng’s heuristic [Keng 89], which requires to inspect all remaining reservations of all unscheduled
activities. A possible drawback of the ARR heuristic is that it only considers resource reliance with respect to the
resource/time interval that is the most contended for in the current search state. We have experimented with more
sophisticated variable ordering heuristics such as the one described in [Keng 89]. As indicated by the experiments
reported in this paper, the gain in search efficiency provided by these more sophisticated heuristics, if any, is usually
not worth the overhead in computation.

5.0 Three Value Ordering Heuristics

In the experiments that we ran, we considered the following three value-ordering heuristics:

5.1 LCV: A Least Constraining Value Ordering Heuristic

Least constraining value ordering heuristics are known for being very good at reducing search in Constraint
Satisfaction Problems [Haralick 80, Dechter 88). {Keng 89] describes one such heuristic for job-shop scheduling
problems. Below we describe LCV, a least constraining value ordering heuristic based on the probabilistic model of

ection 3.

LCV is a least constraining value ordering heuristic where every reservation {{st=b Ryjp Rygj s
U, 1}, foran activity Ag 15 rated according 0 the probability RESERV—-AVAIL,(stk=t,R K ix""’R *,i) that it would

a }PA
not conflict with another activity's reservation, if one were 10 first schedule all the other remaining activities.
Reservations with large such probabilixiw are the ones that participate in a large number of schedules compatible
with the current 1 schedule. They ar® Jeast constraining reservations. LCV selects the reservation with the

highest probability RESERV-AVAIL(st=t Ru J'{’“’R - 1})'

n our model, we express RESERV—AVAIL(sxk::t,R 0 ix”"‘R k2,) as the product of the probability that s,=!
P,

will not result in the viotation of an activity precedence constraint and the conditional probability that each resowce
will be available between ; and t+du,, giver that st;=t does not result in the violation of an

activity precedence constraint -
RESERV“"AVAIIJ(S‘E—"", Rkljx"«'RkP&j)
Py

pPOST (st =0)
£ RESQURCE-AVAILRyip1:1+840)

= pPRIOR (5 =
660 Ry e RyjrRie,i)
1 2y,

where RESOURCE*AVAIL(R Kiph t+duy) is the conditional probability that Ry; will be available between t and
(+du,, given that st,=t does not esult in the violation of an activity precedence constraint.

Assuming that each of the (g - 1) other activities competing for Ryt time T equally contributes 10 the

kij
demand D‘,’zgg'('c) -D ,a-](‘t), we can approximate the (conditional) probability that Ry will be available at some time T
i

for activity A PR the probability that none of the other ("Rum —1) activities uses that resource at that time, namely:
i}

D‘,‘f{'(x)-oﬁ)(z)

[B -
(g n m
o

When appmximaﬁng RESOURCE——AVAIL(R,@:J«rduk), one has to be careful not 10 come up with 100
pessimistic an estimate. Indecd it is tempting 10 assume that the (conditional) probability that Ryj; will be available
for A, between ¢ and t+duy 1S given by the product of (1) over all possible start times T between ! and r+du;, (as
determined by fhe granularity A of the problem).- In general, this approximation is 100 pessimisﬁc, as it assumes that
(he activities contributing D5 () have 2 duration equal to A, ie. that hese activities can possibly require Ry;; at
time T without requiring it at 123 or wA. Instead, in order to account for the duration of these activities, we wilt
assume that each resource Ry is subdivided into 2 sequence of buckets of duration AVG(du), where AVG(du) is the
average duration of the activities competing for R Consequently RESOURCE~AVA1L(R s trduy) 1S given by the

probability that A, can secure a numbet of buckets equal o its duration, which 15 approximated as:
du, X (AVGlng -1

A

aggr
AVODEE @Dy
4 AVG(du)

g .. = "‘/
RESOURCE-AVAIL(R 5t e+dit) = {1 WV Ging O)

where AVG(D HJ({)—D‘;zggr(t)) and AVG{ng (1)) are respectively the averages of D kjj(r)~D‘;zgg
iy kif

between ¢ and +du

(1) and g (%) waken
kif &ij

5.2 GV: A Greedy Value Ordering Heuristic

The second value ordering heuristic that we tested simply consists in ranking the possible reservations of an
activity according to their direct contributions to the objective function (or combined preferences), i.e. according to
the sum of their start time and resource preferences. Later we refer to this greedy value ordering heuristic as GV.

53 INT: An Intermediate Value Ordering Heuristic

Finally the third value ordering heuristic that we used combines features from the previous two. INT is a
value ordering heuristic that rates each possible reservation { {sf,=t, R}, i R 1), R K24y, }} according to the product

of RESERV-AVA!L(stft,Rli- ’""RkPx j) with the combined preference of that reservation. In other words, INT
1 P,

rates a reservation according to the product of the ratings assigned by GV and LCV to that reservation. As a
- consequence INT is a heuristic that looks for reservations that maximize the activity’s local preferences while
leaving room to other unscheduled activities for selecting good reservations as well.

6.0 Preliminary Experimental Results

We have tested the different heuristics described in this paper as well as multiple other ones on several
hundred scheduling problems involving up to a hundred activities. In this section, we present a set of experiments
that compares the performance of our variable ordering heuristic ARR together with the three value ordering
heuristics LCV, GV, and INT. Additionally we have also included the performance of the variable and value
ordering heuristics described in [Keng 89], which we refer to as SMU. The SMU heuristics have been reported to
achieve high search efficiency for job-shop scheduling and hence constitute a good benchmark to compare the
performance of our heuristics. The experiments were run on a set of 20 randomly generated scheduling problems.
The set was comprised of 5 problems with 25 activities (5 orders of S activities each), 5 with 50 activities (10 orders
of 5 activities each), 5 with 75 activities (15 orders of 5 activities each), and 5 with 100 activities (20 orders of 5
activities each). Each problem involved S resources. For each problem, process plans were randomly drawn from a
set of two process plans in order to have a high correlation in their resource requirements, and hence higher resource
contention. Activity durations were randomly drawn from distributions that guaranteed that at least one out of the
five resources would be a main bottlenéck. In order to.further complicate the problems, all orders were given
identical release dates and latest acceptable completion dates. Order due dates were randomly drawn between the
common release date and latest acceptable completion date. Finally start time preferences were added to reduce
order tardiness and inventory (i.e. both in-process inventory and finished-goods inventory).

All heuristics were run in a modular testbed that allows for sharing all common functions (e.g. consistency
labeling module, backtracking module, etc), bypassing unnecessary functions whenever possible (e.g. bypassing the
probabilistic computations when using SMU) or using alternative functions (e.g. the variable and value ordering
heuristics). In all cases search was stopped if it required more than 1000 search states.

For each scheduling problem, the heuristics were rated along the following dimensions:

 Search efficiency: the ratio of the number of activities to be scheduled over the total number of scarch
states that were explored. In the absence of backtracking, only one search state is generated for each
activity, and hence scarch cfficiency is equal to 1.

* Number of experiments solved in less than 1000 scarch states each {out of 20).

* Average CPU time (in seconds) to successfully schedule an actvity on a VAX8800 running Knowledge
Craft on top of Common Lisp. This measure was obtained by simply dividing the total CPU time by the
number of activitics to be scheduled.

e Schedule value: this is a normalized version of the objective function. It indicates how well the
heuristic was able to satisfy the preference functions. In the absence of constraints, the maximum
schedule value would be equal to 1. Typically, because of precedence and capacity constraints, the
optimal schedule value is lower than 1.

« Order tardiness
e Order inventory: computed as the some of order earliness (finished-goods inventory) and order
flowtime (in-process inventory).

The last three measures (schedule value, order tardiness, and order inventory) were computed for the 18
experiments (out of 20) solved by all four heuristic combinations in less than 1,000 search states.

The table in Figure 6-1 summarizes the average performance of each of the four heuristics with respect to
the six measures defined above. Standard deviations are given between parentheses.

ARR&LCV | ARR&INT ARR&GV SMU
Search Efficiency 0.89 0.94 0.77 0.95
0.27) 023) (0.39) 022)
Nb. exp. solved in 20 19 18 19
less than 1000 states
CPU sec. per activity { 17.97 18.49 2171 23.02
(12.98) (13.38) (12.13) (17.36)
Schedule Value 047 0.73 0.86 0.41
0.04) (0.05) {0.10) (0.05)
Order Tardiness 821 542 241 756
(391) (244) (119) (337)
Order Inventory 1708 1256 702 1523
673) 441) (125) (568)

Figure 6-1: Comparative study of four different heuristics.
Standard deviations appear between parentheses.

7.0 Discussion

The results reported in Figure 6-1 indicate that our variable ordering heuristic, ARR, allowed for 2 search
efficiency comparable to that of the SMU heuristic, while requiring significantly less time. In particular ARR&LCVY
required 17.97 seconds per activity whereas SMU required 23.02 sec (a speed-up of 22%). On a set of more difficult
experiments with two major bottleneck resources, the efficiency of SMU dropped to 77%, whereas that of
ARR&LCV only dropped to 86%. On these more difficult problems, ARR&LCV achieved a remarkable 100%
speed-up compared to SMU.

Our results also indicate that least constraining value ordering heuristics such as SMU or ARR&LCY,
although very good at reducing search, tend to produce fairly poor schedules. Instead ARR&INT achieved a search
efficiency almost identical to that of SMU, while allowing for a reduction of almost 30% in order tardiness and 20%
in inventory. ARR&GV allowed for even better schedules, though at the expense of search efficiency. On morc
difficult problems, the efficiency of ARR&GV tends to degrade even further, whercas ARR&INT sull fares very
well. These results reflect a tradeoff between search and the quality of the resulting schedules.

8.0 Concluding Remarks

In this paper, we have investigated an activity-based approach to scheduling. Because of its greater
{lexibility, such an approach is expected to allow for the construction of better schedules than approaches using
order-based or resource-based scheduling or even combinations of the two. The price to pay for this flexibility is the
potential overhead involved in the selection of the next decision point on which 1o focus attention, since there arc a
lot more possibilities. For this reason, it is particularly important 1o come up with variable and value ordering

heuristics that require as little computation as possible.

In this paper, we have presented a probabilistic framework that allows for the definition of such heuristics.
Our model accounts both for intra-order and inter-order interactions, and allows for the definition of different
variable and value ordering heuristics. We have presented a simple variable-ordering heuristic, ARR, that looks for
the most contended resourceftime interval pair and the activity that relies the most on the possession of that
resource/time interval. Our experiments indicate that this heuristic allows for very high search efficiency, while
being much faster than that described in [Keng 89]. Our experiments also indicate that least constraining value
ordering heuristics such as the one advocated in {Keng 89] are not the only viable way to maintain search at an
acceptable level. Instead we have shown that other value ordering heuristics , when coupled with our variable
ordering heuristic, produced much better schedules without significantly increasing search.

Acknowledgement

This research was supported, in part, by the Defense Advance Research Projects Agency under coatract
#F300602-88-C-0001, and in part by a grant from McDonnell Aircraft Company.

[Adams 88]

[Allen 84]

[Dechter 88]

[Fox 83}

{Fox 89]

[Freuder 82]

[Haralick 80]

[Keng 89]

[Muscettola 87]

{Nadel 86a]

[Nadel 86b]

{Nadel 8¢c]

{Ow 88}

References

J. Adams, E. Balas, and D. Zawack.
The Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science 34(3):391-401, 1988.

JF.Allen.
Towards a General Theory of Action and Time.
Artificial Intelligence 23(2):123-154, 1984.

Rina Dechter and Judea Pearl.
Network-Based Heuristics for Constraint Satisfaction Problems.
Artificial Intelligence 34(1):1-38, 1988.

M. Fox.
Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
PhD thesis, Department of Computer Science, Camnegie-Mellon University, 1983.

Mark S. Fox, Norman Sadeh, and Can Baykan.

Constrained Heuristic Search.

In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pages
309-315. 1989.

E.C. Freuder.
A Sufficient Condition for Backtrack-free Search.
Journal of the ACM 29(1):24-32, 1982.

Robert M. Haralick and Gordon L. Elliott.
Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence 14(3):263-313, 1980.

Naiping Keng and David Y.Y. Yun.

A Planning/Scheduling Methodology for the Constrained Resource Problem.

In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pages
998-1003. 1989.

Nicola Muscettola, and Stephen Smith.

A Probabilistic Framework for Resource-Constrained Muti-Agent Planning.

In Proceedings of the Tenth International Conference on Artificial Intelligence, pages 1063-1066.
1987.

B.A. Nadel.

The General Consistent Labeling (or Constraint Satisfaction) Problem.

Technical Report DCS-TR-170, Department of Computer Science, Laboratory for Computer
Research, Rutgers University, New Brunswick, NJ 08903, 1986.

B.A. Nadel.

Three Constraint Satisfaction Algorithms and Their Complexities: Search-Order Dependeni and
Effectively Instance-specific Resulls.

Technical Report DCS-TR-171, Department of Computer Science, Laboratory for Computer
Rescarch, Rutgers University, New Brunswick, NJ 08903, 1986.

B.A. Nadel.

Theory-based Search-order Selection for Constraint Satisfaction Problems.

Technical Report DCS-TR-183, Department of Computer Science, Laboratory for Computer
Research, Rutgers University, New Brunswick, NJ 08903, 1986.

Peng Si Ow and Stephen F. Smith.
Viewing Scheduling as an Opportunistic Problem-Sotving Process.
Annals of Operations Research 12:835-108, 1988.

[Purdom 83}

{Sadeh 88]

[Smith 85]

[Stone 86}

Paul W. Purdom, Jr.
Search Rearrangement Backtracking and Polynomial Average Time.
Artificial Intelligence 21:117-133, 1983.

N. Sadeh and M.S. Fox.

Preference Propagation in TemporallCapacity Constraint Graphs.

Technical Report CMU-CS-88-193, Computer Science Department, Camegie Mellon University,
Pittsburgh, PA 15213, 1988.

Also appears as Robotics Institute technical report CMU-RI-TR-89-2.

Stephen F. Smith and Peng Si Ow.
The Use of Multiple Problem Decompositions in Time Constrained Planning Tasks.
In Proceedings of the Ninth International Conference on Artificial Intelligence, pages 1013-1015.

1985.

Harold S. Stone and Paolo Sipala.
The average complexity of depth-first search with backtracking and cutoff.
IBM Journal of Research and Development 30(3):242-258, 1986.

Table of Contents

Abstract
1.0 Introduction
2.0 The Model
3.0 The Approach
3.1 An Activity-based Scheduler
3.2 A Probabilistic Framework to Account for Constraint Interactions
4.0 ARR: A Variable Ordering Heuristic Based on Activity Resource Reliance
5.0 Three Value Ordering Heuristics
5.1 LCV: A Least Constraining Value Ordering Heuristic
5.2 GV: A Greedy Value Ordering Heuristic
53 INT: An Intermediate Value Ordering Heuristic
6.0 Preliminary Experimental Results
7.0 Discussion
8.0 Concluding Remarks
Acknowledgement

AR A LENNIINN=OO

List of Figures

Figure 6-1: Comparative study of four different heuristics. Standard deviations appear 7
between parentheses.

