
ELSEVIER Artificial Intelligence 86 (1996) l-41 

Artificial 
Intelligence 

Variable and value ordering heuristics for the job 
shop scheduling constraint satisfaction problem * 

Norman Sadehav*, Mark S. Fox b~l 
a School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3891, 

USA 

’ Department of Industrial Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ont., 

Canada M5S IA4 

Received April 1992; revised August 1995 

Abstract 

Practical constraint satisfaction problems (CSPs) such as design of integrated circuits or 
scheduling generally entail large search spaces with hundreds or even thousands of variables, 
each with hundreds or thousands of possible values. Often, only a very tiny fraction of all these 
possible assignments participates in a satisfactory solution. This article discusses techniques that 
aim at reducing the effective size of the search space to be explored in order to find a satisfactory 
solution by judiciously selecting the order in which variables are instantiated and the sequence 
in which possible values are tried for each variable. In the CSP literature, these techniques are 
commonly referred to as variable and value ordering heuristics. Our investigation is conducted in 
the job shop scheduling domain. We show that, in contrast with problems studied earlier in the 
CSP literature, generic variable and value heuristics do not perform well in this domain. This is 
attributed to the difficulty of these heuristics to properly account for the tightness of constraints 
and/or the connectiviv of the constraint graphs induced by job shop scheduling CSPs. 

A new probabilistic framework is introduced that better captures these key aspects of the job 
shop scheduling search space. Empirical results show that variable and value ordering heuris- 
tics derived within this probabilistic framework often yield significant improvements in search 
efficiency and significant reductions in the search time required to obtain a satisfactory solution. 

The research reported in this article was the first one, along with the work of Keng and 
Yun ( 1989), to use the CSP problem solving paradigm to solve job shop scheduling problems. 
The suite of benchmark problems it introduced has been used since then by a number of other 

*This research was supported, in part, by the Advanced Research Projects Agency under contract #F30602- 

88-C-0001 and #F30602-91-F-0016, and in part by grants from McDonnell Aircraft Company and Digital 

Equipment Corporation. 

* Corresponding author. E-mail: sadeh@cs.cmu.edu. 

I E-mail: msf@ie.utoronto.ca. 

0004-3702/96/$15.00 Copyright @ 1996 Elsevier Science B.V. All rights reserved. 

SSDI0004-3702(95)00098-4 



2 N. Sudeh, M.S. Fh/Artijiicial Intelligence 86 (I 996) l-41 

researchers to evaluate alternative techniques for the job shop scheduling CSP The article briefly 
reviews some of these more recent efforts and shows that our variable and value ordering heuristics 

remain quite competitive. 

1. Introduction 

Practical constraint satisfaction problems ( CSPs) such as design problems (e.g. [ 3 1, 
491) or scheduling problems (e.g. [ 10,39,52] ) generally entail large search spaces with 
hundreds or even thousands of variables, each with several hundred or thousand possible 
values. Often, only a very tiny fraction of all these possible assignments participates in 
a satisfactory solution, potentially requiring prohibitive amounts of search before one 
such solution can be found. This article discusses techniques that aim at reducing the 
effective size of the search space to be explored by judiciously selecting the order in 
which variables are instantiated and the sequence in which possible values are tried 

for each variable. In the CSP literature, these techniques are commonly referred to as 
variable and value ordering heuristics. Our investigation is conducted in the job shop 
scheduling domain [ 2, 12,261. 

Specifically, we study a class of job shop scheduling problems in which operations 
have to be performed within non-relaxable time windows [ 11,39,42,44]. We refer to 
this class of problems as the job shop constraint satisfaction problem or job shop CSP. 
Examples of job shop CSPs include factory scheduling problems, in which some oper- 
ations have to be performed within one or several shifts, spacecraft mission scheduling 

problems, in which time windows are determined by astronomical events over which we 
have no control, factory rescheduling problems, in which a small set of operations need 

to be rescheduled without disturbing the schedule of other operations, etc. When solving 
a job shop CSP, the objective is to find as quickly as possible a feasible schedule, namely 
a schedule where each operation is performed within one of its legal time windows and 

no resource is oversubscribed. The techniques presented in this paper have also been 
adapted to solve just-in-time job shop scheduling problems, where the objective is to 

reduce the sum of tardiness and inventory costs of a set of jobs to be processed subject 
to relaxable due dates [ 39,401. 

The job shop CSP can easily be shown to be NP-complete [ 141. Accordingly, the 
worst-case complexity of any procedure to solve this problem is expected to be expo- 
nential. At the time we started this study, CSP techniques that interleave search with 
consistency enforcing mechanisms and variable/value ordering heuristics had been re- 
ported to yield important increases in search efficiency when applied to a number of 
different CSPs [ 6,9, 11,13, 17,23,29,37,5 11. One of the objectives of our study was to 
determine if similar results could be obtained on large-scale tightly connected problems 
such as those found in the job shop scheduling domain. 

In this article, we first review generic variable and value ordering heuristics that have 
been reported to perform well on other classes of CSPs. We explain why these heuristics 
are unlikely to perform as well on large-scale tightly connected CSPs like job shop 
scheduling. In particular, we show that these heuristics fail to adequately account for 



N. Sadeh, M.S. Fox/Artificial Intelligence 86 (1996) 1-41 3 

the tightness of constraints and/or for the interactions induced by the high connectivity 
of the constraint graphs characteristic of job shop CSPs. 2 The second part of this paper 
introduces a probabilistic framework, within which new variable and value ordering 

heuristics are defined that attempt to better account for these interactions. Empirical 
results indicate that our new heuristics outperform both generic CSP heuristics as well as 
more specialized heuristics recently developed for resource- and time-constrained CSPs 
[ 201. Our study suggests that a key to defining these more powerful heuristics lies in the 
ability of the probabilistic framework to provide estimates of the reliance of a variable 
on the availability of one of its remaining values (e.g., in job shop scheduling, the 

reliance of an operation on the availability of a reservation) and measures of contention 
between variables for the allocation of incompatible values (e.g., in job shop scheduling, 
measures of resource contention between unscheduled operations). 

While our work shows that the CSP problem solving paradigm does scale up to 
complex large-scale domains such as the job shop CSP, it also suggests that benchmark 
problems considered in earlier CSP studies are not representative of this and probably 
other classes of complex CSPs. We hope that this research will prompt others in the field 

to revisit earlier studies and look for more challenging problems on which to evaluate 
their techniques. 

The balance of this paper is organized as follows. Section 2 provides a formal defi- 
nition of the job shop scheduling CSP Section 3 details the backtrack search procedure 
used in our study. Generic variable and value ordering heuristics are reviewed in Sec- 
tions 4 and 5 respectively. Section 6 describes new variable and value ordering heuristics 
based on a probabilistic model of the search space. The complexity of these heuristics 
is discussed in Section 7. Empirical results comparing our new heuristics with other 

heuristics discussed in this paper are presented in Section 8. The work reported in this 
article was the first one, along with that of Keng and Yun [ 201, to use the CSP prob- 

lem solving paradigm to solve job shop scheduling problems. The suite of benchmark 
problems it introduced has since then been used by a number of other researchers to 
evaluate alternative techniques for the job shop scheduling CSl? Section 8 briefly re- 
views some of these more recent efforts and shows that our variable and value ordering 
heuristics remain quite competitive. Section 9 provides a summary of the paper and 

further discusses the implications of this study. 
Earlier variations of the techniques presented in this paper are discussed in [ 11,38, 

39,41-441. 

2. The job shop constraint satisfaction problem 

The job shop CSP requires scheduling a set of jobs .I = {jt , . . . , j,,} on a set of 
physical resources RES = {RI, . . . , R,}. Each job j, consists of a set of operations 

0’ = {O{,.. . , Of,,} to be scheduled according to a process routing that specifies a 

* Constraint graphs are graphical representations of binary CSPs (i.e. CSPs with binary constraints) in which 

each variable is represented by a node, and binary constraints are represented by arcs between two nodes. 
Other graphical representations also exist for non-binary CSPs. 



4 

j, 

j, 

N. Sadeh. M.S. Fkr/Art$ciui lntellrpwce 86 (I 996) I-41 

0: 0: 0: 
Fig. I. Examples of tree-like process routings. 

partial ordering among these operations (e.g. 0; BEFORE 0:). This study assumes job 
shop CSPs with tree-like process routings. A tree-like process routing is one whose graph 
of precedence constraints forms a tree (see Fig. 1). This is by far the most common 

situation, especially in factory scheduling. Extensions of the techniques presented in this 
paper to more general types of process routings will be briefly discussed as well. 

In the job shop CSP studied in this paper, each job j, has a release date rdr and 
a due date (or deadline) ddl between which all its operations have to be performed. 
Each operation Of has a fixed duration duj and a start time sd whose value has to be 

selected. The domain of possible start times of each operation is initially constrained by 
the release and due dates of the job to which the operation belongs. If necessary, the 

model allows for additional unary constraints that further restrict the set of admissible 
start times of each operation, thereby defining one or several time windows within which 
an operation has to be carried out (e.g. a specific shift in factory scheduling). In order 

to be successfully executed, each operation Of requires P,! different resources (e.g. a 
milling machine, a set of fixtures and a machinist) Rf, ( 1 < j < p(), for each of which 
there may be a pool of physical resources from which to choose, 

@, = { rijl , . t-i,,’ >, 
‘J 

with ri,x l RES ( I 6 k < qi, ) ( e.g. several possible milling machines). 
More formally, the problem can be defined as follows: 

Vuriables 

A vector of variables (or aggregate variable) is associated with each operation, 0: 
( 1 < 1 < ?I, I < i < nl), which consists of 

( 1 ) the operation start time, stf, and 
(2) its resource requirements, Rf, ( 1 < ,i 6 pi ). 



N. Sadeh, M.S. Fox/Artijicial Intelligence 86 (1996) 1-41 5 

In our search procedure, each operation is considered a single (aggregate) variable 
whose start time and resource requirements are simultaneously instantiated. A tuple of 

instantiations associated with an operation, namely a start time and a set of specific 
resource assignments, is referred to as a reservation for that operation. 

Constraints 

The non-unary constraints of the problem are of two types: 

( 1) Precedence constraints defined by the process routings translate into linear in- 
equalities of the type: s4 + duf 6 st$ (i.e. Of BEFORE 0;). 

(2) Capacity constraints that restrict the use of each resource to only one operation 

at a time translate into disjunctive constraints of the form: (VpVq RL # R:9) V 

szf’ + du$ < sti V st$ + du$ < s$. These constraints simply express that, unless 

they use different resources, two operations 0: and Of cannot overlap. 
Additionally, there are unary constraints restricting the set of possible values of individual 
variables. These constraints include non-relaxable due dates (or deadlines) and release 

dates, between which all operations in a job have to be scheduled. The model actually 
allows for any type of unary constraint that further restricts the set of possible start 
times of an operation. As a result, the domain of possible start times of an operation 
will generally consist of one or several non-contiguous time windows within which the 

operation has to start. Time is assumed discrete, i.e. operation start times and end times 
can only take integer values. Finally, each resource requirement Rfi has to be selected 

from a set of resource alternatives .ni,. c RES. 

Objective 
In the job shop CSP studied in this paper, the objective is to come up with a feasible 

solution as fast as possible. Notice that this objective is different from simply minimizing 
the number of search states visited. It also accounts for the time spent by the system 

deciding which search state to explore next. 

Example 
Fig. 2 depicts a simple job shop scheduling problem with four jobs J = {j, , j2, js , jd} 

and four physical resources RES = {RI, Rz, R3, Rd}. In this example, each operation 
has a single resource requirement with a single possible value. Operation start times 

are the only variables. For the sake of simplicity, it is assumed that all operations have 
the same duration, namely three time units, that all jobs are released at time 0 and 
have to be completed by time 15 (the minimum makespan of this problem).3 None 
of these simplifying assumptions are required by the techniques that will be discussed: 
jobs usually have different release and due dates, operations can have different durations, 
several resource requirements, and several alternatives for each of these requirements. 
However simple, this example will often prove sufficient to contrast the merits of a 
number of heuristics discussed in this paper. When appropriate, we will consider slight 

3 The makespan of a schedule is the length of the time interval that spans from the earliest operation start 

time to the latest operation end time [ 21. 



6 N. Strdeh. M.S. Fox/Art~Jmczl lntellipnce 86 (I 996) l-41 

j 
1 

i 

j 
4 

j 
3 

C, capacity constraint 

Pi ) precedence constraint 

Fig. 2. A simple job shop problem with four jobs. Each node is labeled by the operation that it represents and 

the resource required by this operation. 

variations of this base problem to discuss issues that would not be immediately visible 

otherwise. 
Notice that, in this problem, resource R2 is the only one to be required by four 

operations (one from each job). Since all operations in the example have the same 
duration, resource R2 is expected to be a small bottleneck.’ 

3. The search procedure 

A general paradigm for solving CSPs relies on the use of depth-first backtrack search 
[ 3,16,35,50]. Variables or groups of variables (i.e. subproblems) are successively in- 
stantiated. Each time a new variable (or group of variables) is instantiated, a new 
search state is created that corresponds to a new, more complete, partial solution. This 
process goes on until either a complete solution is obtained or until a deadend state 
is reached. A deadend state is one whose partial solution cannot be completed without 
violating one or several problem constraints. When in a deadend state, the procedure 

’ Informally, a bottleneck is a resource or group of resources whose utilization is expected to be close to or 

larger than its available capacity. 



N. Sadeh, M.S. Fox/Artificial Intelligence 86 (1996) I-41 7 

has to undo one or several assignments and try alternative ones, if there are any left 
(otherwise the problem is infeasible). This process of undoing earlier assignments is 
known as backtracking. It results in lower search efficiency, and, hence, is undesir- 
able. 

In the worst case, exponential amounts of backtracking may be necessary to come up 
with a feasible solution (schedule). In practice, the average complexity of the procedure 
can be improved by interleaving search with the application of consistency enforcing 
mechanisms and variable/value ordering heuristics: 

l Consistency enforcing (checking) techniques: These techniques prune the search 
space by eliminating local inconsistencies that cannot participate in a global solution 

[23]. This is done by inferring new constraints and adding them to the current 

problem formulation. If, during this process, the domain of a variable becomes 
empty, a deadend situation has been identified. 

l Variablelvalue ordering heuristics: These heuristics are concerned with the order in 

which variables are instantiated and values assigned to each variable. As discussed 

in the remainder of this paper, these heuristics can have a great impact on search 
efficiency. 

In this study, we consider a depth-first search procedure that starts in a state where all 
operations still have to be scheduled and proceeds by scheduling operations one by one 
(Fig. 3). Each time an operation is scheduled, a new search state is created in which a 
consistency enforcing procedure updates the set of possible reservations of unscheduled 

operations to account for the latest assignment. Next, the procedure determines which 
operation to schedule (variable ordering) and which reservation to assign to that op- 
eration (value ordering). The procedure goes on, recursively calling itself, until either 

all operations have been successfully scheduled or until an inconsistency (or deadend) 
is detected. In the latter case, it needs to undo one or several earlier decisions (i.e. 
backtrack). If there are no decisions left to undo (i.e. the procedure is back in the initial 

search state), the problem is infeasible and the procedure terminates. 
The results reported in this study were obtained using a simple chronological back- 

tracking mechanism that systematically goes back to the most recently scheduled op- 
eration and tries alternative reservations for that operation. If no alternative reservation 
is left, the procedure goes back to the next most recently scheduled operation and 

so on. 

1. If all operations have been scheduled then stop, else go on to 2. 
2. Apply the consistency enforcing procedure. 

3. If a deadend is detected then backtrack (i.e. select an alternative if there is 
one left and go back to 1, else stop and report that the problem is infeasible), 
else go on to step 4. 

4. Select the next operation to be scheduled (variable ordering heuristic). 
5. Select a promising reservation for that operation (value ordering heuristic). 
6. Create a new search state by adding the new reservation assignment to the 

current partial schedule. Go back to 1. 

Fig. 3. Depth-first backtrack search procedure. 



N. Sudeh. M.S. t;ox/Artificiul Intelligence 86 (1996) l-41 

Before propagation 

Downstream Propagation 

Upstream Propagation 

/ ,--- 

LO,81 [3,111 [7,151 

) precedence constraint 

Fig. 4. Consistency with respect to precedence constraints. 

Consistency enforcing in our procedure combines three types of computations: 

(I! 

(2) 

Consistency with respect to precedence constraints: Consistency with respect to 
precedence constraints is maintained using a longest path procedure that incre- 
mentally updates, in each search state, a pair of earliest/latest possible start times 
for each unscheduled operation. Essentially, as in PERT/CPM [ 181, earliest start 
time constraints are propagated downstream within the job whereas latest start 
time constraints are propagated upstream (Fig. 4). The complexity of this sim- 
ple propagation mechanism is linear in the number of precedence constraints. In 
the absence of capacity constraints (e.g. problems in which no two operations 
require the same resource), the procedure can be shown to guarantee decom- 
posability [ 5,8], i.e., if applied in each search state, it is sufficient to guarantee 

backtrack-free search [ 391. 
Forward consistency checks with respect to capacity constraints: Enforcing con- 
sistency with respect to capacity constraints is more difficult due to the disjunctive 
nature of these constraints. Whenever a resource is allocated to an operation over 
some time interval, a “forward checking” mechanism [ 17,291 checks the set of 
remaining possible reservations of other operations requiring that same resource, 
and removes those reservations that would conflict with the new assignment, as 
first proposed in [ 2 I ] (see Fig. 5 ) 



N. Sadeh, M.S. Fox/Art$cial Intelligence 86 (1996) 1-41 9 

(3) 

Before propagation: [ 7 , 15 ] 
After propagation: [ 10 , 15 ] 

scheduled to start at time 6 

--____ capacity constraint 

Fig. 5. Forward consistency checks with respect to capacity constraints. 

Additional consistency checks with respect to capacity constraints: Additionally, 
our consistency enforcing mechanism checks that no two unscheduled operations 
require overlapping resource/time intervals. An example of such a situation 

is illustrated in Fig. 6, where two operations requiring the same resource, 0: 
and Ofi, rely on the availability of overlapping time intervals. Whichever start 

I 

I 

I 

0versub;cribed 
interval 

I 

est : 1st: estl 
J 

1st: eft: eft’ lftr lft: 
J 

time 

m earliest possible reservation 

latest possible reservation 

m time interval absolutely required by the operation, 
whatever its start time 

Fig. 6. Detecting situations where two unscheduled operations requiring the same resource are in conflict 



time is selected for operation 0; (within its earliest/latest start time window), 
this operation will always require its resource over the time interval that spans 

between its latest start time and its earliest finish time ([ Ist;k,eff]). Similarly, 
operation 0: will always require that same resource between its latest start 

time and its earliest finish lime (interval [Is<,eft:]). Interval [LY$,&] and 

[ Ls~,~ff~ J overlap. This represents a capacity constraint conflict. This additional 
consistency mechanism. which enforces a higher level of arc-consistency than 
forward checking [ 17,24,29], has been shown to often increase search efficiency, 
while only resulting in minor computational overheads [ 391. 

Because it is only possible to efficiently enforce partial consistency with respect to 
capacity constraints, backtracking will sometimes occur. In other words, the scheduling 

procedure will sometimes reach a search state, in which several unscheduled operations 
competing for a resource appear to each have some possible reservations left, while 
the total capacity available on the resource is actually insufficient to simultaneously ac- 

commodate all these operations. Notice, however, that because consistency enforcement 
with respect to precedence constraints is sufficient to guarantee decomposability (with 

respect to precedence constraints), backtracking can only occur as the result of capacity 
constraint violations. 

Because it is impossible to efficiently guarantee backtrack-free search for job shop 
CSPs, variable and value ordering heuristics are generally critical in determining the 
actual complexity of the search procedure. The next two sections examine popular 

variable and value ordering heuristics developed for generic CSPs as well as more 

specialized heuristics and identify key weaknesses of these heuristics when applied to 

job shop scheduling problems. 

4. A look at some popular variable ordering heuristics 

A powerful way of reducing the average complexity of backtrack search is to ju- 

diciously select the order in which variables are instantiated. The intuition is that, by 
instantiating difficult variables first, backtrack search will generally avoid building par- 
tial solutions that it will not be able to complete later on. This reduces the chances 
(i.e. the frequency) of backtracking. Instantiating difficult variables first can also help 
reduce the amount of backtracking when the system is in a deadend state that is not 
immediately detected by its consistency checking mechanism. Indeed, by instantiating 
difficult variables, the system moves to more constrained deadend states that are easier to 
detect. This reduces the time the system wastes attempting to complete partial solutions 
that cannot be completed. 

One can distinguish between two broad types of variable ordering heuristics: 
( 1) Fixed variable ordering heuristics: A unique variable ordering is determined 

prior to starting the search and used in each branch of the search tree. 
(2) Dynamic variable ordering heuristics: The ordering is dynamically revised in 

each search state in order to account for earlier assignments. Different branches 
in the search tree generally entail different variable orderings. 



N. Sadeh, MS. Fox/Artijicial Intelligence 86 (1996) 1-41 11 

Clearly, fixed variable orderings require less computation since they are determined 
once and for all. On the other hand, dynamic variable ordering heuristics are potentially 
more powerful because they can identify difficult variables within specific search states 

rather than for the overall search tree. While a number of early CSP studies performed 

on simple problems such as N-queens or on moderate-size CSPs seemed to suggest 

that dynamic variable ordering heuristics might be too expensive, Purdom showed that 
there are more difficult CSPs, for which dynamic variable ordering heuristics can be 
expected to achieve exponential savings in the average amount of search required to 

come up with a solution [37]. For these more difficult classes of problems, the CSP 
literature generally recommends using a simple heuristic known as dynamic search 

rearrangement (DSR) [3,6,7,15,37]. In each search state, DSR looks for the variable 
with the smallest number of remaining values, and selects this variable to be instantiated 
next. DSR has often been used as a benchmark to determine whether it is worthwhile 

using a dynamic variable ordering heuristic for a given class of problems. Not only do 
the experiments presented at the end of this paper clearly show that job shop scheduling 

belongs to the class of more difficult problems for which a dynamic variable ordering 
is justified, they also clearly indicate that DSR is too weak a heuristic for the job shop 

CSI? 
The scheduling problem introduced in Fig. 2 helps understand the shortcomings of 

this variable ordering heuristic. Fig. 7 depicts this problem after application of the 

consistency enforcing procedure described in Section 3. 
According to DSR, six operations appear to be equally good candidates to be sched- 

uled first, namely Oi, Oi, Oi, O:, Oz, and Oi, as they each have seven possible start 
times (values) left, while the other four operations have ten possible start times (val- 

ues). It is easy to see however that, among these six “critical” operations, some are in 
fact more difficult to schedule than others. Consider operations 0: and 0;. Both require 

resource R2, which is required by a total of four operations. Additionally, three out of the 
four operations requiring resource R2 are the last operations in their jobs. In other words, 
most of these operations appear to be in contention for resource R2 at about the same 

time. This high contention for resource R2 strongly suggests that 0: and 0: are more 
difficult to schedule than the other four operations with seven possible start times. For 
instance, an operation like O:, which has also seven possible start times, competes only 

with one other operation for resource Rs, namely operation 0:. Additionally, 0: is the 
first operation in job jl, while 0: is the last operation in its job (job js) . In other words, 

these two operations are not in high contention for their resource (resource R3), and 
hence are expected to be easier to schedule than operations 0: and Oz. Unfortunately, 
DSR cannot account for these observations. It simply counts the number of remaining 
values of each variable, but fails to estimate the likelihood that these values remain 

available later on. Clearly start times of operations competing for highly contended 
resources are more likely to become unavailable than those of other operations. 

In this example, the bottleneck resource R:! also corresponds to the largest clique 

of capacity constraints. Therefore, a variable ordering heuristic that identifies difficult 
variables (i.e. nodes in the constraint graph) as those with many incident constraints 
might actually perform better than DSR. Several such variable ordering heuristics have 
been proposed in the literature. These heuristics are generally fixed variable ordering 



12 N. Sudeh. M.S. Fm/Arti$cial Intelligence 86 (I 996) l-41 

j 
1 

j 
2 

j 
4 

G capacity constraint 

PI + precedence constraint 

Fig. 7. The same job shop CSP after consistency labeling. Start time labels are represented as intervals. For 

instance, [ 0.61 represents all start times between time 0 and time 6, as allowed by the time granularity, 

namely (0, 1,2,3,4,5,6}. 

heuristics, unless new constraints are added to the problem as it is solved. One such 
heuristic is the minimum width (MW) heuristic [ 6, 131. MW orders the variables from 

last to first by selecting, at each stage, a rlode in the constraint graph which has a 

minimal degree 5 in the graph remaining after deleting all nodes that have already been 
selected [ 61. A variation of this heuristic known as the minimum degree (MD) heuristic 

simply ranks variables according to their degree in the initial constraint graph [ 61. In 
the example depicted in Fig. 2, MD would select 0: to be scheduled first. There are 
also MW orderings starting with this operation. In general, scheduling problems are not 
that simple, and fixed variable ordering heuristics like MD or MW do not provide very 
good advice either. This is best illustrated by slightly modifying the scheduling problem 

depicted in Fig. 2. 
Suppose, for instance, that we change the problem and introduce a fifth resource, say 

Rs. Suppose also that we allow any of the operations requiring RI or R3 in the original 
problem to use R5 as an alternative resource. We now have: 

0 a;, = fin:, = .n;, = {R,, R5}, 
. 12;, = a;, = {R3, R5}. 

5 The degree of a node is the number of constraints incident to that node 



N. Sadeh, M.S. Fox/Artificial Intelligence 86 (1996) l-41 

Cl 

R 

capacity constraint 

) preceaence constraint 

Fig. 8. A new resource Rs is added to the problem. Rl.5 stands for RI or Rg. R3.5 stands for R3 or Rg. 

The two cliques of capacity constraints corresponding to RI and R3 are now subsumed 
by a larger clique of capacity constraints involving five operations: Oi, Oi, Of, O:, and 
0: (Fig. 8). Notice that capacity constraints between operations belonging to the same 
job are subsumed by precedence constraints in that job. This is the case for the capacity 

constraint between 0: and O;, which would require that either 0: precede 0: or 0: 
precede O:, if both operations use Rs. This constraint is subsumed by the precedence 

constraint between the two operations, which requires that 0: always precede 02. Due 
to the additional capacity constraints resulting from the introduction of Rs, there are 
now MW orderings and MD orderings starting with some of these five operations. In 

fact the addition of R5 has significantly loosened the capacity constraints participating 
in the new clique, and the operations connected by these constraints are even easier 
to schedule than before. Failure of MW and MD to identify that these operations are 
actually easy to schedule is due to the inability of these heuristics to account for 
constraint tightness, namely the difficulty of satisfying a specific constraint [ 11,301. 
Another example of a variable ordering heuristic that does not account for constraint 
tightness is the mux curdinality (MC) search order which arbitrarily selects the first 
variable to be instantiated, and then at each stage picks the variable connected to the 
largest number of already instantiated variables [ 6,241. This heuristic can also be viewed 
as a fixed variation of DSR. 



14 N. Sadeh, M.S. Fr,x/Artijiciul Intelligence 86 (1996) l-41 

Another weakness of generic variable ordering heuristics described in the CSP lit- 
erature comes from the fact that they treat all problem constraints uniformly. In many 

practical CSPs, different types of constraints entail different levels of consistency check- 
ing. This in turn impacts the effectiveness of different variable ordering heuristics. For 

instance, in the job shop CSP, consistency enforcing techniques can efficiently ensure 

that backtracking only occurs as a result of capacity constraint violations, as explained 
in Section 3. Consequently, the criticality of an operation should solely be a function of 
how difficult it is to find that operation a reservation that does not violate any capacity 

constraints. This can be exploited to design more effective variable ordering heuristics. 
A specialized variable ordering heuristic that takes advantage of this observation is 

the one developed by Keng and Yun [20], though its authors apparently failed to 
relate the strength of their heuristic to this observation. Keng and Yun suggested a 
generalization of DSR in which each operation reservation (i.e. each value) is assigned 

a survivability measure reflecting its chance of satisfying the capacity constraints (i.e. its 
chance of surviving contention with other operations for the allocation of its resource). 

The operation to be scheduled next is the one with the smallest global survivability, 
as determined by the sum of the survivabilities of each of its (remaining) possible 
reservations. Experiments presented at the end of this paper, show that this heuristic 
performs better than all the generic heuristics described above. They also show that this 

heuristic is quite expensive, as it requires inspecting all the remaining reservations (i.e. 
values) of all unscheduled operations. ’ In scheduling problems with several hundred 
operations or more, each with several hundred possible start times and several possible 
resources, this heuristic may not be cost effective. More efficient heuristics can be 
obtained by focusing on one or a small number of cliques of tight capacity constraints, 
and selecting the operation most likely to violate a constraint in these cliques. A heuristic 
based on this idea is described in Section 6. which runs faster than Keng and Yun’s 
heuristic while achieving an even higher search efficiency. 

5. A look at some popular value ordering heuristics 

Another powerful way of reducing the average complexity of backtrack search relies 
on judiciously selecting the order in which possible values are tried for each variable. 

A good value ordering heuristic is one that assigns least constraining values. A least 
constraining value is one that is expected to participate in many solutions to the overall 

problem or, better, one expected to participate in a large number of solutions compatible 
with the current search state. By first trying least constraining values, the system will 
generally maximize the number of values left to variables that still need to be instantiated, 
and hence it it will avoid building partial solutions that cannot be completed. 

b Notice also that this heuristic may still identify operations with just a few remaining possible reservations 

as critical while in fact the reservations of these operations may not be in contention with those of any 
other operations. This could be the case if operation 0; in the example in Fig. 2 had only a small number 

of possible start times. In fact, consistency enforcing is sufficient to ensure that backtracking will never be 

caused by this operation, since there is no capacity constraint incident to it. 



N. Sadeh, M.S. Fox/Art@cial Intelligence 86 (1996) l-41 15 

Attempting to exactly compute the number of global solutions in which a given assign- 
ment (or value) participates would be futile as it would require finding all solutions to 

the problem. Instead, Dechter and Pearl have developed an advised backtracking (ABT) 

value ordering heuristic that relies on tree-like relaxations of the problem to estimate 

the goodness of a value. A tree-like relaxation of a CSP is one whose constraint graph 
is a tree that spans some or all the nodes (i.e. variables) of the original CSP It turns 
out that, within such relaxations, the number of solutions in which a value participates 

can be efficiently computed in 0(nk2) steps, where n is the number of variables in the 
CSP, and k the maximum number of possible values of a variable. The idea is that, 

if one can find a tree-like relaxation that is close enough to the original CSP, a good 
value for the relaxation should also be a good value for the original CSP One way 

to obtain tight tree-like relaxations is to associate with each (binary) constraint C in 
the original constraint graph a weight w(C) equal to the satisfiability of that constraint 
(i.e. the number of value pairs that satisfy the constraint). A tight tree-like relaxation 
can then be obtained by looking for a minimum spanning tree (MST) in the resulting 

network. 
Even for a fixed variable ordering, this heuristic generally requires the computation 

of a fixed MST for each of the n levels in the search tree. This amounts to n MST 

computations, each of which typically requires 0( n2) elementary computations [ 481, 
hence a total of 0(n3) elementary computations. Empirical results presented in Section 
8 indicate that a fixed variable ordering is generally not enough to efficiently solve job 
shop scheduling problems. Under these conditions, it might even be necessary to identify 
new tree-like relaxations in each search state. This in turn would require updating the 
weights of each constraint in each search state. The resulting computations can become 
quite expensive for large CSPs. More generally, while ABT has been reported to perform 
particularly well on some classes of CSPs, it does not seem to lend itself very well to 

tightly connected CSPs such as job shop scheduling, whether using minimum spanning 
tree relaxations or not. Indeed, when dealing with tightly connected CSPs such as job 
shop CSPs, it is unlikely that one canJind a tight tree-like relaxation, namely a tree-like 
relaxation that will provide sufficiently good advice to guide search. 7 This is illustrated 

below with an example. 
Consider constraint Pt in the scheduling problem depicted in Fig. 7. Pt is a precedence 

constraint between operation 0; and operation 0,. ’ The set of start time pairs (stt , sti) 
that satisfy constraint Pt is: 

{(0,3),(0,4),..., (0,9), (1,4), (1,5),. . ., (1,9),. . ., (69)). 

In order to identify a tight tree-like relaxation, Pt is assigned a weight, w( Pt ), equal 

to the cardinality of that set, namely w( PI ) = 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28. Similar 
computations can be performed to compute the weights of other constraints. These 

weights are as follows: 

7 The experiments reported in [9] seemed to indicate the opposite. In these experiments, it appeared that 

often the advice provided by ABT was too expensive and too accurate. Instead, advice provided by looser 

relaxations ended up being more cost effective. However, these results were obtained on rather small problems 
with a relatively high density of solutions. 



16 N. Sudeh, M.S. Fox/Art$cral Intellipxce 86 (1996) I-41 

j 
1 

j4 

[0.91 13.121 

C, 

p, 

capacity constraint 

) precedence constraint 

Fig. 9. An MST relaxation of the scheduling problem. 

0 w(P,) = w(&) = w(P4) = LV(PS) =28, 
0 W(PJ) = w(Pg) = 55. 
0 w(C,) = 38, w(C2) = 29, w(C1) = 38. 
0 w(Cq) =43, 
. w(C,) = w(c6) = 38, w(c7, = 29, w(cs) = 56, w(c9) = w(c,o) = 38. 
Fig. 9 shows an MST relaxation of the scheduling problem obtained using these 

weights. It appears that the MST relaxation includes IO out of the 16 constraints present 
in the original CSI? The loss of information initially contained in the cliques of capacity 
constraints is even more dramatic. Only 2 out of the 6 constraints in the clique cor- 
responding to R2 have been preserved. This is not an accident. In general a resource 

required by M operations will result in a clique of (“;‘) capacity constraints. At most 

M - 1 of these capacity constraints can be preserved in any tree-like relaxation of the 

problem. Under these conditions, we should not be surprised if the advice provided 
by ABT for job shop CSPs is not very effective. Suppose for instance that the system 
selects 0: to be instantiated first. ’ Using the MST relaxation represented in Fig. 9, 
ABT would recommend assigning start time 4 to this operation. A careful examination 
of the scheduling problem reveals however that there is no feasible schedule with 0: 

* It should now be clear that this is a good choice, since this operation has only seven possible start times 

and requires resource Rz. the main bottleneck of the problem. 



N. Sadeh, MS. Fox/Artificial Intelligence 86 (1996) 1-41 17 

starting at 4. If 0: were to start at time 4, the other three operations requiring resource 
R2 would all have to be scheduled between time 7 and time 15. Given that each of these 
operations has a duration of three time units, this is clearly impossible. 

Keng and Yun have developed a specialized value ordering heuristic that can deal more 
effectively with cliques of capacity constraints [ 201. This heuristic first estimates overall 
contention for each resource as a function of time. Based on these estimates, operation 
reservations are ranked according to how well they are expected to prevent contention 
with the resource requirements of other operations. Empirical results in Section 8 show 

that Keng and Yun’s value ordering heuristic generally outperforms ABT. However their 
heuristic does not attempt to leave enough room to other operations within the same 

job so that they too can be assigned least constraining reservations. In other words, 
Keng and Yun’s heuristic only accounts for capacity constraints incident to the current 
operation, but fails to account for capacity constraints incident to other operations within 

the same job. 
The next section describes a probabilistic model of the search space that better ac- 

counts for the high connectivity of constraint graphs typically found in job shop schedul- 
ing, and for the constraint interactions induced by these graphs. New variable and value 
ordering heuristics are defined within this framework that attempt to remedy the short- 

comings identified above. 

6. New variable and value ordering heuristics 

6.1. General considerations 

Good variable and value ordering heuristics are heuristics that minimize the time 
required for search to complete (i.e. either with a solution, if one exists, or with the 

answer that the problem is overconstrained). If the problem is infeasible, search time 
is independent of the value ordering heuristic (except for the time spent applying the 
heuristic): once a variable has been selected, the system has to try each one of its 

remaining values to conclude that the current partial solution cannot be completed. 
In general variable and value ordering heuristics affect the number of search states 
that are explored, the average amount of time spent enforcing consistency in each 
search state, and the amount of time spent applying these heuristics. Variable and value 
ordering heuristics can also affect each other’s performance. The complexity of these 

interactions precludes the design of heuristics that directly minimize the expected search 
time. Instead, our approach aims at developing heuristics that efJicientZy reduce the 

expected number of search states that need to be explored. Assuming that the time 
spent enforcing consistency is mainly a function of the number of operations that have 
already been scheduled (i.e. the depth in the search tree) rather than a function of the 
specific operations that have been scheduled, this approach is in effect expected to yield 
heuristics that reduce search time as well. 1 

We postulate that a critical variable is one that is expected to cause backtracking, 

namely one whose remaining possible values are expected to conflict with the remaining 
possible values of other variables. Under a set of simplifying independence assumptions, 



18 N. Sudeh. M.S. Fox/ArnjSciul Intelligence 86 (1996) I-41 

Haralick and Elliott have shown that a variable ordering heuristic based on such a 
criticality measure will minimize the expected length of branches in the search tree, and 
hence the total number of search states that need to be visited to come up with a solution 

[ 171. 9 We also postulate that a good value is one that is expected to participate in 

many solutions compatible with the current search state. 
In the next subsection, we introduce a probabilistic model of the search space, which 

we will use to compute estimates of variable criticality and value goodness. 

6.2. A probabilistic model of the search space 

A critical variable is one expected to be involved in a conflict. To approximate variable 
criticality, we introduce a probabilistic framework that accounts for (1) the chance that 
a given value will be assigned to a variable (or the reliance of a variable on a particular 

value) and (2) the chances that values assigned to different variables conflict with 
each other (measures of value contention), taking into account only those conflicts 

that cannot be prevented by the consistency enforcing procedure. Given that the only 

conflicts that cannot be prevented by our consistency enforcing procedure are capacity 
constraint violations, a critical operation is one whose resource requirements are likely 

to conflict with the resource requirements of other unscheduled operations. 
We consider a probabilistic model in which each remaining reservation/value p of 

an unscheduled operation Of is assigned a subjective probability of(p) to be allocated 
to that operation. Because, a priori, there is no reason to believe that one reservation is 

more likely to be selected than another, each operation reservation is assigned an equal 
probability to be selected. Clearly, in any given schedule, an operation will be assigned 

only one reservation, hence: 

1 
CT;(p) = - 

NBRf ’ 

where NBRf is the number of remaining reservations of Of in the current search state. 
This distribution mirrors our intuition that an operation with many possible reservations 
does not heavily rely on any one of its remaining reservations, and hence the proba- 
bility of anyone of these reservations to be selected is rather low. On the other hand, 
operations with few remaining reservations rely more heavily on each of their remaining 
reservations. 

Using these subjective reservation distributions, we can estimate the reliance of an 
operation 0: on the availability of a resource Rk E RES at time r as the probability 
that the reservation allocated to this operation will require that resource at that time. 

We refer to this probability as the individual demand of operation Of for resource Rk 

‘) See 117, pp. 307-3 I2 1. At the end of their proof, the authors make the unnecessary assumption that each 

variable value is equally likely to become unavailable. Under this assumption, the variable with what they 

call the smnllest Success pmhabilifv (or equivalently the variable most likely to create backtracking) is the 

one with the smallest number of remaining values. The authors exploit this result to motivate their dynamic 
search rearrangement heuristic. When this last assumption is omitted, Haralick and Elliott’s proof shows that 

(under several other simplifying assumptions made earlier in their proof) choosing the variable most likely 
to create backtracking will minimize the expected length of each branch in the search tree. 



N. Sadeh, M.S. Fox/Artificial Intelligence 86 (1996) l-41 19 

at time r and denote it Df (Rk, 7). Df (Rk, T) can simply be computed by adding the 
probabilities g:(p) of all remaining reservations p of operation Of: that require resource 
Rk at time 7. 

By adding the individual demands of all unscheduled operations requiring resource 
Rk, an aggregate demand profile, Ditg’( ) T , is obtained that measures contention between 
unscheduled operations for resource Rk as a function of time. 

Equivalently, if we were to assume a stochastic mechanism that completes the cur- 

rent partial schedule (solution) by randomly assigning a reservation (value) to each 
unscheduled operation (variable) 0: based on its af distribution, Df( Rk, 7) would be 

the probability that the stochastic mechanism assigns operation Of a reservation that 
requires Rk at time r and Dgp’ (7) would be the expected number of reservations for Rk 
at time r (or the expected number of operations requiring that resource at that time). 

Similar demand profiles are built by Keng and Yun’s heuristics [20]. Our variable 
and value ordering heuristics differ from those of Keng and Yun in the way they exploit 

these demand profiles. lo Earlier, Muscettola and Smith also proposed techniques to 

build probabilistic demand profiles, based on a predejined variable ordering [ 281. 
The following illustrates the construction of these profiles for the example introduced 

in Fig. 2. 
Consider operation 0: in the initial search state depicted in Fig. 7. After enforcing con- 

sistency, this operation has seven possible reservations (i.e. start times sti = 3,4, . . . ,9>, 
each with a probability ui(sti) = l/7 to be selected. Similarly, 0: has ten possible start 

times and hence az(s$> = l/10, st$ = 3,4,. . . (12. 
The individual demand of operation 0: for resource R2 at time t can be obtained by 

adding the probabilities of all its possible reservations starting between t and t - duf: 

D:Uht) = c u;(r). 

For instance, 0: (R2, t) = l/7 for 3 < t < 4 and Di( R2, t) = 217 for 4 6 t < 5. 
Similar computations can be performed for the other time intervals over which 0: 
may require resource R2. Fig. 10 shows the individual demands of all four operations 
requiring resource R2, as well as the aggregate demand for that resource obtained by 

adding the individual demands of these four operations over time. As expected, the two 
operations with only seven possible start times (namely 0: and 0:) have more compact 
individual demands than the two operations with ten possible start times (namely 0; 
and Of). Notice also, that, because of the normalization of the CT:< p) distributions, the 
total individual demand of an operation with only one possible resource (like all the 
operations in this example) is always equal to the duration of that operation. This total 
demand is simply spread differently over time, depending on the number of start times 

still available to the operation. 
Fig. 11 displays aggregate demands for all four resources in the example. As antici- 

pated, resource R2 is the most contended for. 

lo The work presented here was performed concurrently with Keng and Yun’s [ 11,41,421. Notice also that 
Keng and Yun’s interpretation of their demand profiles is not a probabilistic one. 



20 N. Sadeh. M.S. Fo.r/Artijiciul Intellipwce 86 (1996) I-41 

D:(z): Individual Demand of 0: for R2 

~~] , , &f> , , , 

0123456789 10 11 12 13 14 15 

time 

D;(z): Individual Demand of 0: for R, 

t/me 

D:(z): Individual Demand of 0: for R, 

;zJ , , , , , &-y-y--~ 

0123456789 IO 11 12 13 14 15 

time 

D:(T): Individual Demand of 0: for R, 

0123456789 10 11 12 13 14 15 

time 

Dzy(z): Aggregate Demand for R, 

ii/ , , 5-h 

0123456789 IO 11 12 13 14 75 

time 

Fig. IO. Building KZ’S aggregate demand profile in the initial search state. 

In general, building aggregate demand profiles requires looking at each remaining 

reservation of each unscheduled operation. Hence, in each search state, the complexity 
of this procedure is O(Nk), where N is the number of unscheduled operations and k 

the number of remaining reservations of an unscheduled operation. In practice, the sets 
of remaining reservations of many operations do not change from one search state to 
another. Accordingly, the computation of demand profiles could potentially be made 
more efficient by dynamically updating individual demands of operations when their 
sets of possible reservations shrink (i.e. subtracting their old individual demands from 

the aggregate demand profiles and adding the new ones). Empirical results presented 
in Section 8 were obtained using a procedure that did not take advantage of this 
observation. 



N. Sadeh, M.S. Fox/Art@cial Intelligence 86 (1996) 1-41 21 

II:?(T): Aggregate Demand for R 1 

&-y-h , , , 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

time 

D:~(T): Aggregate Demand for R2 

0123456789 10 11 12 13 14 15 

time 

Diy(Q: Aggregate Demand for R, 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

time 

1.50 

1.25 1 

D:.(T): Aggregate Demand for R4 

1.00 

0.75 

9.50 1 zpp 
0 12 3 4 5 5 7 9 9 10 11 12 13 14 15 

time 

Fig. 11. Aggregate demands in the initial search state for each of the four resources. 

6.3. A variable ordering heuristic based on measures of resource contention 

The aggregate demand for a resource over a time interval is a measure of contention 
between unscheduled operations for that resource/time interval. The resource/time in- 
terval with the highest demand/contention can be expected to be the one where capacity 
constraints are most likely to be violated (specifically, the capacity constraints that con- 
nect operations contributing to the demand for this resource/time interval). Accordingly, 
the operation with the highest contribution to the demand for the most contended-for 

resource/time interval can be considered the most critical one. This is the opera- 
tion/variable most likely to be involved in a conflict. It is also the operation that relies 
most on the availability of the highly contended-for resource/time interval. 



22 N. Sad& MS. Fox/Artijicul /ntrlligence X6 (1996) l-41 

Several variations of this variable ordering heuristic have been implemented. The 
simplest and often most effective one inspects each resource’s aggregate demand profile 

using time intervals of duration equal to the average duration of the operations requiring 

that resource. The heuristic then picks the resource/time interval with the highest demand 
and the operation with the largest contribution to this resource/time interval. This is the 

variable ordering heuristic used in the empirical study reported in Section 8. We refer 
to it as ORR (for “operation resource reliance” heuristic). 

Fig. I I displays the demand profiles of RI. Rz, R1, and R4, the four resources in our 
example. The highest demand peak is the one on resource R2 between time 8 and 11. This 
resource/time interval corresponds precisely to the clique of tight capacity constraints 

identified earlier. Fig. I2 indicates that the operation with the largest contribution to the 
demand for this peak is 0:. This is no coincidence: 0; competes for the most contended 
resource and belongs to the group of six operations that have only seven possible start 

times left after consistency checking. Notice that. in this example, there are actually two 
intervals in the demand profile of R2 that qualify as most contended for: [7, 10[ and 

[ 8, 1 I[. Had our heuristic chosen 17, 101 instead of [8, I I I, it would have selected 0: 
as the operation to be scheduled next. In fact, 0: and 0; appear equally critical in this 
example. 

The ORR heuristic requires looking successively at each resource, and each time 
interval on that resource’s calendar, in order to identify the most contended interval. 
If there are rn resources and if the scheduling horizon is H, this requires 0( Hm) 

elementary computations. 

6.4. A reservation ordering heuristic that attempts to minimize contention 

In Section 4. we showed that the computational overhead associated with ABT’s 
selection of minimum spanning tree relaxations could become prohibitive on large job 
shop CSPs and is often unlikely to help due to the difficulty of tree-like relaxations to 
properly account for cliques of capacity constraints. We now describe a value ordering 
heuristic that attempts to minimize resource contention while relying on predetermined 
tree-like relaxations. The predetermined tree-like relaxations are comprised of some or 
all unscheduled operations in the job to which the current critical operation (i.e. the 

operation to be scheduled next) belongs, along with all precedence constraints between 
these operations. However, rather than simply counting the number of solutions to these 
relaxations, our value ordering heuristic also accounts for the probability that a solution 

to the relaxation satisjes the cliques qf capacib constraints. The probability that a 
solution (to the relaxation) satisfies the cliques of capacity constraints (or “survives” 

resource contention) is estimated using the same demand profiles that are constructed 
for the ORR variable ordering heuristic. 

For job shop CSPs with tree-like process routings, the tree-like relaxation adopted by 
our value ordering heuristic is comprised of all the unscheduled operations connected 
by precedence constraints to the current critical operation, along with these precedence 
constraints. Each candidate reservation (for the critical operation) is ranked according to 
the number of solutions to the relaxation with which it is compatible that are expected to 
satisfy capacity constraints (or “survive” resource contention). The reservation compat- 



N. Sadeh, M.S. Fox/ArQ5cial Intelligence 86 (1996) I-41 23 

ia , Dy; 

0 0 1 2 3 4 5 6 7 9 9 IO 11 12 13 14 15 
me 

D:(z): Individual Demand of 0: for R, 

1 :;I , , &-y-~ , , , 
0 1 2 3 4 5 5 7 9 9 10 11 12 13 14 15 

time 

D;(z): Individual Demand of @ for R, 

D:(T): Individual Demand of 0: for R, 

jj gEJ , , ) , , M-y5 
012345679 9 10 11 12 13 14 15 

t/me 

D:(T): Individual Demand of 0; for R, 

1 izj , -, er_+7 
0 1 2 3 4 5 6 7 9 9 IO 11 12 13 14 15 

time 

Fig. 12. ORR heuristic: the most critical operation is the one that relies most on the most contended re- 
source/time interval. 

ible with the largest number of such schedules is the one selected by our value ordering 
heuristic. Below, we detail the approximations used in our value ordering heuristic to 
compute the probability that a reservation and a solution to the relaxation “survive” 

resource contention. 

6.4.1. Estimating the probability that a reservation survives contention 

Let Of be an unscheduled operation and p = (~4 = t, Rf, = rflk, , Rf2 = rfzkz,. . .) one 
of its remaining reservations. We refer to the probability that assigning reservation p to 
operation Of will not conflict with the resource requirements of other operations as the 
survivability of reservation p (for Of). It will be denoted surv~( p). The survivability 
of reservation p (for Of) is approximated by the product of the probability that each 



24 N. Sadeh, M.S. Fox/Artificial lntelltgence 86 (1996) I-41 

one of the resources required by that reservation will be available between t and t + dui 

(independence assumption) : 

.rurvj( p) = rI availf ( rijk, t, t + dui) . (1) 

(,,E i ri,,, .r.iZi12’ -1 

where availf(rfjk, t, t + duf) stands for the probability that resource rfik will not be 

required by any other operation between t and t + dui (or the probability that assigning 
this resource to 0: will not create backtracking). 

Let rilk = R, E RES. The probability avuilf ( rijk, t, t + dui) that resource rlk = R,, 

will not ‘be required by any other operation between t and t + duf can be approximated 
using the aggregate demand profile of resource R,, introduced in Section 6.2. Our 

value ordering heuristic also requires keeping track of n,,(r), namely the number of 

(unscheduled) operations competing for R,, at time 7, which is also the number of 
operations contributing to the aggregate demand for R,, at time 7, denoted Dir( 7). 

At any time t < r < t + dui, there are by definition ?z,, (7) - I unscheduled operations 

competing with operation Of for resource R,,. The total demand of these other unsched- 
uled operations for R,) at time r is Dif’( 7) - 0: ( R,, 7). Assuming that each of these 

/z,‘( 7) - 1 other operations equally contributes to this demand, the probability that none 
of these operations requires R,, at time 7 is given by: 

D;y’(7) _ D;( R,7) ‘P(~‘-’ 
l- 

11,’ (7) - 1 
(2) 

It is tempting to approximate availf(rijk, t, t + dui), i.e. the probability that rfjk = R,, 

will be available to Of between I and t + dui. as the product of the probabilities that R,) 

will be available to Of on each one of the dui time intervals between I and t + duf. In 

general, this approximation is too pessimistic. It assumes that the operations competing 
with 0: have a duration equal to 1, i.e. that any of these operations could require R, 

over time interval [ 7,~ + I[ without requiring it over time interval [r + 1 ,r + 2 [ or over 
time interval [T- - 1, T[. Instead, because operations competing for R,, generally require 

several contiguous time intervals, a better approximation can be obtained by subdividing 
the calendar of that resource into buckets of duration AVG(du), where AVG(du) is the 
average duration of the operations competing for rfik = R,. uvailf(rfik, t, t + duf) is then 

approximated as the probability that Of will be able to secure the (duf)/(AVG(du)) 

time buckets that it requires to fit on the resource’s calendar. Using Eq. (2), this can be 

approximated as: 

uvuilf( R,, t, t + duf) 

AVG(D;yr(7) _ D;c RI,,7)) AVG(n,,(r)--l)x(d~)(AVG(du))-’ 

AVG(n,(7) - 1) 

where AVG( D::‘(T) - Di( R,,, T) ) and AVG(n,,(7) - 1) are respectively the average 

of D”,s:“‘( 7) - Df (R,, , 7) and the average of H,~ ( 7) - 1 over time interval [t, t + duf [ . 



N. Sadeh, M.S. Fox/Artificial intelligence 86 (1996) l-41 25 

Reservation Survivabilities for 0: 
1 

Q 1.00r . 

Q 
m 
2 

0.80. 

t a 0.60. 

0.40. 

0.20 - 

0.00, I . , I I ~ , I 1 I I 
0 1 2 3 4 5 6 7 8 9 10 11 12 

p 1.00 
a 
P m 0.80 
? e 
a 0.60 I 

Reservation Survivabilities for 0: 

iz] , , 11 1 !I 11 , , ( 
0 1 2 3 4 5 6 7 8 9 10 1112 

start time 

start time 

Reservation Survivabilities for 0: 

P 1.00 
P 
(D 0.80 
.s 

r 

s 
0.60 

0.40 

1 
0.20 

0.00 L 
0 

I 1 ! : T r , 
1 2 3 4 5 6 7 9 9 IO I1 12 

staff time 

Fig. 13. Survivability measures for the reservations of operations in job j,, the job to which 0: belongs, the 

current critical operation. 

Fig. 13 depicts reservation survivabilities for the three operations in job js, the job 
to which 0: belongs (the operation selected to be scheduled in the initial search state). 
The shape of these survivability curves is easily interpreted by looking at Figs. 7 and 11. 

Consider operation 0:. Fig. 7 indicates that 0: only competes with one other operation 
for resource Rs, namely operation 0,. ’ Because operation 0: has a duration du: = 3 
and because the earliest possible start time of operation 0: is St: = 6, operation 0: will 
never conflict with operation 0: if it is scheduled at s$ = 0, 1, 2, or 3. This is why the 
survivability of each of these start times is equal to 1. For start times s4 = 4,5 and 6 
the probability of conflicting with a reservation assigned to 0: increases, as indicated in 



26 N. Sudeh, M.S. Fox/Artificiul Intelligence 86 (1996) l-41 

Fig. 11 by the higher aggregate demand for resource R3 between time 6 and 9 (the only 
times where a conflict between the two operations is possible). Since the probability of 
such a conflict remains fairly low (i.e. the conflicts involve only two operations and only 

a small fraction of the reservations of these two operations conflict with each other), the 

survivabilities of start times s< = 4,s and 6 remain fairly close to 1 (though smaller than 
I ). Operations 0; and 0: compete with more operations than 0:. Accordingly, their 
reservation survivabilities are smaller. The shape of the survivability curves of these two 
operations can be interpreted using similar, though slightly more complex arguments. 

6.4.2. Estimating the probability thut a job schedule survives contention 

A good reservation p for a critical operation 0: is not just one that is likely to (locally) 

survive contention for the resources it requires. It should also leave enough room to other 
unscheduled operations in the same job (job j,) so that they too have reservations that 

are likely to survive resource contention. Accordingly, our value ordering heuristic ranks 
each remaining reservation (of the critical operation) by estimating the number of job 
schedules compatible with this reservation that are likely to survive resource contention 

(in short, the expected number of survivable schedules). When some operations in the 
job have already been scheduled, rather than looking at the entire job, it is sufficient to 
look at the relaxation comprised of all unscheduled operations that can be reached from 
the current (critical) operation via precedence constraints without visiting a scheduled 

operation. 
The following details the way in which our value ordering heuristic approximates the 

number of job schedules compatible with a given reservation (for the critical operation) 
that are expected to survive resource contention. The reader who is not interested in 

these details can safely jump to Section 7 or 8. 
In order to proceed, a few notations need to be introduced: 

Of: the current critical operation (i.e. the operation selected to be scheduled next). 
p: one of Of’s remaining reservations. 

RELAX: & 0’: the set of operations that make up the relaxation used by our value 
ordering heuristic. This set consists of 0: and the unscheduled operations that 
can be reached from 0: via precedence constraints without visiting a scheduled 
operation. 
good!(p) : the goodness of assigning p to O!, expressed as the expected number of 
survivable solutions to the relaxation. 
compf (p): the set of solutions to the relaxation that are compatible with the as- 

signment of p to Of. 
sol E compf ( p) : a solution to the relaxation that is compatible with the assignment 
of p to of. 
p( 0: 1 sol) : the reservation assigned to an operation 0: E RELAX; in solution sol. 

Assuming that the probability that a solution sol survives resource contention can be 
approximated by the product of the probabilities that each reservation p( 0: 1 sol) in sol 

survives contention, the goodness of assigning p to Of is: 

goodfb) = c n surv~(p(0~ j sol)). (4) 
.so/ l compf ( p) 0;ERELAXj 



N. Sadeh. MS. Fox/Artificial Intelligence 86 (19%) I-41 21 

This independence assumption is equivalent to omitting the interactions induced by 
precedence constraints in other jobs. Empirical results reported in Section 8 suggest that 

this independence assumption is generally acceptable. Thanks to this assumption, the 
only reservation survivabilities that need to be computed in each search state are those 

of operations in RELAX: 2 0’. 

Expression (4) can be rewritten to separate the survivability of reservation p from 
that of other operations in RELAX:: 

goof.ff(p> =survf(p) x c rI surv:(p(o: 1 sol)). (9 
solEcomp](p) O~ERELAx~\{Of} 

This can be further rewritten as: 

go&p) = sun+(p) x compsurvf(p), (6) 

where compsurvi(p) is the number of solutions compatible with the assignment of p to 
Of that are expected to survive contention: 

compsuruf ( p) = 1 rI su?-l&p(O~ 1 sol)). 
sol Ecompf(p) O:ERELAX;\{Of} 

Note that, in fact, cornpsurvf (p) is only a function of the start time sd allocated to 
0; in reservation p an can therefore be written as corrzpsuw~ ( t) . 

In tree-like process routings, it is possible to evaluate compsurvf ( t) for all the possible 
start times t of Of in O(~lk) steps, where VI f nl is the number of operations in 
relaxation RELAX:, and k the maximum number of possible reservations of an operation. 

This is done using a dynamic programming procedure described in Appendix A. This 
technique is an adaptation of a procedure described in [ 91. The complexity of Dechter’s 
procedure is 0(vlk2) for general tree-like CSPs. Here we have further reduced this 
complexity to 0( ilk) by taking advantage of the linearity of precedence constraints. If 
the model was to allow for other temporal constraints such as those described in [ 11, 
the complexity of the algorithm would be 0( vlk2). For non-tree-like process plans, it 

should be possible to remove a small number of precedence constraints (e.g. precedence 
constraints that are not on a critical path) to transform the process routing into a tree-like 
one, and use the resulting relaxation to compute goodness measures. 

In the example discussed earlier, the critical operation is 0;. Since no operation has 
been scheduled yet, the relaxation used by the heuristic consists of all three operations 
in job js. Fig. 14 displays the goodness measures computed using (6). Start time s$ = 6 
for instance is only compatible with one solution to the relaxation, namely a solution 
in which sg = 3 and s$ = 0. Therefore, the goodness of this start time is given by: 

good@ = 6) = su$ (s$ = 0) x surv~(s~ = 3) x surv;(s< = 6). On the other hand, 

start time s$ = 7 is compatible with three solutions to the relaxation, one with sti = 3 

and se = 0, one with s$ = 4 and st = 0, and one with sg = 4 and s( = 1. The 
survivability of this start time was obtained by adding the survivabilities of each of 
these three solutions. 

Start time s$ = 12 is the one compatible with the largest number of survivable 
solutions to the relaxation. Hence this is the start time selected by the value ordering 



28 N. Sadeh. MS. Fbx/Arti&ial Intelligence 86 (I 996) I-41 

Reservation Goodness for 0: 

ii 6.00 - 

a 7.00 - 

.% 6.00- 0 
5.00 - 

4.00 - 

3.00 - 0 

2.00 - 

l.W- 

O.w, , , , , ,F f! I I I 
0 1 2 3 4 5 6 7 6 9 10 11 12 

start time 

Fig. 14. Value goodness for 0: expressed us the number of’ compatible job schedules expected to survive 

resource contention. 

heuristic. By assigning this start time to Oi, and iteratively using the variable and value 
ordering heuristics that were just described, the search procedure easily completes the 

schedule without backtracking. This problem is relatively easy, and is also solved without 
backtracking by Keng and Yun’s heuristic. 

No heuristic is perfect. Although our value ordering heuristic recommends the right 
start time, a careful analysis reveals for instance that its second best choice, namely 
st: = 1 1, is actually infeasible. Notice however that, in the absence of backtracking, the 
scheduler does not need to try the second best value recommended by the heuristic: it 
is enough for the first value to work. 

In Appendix B, we describe a filtering mechanism used in our value ordering heuristic 
to further refine the ranking of reservations. We refer to the resulting heuristic as the 
FSS value ordering heuristic-FSS stands for “filtered survivable schedules”. 

7. Overall complexity 

In each search state, the worst-case complexity of the look-ahead analysis is 
O(max( Nk, Hm)), where N is the number of unscheduled operations in the current 
search state, k the maximum number of reservations left to an operation in that state, H 
the scheduling horizon, and m the number of resources in the system. In general 0( Nk) 

appears to be the dominant factor. In the absence of backtracking (i.e. the number of 
search states generated by the system is equal to the number of operations to be sched- 
uled), the overall complexity of the approach is O(NOpk), where NOP denotes the 
total number of operations to be scheduled. Experimentation with problems of different 
sizes suggests that, in the absence of backtracking, this is the true complexity of the 
approach. Clearly, when backtracking occurs, the overall complexity of the procedure 
can be much higher, though empirical results presented in Section 8 show that this is 
not often the case. 



N. Sadeh, MS. Fox/Artificial Intelligence 86 (1996) 1-41 29 

8. Empirical evaluation 

This section reports the results of an experimental study comparing the ORR variable 
ordering heuristic and FSS value ordering heuristic against the DSR (dynamic search 
rearrangement) variable heuristic (DSR) [ 3,17,37], the ABT (advised backtracking) 

value ordering [ 91, and the combination of variable and value ordering heuristics de- 
veloped by Keng and Yun [ 201. 

8.1. Design of the test data 

A set of 60 scheduling problems was randomly generated, each with five resources 
and ten jobs of five operations each (i.e. a total of 50 operations per problem). Each 

job had a linear process routing specifying a sequence in which the job had to visit each 
one of the five resources. This sequence was randomly generated for each job, except 
for bottleneck resources, which were each visited after a fixed number of operations (in 

order to further increase resource contention). 
Two parameters were adjusted to cover different scheduling conditions: a range pa- 

rameter, RG, controlled the distribution of job due dates and release dates, and a 
bottleneck parameter, BK, controlled the number of major bottleneck resources. Six 
groups of ten problems were randomly generated, by considering three different values 

of the range parameter and two different bottleneck configurations. The value of a third 
parameter, which will be referred to as the slack parameter, S, had to be adjusted as 
a function of the first two in order to keep demand for bottleneck resource(s) close 
to 100% over the major part of each problem. If this parameter had been fixed while 

the other parameters were allowed to change, a large proportion of the problems would 

have been either trivial or infeasible. 
The three parameters were set as follows: 
l Range parameter (RG): this parameter controlled the release date and due date 

distributions in each problem. Due dates were randomly drawn from a uniform 
distribution ( 1 +S) M U( 1 -RG, 1) , where U( a, b) represents a uniform probability 

distribution between a and 6, M is an estimate of the minimum makespan of the 
problem, and S is the slack parameter, which is defined below as a function of 
BK and RG. The minimum makespan of the problem was estimated as M = - 
(n - 1 )dURb,,t + c21R, &R, where n is the number of jobs, m the number of 
resources, Rbr,,k the main bottleneck resource (or one of them if there are several) 
and & denotes the average duration of the operations requiring resource Ri. This 
estimate was first suggested in [ 341. Similarly, release dates were randomly drawn 
from a uniform distribution of the form: ( 1 + S) M U( 0, RG). Three values of the 
range parameter were used to generate problems: RG = 0.0, 0.1, and 0.2. Due to 
the moderate size of the scheduling problems considered here, larger values of RG 
quickly tend to produce less resource contention. This is also in part due to the 
fact that, to keep from generating infeasible problems, we increase the value of the 

slack parameter, S, as RG becomes larger, as detailed below. 
l Bottleneck parameter (BK): in half of the problems, there was only one major 

bottleneck (BK = l), while in the other half there were two major bottlenecks 
(BK = 2). 



30 N. Sudeh. M.S. I;ox/Artijiciul Intelligence X6 (1996) l-41 

l Slack parameter (S): for problems with two bottlenecks or jobs with different 
release dates and due dates, the time span of each problem was inflated to ( 1 +S) M 
so that most problems remained feasible. The slack parameter was empirically set 

to S = 0.1 x (BK - 1) + RG. While ensuring that most problems remained feasible, 
this provided for close to 100% utilization of bottleneck resources over the major 

part of each problem. 
Finally, operation durations were randomly drawn from two different distributions, 

depending on whether an operation required a bottleneck resource or not. Bottleneck 
operations had durations randomly drawn from a uniform distribution II( 8, 16) whereas 

non-bottleneck operations had their durations randomly drawn from a uniform distribu- 

tion U(3, 11). On average, operations in these problems had slightly over 100 possible 
start times (i.e. values) left after application of the consistency enforcing procedure in 
the initial search state. 

8.2. Comparison with other heuristics 

Five combinations of variable and value ordering heuristics were compared: 
l DSR& ABT: the dynamic search rearrangement heuristic [3] combined with the 

advised backtracking value ordering heuristic [9]. The version of ABT used in 

these experiments was one based on the same predetermined tree-like relaxation as 
FSS, namely it used the process routing to which the current operation belonged. 
This version of ABT was carefully implemented to run in O(vtk) steps in each 
search state (where ~1 is the number of operations in the tree-like relaxation and 
k the maximum number of remaining start times of an operation after consistency 
checking). This was done using a procedure similar to the one implemented in FSS. 
Notice that an implementation of ABT using MST relaxations would have been too 

slow to be competitive. It would have required computing constraint satisfiabilities 
and identifying an MST relaxation in each search state. Additionally, the time 
required to count the number of solutions to a general MST relaxation would have 

been 0( vtk*). 

l DSR& FSS: the DSR heuristic combined with the filtered survivable schedules 
(FSS) value ordering heuristic (with @J = 2.5). 

l ORR& ABT the operation resource reliance (ORR) variable ordering heuristic 
together with the ABT value ordering heuristic. 

l ORRd FSS: the ORR and FSS heuristics (with Cp = 2.5) advocated in this paper. 
l SMU: the variable and value ordering heuristics developed by Keng and Yun at the 

Southern Methodist University [ 201. 
All combinations of variable and value ordering heuristics were run in a modular 

testbed in which all common functions were shared (e.g. consistency enforcing module, 
backtracking module, etc.), and unnecessary functions were bypassed whenever possible 
(e.g. bypassing the construction of demand profiles in DSR&ABT). All functions were 
implemented with equal care. 

On each problem, search was stopped if it required more than 500 search states. 
The performance of each combination of variable and value ordering heuristics was 
compared along three dimensions: 



(1) 

(2) 

(3) 

The 

N. Sadeh, M.S. Fox/Artificial Intelligence 86 (1996) I-41 31 

Search eficiency: the ratio of the number of operations to be scheduled over the 
total number of search states that were explored. In the absence of backtracking, 

only one search state is generated for each operation, and hence search efficiency 

is equal to 1. While a high search efficiency is not necessarily synonymous with 
a fast procedure, evaluation of heuristics with respect to search efficiency is 

important. It tells us if a heuristic is doing a good job at focusing search on 
critical variables and promising values for these variables. In particular, we want 

to make sure that the probabilistic framework introduced in Section 6 is doing a 
good job at capturing key constraint interactions that are not well accounted for 

in generic CSP heuristics. This metric can tell us if this is indeed the case. 
Number of experiments solved in less than 500 search states each. When a combi- 
nation of variable and value ordering heuristics cannot solve a given experiment 
in less than 500 search states, it typically needs thousands of search states to 
reach a solution. At that point, it does not make sense to let the procedure 
continue, as it will not return a solution within any reasonable amount of time. 

Average CPU time (in seconds): this is the average CPU time required to 

successfully schedule a problem. When a solution cannot be found in less than 
500 search states, this time is approximated as the CPU time required to explore 
500 search states. All CPU times were obtained on a DECstation 5000/200 

running Knowledge Craft on top of Allegro Common Lisp. Experimentation 
with a more recent version of our system written in C++ indicates that the 

procedure runs about 30 times faster in this language (on the same platform). 
results are summarized in Table 1. They indicate that DSR is generally not 

sufficient to solve realistic job shop scheduling problems. Combined with ART, this 
heuristic was only able to solve 29 problems out of 60 in less than 500 search states 

each. Even when combined with the FSS value ordering heuristic, DSR only achieved 
a search efficiency of 58%, and failed to solve 27 problems out of 60 in less than 

500 search states. These results not only suggest that job shop scheduling requires a 
dynamic variable ordering heuristic. ” They also indicate that the variable ordering 
heuristics proposed so far in the CSP literature are often too shallow for problems such 
as job shop scheduling. After replacing DSR with ORR in combination with ART, search 

efficiency went up by 16% and 11 additional problems were solved in less than 500 
search states each. The SMU heuristic achieved a higher efficiency of 72% and solved 43 
problems out of 60 in less than 500 states. Even this heuristic had trouble solving many 
problems. In fact, it could hardly solve more problems than ORR&ABT. ORR&FSS, 
the variable and value ordering heuristics advocated in this paper, yielded an impressive 
86% search efficiency, and solved 52 problems out of 60 in less than 500 search states. 
Among the 52 experiments that it was able to solve, ORR&FSS never generated more 
than 78 search states and never took over 150 CPU seconds to solve a problem. This 

heuristic combination also achieved important speedups over all the other heuristics. 

‘I In [ 391, we also reported experiments comparing variations of our ORR heuristic that differed in the 

number of critical operations scheduled at once, namely less dynamic variations of ORR where two or more 

critical operations are selected at once. These experiments show that the performance of the variable ordering 

heuristic quickly degrades as it becomes less dynamic. 



32 N. Sudeh, MS. I;r,.r/Arri’ciul Intelligence 86 (1996) l-41 

Table I 
Comparison of five heuristics over six sets of ten job shop problems; standard deviations appear between 

parentheses 

Performance of fve heuristics 

RG = 0.2 

BK= I 

RG = 0.2 

BK=2 

DSR&ABT DSR&FSS ORR&ABT SMU ORR&FSS 

Search efficiency 0.72 0 R2 0.96 I .oo 0.96 
(0.42) (0.38) (0.06) (0.00) (0.07) 

Nb. exp. solved 8 X IO IO IO 

CPU seconds 524 380 78.5 I88 88.5 
(6955) (51.5) ( 10.5) (14) (13) 

Search efficiency 0.49 0.73 0.54 0.79 0.99 
(0.40) (0.43) (0.39) (0.38) (0.02) 

Nb. exp. solved 7 I 6 8 IO 

CPU seconds 886.5 456.5 566.5 384.5 93 

(819) (489) (591.5) (379.5) (7.5) 

Search efficiency 0.60 0.X2 0.79 0.64 0.78 

(0.44) (0.38) (0.36) (0.46) (0.36) 

RG = 0.1 Nb. solved exp. 7 X 9 6 8 

BK= I CPU seconds 473.5 266 290 464.5 331.5 
(486.5) (249) (416) (390.5) (503.5) 

Search efticiency 0.22 0.46 0.3 I 0.7 I 0.87 

(0.27) (0.46) (0.37) (0.42) (0.29) 

KG = 0.1 Nb. solved exp. 2 4 4 7 9 

BK=’ CPU seconds 925 483 918 355 I84 

(460) (324) (S75) (3Ol.S) (281) 

Search efficiency 0.28 0.32 0.s3 0.46 0.73 

(0.38) (0.38) (0.44) (0.46) (0.43) 

RG = 0.0 Nb. solved cxp. 3 3 6 4 7 

BK= I CPU seconds 857 659 X32 626 47s 

(411) (379) (817) (399.5) (640.5) 

Search efficiency 0.3 I 0.37 0.46 0.7s 0.82 

(0.33) (0.43) (0.40) (0.41) (0.38) 

RG = 0.0 Nb. solved exp. 3 3 5 8 8 

BK=2 CPU seconds 679.5 615 907 383.5 300.5 
(514) (420) (830) (415) (444) 

Search efficiency 0.44 0.58 0.60 0.72 0.86 

(0.41) (0.45) (0.41) (0.41) (0.31) 

Overall Nb. solved exp. 29 33 40 43 52 

performance CPU seconds 724.5 476.5 598,s 400 245.5 

(585.5) (411.5) (665.5) (356.5) (403.5) 

8.3. Recent developments and additional results 

The benchmark problems used in this study have been made available to the research 
community at large through an anonymous ftp account at CMU and have been widely 
disseminated, providing for the first time a common set of problems in this area. A high 
point in the history of the benchmark was reached at the AAAI Spring Symposium held 



N. Sadeh, MS. Fox/Artificial Intelligence 86 (1996) I-4I 33 

200 c 

II ::::< 
50 100 200 300 400 

-)- Without Rough Demand PrOfibS -I- With Rough Demand Profiles 

Fig. 15. Scale-up experiments: versions with and without rough demand profiles. Problem sizes are the number 

of operations to be scheduled. CPU times are. on a DECstation 5000/200 running C++. 

at Stanford in March 1992, when three groups of researchers simultaneously announced 
they were able to efficiently solve all 60 problems, using three different approaches: 

(1) 

(2) 

(3) 

A bottleneck partitioning approach developed by Muscettola within the context of 
his HSTS system, in which precedence constraints are imposed between subsets 

of operations contending for the same resource [27]. Resource contention is 
approximated via Monte Carlo simulation. If the procedure fails to find a feasible 
solution, it restarts from scratch, relying on the stochasticity of its Monte Carlo 

simulation to produce a different solution. 
A trial-and-error approach developed by Johnston et al. within the context of the 
SPIRE system. This approach relies on a collection of initialization heuristics 

[ 191. The schedule produced by the initialization heuristics often violates one 
or more constraints. When this is the case, it is passed on to a ‘mm-conflict” 
heuristic that attempts to get rid of conflicts within the solution (or “repair” 
the solution) [ 251. If “min-conflict” fails to produce a feasible schedule within 
a prespecified number of repair cycles, a new schedule is generated by the 

initialization heuristics and, if necessary, passed on to “min-conflict” for repair. 
The specific initialization techniques used in SPIRE have never been published. 
[27] has reported that “min-conflict” by itself can only solve about 24 out of 
our 60 benchmark problems. This suggests that the ability of this approach to 
solve all 60 problems should mainly be attributed to its initialization heuristics. 

A procedure we developed that combines our ORR&FSS heuristics with intelli- 

gent backtracking mechanisms described in [ 45,461. 
More recently, we reimplemented our heuristics in C++. Most of the problems can be 

solved in 3 to 4 CPU seconds on a DECstation 5000/200. We were also able to further 
speed up the computation of demand profiles, using simpler “rough” demand profiles to 
identify areas of high contention over which the more detailed demand profiles described 
in Section 6 are then constructed. The rough demand profiles are obtained by evenly 

spreading the demand of each unscheduled operation between its earliest start time and 
its latest finish time. Rough demand profiles can easily be updated from one search state 
to the next and can significantly reduce computation time by focusing the construction 
of more detailed demand profiles over those areas of highest contention. Using these 



34 N. Sudeh. MS. Fox/Art@cicll Intelligence 86 (1996) I-41 

rough demand profiles, the CPU time required to solve our 60 benchmark problems 
fell between 1.5 and 2.5 CPU seconds on a DECstation5000/200, showing that these 

heuristics remain quite competitive in comparison with more recent techniques proposed 
for the job shop CSP [ 22,33,47]. The speedups obtained using rough demand profiles 
also become more significant on larger problems, as illustrated in Fig. 15. Problems with 

up to several thousand operations have been solved by the procedure with consistently 
low backtracking. 

9. Summary and concluding remarks 

In this paper, we studied a variation of the job shop scheduling problem in which 
operations have to be performed within one or several non-relaxable time windows. We 
refer to this problem as the job shop CSP. Examples of this formulation of the job 

shop scheduling problem can be found in the factory scheduling domain when some 

operations have to be performed within one or several shifts. Other examples include 
spacecraft mission scheduling problems where activities need to be scheduled within 
time windows imposed by various astronomical events (e.g. [27]). This formulation 
is also representative of a number of rescheduling situations where one needs to revise 

a schedule subject to hard constraints imposed by other operations whose schedule we 
cannot or would rather not modify. More generally, the job shop CSP formulation can be 
used to model any scheduling problem with hard deadlines. The job shop CSP cannot be 
solved with traditional scheduling techniques such as priority dispatch rules or similar 
one-pass scheduling techniques [ 12,26,39]. ‘* Traditional mixed integer programming 
techniques have so far been overwhelmed by the combinatorial number of binary vari- 

ables required to account for the limited resource capacities in this type of problems 
[ 321. Our work, which, along with that of Keng and Yun [20], was the first one to 

apply the CSP problem solving paradigm to this class of problems, demonstrates that 
this paradigm provides a promising alternative to traditional scheduling approaches. Our 
approach relies on a depth-first backtrack search procedure that combines consistency 

enforcing mechanisms with a probabilistic look-ahead analysis to decide which operation 
to schedule next (variable ordering) and which reservation to assign to each operation 
(reservation ordering). 

In the first part of the paper, we reviewed a number of popular variable and value 
ordering heuristics proposed in the CSP literature, both generic heuristics that had 
been reported to perform particularly well on other CSPs as well as Keng and Yun’s 
scheduling heuristics [20]. We showed that these heuristics often fail to adequately 
account for the tightness of constraints and/or for the interactions induced by the high 
connectivity of the constraint graphs characteristic of job shop CSPs. In the second part 

of this article, we introduced a new probabilistic model of the search space that allows 
us to estimate the reliance of a variable (i.e. an operation) on the availability of a value 
(i.e. a reservation), and the degree of contention among uninstantiated variables for the 
assignment of conflicting values (i.e. contention among unscheduled operations for the 

‘* See [ 41 for experiments applying priority dispatch rules to our set of 60 benchmark problems. 



N. Sadeh, MS. Fox/Art$cial Intelligence 86 (1996) l-41 35 

allocation of a resource over some time interval). Based on this probabilistic model, 
new variable and value ordering heuristics were defined: 

( 1) The “operation resource reliance” (ORR) variable ordering heuristic selects the 
operation that relies most on the most contended resource/time interval, and 

(2) the “filtered survivable schedules” (FSS) value ordering heuristic assigns to that 
operation the reservation expected to be compatible with the largest number of 
survivable job schedules, i.e. job schedules that are expected to survive resource 
contention. 

Experimental results show that this pair of heuristics can .@cientfy solve a number 

of job shop CSPs that could not be efficiently solved by prior CSP heuristics (both 

generic CSP heuristics and specialized heuristics developed by Keng and Yun). The 
results indicate that the ORR and FSS heuristics not only yield significant increases in 
search efficiency but also achieve important reductions in search time. 

The estimates of resource contention used in the ORR and FSS heuristics are based 
on several independence assumptions. More sophisticated versions of these heuristics 
have also been implemented, which attempt to better account for different dependen- 

cies, some using more complex analytical models [ 41,42,44] others relying on Monte 
Carlo simulations [ 431. The improvements in search efficiency generally achieved by 

these more sophisticated versions do not seem to justify their heavier computational 

requirements. 
While our ORR and FSS heuristics were developed for the job shop CSP, the prob- 

abilistic measures of reliance and contention that were described can be used in any 
resource allocation problem, and, in fact, any CSP with disequality constraints (i.e. 
constraints preventing two variables from being assigned the same value), since these 

problems can be formulated as resource allocation problems. For instance, the N-queens 
problem often used to evaluate CSP techniques can be formulated as a resource alloca- 
tion problem in which each queen/row is a task and each column is a resource. l3 

In fact, the lessons learned from this work go beyond job shop scheduling and CSPs 
with disequality constraints. Fundamental weaknesses of generic variable and value 

ordering heuristics often praised in the CSP literature have been identified. Variable 
ordering heuristics like DSR count the number of values left to each variable but do 
not account for the chances that these values remain available as a solution is con- 
structed. Variable ordering heuristics like MW or MC count the number of constraints 
incident to a variable but do not account for the tightness of these constraints. Value 
ordering heuristics like ABT assume that the CSP admits a tight tree-like relaxation. 
The probabilistic model of the search space introduced in this paper aims at provid- 
ing a framework in which more sophisticated approximations of variable criticality and 

value goodness can be defined. For instance, within this framework, our ORR and 
FSS heuristics can base their decisions on measures of resource contention that ac- 
count for entire cliques of capacity constraints rather than tree-like relaxations of these 

cliques. 

!3 Constraints representing the ability of queens to attack each other along diagonals can be represented as 

constraints further restricting admissible resource assignments [ 201. 



36 N. Sudeh, MS. Fox/Artij?ciul Intelligence X6 (1996) l-41 

Finally, while our work shows that the CSP problem solving paradigm does scale up 
to complex large-scale domains such as the job shop scheduling CSP, it also suggests 

that benchmark problems considered in earlier CSP studies are not representative of this 
and probably other classes of complex CSPs. We hope that this research will prompt 
others in the field to revisit earlier studies and look for more challenging problems on 

which to evaluate their techniques. 

Appendix A. Counting the number of survivable schedules 

This appendix describes a dynamic programming procedure that efficiently counts 
the number of survivable job schedules (or more generally the number of survivable 

solutions to the relaxation defined in Section 6.4 for the FSS value ordering heuris- 

tic) that are compatible with the assignment of a reservation p to the current critical 
operation Of. This number was referred to as compsunt(( t), where t is the start time 

allocated to 0: in reservation p. The procedure presented here is a variation of a 
similar method developed by Dechter and Pearl for the ABT value ordering heuristic 
[9] (see also [ 361). While a direct generalization of Dechter and Pearl’s procedure 
would have an 0( vlk2) complexity (where V[ is the number of operations in the re- 
laxation used by the FSS value ordering heuristic, and k the maximum number of 

possible reservations of an operation in that relaxation), the procedure described here 
takes advantage of the linearity of precedence constraints to reduce this complexity 

to O(v/k). 
Fig. A.1 represents a prototypical tree-like process routing, which has been reorga- 

nized with the current critical operation as the root of the tree. The arrows represent 

precedence constraints between operations in the process routing. The children of the 
critical operation 0: in the tree are those operations that are directly connected to 0: 

by a precedence constraint, the grandchildren the operations directly connected to these 
operations by precedence constraints, etc. 

Fig. A. 1. A tree-like process routing, organized with the current critical operation as its root. Arrows represent 

precedence constraints. 



N. Sadeh. MS. Fox/Artificial Intelligence 86 (1996) l-41 31 

All the computations presented in this appendix refer to a single search state, in 
which consistency checking has already been performed. The notations are those used 
in Section 6.4. A few extra notations need to be defined: 

. suw:,(r) = C&o 
with s$ = t. 

sur$(p), where G is the set of remaining reservations of Of, 

l CY~: the direct children of 0; that are after Of in the process routing. 

l ~3:: the direct children of 0; that are before 0; in the process routing. 
l A: the time granularity of the problem. In Section 6.4, it was assumed that A = 1 

(i.e. that all start times and end times have to be integers). For the sake of clarity, 

the formulas presented in this appendix account explicitly for A. 

In tree-like process routings, each operation 0: is the unique link between otherwise 
disjoint sets of operations, that each correspond to one of its children. Each of these sets 
contains exactly one child of operation 0: and defines a subproblem that only interacts 

with the other subproblems via operation 0;. Accordingly: 

l For each Of E &,, we define BEFL j( t) as the number of survivable solutions to 

the subproblem defined by operation 0,: and its descendants that are compatible 

with the assignment of s$ = t to 0:. 

l For each 0: E af , we define AFTf k(t) as the number of survivable solutions to 

the subproblem defined by operation 0: and its descendants that are compatible 

with the assignment of s$ = t to Of. 

Given that operation Of is the only link between the subproblems defined by each 

one of its children, we have: 

compsurvi(t) = n BEF~,j(t) X n AFT:,,(t). 

.i@f kEaj 

Notice that this formula also relies on an independence assumption made in Section 6.4: 
the probability that a solution to the relaxation survives contention is assumed to be 
given by the product of the probabilities that each one of the reservation assignments in 
that solution survives contention. 

BEFi,j(t) is obtained by adding all the subproblem solutions compatible with the 

precedence constraint st$ + dufi < t: 

BEF;,j(t) = c ~wv,:.(~) x n BEF~,,JT) x ~AFT;,JT) . 

rQt-du; PEP; e; 1 
Similarly for AFTi,,( t), we have: 

AFT;,,(t) = c w-v:(~) x 

T>t+duj 

We can speed up the computation of 

a: lIEa: J 

this recurrence using partial sums: 



38 N. Sadeh. M.S. Fox/Artijicial Intelligence 86 (1996) I-41 

BEF,!,i(t)=BEFf,,i(t- A) 

+ survi(t -- dui) x n BEFjJt ~ du;) x n AFT;,,(t - du;) , 

Ia: ytn; I 

AFT;,,(t) =AFT;,,( t + A) 

+ 

i 

survi.(t+duj) x n BEFi,,,(t+duf) x ~AFT~,U(t+du~) 

W$ ,&I; I 

The recurrence is initialized with: 

BEF:,,, (es4 - A) = 0, 

AFT:,,Jls$ + A) = 0 

and uses the convention: 

I-I = 1. 

0 

In order to compute compsuw~( t) for all remaining start times of the critical operation 

Oi, the system starts by computing all BEF:,,, (t) or all AFT:,,,(t) at the leaf operations 
in the tree depicted in Fig. A. 1. The procedure then moves up in the tree by combining 

at each level the BEFi,,)(t) and AFT,;,,,(t) computed at the previous level. At each 

operation O:, in the tree, the procedure computes at most A BEF:,,, (t) expressions if 0; 

is before O,$, its parent operation, or h AFT:,,(t) expressions, if 01, is after 0;. (where A 
is the maximum number of possible start times of an operation). Each such computation 
involves two multiplications and one addition. Hence, if ~1 is the number of operations in 

the relaxation used by the FSS value ordering heuristic, computing all compsurvf (t) can 
be done in 0( v/A) elementary computations. Computing survL( t) = xpEG surv~,(p) 
for all the possible start times of all the operations in the relaxation requires however 
0( v/k) steps where k is the maximum number of reservations left to an operation. i4 
Hence the overall complexity of the procedure is also 0( zqk). 

Appendix B. Value ordering filter 

The following describes a filtering mechanism used to refine the ranking of reserva- 
tions in our FSS value ordering heuristic. 

I4 The real complexity is actually O( vlkdu), where du 1s the duration of the longest operation in the relaxation. 

This duration is assumed to be bounded by a constant. 



N. Sadeh, MS. Fox/Artijcial Intelligence 86 (1996) 1-41 39 

For some reservations p, compsurvf ( p) can become very large and have too much 
influence in (6) compared to survf(p). Consider the following two reservations p1 and 

f32: 

. pl: compsurv~(p~) = 1000 and suwf(p,) =0.5. 
l p2: compsurvf(p2) = 200 and survf(p2) = 1.0. 

Ideally, a good value ordering heuristic should recognize that reservation p2 is better 
than reservation pr, despite the fact that, according to Rq. (6) goodi( pi) = 500 is 
larger than goodf((p2) = 200. Indeed, in this example, it does not really matter whether 
compsurvf (p) equals 200 or 1000: in either case there will certainly be enough com- 

patible schedules. Instead, the factor that really matters here is the survivability of the 
reservation itself (i.e. locally). In the experiments reported at the end of this paper, this 

problem was handled by filtering the number of survivable solutions compatible with a 
reservation p, compsurvf (p) . Instead of relying on Eq. (6), our value ordering heuristic 
measures reservation goodness according to the following revised formula: 

goodf ( p> = Sunti ( p) X MZN( P-l, compsurvi ( p) ) , (B-1) 

where MN denotes the minimum function and @ is a parameter of the system that is 

empirically adjusted. By using a filter of the form Wr-‘, the heuristic attempts to ensure 
that, on the average, each one of the zq - 1 other operations in the relaxation has CD 
survivable reservations. I5 

References 

[II 
[21 
[31 

[41 

[51 

I61 

171 

[81 

[91 

1101 

[Ill 

J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (1983) 832-843. 
K.R. Baker, Inrroducfion to Sequencing and Scheduling (Wiley, New York, 1974). 
J.R. Bitner and E.M. Reingold, Backtrack programming techniques, Commun. ACM 18 ( 1975) 651-655. 
C-C. Cheng, Scheduling by precedence constraints posting, Ph.D. Thesis, Graduate School of Industrial 
Administration and the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA ( 1995), 
E. Davis, Constraint propagation with interval labels, Artif: Intell. 32 (1987) 281-331. 
R. Dechter and I. Meiri, Experimental evaluation of preprocessing techniques in constraint satisfaction 
problems, in: Proceedings IJCAI-89, Detroit, MI ( 1989) 271-277. 
R. Dcchter and I. Meiri, Experimental evaluation of preprocessing algorithms for constraint satisfaction 
problems, Art$ Intell. 68 (1994) 21 l-241. 
R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks, in: Proceedings First ln?ernational 

Conference on Principles of Knowledge Representation and Reasoning, Toronto, Ont. ( 1989). 
R. Dcchter and J. Pearl, Network-based heuristics for constraint satisfaction problems, Artif: Intell. 34 

(1988) 1-38. 
M.S. Fox, Constraint-Directed Search: A Case Study of Job-Shop Schedufing (Morgan Kaufmann, Los 
Altos, CA, 1987). 
MS, Fox, N. Sadeh and C. Baykan, Constrained heuristic search, in: Proceedings IJCAI-89, Detroit, MI 
(1989) 309-315. 

l5 A more sophisticated way of filtering compsu~(p) would involve filtering the number of compatible 
reservations of each operation in the relaxation. This would ensure that each one of the operations in the 
relaxation has enough compatible reservations. In general, because the critical operation is also the one in 
the relaxation whose reservations are the least survivable, a single filter for all the other operations in the 
relaxation seems sufficient. 



40 N. Sudeh, M.S. Fox/Art#ficicrl Intelligence 86 (1996) I-41 

[ I2 I S. French, SequtvwinX ccnd Scheduling: An Introdu&m to the Mufhemutics of the Job-Shop (Wiley, 

New York, 1982). 

[ 13 1 E.C. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 ( 1982) 24.-32. 

1 14 1 M.R. Garey and D.S. Johnson, Computers trnd Intruc~tubilitv: A Guide to the Theory c~~NP-Conlpleteness 

(Freeman, San Francisco, CA. 1979). 

I 151 M.L. Ginsberg, M. Frank, M.P. Halpin and M.C. Torrance, Search lessons learned from crossword 

puzzle, in: Proreedings of thr Eighth Nationtrl Conjerewu on Artijicial Infelligence ( 1990) 210-215. 

( I6 I SW. Golomb and L.D. Baumert. Backtrack programming, J. ACM 12 ( 1965) S16-S24. 

1 171 R.M. Haralick and G.L. Elliott, Increasing tree search efficiency for constraint satisfaction problems, 

Artif Intell. 14 (1980) 263-313. 

[ I8 1 L.A. Johnson and D.C. Montgomery. 0l~nifion.s Ke.\eorclt in Production Plowing, Scheduling, cmd 

Imvntory Confrol (Wiley, New York, 1974). 

I I9 I M.D. Johnston and S. Minton, Analyzing a heuristic strategy for constraint satisfaction and scheduling, 

in: M. Fox and M. Zweben. eds.. Intelligent Schedulirl,q (Morgan Kaufmann, Los Altos, CA, 1994) 

257-289, Chapter 9. 

120 1 N. Keng and D.Y.Y. Yun, A planning/scheduling methodology for the constrained resource problem, in: 

Proceedings IJCAI-89. Detroit. MI ( 1989) 998-1003. 

/ 2 I 1 C. Le Pape and S.F. Smith, Management of temporal constraints for factory scheduling, Tech. Kept., The 

Robotics Institute. Carnegie Mellon University, Pittsburgh. PA ( 1987): also in: Proceedings Working 

C‘orrferencr on Tmrporcd Aspects 111 fnformution .Systcms, Paris (North-Holland, Amsterdam, 1987). 

122 I J. Liu and K. Sycara, Collective problem solving through coordination in a society of reactive agents, 

Tech. Rept. CMU-RI-TR-94-23, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 

(1994). 

I23 I A.K. Mackworth and E.C. Freuder. The complexIt) 01. some polynomial network consistency algorithms 

for constraint satisfaction problems. Art$ Intell. 25 ( 198.5) 6.5-74. 

j 24 1 J.J. McGregor, Relational consistency algorithms and their applications in finding subgraph and graph 

isomorphisms. Infi~rrrr. Sci. 19 ( 1979) 229-250. 

12.51 S. Minton, M.D. Johnston, A.B. Philips and P. Laird. Minimizing conflicts: a heuristic repair method 

for constraint satisfaction and scheduling problems. Ar-hf. /tall. 58 ( 1992) 161~205. 

1261 T.E. Morton, and D.W. Pentico, Heuristic, Scheduhng Systems. Wiley Series in Engineering and 

Technology Management (Wiley, New York, 1993). 

I27 1 N. Muscettola, HSTS: integrating planning and scheduling, in: M. Fox and M. Zweben, eds., intelligent 

Scheduliqq (Morgan Kaufmann, Los Altos, CA, 1994) 169-212, Chapter 6. 

j 28 I N. Muscettola and S. Smith, A probabilistic framework for resource-constrained multi-agent planning, 

in: Proceedings AAAI-87, Seattle, WA ( 1987) IO63- 1066. 

I29 I B. Nadel, Tree search and arc consistency in constraint satisfaction algorithms. in: L. Kanal and V. 

Kumar, eds., Seclrcll in Artickl Intelligerlce (Springer, Berlin, l988), 

[ 301 B.A. Nadel, Theory-based search-order selection for constraint satisfaction problems, Tech. Rept. DCS- 

131 

I32 

I33 

I 34 

13s 

TR-I 83, Department of Computer Science. Laboratory for Computer Research, Rutgers University, New 

Brunswick. NJ ( 1986). 

D. Navinchandra, Explorrrtion and Innowtion in L)esi,qIl (Springer, Berlin, 1990). 

G.L. Nemhauser and L.A. Wolsey. Integer und Combinatoritrl Optimization (Wiley, New York, 1988). 

W.P.M. Nuijten, Time and resource constrained scheduling, Ph.D. Thesis. Technische Universiteit 

Eindhoven, Eindhoven ( 1994 1. 
P.S. Ow. Focused scheduling in proportionate Howshops. Muncher. Sci. 31 ( 1985) 852-869. 

J. Pearl, Heuristics: Intelligent Secwh Srrcuqies ,/i)r- Computer Problem Solving (Addison-Wesley, 

Reading, MA, 1984). 

I 36 I J. Pearl, Probtrbilistk Recuorzing 111 Irztek,~rnt .Swcm.~: Networks of Pkusible frrference ( Morgan 

Kaufmann, Los Altos, CA, 1988). 

I37 I F!W. Purdom Jr, Search rearrangement backtracking and polynomial average time, Artif: fnrell. 21 ( 1983) 

117-133. 

I38 I N. Sadeh, Look-ahead techniques for activity-based job-shop scheduling, Thesis Proposal ( 1989). 

I39 1 N. Sadeh, Look-ahead techniques for micro-opportunistic job shop scheduling, Ph.D. Thesis, School of 

Computer Science, Carnegie Mellon University, Pittsburgh, PA ( 199 I ). 



N. Sadeh, M.S. Fox/Artijcial Intelligence 86 (1996) 1-41 41 

(401 N. Sadeh, Micro-opportunistic scheduling: the MICRO-BOSS factory scheduler, in: M.S. Fox and M. 

Zweben, eds., Intelligent Scheduling (Morgan Kaufmann, Los Altos, CA, 1994) 99-135, Chapter 4. 

]41] N. Sadeh and M.S. Fox, Preference propagation in temporal/capacity constraint graphs, Tech. Rept. 

CMU-CS-88-193, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA ( 1988); 

also: Robotics Institute Tech. Rept. CMU-RI-TR-89-2. 

[42] N. Sadeh and M.S. Fox, Focus of attention in an activity-based scheduler, in: Proceedings NASA 
Conference on Space Telerobotics (1989). 

[43] N. Sadeh and M.S. Fox, CORTES: an exploration into micro-opportunistic job-shop scheduling, in: 

Proceedings IJCAI-89, Detroit, MI ( 1989). 

(44 ] N. Sadeh, and M.S. Fox, Variable and value ordering heuristics for activity-based job-shop scheduling, 

in: Proceedings Fourth International Conference on Expert Systems in Production and Operations 
Management, Hilton Head Island, SC ( 1990) 134-144. 

[45] N. Sadeh, K. Sycara and Y. Xiong, Backtracking techniques for hard scheduling problems, Tech. Rept. 

CMU-RI-TR-92-06, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA ( 1992); also: 

Artif Infell. 76 (1995) 455-480 (improved version). 

[46] N. Sadeh, K. Sycara and Y. Xiong, Backtracking techniques for the job shop scheduling constraint 

satisfaction problem, Artif: Intell. 76 (1995) 455-480; also: CMU Tech. Rept. CMU-RI-TR-94-31; an 

earlier version of this paper also appeared as CMU Tech. Rept. CMU-RI-TR-92-06. 

[47] SF, Smith and C. Cheng, Slack-based heuristics for constraint satisfaction scheduling, in: Proceedings 
AAAI-93, Washington, DC (1993). 

[ 481 R.E. Tarjan, Minimum spanning trees, in: Data Structures and Network Algorithms, CBMS-NSF Regional 

Conference Series in Applied Mathematics 44 (SIAM, Philadelphia, PA, 1983) Chapter 6. 

[ 491 P Van Hentenryck, H. Simonis and M. Dincbas, Constraint satisfaction using constraint logic 

programming, Artif Intell. 58 ( 1992) 113-159. 
[SO] R.J. Walker, An enumerative technique for a class of combinatorial problems, in: R. Bellman and 

M. Hall, eds., Combinatorial Analysis, Proceedings Symposium on Applied Mathematics (American 

Mathematical Society, Providence, RI, 1960) 91-94, Chapter 7. 
[ 511 R. Zabih and D. McAllester, A rearrangement search strategy for determining propositional satisfiability, 

in: Proceedings AAAI-88, St. Paul, MN (1988) 155-160. 

[ 521 M. Zweben, B. Daun, E. Davis and M. Deale, Scheduling and rescheduling with iterative repair, in: MS. 

Fox and M. Zweben, eds., bzrelligent Scheduling (Morgan Kaufmann, Los Altos, CA, 1994) 241-255, 

Chapter 8. 


