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Abstract

We propose a model of problem solving that provides both structure and focus to search.  The model
achieves this by combining constraint satisfaction with heuristic search.  We introduce the concepts
of topology and texture to characterize problem structure and areas to focus attention respectively.
The resulting model reduces search complexity and provides a more principled explanation of the
nature and power of heuristics in problem solving.
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1. Introduction
We propose a model of problem solving that provides both structure and focus to search in the

problem space.  The model achieves this by combining the process of constraint satisfaction (CSP)
with heuristic search (HS).  The resulting model both reduces search complexity and provides a
explanation of the nature and power of heuristics in problem solving.

Our problem solving model, called Constrained Heuristic Search (CHS), retains heuristic search’s
synthetic capabilities and extends it by adding the structural characteristics of constraint
satisfaction techniques.  In particular, our model adds to the definition of a problem space, composed
of states, operators and an evaluation function, by refining a state to include:

1. Problem Topology: Provides a structural characterization of a problem.

2. Problem Textures: Provide measures of a problem topology that allows search to be
focused in a way that reduces backtracking.

3. Problem Objective: Defines a means for rating alternative solutions.
This model allows us to (1) view problem solving as constraint satisfaction, thus taking advantage of
these techniques, (2), incorporate the synthetic capabilities of heuristic search, thus allowing the
dynamic modification of the constraint model, and (3) extend constraint satisfaction to the larger
class of optimization problems.  In the following, we define the scheduling problem to be used as an
example throughout the paper, followed by a definition of problem topology, textures, objectives and
the CHS search process.

2. Factory Scheduling Example
1 Factory scheduling involves the assignment of start times and resources to a set of activities.

Each activity belongs to an order (i.e. job).  Activities within the same order are subject to precedence
constraints as specified by a process plan. Additionally no two activities are allowed to use the same
resource at the same time (we assume resources of unary capacity). Each order has a release date
and a latest acceptable completion date (which may be later than the due date), that can be used to
determine an earliest start time and a latest start time for each activity in the order. Additionally
each activity may require one or several resources, for each of which there may be several
alternatives. For each activity, utility functions map each possible start time and each possible
resource alternative onto a utility value (preference). The sum of these utilities over all the activities
to be scheduled defines an objective function to be maximized.  These utilities [Fox 87, Sadeh & Fox
88] arise from organizational goals such as reducing order tardiness, reducing order flowtime, using
accurate machines, performing some activities during a specific shift, etc.

3. Problem Topology
It is our conjecture that an understanding of the structure of a problem will lead to more effective

problem solving methods.  Therefore, our goal is to formalize the concept of problem structure.

In an attempt to distinguish the problems to which AI was being applied, from problems which
conventional algorithms were being applied, the notion of "well-structuredness" arose.  Simon

1Excerpted from [Fox et al. 89].
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defines a well-structured problem as follows [Simon 73]:
1. There is a definite criterion for testing any proposed solution, and a mechanizable

process for applying the criterion.

2. There is at least one problem space in which can be represented the initial problem
state, the goal state, and all other states that may be reached, or considered, in the
course of attempting a solution to the problem.

3. Attainable state changes (legal moves) can be represented in a problem space, as
transitions from given states to the states directly attainable from them.  But
considerable moves, whether legal or not, can also be represented -- that is, all
transitions from one considerable state to another.

4. Any knowledge that the problem solver can acquire about the problem can be
represented in one or more problem spaces.

5. If the actual problem involves acting upon the external world, then the definition of
state changes and of the effects upon the state of applying any operator reflect with
complete accuracy in one or more problem spaces the laws (laws of nature) that govern
the external world.

6. All of these conditions hold in the strong sense that the basic processes postulated
require only practicable amounts of computation, and the

7. information postulated is effectively available to the processes -- i.e., available with the
help of only practicable amounts of search.

Most of the requirements focus on the feasibility of operationalizing, in a computational sense, the
means for solving the problem, using the problem space model.  But the sixth requirement focuses on
the "strength" of the method.  Newell defines a "weak" method as one that makes weak information
demands and gives weak results, such as generate and test and hill climbing [Newell 73].  Using the
big switch approach to problem solving where alternative methods exists for solving a class of
problems, weak methods are the methods of last resort - that is, when other "stronger" methods fail
we can use weak methods. Simon’s sixth requirement reiterates the essence of Newell’s definition of
an ill-structured problem [Newell 69]: A problem is ill structured if there only exists weak methods
to solve it; problem solving performance is the key concern.

Other definitions of a problem’s structure have been proposed.  Eastman defines a problem as
being ill-structured if problem formulation proceeds concurrently with its solution, as typically found
in design problems [Eastman 69].  Reitman defines a problem as being ill-structured when both the
problem and goals are well defined by the method of solving it are not [Reitman 65]. None of these
definitions provide insight into how to solve a problem more effectively.

During the last fifteen years, research in AI has begun to exploit various structural characteristics
of problems.  The success of expert systems relies upon the recognition and exploitation of recurring
patterns in a problem [Waterman & Hayes-Roth 78].  More recently, the SOAR model [Laird et al.
87] and its interpretation in the RIME methodology [van de brug et al. 86] provides a structure for
rules themselves, dividing them into rules for proposing, prioritizing, selecting and implementing
operators.

Within the heuristic search model, a variety of techniques for structuring problems have been
investigated. ABSTRIPS [Sacerdoti 74] demonstrated how hierarchical reformulation of the problem
via the ranking and omission of variables reduces search complexity.  Hearsay-II utilized data
aggregation to reduce search complexity in a domain with high data uncertainty [Erman et al. 80].
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MOLGEN utilized operator aggregation to restrict the set of operators used to construct detailed
plans [Stefik 81]. ISIS demonstrated how hierarchical reformulation via omission of constraints
reduces search complexity [Fox 87].  In each case, the systems provide an example of how the
structuring of a problem can occur, but they do not provide a theory of structuring. What should be
the basis of a theory of problem structure?

Problem structure has long been an interest in Operations Research.  In particular, mathematical
programming views problem solving as finding a solution to a set of constraints that optimizes an
objective function.  The success of linear programming stems from the recognition that a problem can
be defined by a set of linear constraints that define a subspace in an n-dimensional euclidean space,
and that the optimal solution, as defined by an objective function can be found at one of the vertices
of delineated subspace.  The same is true of nonlinear programming where the convexity of the
solution space implies that hill climbing can be used to find an optimal solution.

We have seen the constraint perspective of problem solving reappear in the last fifteen years,
within AI, in form of Constraint Satisfaction Problems (CSP).  Constraint satisfaction techniques, as
described in [Mackworth 77, Haralick & Elliott 80, Freuder 82, Dechter & Pearl 87], approach
problem solving by constructing a constraint graph where nodes are variables with discrete domains
and arcs are n-ary constraints. Problem solving is performed by sequentially choosing a variable and
a value to assign to it that satisfies all constraints incident upon it.  Backtracking occurs when an
assignment cannot be found.  Research has gone into methods for structuring the network so that
the amount of backtracking can be reduced.  Arc-consistency is one such technique that achieves
local consistency between groups of variables via the elimination of incompatible values [Montanari
74, Mackworth 77, Davis 87].

The generality of the CSP model of problem solving, when extended to include continuous
variables such as time and space, has been demonstrated across problems such as spatial planning
[Baykan & Fox 87], scheduling [Dincbas et al. 88, Elleby et al. 88, Sadeh & Fox 88], diagnosis [Davis
& Hamscher 88] and truth maintenance.

We can now return to the question posed earlier: What should be the basis of a theory of problem
structure? The experience of both OR and CSP provides evidence that many problems can be
adequately modeled by a constraint graph, and that the structure of these graphs can have
significant impact on how to solve a problem.  Therefore we adopt the view that a problem’s
structure is defined by its constraint graph.

We define problem topology as a graph G, composed of variables V and constraints C. Each
variable may be a vector of variables whose domains may be finite/infinite and continuous/discrete.
Constraints are n-ary predicates over variables.  We distinguish between two types of problem
topologies:

Definition 1: A completely structured problem is one in which all non-redundant
vertices and edges are known a priori.

This is true of all CSP formulations.

Definition 2: A partially structured problem is one in which not all non-redundant
vertices and edges are known prior to problem solving.

This definition tends to be true of problems in which synthesis is performed resulting in new
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variables and constraints (e.g. the generation of new subgoals during the planning process).

We view the scheduling problem as an optimization version of the CHS model, where each activity
is an aggregate variable whose values are reservations.  A reservation consists of a start time and a
set of resources to be allocated to the activity.  Each activity constitutes a variable vertex in the
problem topology.  Activity precedence constraints are binary constraints represented by constraint
vertices connected to two activity variable vertices. A capacity constraint vertex is associated to each
physical resource of the domain and connected to all the variable vertices representing activities that
can possibly use the resource. Each capacity constraint ensures that the corresponding resource will
not be allocated to more than one activity at any given time. Accordingly we distinguish between two
types of constraint interactions:

! the intra-order interactions defined by the precedence constraint vertices between
activities belonging to a same order, and

! the inter-order interactions induced by the capacity constraint vertices between activities
contending for a same resource.

Both types of interactions contribute to the contention of each activity.

Features of the problem topology are the types of variables and constraints (and their associated
propagation algorithms).  Davis [Davis 87] mentions two classes of what we view as topological
features, namely the types of values the domain of a variable may contain, such as variables whose
domains are discrete and finite (label and value inference), are intervals, have belief for each
member (relaxation labeling), and are expressions (expression inference). The second class of
features focus on the types of constraints, such as constraints that are unary predicates, order
relations, bounded differences (e.g. x! y " c), linear equations with unit (i.e. -1, 0, 1) coefficients,
linear equalities and inequalities with arbitrary coefficients, boolean combinations of constraints,
algebraic equations, and transcendental equations.  Additionally, domains may or may not have
preferences for values (e.g. preferences for due dates of a job).

Informal notions of problem structure can be formalized by a problem’s topology.  Where and how
to search can be guided by structure.  For example, problem decomposition can be viewed as a
decomposition of a topology into sub-graphs. Means for determining a decomposition may vary
according to a problem’s constraints and objectives [Alexander 65, Alexander 68, Courtois 77].
Situations in which search is efficient, such as backtrack free search in width 1 graphs, can also be
identified [Freuder 82].

Problem situations can be identified by patterns in the topology.  For example, difficult constraint
situations can be identified by "knots" in the topology [Krishnan et al. 90].

Problems can be simplified by topology manipulation.  Problem reformulation, by means of
relaxation or abstraction can be explicitly defined in terms of topology.  Relaxation is a process by
which constraints are relaxed to admit more solutions.  Abstraction can be defined in terms of
variable or constraint aggregation or omission.

Another type of reformulation of the problem topology is the creation of a "contention graph" [Fox
& Sadeh 90]. Consider the factory scheduling problem where many operations are contending for a
small set of machines.  The allocation of these machines over time must be optimized.  This is
equivalent to having a set of variables, with small discrete domains, each competing for the
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assignment of the same value but linked by a disequality constraint. A contention graph replaces
disequality constraints by a node for each value under contention, and links these "value nodes" to
the variables contending for it by a demand constraint.  We can now use these value nodes to
measure the amount of contention for the value by variables.  Contention is an important metric for
variable and value ordering [Fox et al. 89].

What value do we derive from viewing a problem space state as a constraint graph?  First, we
have provided a more refined definition of a problem space state thereby reducing the looseness of its
definition and allowing the definition of general measures of problem structure, i.e., textures.
Second, properties can be proved about the nature of the problem, e.g., width-1 constraint networks
that are arc consistent are backtrack free.  Third, the process of problem reformulation can be
viewed as transformations of problem topological primitives.  A possible negative, is that the number
of problem types that can be represented in the form of a constraint graph is limited.  But this set is
growing larger; in the factory scheduling example, we have shown how the representation can be
extended to handle optimization [Sadeh & Fox 90].  By adding the power of heuristic search, we
believe that we can apply the model to a broader class of problems.

4. Problem Textures
Evaluation functions play a prominent role in search; whether to identify the node to expand next

in best first search, or to recognize an island to extend in opportunistic search.  The problem is that
most evaluation functions are "hand molded" for each problem, thereby limiting their reusability.
The question is whether there are measurements of the problem topology that give rise to powerful
heuristics and are problem invariant?

In CHS, for search to be well focused, there must be measures of the topology that differentiate
one subgraph from another, and these measures must be related to the goals of the problem.  We
have identified and are experimenting with six such measures that we call problem textures [Sadeh
& Fox 88, Fox et al. 89]:

! Value Contention: Degree to which variables are contending for the same value.

In the factory scheduling domain, measuring the amount of contention there exists for
resources is important in identifying bottlenecks.  It is the activities associated with the
bottleneck resource that are assigned first [Fox & Sadeh 90].

! Value Conflict: Degree to which a variable’s assigned value is in conflict with existing
constraints.

In repairing schedules, focusing on activities that participate in the greatest number of
conflicts reduces search [Minton et al. 90].

! Value Reliance: Degree to which a variable relies upon the availability of a particular
value.

Once contention is used to identify a resource and the activities contending for it,
selecting an activity depends upon the degree to which the activity relies upon having
the resource.

! Value Goodness: Probability that the value leads to the best solution.

Once a resource is selected for an activity, deciding when the resource should be
assigned for use depends upon how disruptive the assignment would be to subsequent
assignments [Sadeh & Fox 90].
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! Constraint Tightness: Degree to which a constraint reduces the number of solutions.

If the scheduling problem is large and too complex to solve directly, then solving a
simpler version may provide guidance in solving the original.  Reformulating the
problem can be accomplished by omitting "loose" constraints.

! Variable Tightness: Degree to which a solution to the problem is constrained by a
particular variable.

Variable tightness can be used to decide which variables to aggregate in a reformulation.

These textures generalize the notion of constraint satisfiability or looseness defined by [Nadel
86] and apply to both CHSs (and CSPs) with discrete and continuous variables.  There exist many
ways in which to perform these measurements.  Textures may sometimes be evaluated analytically
[Sadeh & Fox 88]. Such techniques may however be very costly.  In general, for a given CHS, some
textures are easier to approximate than others, and some are also more useful than others.  Usually
the texture measures that contain the most information are also the ones that are the most difficult
to evaluate.  Hence there is a tradeoff.  Each domain may have its own approximation for a texture
measure.

5. Problem Objectives
Many problems, such as design and scheduling, require the optimization of one or more objectives

in addition to the satisfaction of a set of constraints.  In linear programming, an objective function is
used to evaluate each vertex visited, and in heuristic search an evaluation function is used to rate
each state.  In either case, objectives tend to be combinations of more primitive statistics.  For
example, in scheduling, the objective is a weighted combination of tardiness and flowtime.  It has
long been understood, that by moving more of the evaluation knowledge into the state generator, a
more effective search can be performed.  An analogous situation exists in CHS.

With CHS, we can view each objective as being a constraint with associated utilities. For
example, a due date in the scheduling domain is a temporal constraint that specifies a set of
acceptable dates for the completion of an activity.  We can extend the representation to include
preferences in the form of utilities for each due date [Fox 87].  This constraint, which is represented
directly in the problem topology, represents a local preference.  When selecting a variable and
assigning a value to it, optimizing any local constraints is straight forward.  But in order to optimize
our decision making, each local decision in the constraint graph should be globally optimal.  This can
be achieved by constraint propagation. In particular, temporal preferences can be propagated such
that local preferences can be transformed to represent preferences more globally optimal [Sadeh &
Fox 88].  The power of representing a problem as a constraint graph enables the determination, by
propagation, of how individual decisions will impact each via constraints.

6. CHS Problem Solving Process
The CHS model of problem solving is a combination of constraint satisfaction and heuristic search.

Search is performed in the problem space where each state is defined by a problem topology.  For
most problems, the problem topology is only partially complete. Therefore, a goal of the search
process is to acquire additional topology or modify existing topology. Optimization of the decision
process occurs naturally as constraint propagation transform local preferences into more global
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preferences.

The problem solving model we propose contains the following elements:
! An initial state is defined composed of a problem topology,

! Constraint propagation is performed within the state,

! Texture measures are evaluated for the state’s topology,

! Operators are matched against the state’s topology, and

! A variable node/operator pair is selected and the operator is applied.
The application of an operator results in either adding structure to the topology, further restricting
the domain of a variable, or reformulating the problem (e.g., relaxation).

2In our scheduling domain example : Search begins with a single state where all activities still
have to be scheduled and all resources are available.  Scheduling an activity in a state with a
reservation results in the creation of a new search state where new constraints resulting from the
assignment of the reservation to to the activity are propagated. The propagation consists in updating
the domain of start times and resources that remain possible for each unscheduled activity [Sadeh &
Fox 88]. If an inconsistency is detected the system backtracks.  Next the scheduler computes a
contention/reliance measure for each unscheduled activity. The activity with the highest
contention/reliance is selected to be scheduled next. A value goodness measure is computed to select
the first reservation to be tried for that activity (among the reservations that are still possible).  The
process goes on until all activities have been scheduled or until all search states have been visited.

7. Conclusion
The creation of general models for problem solving has been of continuing interest to Artificial

Intelligence researchers.  The process is evolutionary, elaborating and/or creating new search
methods and richer representations of knowledge.  The SOAR architecture, for example, combines
both the problem space and production system models and extends them with universal subgoaling
and chunking, thus achieving a model with powerful learning capabilities.  But within this model,
there are two aspects of the problem space that remain ill-defined: the notion of structure and means
of focusing attention within a structure.  Our model, Constrained Heuristic Search, extends the
problem space model in these directions.  Problem topology provides a definition of structure in the
form of a constraint graph.  Problem textures provide a graph theoretic definition of the complexity
and importance of decisions within a topology.  Problem objectives define an objective function that
after constraint propagation provide indicate the global optimality of a local decision. Together they
enable the problem solver to direct search more economically towards a higher quality solution.

The model has been demonstrated in four domains: spatial planning [Baykan & Fox 90], factory
scheduling [Fox  &  Sycara  90, Sadeh  &  Fox  90],  transportation  planning [Sathi  et  al. 90a], and
resource configuration [Sathi et al. 90b].  In spatial planning, we demonstrated that CHS is more
efficient in finding solutions than other comparable systems.  In factory scheduling, we generalized
constraint graphs to account for preferential temporal constraints, making it possible to represent
the general job shop scheduling problem for the first time.  Texture measures, based upon these

2Excerpt from [Fox et al. 89]



8

preferences, enabled the scheduler to opportunistically select the next best decision to make. They
also provided an explanation of the power of domain heuristics like bottleneck analysis.
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