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Abstract
1

Scheduling differs from planning in that
it assigns resources over time, and in the
presence of constraints, to activities
selected by a planner. This paper for-
mulates the scheduling problem as an N-
Castle CSP problem so that the relevance
of CSP problem solving techniques can be
determined. Problems with this formula-
tion arise due to scheduling’s infinite tem-
poral domain, it being an optimization
problem, and the need for constraint
relaxation to find feasible solutions. Al-
ternative heuristics for variable and value
ordering are described based on measures
of contention, reliance and survivability.

1. Introduction :

The purpose of this paper is to acquaint
the reader with the scheduling problem,
show why it is a difficult problem to solve,
and therefore worthy of our attention. Since
the 1960s, the planning problem has cap-
tured the interest of many Al researchers.
Planning selects and sequences activities
such that they achieve one or more goals and
satisfy a set of domain constraints. But it

IThis research has been supported, in part, by
the Defense Advance Projects Agency under con-
tract #F30602-88-C-0001, and in part, by grants
from Digital Equipment Corporation.
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was only in the early 1980s that schedulir
came under serious scrutiny, and mn
recently has garnered the attention of a si
nificant minority of researchers, primari]
in the domains of manufacturing an
space2, Scheduling selects among alte.
native plans, and assigns resources an
times for each activity so that they obey tF
temporal restrictions of activities and t}
capacity limitations of a set of share
resources. It follows from these definitior
that scheduling can be viewed as subclass
planning, with the focus being on the alloc:
tion of resources over time. The recency -
the field’s focus on scheduling is somewh:
odd, given that one of the earlier papers ¢
planning -explicitly pointed out the proble:
of allocating resources over time [Simon 7¢
On the other hand, the sterile world -
blocks never forced the issues that arise :
scheduling; it took a return to the "re
world” for these issues to reappear.

From a computational complexity perspe
tive, we know that both planning ar
scheduling are difficult problems; they hat
been proven to be NP-Hard[Chapm:
87, Garey & Johnson 79]. But mo
problems are NP, so that does not provic

2There is even a conference on the topic, "Expe
Systems in  Production  Operations ar
Management”, and workshops on the topic ha
been held at AAAL
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insight into their solution. It is the intent of
this paper to provide a different perspective
on the the scheduling problem so that the
methods being developed in AI can be ap-
plied more easily.

In earlier work, we have shown that one
can- view scheduling as a constraint op-
timization problem [Fox 83, Fox 86]3 This
earlier work solved the scheduling problem
by using constraints to heuristically direct
search in the problem space [Fox & Smith
84, Ow & Smith 88, Fox 90). The approach
was synthetic in that it incrementally con-
structed a subset of partial schedules until
one was found to be acceptable. Recently, a
reductionist approach to scheduling, based
on Constraint Satisfaction (CSP) techniques,
has been explored. Techniques for con-
structing satisficing schedules [Eleby et al.
88, Keng et al. 88, Keng & Yun 89], and op-
timizing schedules [Sadeh & Fox 88, Sadeh
& Fox 89,Fox et al. 89] have been
demonstrated.

Viewing the scheduling problem from a
CSP perspective can be useful. CSP is one
of the few areas of AI where significant
amounts of problem classification and com-
plexity analysis has co-occurred [Mackworth
77, Haralick & Elliott 80, Freuder 82, Nudel
83, Purdom 83, Davis 87, Dechter & Pearl
87, Nadel 89]. Consequently, by reducing
the scheduling problem to CSP, we can
apply these results. On the other hand, as
will be shown later, the scheduling problem
extends beyond the current capabilities of
CSP, providing for the carry over of methods
from the scheduling domain.

In the following the complexity of the
scheduling problem is explored through a
series of factory scheduling problems. For
each problem, an equivalent CSP formula-
tion is provided. Finally, the difficulty of
scheduling is analyzed and approaches to

3This view is not unique; Operations Research
has also formulated scheduling as an optimization
problem and has applied various mathematical pro-
gramming techniques, such as integer program-
ming. See [Fox 91] for a comparison of Al and OR
approaches,
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solving them are briefly described.

2. Constraint Satisfaction
Perpsective of Scheduling

CSP takes a reductionist approach to
problem solving [Simon 83]; a super set of
solutions are successively reduced to a solu-
tion set. A constraint satisfaction problem
is defined by a set of variables
V={v,v, ...,v,}, each having a correspond-
ing domain D=(d,d,, ....d }, and a set of
constraints C={c,,c;, ...,c,}. A variable’s
domain d; can be infinite, for example in the
temporal domain, but is usually discrete and
small. A constraint ¢, is an m-tuple that
specifies a consistent assignment to the
variables that it constrains, i.e.,
c;cd\xd,x - -- xd,. The process of solving a
CSP is comprised of the following steps:

1. select a variable for instantiation,

2. select a value to assign to the vari-
able, and then

3. determine whether the assignment is
consistent with all the constraints. If
not, then backtrack, otherwise
iterate.

Research has focused on heuristics for
selecting variables and values.

In the reminder of this section a series of
factory scheduling problems are described
and their CSP analog is formulated.

2.1, Single Resource Scheduling

The simplistic factory that one could im-
agine scheduling contains a single machine
and produces a single product that requires
a single operation. The scheduling goal is to
assign each order for a product to an avail-
able time slot on the machine.

Equivalently, this can be stated more
generally as a resource allocation problem
where a single, indivisible resource, is to be
allocated over time to n activities, but at any
time to at most one activity. The activities
are unrelated (i.e., no precedence relations
among them) and are of equal duration.

From a CSP perspective, this is equivalent
to what I call the N-Castle Problem.
Given an n x n chess board, the problem is
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to place n castles such that they do not in-
terfere according to chess rules.” Unlike the
N-Queens problem, more than one castle
may occupy the same diagonal, but not the
same row and column. Each castle, which
occupies a separate row, corresponds to a
separate activity and each column of the
chess board corresponds to a unique, equal
duration time slot that the activity can use
the single resource.

Al

A2

A3

A4

A3

T1 T2 T3 T4 TS5

Figure 2-1: N-Castle Problem

More formally, given n activities A; with
domains Ae {1,...,n}, assign a value to
each subject to the following constraints:

Vij [(#)> (A4;#2A)]
No two distinct activities may
occupy the same column.

The constraint graph, whose nodes are ac-
tivities, is completely connected by in-
equality constraints that assure that no ac-
tivities occupy the same column/time slot.
This problem is simpler than the N-Queens,
and can be solved in polynomial time [Garey
& Johnson 79].
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2.2. Scheduling with Due Dates

To bring some realism to the scheduling
problem, we impose the constraint that each
activity A; must be completed before a "due
date” d. Each activity’s due date is inde-
pendent of the the due dates of other ac-
tivities.4 This is the same as "mutilating”
the N-Castle chess board by removing
squares at the end of each row. Assuming
that each column is numbered from 1 to n,
then if an activity A, is due on date 5, then
squares 6 through n in the activity’s cor-

responding row i are unavailable for placing
the castle.

Al
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A3

A4
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Figure 2-2: Mutilated N-Castle Problem

More formally, given n activities A; with
domains A; € {1,...,n}, and due dates d.

Assign a value to each subject to the follow-
ing constraints

“Depending on how close the due dates are to
each other, there may not exist sufficient time slots
for all activities to be performed before or on their
due dates.




Vij [(i£)) > (A#A)]
No two distinct activities may
occupy the same column.

VilA, S d)
An activity must end on or before
its due date.

The additional due date constraints serve to
reduce the domain of each activity variable
prior to any search being performed, thus
simplifying the problem. ' '

2.3. Activities With Precedence

Consider the same factory, but now each
product is produced according to a process
plan. A process plan defines a sequence of
operations (or activities) that must be per-
formed in the order specified.

More generally, the single resource
scheduling problem is now further compli-
cated by imposing precedence among ac-
tivities. That is, for each activity, there may
be zero or more activities that must be per-
formed before it.

Al
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T 72 T3 T4 75

Figure 2-3: Mutilated N-Castle with
Precedence

Formally, the Mutilated N-Castle problem
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with precedence is defined as given n ac-
tivities A;:
e with domains 4; € (1,... ,n),
* due dates d,e (1,...,n},and
* a precedence matrix P; where P;=1 if
A; must precede A,

assign a value to each subject to the follow-
ing constraints:

Vij[(i#)) > (A;24)]
No two distinct activities may
occupy the same column.

Vi[A,<d)]
An activity must end on or before
its due date.

Vij [(Py=1) D (4,<A)]
Activities with precedence must be
sequenced.

Initially, the constraint graph had all of
the activity nodes connected together with
inequalities, denoting that no castle/activity
may occupy the same position. Precedence
adds another layer of inter-activity con-
straints, as denoted by the P; precedence
matrix.

2.4. Multiple Alternative Resources

To make the factory a little more realistic,
more resources can be added. Now, each ac-
tivity A; may choose one of m resources to

use, thus increasing the complexity of the
task.

From a CSP perspective, the N-Castle
problem can be further refined by extending
the n x n chess board into a third dimension,
each plane representing an alternative
resource (figure 2-4). No two castles may oc-
cupy the same column within the same
plane.

More formally, given n activities A; and m
alternative resources to choose from, with:

* activities having domains
A; e {<T,R>|1<T.<n,1<R,<m)} where
T, is the time or column position of the
activity and R, is the resource or plane
selected,

e due datesd, € {1,...,n)}, and

—

e Bt o




TS S S
Al //
A2 //
A3 o /
N o /
AS . ':""/R2

TI T2 T3 T4 T

Figure 2-4: 3D Mutilated N-Castle with
Precedence Problem

e a precedence matrix P; where P;=1 if
A, precedes A,
assign a value to each subject to the follow-
ing constraints:
Vil[T,<d])
An activity must end on or before
its due date.

Vij [(P=1) D (T,<T)]

If precedence exists among
activities i and j, then
activity i must be assigned
a position before activity j.

Vij [((#NAR=R)) (T2 T)]

No two distinct activities using the
same resource may occupy the same
time time slot.

Nodes in the constraint graph are now 2-
tuples; significantly enlarging the space of
alternative potential solutions.
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2.5. Interfering Activities

The formulation provided so far is general
enough to specify a flow shop (and actually a
job shop) where each product goes through

the same sequence of activities. Now con-
sider an assembly line, a type of flow shop,
where a small number of product types are
sequenced to be released to the line. Each
type of product has a different set of com=
ponent parts, or "options”. The assembly
line is balanced so that no two products:of
the same type can be within b, positions of
each other. Otherwise the line would ha
to be temporally halted so that more timé_%s
available to complete the activities. :
%Y
This is equivalent to our latest version of
the N-Castle problem, where castles can be
of different colors, and the lines of inter-
ference are defined as regions. That is,
there cannot be castles of the same color

within a region centered at a castle, in th
same plane.

Formally, given n activities A; and m alter-
native resources to choose from, with:

¢ activities having domains
A e {<T,R>|1<T;<n,1<R,<m} where
T, is the time or column position of the
activity and R, is the resource or plane
selected,

e due datesd; € {1,...,n},

« a precedence matrix P; where P;=1 if
A, precedes A,

e an activity type AT,e{l,...,0}, that
is, it is one of o types, and

e a neighborhood around a castle of type
t of size B(r),

assign a value to each subject to the follow-
ing constraints:




Vi [T.<d)
An activity must end on or before
its due date.

Vij [(P,;=1) o (T,<T)]

If precedence exists among
activities i and j, then
activity i must be assigned
a position before activity j.

Vij [(((£)AR=R) D (T;#T))

No two distinct activities using the
same resource may occupy the same
time slot.

Vij [((ATi=A7"j)A(Ri=RI-)) o
(T-T)>B(AT))]

If activities i and j are of the same

type and use the same resource, the

"distance” between them should be

greater than specified by its type.

The delineation of regions around types of
activities complicates the assignment
problem. Poor initial assignments of ac-
tivities may not leave open regions large
enough for subsequent activities of the same
type. Therefore assigning activities with the
largest regions first would appear to be a
good idea, and the smaller activities could
be inserted among them.

2.6. Non-Uniform Durations

Factories produce more than one product.
Each product may have a different sequence
of activities, the number of activities in a se-
quence may vary, and the duration of each
activity may vary. It is the last point that
complicates the scheduling problem further.

To accomm'<odate this last point, the N-
Castle problem is modified so that a castle
may occupy more than one square, and the

number of squares each castle occupies may
differ.

Formally, given n activities A; and m alter-
native resources to choose from, with

e activities having domains

A, € {<T,R>|1<T,Sn, 1<R;Sm} where

T,is the time or column position of the
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activity and R, is the resource or plane
selected,
e due datesd, € {1,... .1},
e a precedence matrix P; where P;=1 if
A, precedes A;,
e an activity type AT.e(l,....0}, that
is, it is one of o types, and
« the number of squares occupied by the
ith activity is defined by S,
assign a value to each subject to the follow-
ing constraints:
Vi [(T+S-1)<d]
An activity must end on or before
its due date.

Vij [(P;=1) 2 (T#S-1D<T)]

If the ith activity must precede the
jth activity, then the it} activity
must end before the jtb begins.

Yij [(R5=Rj) >
(TS ,—1)<T.~)V(T,->(T;+S.-1)))]
If two activities use the same

resource, then they must not
overlap in time.

With non-uniform durations, choices of
where to place an activity can have an enor-
mous impact. If assignments do not leave
gaps large enough for subsequent assign-
ments, then significant amounts of back-
tracking can arise. One would think then
that you would assi%n activities with the

largest durations first®.

9.7. Multiple Resources and Variable
Durations
The scheduling problem can be general-

ized further to a job shop without
assemblies, defined as follows:

¢ The factory produces two or more dif-
ferent products, where similar
products are grouped into families.

e Each product requires one or more

50Operations research has studied a variety of
heuristics, such as shorted processing time or ear-
liest due date. Both are appropriate under different
conditions [Baker 74].
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operations to produce it, where the
operations sequentially transform
basic materials into the final product.

» The sequence of operations required to
produce a product is defined to be its
process plan. Process plans differ for
each product.

* Each operation specifies one or more
resources that are required during its
performance.

* Durations for operations are specified
apriori but may be contracted if orders
for products in the same family follow
each other on the same resource.

* Products are produced on demand,
that is on the receipt of orders.

* There are multiple orders in produc-
tion at any time. Contention usually
exists for a subset of resources.

* Lead times for the delivery of orders
can vary from zero days to multiples
of the actual manufacturing lead time.

The job shop complicates the scheduling
problem because (1) activities may use more
than one resource, thereby increasing the
degree of interference with other activities,
and (2) the sequencing of activities at a
specific resource may result in an expansion
or contraction in the amount of time an
operation will use one or more resources.
Another way of viewing context dependent
operation durations is that each operation
can be viewed as a set of alternative opera-
tions, with different durations, and con-
straints that limit their selection based on
the operation that precedes it at the same
resource. That is, if the prior abuting opera-
tion is in the same family, then the opera-
tion with the reduced duration can be
selected.

Formally, given n activities A; and m alter-
native resources to choose from, with

¢ activities having domains
A; € {<T,R,V>|1<T,<n, R,€ Powers
T, is the time or column position of the
activity, R; is the set of resources
selected, and V, is the version of the
activity whose choice is constrained by
the activity that precedes it,
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e Version; specifying the version of g
tivity j if preceded by activity i,

e due datesd; e (1,... n),

¢ a precedence matrix P; where P =1
A;precedes 4,

* an activity type AT,e {1,...,0)}, the
is, it is one of o types, and

* the number of squares occupied by th
iR activity is defined by S,, (note ths
the amount depends on the version ¢
the activity chosen,

assign a value to each activity subject to th
following constraints: :

Vi [(T+S~1)<d]
An activity must end on or before
its due date.

Vij[(Py=1) > (T+S~1)<T))]

If the itk activity must precede the
jth activity, then the ith activity
must end before the j!B begins.

Vij [((R'(\R})#@) o

(TS~ <TYV(T>(THS~1)))
If two activities use the same
resource, then they must not
overlap in time.

Vj 3i [Directly-Precedes(ij) >
(V=Version)]

If there exists an activity i that

directly precedes activity j, where

Directly-Precedes is a predicate,

then the activities version is

specified by the matrix Version.

With activities requiring more than on
resource at a time, the degree of interferenc
among activities continues to increase
Secondly, with durations being variable, i
becomes more difficult to predict the impac
of an assignment on subsequent assign
ments.

The job shop can be complicated further b;
extending process plans from chains ti
graphs; any path through the process plan’
graph defines a legal means of producin
the product. A formal specification of thi




version of the scheduling problem is left to
the reader!

3. Why Is Scheduling So Difficult?

3.1. Temporal Complexity

Schedules are constructed to span a
temporal horizon, that is, detailed schedules
are produced over some time interval. The
length of the horizon depends upon the lead
time with which resources, to be used in the
production of the order, have to be planned
and sourced. In some cases it may be weeks,
and in other cases it may be years. Over the
temporal horizon, schedules must describe
activities to a particular temporal
granularity, perhaps to a day, shift, hour or
minute. The temporal granulanty of a
schedule depends upon the duration of the
activities and the degree of uncertainty in
the environment; that is, to what extent
schedules can be followed due to stochastic
events such a resource unavailability.
Depending on the granularity the number of
start times for each activity to choose from
can be large.

Consider the simple scheduling problem
with uniform durations and alternative
resources. An upperbound on the number of
solutions to this problem for the case of 100
activities, with 100 time slots, each having
the choice of one of 100 resources is deter-
mined. as follows. By restricting each
act1v1ty/castle to a plane, each activity has
at most 104 positions to choose from. Given
that there are 102 activities, then the cross
product of all these activities is 10400,

For extended horizons or more precise
granularities, the number of starting times
is enormous. Consequently, the N-castle
formulation is only an abstraction of the real
problem. Experience has shown that a
change is required to an interval represen-
tation of time. In systems such as ISIS
[Smith 83] and Deviser [Vere 83] have used
variants of Allen’s temporal relations [Allen
83] to identify scheduling intervals.

3.2. Optimization

The CSP perspective is that any variable
assignment that satisfies the set of con-
straints is equally acceptable. That is not
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the case in the scheduling domain. Due
dates may be extended indefinitely into the
future and there may exist many solutions
to a scheduling problem, some which are
better than others. Scheduling is really an
optimization problem, the goal being to op-
timize criteria, such as:

e Lateness: Minimize the amount of
time between when an activity is com-
pleted and its due date.

e Flow Time: Minimize the amount of
time it takes for a product to complete
its activities; that is, how much time
the product spends being worked on in
the factory.

o Cost: Minimize the amount of money
spent on producing the product.

The consequence of this is that CSP defini-
tion is not sufficient to encompass the entire
set of scheduling problems. Instead, a
second class of problems, called Constrained
Optimization Problems (COP)[Fox et al.
89] is defined similar to CSPs, but has, in
addition, an objective function, that
provides a numerical prioritization of
proposed solutions. How tge objective func-
tion is used during search is an interesting
problem (see[Sadeh & Fox 88] for one
approach).

3.3. Feasibility and Relaxation

Up till now we have taken for granted that
a feasible solution exists to the aforemen-
tioned variations of the N-Castle problem.
This is not often the case in factory settings.
Due to the costs involved, resources are not
available at levels that are sufficient to
satisfy the temporal requirements imposed
by due date and precedence constraints.
Consequently, there may not exist a fea51ble
solution.

In the factory scheduling domain it is not
acceptable to just recognize that there does
not exist a solution. Rather, as good a solu-
tion as possible must be found, even if a sub-
set of the constraints are not satisfied. The
question then is what subset of constraints
are to be relaxed and how. Often, within a
domain there is a clear weighting of con-
straints, and in some cases relaxations are
spemﬁable Some should not be relaxed,
such as capacity constraints, but others can




be relaxed, such as cost or due dates. This
information may be utilized simple heuristic 1s not sufficient [Sac
relaxat;’on. In ISIS_, OP_IS,. and CORTES, ivi '

an activity hag only a few start ¢
relaxations and their utilities are defined Tesources relative tq other activitie,
explicitly as part of the constraint represen- acktracking, but ag You will see lat
ation variety of techniques have been 18 not always the cage But this is not
explored for deciding when and where to sue. For most activities, there wil] be
Telax a constraint [Fox 90]. ternatively,

times and resources available, thy;s
Operations Research would view g due date domain ’g will be approximately eq
i size. The issue is how to distingui

tive function with the intent to minimize the

the activities with a large Proportion o
omly chooses constraints to remove from possible reservations that are expect
the problem [Freuder 89). become unavailable if other activitie
scheduled earlier.
In order to address the i

ssue of achieving
feasibility via relaxation, the COP con-
straint graph has to be extended to include

For value selection, the concept of -
information, such as the following:

goodness hag been proposed [Decht;

* Relative weightings of constraints. Licipates in the largest Number of SOI“f

) Explicit: specifications of relaxations of fel;siiiflggfégg :g dplgizl:ille) fggloli%ni;i

COI.IS.tI.‘ath. 1 . tree-like relaxation of the problem to

* Utilities of re axations. proximate valye goodness. For the sche
Such representations have arisen in the con-

ing problem we have found that there §
straint directed scheduling techniques dis- i i

techniques [Zucker 76].

3.4. Variable and Value Ordering 4. The CORTES Approach
euristics

CORTES is 3 factory scheduling Sysi
How would we solve the scheduh'ng [Fox & Sycara 90] that solveg resource
problem with a CSp approach? First, lets ig- location COP’s using Constrained Heuri
nore the issues of optimization and relaxa- Search (CHS) [Fox et al. 89]. Underly
tion. CORTES’s approach to solving resource
location COPg is a generalization and {
malization of what 18 known in the sched
Ing literature ag bottleneck scheduli;
domains of the activities. For éxample, the at is, in order to optimize a schedule, fi
satisfaction of temporal constraints, such ag optimize the scheduling of bottlene
ue dates and precedence, wil] reduce the resources,
start times of activities to a get of intervals,

But the main effort is in the variable and

a particular scheduling proble;
value selection,

For
CORTES constructs a constraint graph th
differs from a CSP constraint graph in
The most widely accepted heuristic for number of ways. First, if determining t}
selecting the next variable is to choose one bottleneck resources is critical to making
with the smallest remaining domain [Bitner i i

plexity [Purdom 83]. The question is degree of contention for a resource, a redur
whether it is sufficient for scheduling. It
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needed. In this constraint graph there are
two types of nodes, activity and resource
nodes. Rather than burying the resource in
the activity node, the demands for each
resources are represented explicitly by
capacity demand constraints linking ac-
tivities to resources. A second change to the
constraint graph is to include relaxations
and their utilities. Rather than specifying a
single due date, a set of alternative dates
with associated utilities are specified.

Scheduling using this constraint graph fol-
lows the following process:

1. Temporal preferences such as reduc-
ing tardiness and inventory are
propagated across the temporal con-
straints [Sadeh & Fox 88, Sadeh &
Fox 90].

2. The resulting preferences are further
propagating across the capacity
demand constraints while accounting
for possible resource preferences.

3.The resulting demand profiles
provide measures for resource con-
tention as a function of time.,

4. Highly contended resource/time in-
tervals help identify critical ac-
tivities. More specifically, the ac-
tivity whose demand relieg most on
the contended resource/time inter-
vals is selected to be scheduled next.

5. A reservation (start time and a set of
resources) is selected for this activity
by accounting for its direct contribu-
tion to the objective function (local
preferences) and its liklihood to sur-
vive the contention of other un-
scheduled activities.

The contention metric is a heuristic ap-
proximation of the more general notion of
constraint tightness. Constraint tightness
manifests itself in the scheduling problem
around the available resource capacity over
time, i.e., the capacity constraints, By ac-
counting for contention in an activity’s
criticality, we obtain a more precise in-
dicator of the importance of selecting an ac-
tivity than provided by previous variable or-
dering heuristics.

'8
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A detailed description of this approach can
be found in [Sadeh & Fox 90].

5. Conclusion

Constraint Satisfaction research has made
great strides in understanding the power of
heuristics in solving large systems of con-
straints. But the continued focus on N-
Queens and satisfiability problems hag led
CSP research to ignore additional problem
characteristics and rich constraint structure
that arise in specific classes problems. OQur
experience in the scheduling domain has
demonstrated both the relevance and limita-
tions of CSP techniques.
scheduling a difficult problem to solve from
a CSP perspective is:

1. Scheduling is an optimization
problem in a very large com-
binatorial space. Therefore a good

solution must be found as quickly as
possible,

2. In most scheduling problems there
exists a plethora of constraints. It is
often the case that the problem is in-
feasible, requiring that one or more
constraints be relaxed in order to
find a solution.

3. CSP representations have insuf-
ficiently represented the role of
domain values. That 1s, in schedul-
ing problems, the degree to which
resources are contended for and ac-
tivities rely upon them are Important
factors in making variable and value
ordering decisions.

Our work on CORTES describes how many
of these shortcoming can be addressed in
solving resource constrained optimization
problems.
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