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Abstract

We present an overview of CORTES, an integrated
framework for production planning, scheduling and control
(PSC). CORTES’s approach to PSC problems departs
from others in the hypotheses it explores: Generality
Hypothesis: There exists a single approach that can
optimize decision making across a wide variety of PSC
problems. Flexibility Hypothesis: The same approach can
be used for both planning, predictive scheduling and
reactive control.  Uncertainty Hypothesis: In order to
provide the appropriate level of precision in PSC, reasoning
about uncertainty must be an integral part of the PSC
approach. Scale Hypothesis: Large PSC problems, that
contain thousands of activities, resources and constraints,
must be solved in a qualitatively different manner than
small PSC problems. CORTES uses Constrained Heuristic
Search to make PSC decisions. In this paper, we describe
CORTES, its architecture, problem solving method, and
functions including modeling, planning, scheduling,
distributed scheduling, dispatching, and uncertainty
management.

1. Introduction

Our research explores the role of constraints in solving
planning, scheduling and control (PSC) problems. It is
generally believed that to efficiently construct optimizing
solutions to large PSC problems, a fundamental
understanding of problem structure and properties is
required. It is our conjecture that knowledge of domain
constraints will lead to this understanding. The goal of the
CORTES project is to operationalize this conjecture.

CORTES is a distributed system for production
planning, scheduling and control. CORTES is designed to
be composed of an integrated set of modules distributed
across many workstations and connected by a
communication network. The overall architecture is shown
in Figure 1-1.

CORTES represents a departure from previous
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Figure 1-1: The CORTES Architecture

approaches 10 solving PSC problems in the hypotheses it
explores:

1. Generality Hypothesis: There exists a single
approach that can optimize decision making
across a wide variety of PSC problems.
Previously, PSC approaches were tailored to
the particular production environment, with
the "common wisdom" being that there does
not exist a single approach, short of
enumeration, that applies to all PSC
problems. We believe that there does exist a
single approach that may be generally applied
to PSC problems, that also provides very
good results and is computationally efficient.

2. Flexibility Hypothesis: The same approach
can be used for both planning, predictive
scheduling and reactive control.
Traditionally, planning, scheduling and
control approaches have tended to be separate
and unrelated in approach. For example, in
actual production
environments,Manufacturing Resource
Planning (MRP) tends to be used for
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of Stochastic eévents that increase the
uncertainty with which a schedule may be

Constraints, must pe solved in a qualitatively
different Manner than smaj) p
The point ig that in large PSCs, the aggregate

CORTES is evolutionary in jg approach in that it cap be
viewed ag 3 continuation of the line of Constraint directed
developed 4t Camegie Mellon
Umversuy [Fox & Smith 84, Smith et al. 86, Fox 90]. It
use of Constrained Heuristic Search (CHS) ag its
underlying problem solving Paradigm [Fox 891.

In the reminder of the Paper, we first review the

Constraineg Heuristic Search (CHS) problem solving
Paradignm i

U approach to both Planning ang scheduling s based
" a problem solving paradigm we call Constrained
"“St}C Search (CHs)! CHS views problem solving ag 3
Straing Optimization activity,  CHg combines the

process of Constraint satisfaction
87] with heuristic Search (HS),

(CSP) [Mack
CHS retains hey

State to include:

1. Problem Topology: Provides 4 structura]
characterization of a problem.

2. Problem Textures: Provide measures of 3
problem topology that allows search o be
focused in a way that reduceg backtracking.

3. Problem Objective: Defines an objective
function for rating alternative solutions that
satisfy a goal description,

heuristic search, thug allowing the dynamic modification ¢

the constraint model, and (3) extend constraint satisfactio,
izati In th

following, problem topology and textures are defined,

2.1. Problem Topology
We define problem topology as g constraint graph G,
composed of variables V ang constraints C:

Visaset of variableg {v,, Ve Vi }
Cisaset of constraints {c,, Cas ey}

Each variable in N may be a vector of variables whoge
domains may be finite/infinjte and conu’nuous/discrete.
Constraints are l-ary predicates over variables vertices,

We extend the topology 1o allow constraints to pe
grouped into g modified conjunctive normal form:

[s; ANDs, AND .. ANDs ]

We distinguish between
topologies:
Definition 1: A completely structureq problem

is one in which ali non-redundant vertices and
edges are known a priori,

This is true of all Csp formulationg and in this cage CHS
reduces to eijther a CSP or a cop (e.,
problem).

IWO  types of problem



edges are known prior to problem solving.

This definition tends to be true of problems in which
synthesis is performed resulting in new variables and
constraints (e.g. the generation of new subgoals during the
planning process).

Operators in CHS have many roles: refining the problem
by adding new variable and constraint vertices, reducing
the number of solutions by reducing the domains of
variables (e.g., assigning a value to a variable vertex), or
reformulating the problem by relaxing constraints or
omitting constraints and/or variables.

Our intent is to distinguish topologies that lead to
significant changes in problem solving quality and
efficiency. Examples include:

* The decomposability of constraint graphs into
unconnected or lossely connected subgraphs,
allowing the problem solver to focus on one
set of variables and constraints before
attending to another.

* Graph width which combined with arc-
consistency will guarantee backtrack free
search [Freuder 82].

* Contention graphs which identify the degree of
contention that exists among variables for the
same values.

2.2. Problem Textures

Focus of attention in search is concerned with the ability
of the search algorithm to opportunistically decide where
the next decision is to be made [Erman et al. 80]. In CHS,
for search to be well focused, that is to decide where in the
problem topology an operator is to be applied, there must
be features of the topology that differentiate one subgraph
from another, and these features must be related to the
goals of the problem. We have identified and are
experimenting with seven such features that we call
problem textures [Sadeh & Fox 88]. Below we define these
textures for CHSs where all solutions are equally preferred,
ie., the Problem Objective rates all solutions to the
constraints equally acceptable.

(Variable) Value Goodness: the probability that the
assignment of that value to the variable
leads to an overall solution to the CHS
(ie. to a fully consistent set of
assignments). This texture is related to
the value ordering heuristics [Haralick
& Elliott 80] which look for the least
constraining values. Value ordering
heuristics are meant t0 reduce the
chance of backtracking. In the case of
discrete variables, the goodness of a

value is the ratio of
assignments that are solutiong lop”
CHS and have tha value for -
variable over the total Numbeg
possible assignments,

Constraint Tightness: Constraint tightness refers 1 g
contention between one Constraint o 4
subset of constraints with a) the o !
problem constraints. Consider a CHS &
and a subset C’ of constraints in A Lg
B be the CHS obtained by Omitting (v
constraints in A, :

not a solution to A. In the cage of
discrete variables, this is the ratio of
solutions to B that are not solutions ty ...
A over the total number of solutions to -
B. ’

Variable Tightness with respect to a set of constraints;
Again consider a CHS A, a subset ¢ of
constraints, and the CHS B obtained by
omitting C’ in A. A variable V’g
tightness with respect to the set of
constraints C’ is defined as the
probability that the value of V ip 3
solution to B does not violate C’. In the
case of discrete variables, this is simply
the ratio of solutions to B in which Vs
value violates C’ (i.e. at least one of the
constraints in C”) over the total number
of solutions to B.

Constraint Reliance: This measures the the importance of
satisfying a particular constraint,
Consider a constraint ¢;- We defined
CHS B as being CHS A - {c;}. Given
that constraints can be disjunctively
defined, the reliance of CHS A on a
constraint ¢; is the probability that a
solution to CHS B is not a solution to
A. In the case of discrete variables,
constraint reliance is defined as the
ratio of the number of solutions to CHS
B that are not a solution to CHS A to
the number of solutions to CHS B. The
larger the value, the greater the reliance
the problem has on satisfying the
particular constraint,

Variable Tightness: Consider a variable v in aCHS A. Let
C’ be the set of constraints involving v
and B be the CHS obtained by omitting
C’ in A. v’s tightness with respect to C’
is simply called v’s tightness. Hence
the tightness of a variable is the
probability  that an assignment
consistent with all the problem
constraints that do not involve that
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24. CHS Problem Solver

variable instantiation order where v jg
the last variable, v’s ightness is the
backlracking probability, Variable
looseness/tightness can be identifieq
with  variable ordering heuristics
[Haralick & Elliott
82] which instantiate variables in order
of decreasing tightness,

measure,

23. Problem Objectives

Many problems, for €xample scheduling, are
Optimization problems and not  simply satisfaction
Problems, The notion of what is best becomes Important.
Rather then defining what is best in an evaluation function

* Disjunciive
Preferenceg associated with each disjunct.

* Start timeg, commonly found a5 4 variable in
scheduling

In our Work we haye €xtended the textyreg to take into
&count the Problem Objectives, using  Bayesian
: to approximate the likelihood that a variable
N an optimgy value [Sadeh & Fox 88].

The CHS mode] of problem solving js 3 Combination of

contains the following elements:

® An initia] State is defined composed of 3
problem topology, i.e., the PSC activity, time
and capacity constraint graph,

* Constraint pPropagation ig performed within the
state,

¢ Texture measures and the problem objective
are evaluated for the state’s topology,

* Operators  are maiched against the State’s

are domain~independent and help structure constraints in
many kinds of scheduling domains (e.g., factory
scheduling, transportation scheduling),

* Physical constraints, Physical constraints

include, number of machines, fixtures, setup
and run times for cach operation,



* Organizational  constraints, Examples of
organizational constraints include meeting due
dates, reducing Work in Process, increase
machine utilization, and enhance throughput.

e Preferential  constraints, Examples  of
preferential constraints include preference for
using a particular machine for an operation
(perhaps because of its speed or accuracy), or
using a particular human operator (perhaps
because of his skill).

¢ Enablement  constraints, These refer 1o
constraints, the fulfillment of which creates a
state that enables the execution of an activity.
For example, a process plan embodies
¢nablement constraints.

* Availability constraints. These constraints refer
to the availability of particular resources at
scheduling time. For example, a machine may
become unavailable because of breakdown, the
assignment of a third shift makes extra
resources available for scheduling.

In the model, we treat explicitly two types of constraints,
required constraints and preferential constraints [Fox 83].
The degree of satisfaction of a preferential constraint is
expressed by a wrility function ranging between 0 and 1. A
value of 0 utility is non-admissible; a value of 1 is optimal.,
Variables can be constrained by more than one constraint.
The utility value associated with a variable is calculated by
taking the weighted sum (with constraint importance as the
weight) of the utilities of all the constraints that affect the
variable.

Constraints differ in importance. A particular constraint
could have different importance depending on the context
in which it is applied. The importance of a constraint is
specified by a value between 0 and 1. An importance of 0
implies that the constraint should not be considered, and 1
signifies maximum importance. The actual level of
importance is relative to the importance of the other
constraints under consideration, The measure of
importance of a constraint may be viewed as a weight that
can be combined with a constraint’s utility value to form a
weighted combination of utilities. Constraints also differ in
relevance. Depending on the context, a constraint may be
more relevant than others.

3. Scheduler

The detailed scheduler is an activity-based scheduler
[Sadeh 90}, where the activities are the operations that
must be scheduled according to a process plan that
specifies a partial ordering among these operations. Each
operation requires one or several resources for each of

416

which there may be one or several alternativeg. Sch
is viewed as a constrained heuristic search Problem
solution is a schedule that satisfies the many technjy
lemporal, organizational, and preference CONStrajng
are imposed both by the characteristics of the job
itself and the environment.

The scheduler models a problem as a Constraing
where there are two types of nodes: activitieg
reésources. An activity is an 4-tuple defining jtg Start
duration, and resources it is to use, With each activify
associate utility functions that map each possible star{
and each possible resource alternatives onto a utility
(ie. preference). These utilities [Fox 83, Sadeh &
88] arise from global organizational goals such as redy
order tardiness (i.e. meeting due dates), reducing
earliness (i.e. finished good inventory), reducing ¢
flowtime (i.e. in-process inventory), using ace
machines, performing some activities during some §
rather than others, etc. A resource is a 3-tuple definin
total capacity, available capacity over time, and
activities that are scheduled to use it.

We  distinguish between two types of constra
activity temporal constraints and capacity constraints,
activity temporal constraints together with the order reJ;
dates and latest acceptable completion dates restrict the
of acceptable start times of each activity. The capa
constraints restrict the number of activities that a resoy
can be allocated to at any moment in time to the capacit
that resource. For the sake of simplicity, we only cons:
resources with unary capacity in this paper. Typically
limited capacity of the resources induces interacti
between orders competing for the possession of the sz
resource at the same time,

The schedule is built incrementally by iterativ
selecting an activity and assigning a start time ;
resource(s) to it, propagating temporal and capac
constraints and checking for constraint violations.
constraint violations are detected the system backtrac
Search is focused via a set of variable and value orderi
heuristics so as to minimize backtracking and optimi
schedule quality.

The variable ordering heuristic assigns a critical
measure to each unscheduled activity; the activity with 1
highest criticality is scheduled first. The value orderi
heuristic attempts to leave enough options open to
activities that have not yet been scheduled in order
reduce the chances of backtracking. This is done t
assigning a goodness measure to each possible reservatic
of the activity to be scheduled. Both activity criticality an
value goodness are composed of texture measures. Th



Tesource. The demand profile expresses likely contention
for the resource over time, The bercentage contribution of
an activity’s demand to the aggregate demand for a

resource over g highly contended-for time interval is the
activity reliagnce.

The particylar Start time assigned to the chosen activity
is picked using either of two Strategies:

LA Least Constraining Value Ordering
Strategy (LCYV): This heuristic attempts to
select the feservation tha is the least likely to
prevent other activities o be scheduled.

2.A "Greedy" Ordering Strategy
(GV): At the other extreme, g reservation can
chosen that maximizes the preference of

the activity for the Tesource/time interval,

\

2
mfeFOl' 2 more complete description of these measures, the reader is
410 [Sadeh g Foy 88, Sadeh 90),

coordinate thejr decisions whep they require

Possessed by others. Due to the size of the g

Teservations so  thyy It does not require gar
scheduler’s Tesources during 3 period of high dema
the strategic level, we expect that coordination pri
will be reduced but not removed. It js the role
tactical level to hegotiate resource allocations thag
not be handied Strategically.

S. Planning

We are Currently investigating the integration
planning with scheduling3. Ip previous Planners, planpj
has been an eng unto itself, Any feasible plan is consider,

domain-independem, hierarchical, nonlinear, and support
replanning [Wilkins 88]. We intend to include these
Capabilities, and extend them where appropriate,

—_—

3See [Fredcrking & Chase 90] for more details.



Planners already exist that use constraints on planning
variables to increase the power of their representation and
to reduce arbitrary decisions that can lead to unnecessary
backtracking. In addition to making wider use of
constraints, we will make this planner be truly
constraint-directed by developing measures of criticality
for goal ordering and operator selection. This will provide
a domain-independent representation for the domain-
dependent heuristics that focus attention in the search for a
plan.

The planner will always support planning at different
levels of abstraction, and the re-use of plans in support of
reactive planning.

6. Uncertainty Analyzer

Uncertainty is a fact of life in most Jjob shop scheduling
environments. Sources of uncertainty include: Demand
change (seasonal, forecast error, cancel orders, expedition),
Inventory Policy (raw material arrival pattern, safety stock
policy) Machine failure, Change of time duration (transit,
set-up, processing), Yield, and Quality (Tool wear,
precision). Uncertainty increases as the planning horizon is
extended, and its the amount and sources of uncertainty
change over time.

The presence of uncertainty means that it is very unlikely
that a detailed predictive schedule that assigns precise start
and finishing times on resources for activities is going to be
adhered to. This characteristic imposes two requirements
on schedulers: (a) A scheduler should be able to represent
and reason about degrees of uncertainty, and (b) a
scheduler should be able to react to unexpected events on
the factory floor. The inability of a scheduler to reason
about uncertainty almost always results in a schedule being
invalid at the time it is released to the production floor.

CORTES manages uncertainty in three stages. In the
first stage, the Uncertainty Analysis module monitors and
records the stochastic events. It develops over time a
model of the sources and characteristics of uncertainty.
Once a valid model is constructed, the Uncertainty
Analysis module passes the information to the Scheduler.
In the second stage, the scheduler uses the uncertainty
models to reduce the precision of its schedules. Precision
can be reduced by increasing the durations of activities,
overlapping activity temporal intervals, or assigning
activities to resource aggregates rather than to specific
resources. In the third stage, the Dispatcher control
module, is able to react more flexibly to stochastic events
by taking advantage of the imprecision inserted in the
schedule by the scheduler; it can start an activity earlier or
later or assign an activity to another resource in an
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aggregate (i.e., work center). The Dispatcherg
dispatch jobs to machines and monitor Machine gp4
execution status. The Dispatcher notes deviationg from
schedule and resource unavailability and commyp;
this information to the Scheduler, Uncertajmy Ana]

and factory floor. ;

Two approaches have typically been utilized 1o 44,
the problem of temporal uncertainty. One approach is ba
on the idea of dividing the time horizon into time zop
using progressively coarser time units to describe eventg.
the future. For example, a time unit of one hour may
used to project a schedule over a one week horizon; 3 tim
unit of a day mey be used to project a schedule from g
one-week to a one-month horizon and so on, Although this
approach recognizes the fact that events that are further ing
the future are less accurately predictable, it has beep
criticized [Kerr 89] as suffering from the presence of -
discontinuous boundaries between time zones and the
difficulty of handling orders whose processing crosses 3
zone boundary. A second approach to handling uncertainty
is the use of probability distributions to describe schedule
parameters. This approach has the disadvantage [Kerr
89] that probability is concemed with the combination and
manipulation of independent random variables whereas
many of the probabilistically described scheduling
parameiers are not independent (e.g., processing times of
different jobs on a particular machine could depend on
some characteristic of the machine)?.

The CORTES uncertainty analyzer  represents
uncertainty in terms of fuzzy logic [Zadeh 85, Kaufmann
85,Prade 79]. The present version [Chiang & Fox
90] focuses on uncertainty concerning machine failures.
The mean time between failure and mean duration of the
failure are assumed known. It is also assumed that once a
machine is fixed afier a failure, processing resumes at the
point of interruption with no rework necessary. In other
words, machine failure causes a variation in processing
time only and not in scheduling order. The time between
machine failures and the failure duration are used
€xpress uncertainty in processing time. Instead of being
random variables of known distribution, the duration of
failure and time between failures may be only
approximately known. This approximate information on the
procesing time bounds is expressed in terms of fuzzy
numbers of Type-I, where a real number that is
approximately known is expressed as a confidence interval
of upper and lower bounds. Fuzzy bound values may be
ther result of subjectively known processing characteristics

4Handling variable dependence through the use of conditional or joint
probability distributions poses severe estimation problems.
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7. Conclusion

In this baper, we havye given an overview of the
CORTES integrated framework fo, production planning,
Scheduling ang control (PSC) System. CORTES g approach

to PSC Problems depargs from others i the hypotheses it
¢xplores:

4. Scale‘ Hypothesis: Large PSC problems, thay
Contaip thousands of activities, resources and

‘n\

Mo pf rolect 3gains; Uncertainty the planneqd Operation duratiop js longer,
Anned 01'k~ln-process exists and orders are planned 1o arrive Jae,
cdc()gtmoﬂt Protection we design into the bounds, the higher the

constraints, myg; be solved jp a quah'tatively
different manner than smgay PSC problems,

The CORTES Project g investigau'ng all f
assumptions in parallel, Wwe have €Xperimenta] data acrc
a variety of psC problems thqe support the generalj
assumption, The ﬂexibility assumption jg currently bejy
tested by our integration of PSC functiong, The uncertain,
ion j the ease with which we hg,
adapted CHS 0 account for Uncertainty,
assumption remajng 1o be tested.
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