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1. Introduction

Constraints have a larger rola to play in heuristic search
than has been demonstrated. it is possible that many of the
search architecture design decisions may be deduced given a
semantically complete description of the problem’s constraints.
The intent of the research described in this paper is to develop a
semantics for the description of constraints, and a search
algorithm which uses these constraints to efficiently search the
combinatorial solution space. ’

Le concept de contrainte a un role plus important & jouer
dans la recherche 2 base d’heuristique qu’ il ne fut demontre pour
instant. La conception d'une architecture de recherche peut
souvent 8tre déduite d'une description sémantique compléte des
contraintes du domaine d'application. Le but de la recherche
décrite dans cet article est' de développer une sémantique de
description des contraintes, et un algorithme de recherche qui
utilise ces contraintes pour parcourir efficacement I'espace
combinatoire des solutions.

1.1. Problem-Solving Architectures

Simon (1983) has proposed that there are three "rather
distinct ways ... for representing and thinking about problem
solving tasks." The first views problem solving as a search
through a model space of nodes (i.e., states) and links. The
second views problem solving as reasoning, where new
statements are deduced from a set of axioms in a formal language
of logic. The third views problem solving as constraint
satisfaction, where the incremental addition of constraints
narrows down a set of objects to a subset which satisfies all the
constraints. While these views are not mutually exclusive, they are
viewed as being distinct. In fact, a constraint satisfying algorithm
is viewed as not creating new objects, but reducing the entire
space of objects to a satisficing set' On the other hand, search
techniques, such as those used for planning, can be synthetic;
incrementally constructing a solution as part of the search
process.

Search, coupled with heuristics, has been the most
successful of the techniques for solving real, combinatorially
complex problems. Examples include:

» Hearsay Ii: Speech Understanding (Erman et al., 1980)

¢ Moigen: Molecular experiment planning (Stefik,

1981a)

) -
This assumes the ability to enumerate a set of objects from which to choose.
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¢ ISIS: Job-shop scheduling (Fox, 1983)
o Aladin: Aluminum ailoy design (Farinacci et al., 1986)

e R1/XCON: Computer
1883)

configuration * (McDermott,

* GARL: Process planning (Descotte & Latombe, 1985)

Surprisingly, each of these systems use constraints, in one for
another, to guide the search process. Consequently, conti
based problem solving is less distinct than one would asst
The question is: What role do constraints actually play in se:
based problem solving?

1.2. Problems with Heuristic Search

The design of search architectures is an art. Skilled
engineers approach a problem with a set of techniques, whict
example, have been shown useful in other tasks. Th
techniques have heen acquired through experience. In fact,
training of Al engineers is similar to the medival guild sys!
where apprentices work with masiers for some period of til
Only recently, have papers been prepared which bear a sinila
to a guild member's handbook (Stzfik et al., 1981; Kiine & Doli
1985). My recent invcstigations (Fox, 1983; Baykan & Fox, 19
in the use of constraints as the primary representational paradi
in solving problems using heuristic search has led me to conclt
that constraints have a larger role to play than previot
imagined. . Specifically, a number of the architectural des
decisions can be based upon the knowledye embedded i
sufficiently rich eonstraint representation. This may lead to
automation of parts of the probiem solving architecture des
process'

In the rest of this paper, | review the evolution of heuri:
search and contraint based problem solving techniques. This
followed by a historical review of the ISIS job shop schedul
system, whose exploration led to many of the ideas formula
here. Lastly, observations about constraints are explored w
respect to their relevance in determining the architecture of
domain specifice problem solver.

2. The Evolution of Heuristic and
Constraint-Based Search
If constraints are to play a role in determining the struct
of search, it is necessary to identify those structures. This secti
reviews the evolving set of heuristic search structures, foliowed
a review of the use ot constrants in search.

2At this time, | am not so bold to conclude that all of it could be automated.



2.1. Heuristic Search

Search cxplores a network of states in which each state
represents a step along the path to a solution. The most facile use
of search anchors it at the initial state and generates a tree in a
breadth or depth first manner.

Game playing extends the concept of search to include the
heuristic rating of states using domain specilic knowledge. Due to
the large size of the search space, game playing systeins are
required to prune the examined states. To achieve this, an
evaluation function is used to rate states, in effect answering: Of
all the legal moves that can be made, what are the preferred
moves? A variety of search algorithms have been used such as
min-max, A*® (Nilsson, 1871), and B* (Berliner, 1979). An
evaluation function can be used to measure structure, i.e., ply and
tanout, reducing the technigue to a breadth or depth first search.

The search techniques described ahove assume the
application of all operators at each state. Means-ends analysis
{Newell & Simon, 1956), provides for the selection of the best
operator to reduce the difference between the current state and
the goal state. Consequently, operators are ordered in addition to
states.

Early robot planning research resulted in the formalization
of operators in the predicate calculus. The STRIPS system (Fikes
& Nilsson, 1971) represented operators as rules with
pre-conditions and post conditions. GPS-like means-end analysis
was used to plan tasks.

Simon {1962) recognized that a planning system in a real
domain will have to struggle with the size of the search space. He
proposed that search be done at differing Jevels of abstraction. By
designating search hierarchies, search can proceed at the
highest, least detailed level and use the results to constrain search
at the next, more detailed level, and so on. One could view the
ordering of differences and operators in GPS's difference table as
an implicit hierarchy. The first use of this concept was in
ABSTRIPS (Sacerdoti, 1974). By separating pre-condition
variables into levels of importance, the pre-conditions would
contain only the variables important at the current leve! of
planning. :

Another type of reasoning with differing levels of abstraction
can be found in the Hearsay-ll speech understanding system
(Erman et al, 1980). These levels were defined by data
abstractions. ’

Goal protection is another issue for search. The result of
one action may be reversed by another before the resuit could be
used in the overall achievement of the goal. To deal with this, the
HACKER system {Sussman, 1975) used a debugging approach to
fix a plan after it was constructed. A set of critics were
dynamically constructed to recognize errors and suggest
corrections. The NOAH system (Sacerdoti, 1975) took a
least-commitment approach to planning. NOAH would not
sequence operations unless forced. This approach reduced the
amount of backtracking necessary to secure a legal plan because
the current plan did not make any unnecessary sequencing
decisions.

Hayes-Roth & Hayes-Roth (1980) call the combination of
bidirectiona! problem-solving and the ability to start problem-

solving at any point in the search space (island-driving as opposed
to left to right) found in Hearsay-ll, opportunistic reasoning.
Opportunistic reasoning reduces the search Space by focussing
the planning effort in areas that are of high certainty and/or highly
constrained. By extrapolating from these “islands”, further
constraints on the more uncertain parts of the planning space

should be generated.

Problem-solving  architectures  were  extended by
incorporating the interacting experts paradigm. This paradigm
first appeared in Hearsay-ll in the form of a blackboard
architecture in which the experts communicate by generating and
testing hypotheses on a shared blackboard. A somewhat different
idea appears in Beings (Lenat, 1975) and Actors (Hewitt, 1973)
where the experts communicate directly.

Hearsay-H also introduced the concept of focus of attention
(Hayes-Roth & Lesser, 1976). Policy modules in Hearsay-li
determined the sequence of knowledge source executions. When
parts of the utterance remained uninterpreted, Hearsay-li
dynamically determined what parts of the search space required

- more attention and turned the systems resources towards
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reducing the uncertainty in those areas. By understanding what
problem-solving methods Hearsay-H had available (i.e., knowledge
sources) and its resource constraints, it would decide the best
next action. The ability to reason about "how to reason™ {or ptan)
has been calied meta-planning in MOLGEN (Stefik, 1981b) and
also appeared as meta-rules in TEIRESIAS {Davis, 1976; Davis &
Buchanan, 1977). The implementation of meta-planning in
MOLGEN used the concept of levels of representation for
operators, in addition to what was commonly found for variables.

The blackboard architecture has been extended to include
multiple blackboards, some of which are concerned with control,
others which are concerned with the problem domain (Hayes-Roth
& Hayes-Roth, 1980; Rychener et al., 1986).

Although much of the above search research was
concerned with how to reduce the search space, other aspects of
the search problem must be considered. Game playing systems
introduced search techniques for adversary-oriented games. That
is, the search would consider both the programs’ moves and the
opponents moves to determinine a next move. The concept of
adversary-oriented planning has reappeared as counter-planning
in the POLITICS system (Carboneil, 1979). This research can be
viewed as a form of goal-proteclion in which the system has to
consider what the adversary may do to prevent the system from
achieving its goals.

All of the above search research is concerned with
achieving a single goal. But another type of search is concerned
with the satistaction of multiple, possibly competing goals.
NUDGE is an early system which focused on multiple goal
satistaction (Goldstein & Robert, 1977). A heuristic approach was
developed for the domain of appointment calendar maintenance.
This research was unique because it included rules for the
relaxation of constraints. When a schedule could not be found
that satisfied the existing constraints, it used the rules to propose
alternatives (possibilities) by relaxing certain constraints, such as
preferences. In this case, the preference constraint was simply
removed. Other rules peculiar to the appointment domain were
used to alter existing calendar requirements untif a viable
schedule was produced.



Aladin, an alloy design system (Rychener et al, 1986) deals
with muitiple goal protection through over satisfaction. By over
satisfying a continuous goal initially, other goals which may
reduce its satisfaction will not reduce it enough to be "broken™.

2.2. Search with Constraints

in parallel, a somewhat divergent set of work has led to an
understanding of how to solve problems using constraints. Linear
programming , at one end of the spectrum, appears to bear little
refation to the Al theory of problem-solving. At the other end is the
constraint-directed heuristic search of REF-ARF (Fikes, 1971) and
MOLGEN (Stefik, 1981) which combines a constraint
representation with heuristic search.

One of the earlier works in constraint analysis was REF-ARF
(Fikes, 1970). Its task was similar to the linear programming task.
Given a set of linear inequalities that restrict the possible values of
a set of variables, can value assignments be found for them?
Rather than a brute force search for a set of bindings that satisfied
all the constraints (equations), REF-ARF used the constraints to
reduce the generated binding set. Hence, the system can be
viewed as a classical generate and test, by which the system was
able to take the constraints and use them in the generator to
reduce the size of the search space.

Another form of constraint is an adjacency network such as
a grammar. A grammar defines the legal sentences that can be
formed from a symbol set. The grammar can be viewed as a
constraint on the symbols that will be recognized and/or
generated. 1t defines what symbols are compatible with other
symbols when linearly ordered.  Another example is the
conceptual hierarchy of the SEMANT knowledge source of
Hearsay-li (Fox & Mostow, 1977). It is similar to a grammar, but
relaxes the sequence constraint at the phrase level, allowing
ungrammatical sentences, and sentence fragments to be
understood. A third instance is the 3D space description network
used in ARGOS (Rubin, 1978). In this case, a network was used to
define adjacencies of objects in a visual scene, and used to
constrain the set of acceptable labelings of an image.

in many real-world applications, constraints are not binary,
but are continuous. For example, in image understanding, how a
pixel is to be labeled is determined by the labels of neighboring
pixels. The knowledge of how to do neighborhood based Jabeliing
is at best uncenrtain, hence the constraints that tie pixels together
return a certainty rating for each of the possible labellings of the
pixel. The higher the rating, the more probable that the label is
correct. This type of constraint is the chief mechanism of

relaxation (Zucker, 1976). Relaxation can also be viewed as a
network constraint system. The goal is to assign a value to each
node. A nodes value is constrained by the compatibility rules on
the incident arcs. The CONSTRAINTS system (Sussman & Steele,
1981) can be viewed (ioosely) as the dual of relaxation. Behavior
rules are associated with nodes, and values with arcs. When an
arc value changes, a node's rules determine its effect (i.e., value)
on the other incident arcs. The system could recognize
inconsistencies in arc values due to the lack of uncertainty in rule
knowledge.

As search moved from single level to hierarchical, so has
relaxation and relaxation-like processes. Single levei relaxation
often did not have enough information to adequately label a
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scene. By creating multiple levels of representation, higher levels
of knowledge could be incorporated (Zucker, 18977).

The next step was to combine both binary and continuous
constraints in a hierarchical system. Again, image understanding
research has been the area for this research (Ballard et al., 1977:
Russell, 1979). The representation of constraints in imagé
understanding has also been extended to predicate calculus,
Davis {1980) makes the case that predicate caleulus is a better
representation for discrete relaxation constraints,

MOLGEN combined planning with constraint-analysis
(Stefik, 1981a). As plans were broken into sub-problems, variable
value constraints determined in one subproblem were propagated
to other subproblems. Hence, variables accumulated constraints
across subproblems before an actual binding was chosen (a least
commitment approach).

Engelman et al. (1980) in interactive frame instantiation
associate constraints with groups of slots. An interesting feature
of their approach is that constraints form buckets, each having its
own priority. Hence, constraints have a priority ordering.

' In planning driving paths through a town, McCalla (1978)
considered constraints such as possible routes, and time and
space restrictions.

Fukumori (1980) used a constraint-based approach to
determine the arrival and departure times of trains at stations.
Trains initially have fuzzy times assigned (i.e., a time span or belt).
Constraints then reduce the size of the belt. The problem is much
simpler than the general scheduling problem: trains had only one
route and two resources, a track and stations. The fuzziness of
times is similar to that used in Hearsay-ll to denote the time span
of an hypothesis when its boundaries were uncertain.

The GARI system {Descotte & Latombe, 1985) combines
constraint satistaction with least committment. By evaluating
constraints in priority order, precendence was introduced into
parallel process plans. If the problem became overconstrained,
the las} constraint introduced, which is the lowest priority
constraint, would be relaxed.

The WRIGHT system (Baykan & Fox, 1986) approaches the
problem of kitchen design as a search probiem where constraints
define the search operators. Each constraint has a measure of
uncertainty which signifies the level of uncertainty in the search
space if the constraint is satisfied. Hence, the most certain
constraint is chosen to satisfy at each step, with the hope the the
resultant search space will be less complex.

2.3. Topological Assumption

The principal assumption which underlies, though implicitly,
the success of these search structures is that understanding a
problem's search space will enable the selection of effective and
efficient search structures. Constraints appear to participate
directly in search, as evaluation functions, as operators, and in
other important ways, which will be discussed in the rest of the

paper.

Al shares this assumption with Operations Research (OR).
An examination of mathematical programming recognizes mat_OR
has also been pursuing the problem of how to satisfy constraints



in combinatorially complex search spaces. The Simplex and the
Beli L.abs algorithms for solving linear constraint problems are the
result of a topological analysis of the search space. Simplex
identifies that an optimal solution can be found by visiting the
vertices, while the Bell Labs solution assumes a multi-dimensional
topology where jumps can be made through space between
points.

OR’s success in mathematical programming is restricted to
the special class of linear problems. For non-linear problems, OR
uses heuristics to guide the search process. In fact, recent
advances appear to parailel those of Al. For example, Lagrangian
relaxation is a hierarchical search technique which abstracts the
complex non-linear problem to a higher level linear model whose
solution guides search at the next ievel.

The constraint perspective investigated in the rest of the
paper can be viewed as being in contention with that of Lenat
(1982). He believes that the structure of search is unimportant:
knowledge is everything. He fails to recognize that implicit in his
heuristics is knowledge of structure. Just as Lenat looks for a
richness in the representation of heuristics, | am looking for a
richness in the representation of constraints, and an
understanding of how they impact the structures used in a
problem solving architecture. )

3. Role of Constraints in Job-Shop
Scheduling :

In 1980, | was asked to explore the application of Al
techniques to a turbine component plant's job-shop scheduling
problem. The primary product of the plant was steam turbine
blades. A turbine blade is a complex three dimensional object
produced by a sequence of forging, milling, grinding and finishing
operations to tolerances of a thousandth of an inch. Thousands of
different styles of blades are produced in the plant, much of them
as replacements in turbines currently in service.

The plant continuously received orders for one to a
thousand blades at a time. Orders fell into at least six categories:

1. Forced outages (FO): Orders to replace blades which
malfunctioned during operation. Itis important to ship
these orders as soon as possible, no matter what the
cost.

2. Critical replacement (CR) and Ship Direct (SD):
Orders to replace blades during scheduled
maintenance. Advance warning is provided, but the
blades must arrive on time. '

3. Service and shop orders (SO, SH): Orders for new
turbines. Lead times of up to three years may be
known.

4. Stock orders (ST): Order for blades to be placed in
stock for future needs. .

The portion of the plant studied has from 100 to 200 orders in
process at any time.

Parts are produced according to a process routing. A
routing specifies a sequence of operations on the part. An
operation is an activity which defines:

¢ Resources required such as tools, materials, fixtures,
and machines, )

o Machine setup and run times, and
o Labor requirements.

In the plant, each part number has one or more process
routings containing ten or more operations®, Process routing
variations may be as simple as substituting a different machine, or

-as complex as changing the manufacturing process. Further
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more, the resources needed for an operation may also be needed
by other operations in the shop.

In Al terms, job-shop scheduling is a planning problem with
the following characteristics:

eltis a‘rime-based planning problem (i.e., schedutling)
in which activities must be selected, sequenced, and
assigned resources and time of execution.

o it is a multi-agent planning problem. Each order
represents a separate agent for which a
plan/schedule is to be created. The number of agents
to be scheduled is in the hundreds.

e The agents are uncooperative. Each is attempting to
maximize its own goals. :

® Resource contention is high, hence closely coupling
decisions.

e Search is combinatorially explosive. 85 orders moving
through ten operations without alternatives, with a
single substitutable machine for each operation and
no machine idle time has over 10%° possible
schedules.

An expert systems approach was used to construct the
scheduler. This approach assumed that one or more experts
could be interviewed lo acquire the rules which govern their
decision process. During our discussions, we found that orders.
were not scheduied in a uniform manner. Each scheduling choice
entailed side effects whose imponance varied by order. One
factor that continuously appeared was the reliance of the
scheduler on information other than due dates, process routings,
and machine availability. The types and sources of this
information were found by examining the documents issued by the
scheduler. A schedule was distributed to persons in each
department in the plant, Each recipient could provide information-
which could alter the existing schedule. In support of this
observation, we found that the scheduler was spending 10%-20%
of his time scheduling, and 80%-90% of his time communicating
with other employees to determine what.additional “constraints”
could affect an order's schedule. These constraints included
operation precedence, operation alternatives, operation
preferences, machine alternatives and preferences, tool
availability, fixture availability, NC program availability, order
sequencing, setup time reduction, machine breakdowns, machine
capabilities, work-in-process time, due dates, start dates, shop
stability, cost, quality, and personnel capabilities/availability.

From this analysis, | concluded that the object of scheduling
is not only meeting due dates, but satistying the many constraints
found in various parts of the plant. Scheduling is not a distinct
function, separate from the rest of the plant, but is highly

3Multiple process routings correspond to a
representing a separate plan.

network of activities, sach path



connected to and dependent upon decisions being made
elsewhere in the plant. The added complexity imposed by these
constraints leads schedulers to produce inefficient schedules.
Indicators such as high work-in-process, tardiness, and low
machine utilization support this conclusion®. Hence, any solution
to the job-shop scheduling prcblem must identify the set of
schedwlding constraints, and their affect on the scheduling
process.

Once the issue of designing a constraint-directed
scheduling system was identified, a decision was made to solve
the problem by constructing the ISIS family of systems. The
purpose of the family is to investigate the performance of
successively more sophisticated search architectures (Fox &
Reddy, 1981). At each stage experiments have been run to
measurze the effectiveness of the architecture®. The rest of this
section describes the family of systems called ISIS.

3.1.1S1S-0

3.1.1.1SIS-0 Goals

In the fall of 1880, work began on 1SIS-0. The purpose was
to identify the types of constraints used by schedulers, and the
extent to which they could prune the space of alternative

schedules.
3.1.2.151S-0 System Architecture

ISIS-0 employed a simpie best-first, backtracking approach
using constraints as a dynamically defined evaluation function.
" The salient points of the search architecture include:
eEach order was scheduled separately, in priority

order, as determined by a combination of order
category and due date.

e Search could be performed forward from the order’s
start date or backward from the order's due date.

s Operators would generate alternative operations,
machines, and operation times. The shop was loaded
hence the availability of resources at a particular time
was restricted.

e States represent partial schedulés, A path through the
network determines a coinplete schedule.

o Constraints were either imposed exogenously by the
scheduling person upon the system, or were already
embedded in the factory model and their applicability
determined at each point in the search space.

e Propagation of constraints was performed when
scheduling decisions early in the search path
restricted decisions further on.

ISIS-0 was completed in December 1980 and partially
demonstrated, bugs and all, at the sponsoring plant.

4“ is unfair to measure a scheduler's preformance based on the above
measures alone. Our analysis has shown that scheduling is a complex constraint
satisfaction problem, where the above indicators illustrate only a subset of
constraints that the scheduler must consider. Scheduters are expert in acquiring
and "juggling” the satisfaction of constraints.

5Tc:o few Al systems today attempt to measure their effectiveness.
. D
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3.1.3. Constraint Categories

Research on version 0 of ISIS yieided five broad categories
of constraints. The first category encountered is what | call an
Organizational Goal. Part of the organization planning process
is the generation of measures of how the organization is to
perform. These measures act as constraints on one or more
organization variables. An organizational goal constraint can be
viewed as an expected value of some organization variable. For

example: -
o Due Dates: A major concern of a factory is meeting

due dates. The lateness of an order alfects customer
satisfaction.

¢ Work-In-Process: Work-in-process (WIP) inventory
levels are another concern. WIP inventory represents
a substantial investment in raw materials and added
value. These costs are not recoverable until delivery.
Hence, reducing WIP time is desirable.

e Resource Levels: Another concern is maintaining
adequate levels of resources necessary to sustain
operations. Resources include personnel, raw
materials, tools, etc. Each resource will have
associated constraints. For example, labor size must
be smoothed over a month’s interval, or raw materials
inventory may have to be limiled to a two day supply.

e Costs: Cost reduction can be another important
goal. Costs may include material costs, wages, and
lost opportunity. Reducing costs may help achieve
other goals such as stabilization of the work force.

e Production Levels: Advance planning also sets
production goals for each cost center in the plant.
This serves two functions: it designates the primary
facilities of the plant by specifying higher production
goals, and also specifies a preliminary budget by
predicting how much the plant will produce. One
outcome of this activity is a forecast of the work shifts
that will be run in various areas of the plant.

e Shop Stability: Shop stability is a function of the
number of revisions to a schedule and the amount of
disturbance in preparation caused by these revisions.
It is an artifact of the time taken to communicate
change in the plant and the preparation time.

One can view all organizational goal constraints as being
approximations of a simpie profit constraint. The goal of an
organization is to maximize profits. Scheduling decisions are then
made on the basis of current and future costs incurred. For
example, nct meeting a due date may result in the loss of a
customer and, in turn, erosion of profits. The longer the work in
process time, the greater the carrying charge will be for raw
materials and value-added operations. Maintaining a designated
production level may distribute the cost of the capital equipment in
a uniform manner. In practice, most of these costs cannot be
accurately determined and must therefore be estimated.

Physical constraints determine a second category of
constraint. Physical constraints specify characteristics which limit
functionality. For example, the length of a milling machine’s
workbed may limit the types of turbine blades for which it can be
used for. Similarly, there are specific machine set-up and



processing times associated with different

operaticns.

manutacturing

Causal restrictions constitute a third category of
constraint. They define what conditions must be satisfied before
initiating an operation. Examples of causal constraints include:

* Precedence: A process routing is a sequence of
operations. A precedence constraint on an operation
states that another operation must take place before
{or after) it. There may be further modifiers on the
constraint in terms of minimum or maximum time
between operations, product temperature io be
maintained, etc.

* Resource Requirements: Another causal
constraint is the specification of resources that must
be present before or during the execution ot a
process. For example, a :nilling operation requires
the presence of certain tools, an operator, fixtures,
etc.

A fourth category of constraint is concerned with the
availability of resources. As resources are assigned to specific
operations during the production of a schedule, constraints
declaring the resources unavailable for other uses during the
relevant time periods must be generated and associated with
these resources. Resource availability is also constrained by the
work shifts designated in the plant, machine maintenance
schedules, and other machine down times (e.g. breakdowns).

A fifth category of constraint iz preference. A preference
constraint can also be viewed as an abstraction of other types of
constraints. Consider a preference for a machine. It expresses a
floor supervisor’s desire that one machine be used instead of
another. The reason for the preference may be due to cost or
quality, but sufficient information does not exist to derive actual
costs. In addition to machine preferences, operation preferences,
and order sequencing preferences exemplify this type of
constraint.

Figure lists the variety of constraints we have identified as
well as the categories we have used to classify them.

Constraint Org. Goal Physical Causal Pref. Avail.

Operation alternatives x

Operation Preferences x
Machine alternatives x

Machine Preferences x
Machine physical constraints x

Set-up times x x

Queue ordering preferences x
Queuve stability x

Due date
Work-in-process x

Tool requirement x

Material requirement x

Personnel requirement x

Resource reservations x
Shitts
Down time - x
Productivity achieved
Cost

»

L]
x

Productivity goals
Quality x
Inter-operation transfer times x

o oM M X

3.1.4. Constraint-Directed Search Concepts
Constraint-Directed Evaluation. iSIS-1 dynamically

constructed a different evaluation function for each state in the

search space. It constructs the evaluation function out of the

«
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constraints which have been resolved to be applicable to the state
under consideration. Each constraint contributed both an
importance (i.e., weight) and utility. Constraints were resolved by
extracting them from the resources and operations defined in the
particular state.

3.2, 1S1S8-1

3.2.1.1S1S-1 Goals

ISIS-0 identified the broad categories of constraints but
more work on representation and search architecture was
required. In January 1981, work on the second version of ISIS
began. The intent of this system was twofeld. Given the central
role of constraints to determine a job shop schedule, a major
thrust of our research focused on the identification and
characterization of the constraint knowledge required to support
an effective constraint-directed search. Consider the imposition of
a due date. In its simplest form, this constraint would be
represented by a date alone, the implication being that the job be
shipped on that date. In actuality, however, due dates may not
always be met, and such a representation provides no information
as lo how to proceed in these situations. An appropriate
representation must include the additional information about the
due date that may be necessary in constructing a satisfactory
schedule. For example:

¢ How important is the constraint relative to the other
known constraints? Is it more important to satisfy the
cost constraint than the due date?

elf | cannot find a schedule which satisfies the
constraint, are there relaxations of_ the constraint
which can be satisfied. l.e., is there another due date
which is almost as good?

o If there are relaxations available for the constraint, are
any more preferred? Perhaps | would rather ship the

order early rather than late.
e It I chose a particular relaxation, how will it affect the

other constraints | am trying 1o satisfy? Will meeting
the due date negatively or positively affect the cost of
the order?

s Under what conditions am | obliged to satisfy a
constraint? What if there are two constraints specified
for the same variable, i.e., two different due date for
the same iot? Or there may two different due dates
depending on the time of year.

In essence, a constraint is not simply a restriction on the value of a
slot for example, but the aggregation of a variety of knowledge
used in the reasoning process.

The second goal was to measure the effectiveness of the a
modified Beam search (Lowerre, 1976) architecture which uses
constraints.

3.2.2.1S1S-1 System Architecture
The salient points of the architecture include:



¢ Search is divided into three levels: Order selection,
resource analysis, and resource assignment,

o Each level is composed of three phases: A pre-search
analysis phase which constructs the problem, a
search phase which solves the problem, and a post.
search analysis phase which determines the
acceptability of the solution. In each phase, ISIS-1
uses constraints to bound, guide, and analyze the
search.

e The order selection level is responsible for selecting
the next unscheduled order to be added to the
existing shop schedule. lts selection is made
according to a prioritization algorilhim that considers
order type and requested due dates. The selected
order is passed to the resource analysis level for
scheduling.

e The resource analysis level selects a particular
routing for the order and assigns reservation time
bounds to the resources required to produce it. Pre-
search analysis begins with an examination of the
order’s constraints, resulting in the determination of
the scheduting direction (either forward from the start
date or backward from the due date), the creation of
any missing constraints (e.g. due dates, work-in-

process), -and the selection of the set of search
operators which will generate the search space. A

beam search is then performed using the selected set
of search operators. The search space to be explored
is composed of states which represent partial
scheduies. The application of operators to states
results in the creation of new states which further
specify the partial scheduies under development,
Depending on the results of pre-search analysis, the
search proceeds either forward or backward through
the set of allowable routings for the order. An operator
that generates states representing  alternative
operations initiates the search, in this case generating
alternative initial (or final) operations.

Once a state specifying an operation has been
generated, other operators extend the search by
creating new states which bind a machine and/or
execution time to the operation. A variety of
alternatives exist for each type of operator. For
example, two operators have been tested for
choosing the execution time of an operation. The
"eager reserver” operator chooses the earliest
possible reservation for the operation's required
resources, and the "wait and see” operator tentatively
reserves as much time as available, leaving the final
decision to resource selection level, This enables the
adjustment of reservations in order to reduce work-in-
process time. Alternative resources (e.g. tools,
materials, etc.) are generated by other operators.
Each state in the search space is rated by the set of
constraints found {resolved) to be relevant to the state
and its ancestors. This set i determined by collecting
the constraints attached to each object (e.g. machine,
tool, order, etc.) specitied by the state and applying
resolution mechanisms. Each constraint assigns a
utility between 0 and 2 to a state; zero signifies that
the state is not admissible, 1 signifies indifference, 2

maximal support. The rating of a state with multiple
constraints is the mean of the utitities assigned by the
constituent constraints, each weighted by the the
importance of the assigning constraint.

Once a set of candidate schedules has been
generated, a rule-based post search analysis
examines the candidates to determine if one is
acceptable (a function of the ratings assigned to the
schedules during the search). If no acceptable
schedules are found, then diagnosis is performed.
First, the schedules are examined to determine atype
of scheduling error and the appropriate repair. intra-
level repair may result in the re-instantiation of the
level's search. Pre-analysis is performed again to
alter the set of operators and constraints for
rescheduling the order. Inter-level repair is initiated if
diagnosis determinss that the poor solutions were
Caused by constraint satisfaction decisions made at
another level. Inter-leval diagnosis can be performed
by analyzing the inieraction relations linking
constraints. A poor constraint decision at a higher

" level can be determined by the utilities of constraints

affected by it at a lower level, and an alternative value
can be chosen.

This level outputs reservation time bounds for each
resource required for the operations in the chosen

schedule.

® The resource selection ievel establishes actual
reservations for the resources required by the
selected operations which minimize the work-in-
process time. The algorithm takes the time bounds for
each resource and proceeds to shift the availability of
the resoruces within the bounds so that a schedute is
produced which minimizes work-in-process time.

* In addition to incrementally scheduling orders for
production as they are received by the shop, the
ISIS-1 search architecture could be exploited in a
reactive manner. As unexpected events (e.g. machine
breakdowns) cause disruptions in the existing shop
schedule, SIS-1 npeeded only to reschedule the
affected  orders. Previous reservations were
transformed into preference constraints so that the
new search for a schedule for the affected order
would follow as much as possibie to original schedule,
This results in a minimal amount of change, and
provides continuity in the shop schedules generated
over time,

3.2.3. Constraint Representation

Let us examine the representational issues raised by these
examples and, correspondingly, the salient features of the 18IS
constraint representation (additional details may be found in Fox

{1883) and Smith (1983)).
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One of the central issues that must be addressed by the
constraint representation is conflict. Consider cost and due-date
constraints. The former may require reduction of costs while the
latter may require shipping the order in a short period of time. To
accomplish the latter, faster, more expensive machines may be
required, thereby causing a conflict with the former. In short, it
may not be possibie to satisfy both constraints, in whic
or both must be relaxed. This is implicitly accos

h case one
mplished in



mathematical programming and dacision theory by means of utility
functions and the specifications of relaxation through bounds on a
variable's value. In Al, bounds on a variable are typically specified
by predicates (Engleman, 80; Stefik, 81) or choice sets (Steele, 80;
Waltz, 75).

Given the diverse in the types of constraints present in the
job shop scheduling domain, it is necessary to provide a variety of
forms for specifying relaxations’ (i.e. alternative values) of
constraints. Accordingly, relaxations may be defined within the
ISIS constraint representation as either predicates or choice sets,
which, in the latter case, are further distinguished as discrete or
continuous. However, the simple specification of bounds on a
variable provides no means of differentiating between the values
falling within these bounds, a capability that is required by ISIS
both for generating plausible alternative schedules for
consideration and for effectively discriminating among alternative
schedules that have been generated to resolve a given conflict,
The necessary knowledge is provided by associating a utility with
each relaxation specified in a constraint, indicative of its
preference among the alternatives available. The utility of a
relaxation may have more than one interpretation, which can be
problematic. In the case of the due date constraint, it represents a
preference for shipping on time rather than late. in the case of
shifts it represents the degree of difficulty with which another
should can be added. In both cases, the focus is on the difference
in utility between alternative relaxations. This difference is called
the elasticity of the relaxaiion. The greater the decrease in utility,
the lower the elasticity. If the information were avaiiable, the utility
measure would reduce to a cost function.

The relative influence to be exerted by a given constraint,
ie. its importance, is a second aspect of the constraint
representation. Not all constraints are of equal importance. The
due date constraint associated with high priority orders, for
example, is likely to be more important than an operation
preference constraint.  Moreover, the relative importance of
different types of constraints may vary from order to order. In one
order, the due date may be important, and in another, cost may be
important. Both of these forms of differentiation are expressible
within the ISIS constraint representation; the former through the
association of an absolute measure of importance with each
constraint, and the latter by the use of scheduling goals which
partition the constraints into importance classes and assign
weights to be distributed amongst each partition’s members. This
knowledge enables ISIS to base its choices of which constraints to
relax on the relative influence exerted by various constraints.

A third form of constraint knowledge explicitly represented
is constraint relevance, which defines the conditions under which
a constraint should be applied. Given that constraints are
attached directly to the schemata, slots, and/or values they
constrain, constraint relevance can be determined to a large
degree by the proximity of constraints to the portion of the model
currently under consideration. A finer level of discrimination is
provided by associating a specific procedural test with each
constraint. However, there are situations in which problems arise
if the applicability of constraints is based solely on their context

sensitivity to the current situation. First, many constraints tend to
vary over time. The number of shilts, for example, fluctuates
according to production levels set in the plant. Consequently,
difterent variants of the same constraint type may be applicable
during different pericds of time. Within the SIS constraint

representation these situations are handled by associating a
temporal scope with each variant. organizing the coliection of
variants according to the temporal relationships among them, and
providing a resolution mechanism that exploits the organization.
A second problem involves inconsistencies that might arise with
respect to a given constraint type. Since ISIS is intended as a
multiple user system, different variants of the same constraint type
could quite possibly be created and attached to the same object in
the model. For example, both the material and marketing
departments may place different and conflicting due date
constraints on the same order. In this case, a first step has been
taken in exploiting an authority model of the organization to
resolve such inconsistencies.

A fourth aspect of the constraint representation concerns
the interactions amongst constraints. Constraints do not exist
independently of one another, but rather the satisfaction of a
given constraint will typically have a positive or negative etfect on
the ability to satisty other constraints. For example, removing a
machine’s second shift may decrease costs but may also cause an
order to miss its due date. These interdependencies are
expressed as relations within the ISIS constraint representation,
with an associated sensitivity measure indicating the extent and
direction of the interaction. Knowledge of these interactions is
used to diagnose the causes of unsatisfactory final solutions
proposed by the system, and to suggest relaxations to related
constraints which may yield better results.

A final concern is that of constraint generation. Many
constraints are introduced dynamically as production of the
schedule proceeds. For example, a decision to schedule a
particular operation during a particular interval of time imposes
bounds on the scheduling decisions that must be made for other
operations in the production process. The dynamic creation and
propagation of constraints is accomplished by attaching
constraint generaters to appropriate relations in the model,

Consider a constraint that restricts the length of a turbine
blade that can be milled on a machine to less than 28.5 inches.
This can be represented by the schema
product-length-requirement which is a combination of a
required-constraint and a binary-att ribute-constraint.

product-length-requiremant specifies that the foil-length
of a blade is being constrained. It is obligated to being used
during an airfoil-operation, and it nzagatively affects the airfoil-
machine-preference constraint. The actual constraint is specified
in product-length-constraint. if the constraint is satisfied then
the utility returned will be 1.2, otherwise 0. The predicate of the
requirement is specified by the product-iength-predicate It
specifies that any blade must have a foil-length less than 28.5
units, One potential probiem in constructing this constraint is
enabling the predicate to refer to slots in the root constraint {i.e.,
product-length-requirement). You will notice that the predicate
schema is linked to the requirement schema via a PREDICATE-OF
relation (inverse of predicate), and that the requirement schema Is
linked to the range constraint by a CONSTRAINT-OF relation
(inverse of constrained-by). Each of these relations allow the
inheritance of slots and  values. Hence the
product-length-predicate inherits the DOMAIN, and RELATION
slots from product-length-requirement.

The product-iength-requirement is not attached to the
FOIL-LENGTH slot of all products, but is attached instead to the
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airfoil-operation schema (i.e., contained in the constraint slot).
It is up to ISIS to retrieve the constiaint from the operation’s
CONSTRAINT slot, and apply its tester function to the search state

{{ product-length-requirement

IS-A: range-constraint

DURING: airfoil-operation

CONSTRAINS: airfoil-machine-preference
direction: neg

DOMAIN: .
range: (type "is-a” "blade")

RELATION: foil-length

CONSTRAINED-BY: product-length-constraint }}

Figure 3-1: product-length-requirement Schema

{{ product-length-constraint
CONSTRAINT-OF: product-length-requirement
INSTANCE: required-constraint
RELA XATION-TYPE: required
TRUE-UTILITY: 1.2
PREDICATE: product-length-predicate }}

Figure 3-2: product-length-constraint Schema

“{{ product-length-predicate

PREDICATYE-OF: product-length-constraint
INSTANCE: binary-attribute-predicate
RANGE-2: 28.5

PREDICATE: lessp }}

Figure 3-3: product-length-predicate Schema

and constraint. The tester retrieves the blade being scheduled
and places it in the domain slot, and applies the contents of the
APPLY slot in the predicate to its schema.

Another manufacturing constraint is the specification of
shifts. A shift defines the time that a work center is availabe for
work. Historically, it has been discrete, specitying one, two, or
three shifts during a work day. In addition, the number of shifts on
a week end may difter from that during a week day. Therefore, a
shift constraint should specify what the normal available shifts are,
what the relaxations are, and the period during which the shift
constraint should be interpreted.

A shift specification may be specified as a
discrete-constraint, The CONSISTENCY of the slot is
exclusive, specifying that only one shift constraint may exist for
the siot. No alternatives are specified at this point.

3

{{ shift-constraint
1S-A: range-consiraint
DOMAIN:
range: (or (TYPE is-a machine) (TYPE is-a work-center))
RELATION: shift }} ’

Figure 3-4: shift-constraint Schema
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{{ shift-constraint-spec
is-a: discrete-constraint
CONSISTENCY: exclusive }}
Figure 3-5: shift-constraint-spec Schema

{{ shift
START-TIME:
END-TIME:
WORK-WEEK: }}
Figure 3-6: shift Schema

An example of a shift constraint 13 that specified for a winti
machine

{{ wmt1-shift
1S-A: shift-constraint
DOMAIN: wmf1
RELATION: shift
CONSTRAINED-BY: wmf1-shift-constraint

n

Figure 3-7: wmt1-shift Schema

The range constraint specifies the domazin of the constraint
and relation. That is, the constraint affects the sHIFT slot of the
wmi1. The contents of the CONSTRAINED-BY slot is the name of
the constraint: wmf1-shiit-constraint, It describes
a start-time, end-time, and day for the shift.

The shift constraint is not a schema constraint. Each
relaxation completely specifies the start-time, end-time, and work
week. They cannot be relaxed individually. The contents of the
RELAXATION slot specify another shift, wmf1-shift-relaxation, to
be used in addition to the first constraint (the DISCRETE-TYPE of the
constraint is inclusive).

The constraint is interpreted by taking the value of the
TESTER slot from wmf1-shift (not shown) and applying it to the
pair {(state> wmif1-shift). The tester will retrieve the discrete
constraint and find the value which matches the value under

{{ wmf1-shift-constraint
INSTANCE: shift-constraint-spec
RELAXATION-VALUE: {{ INSTANCE shift

START-TIME: 8:00

END-TIME: 16:00

WORK-WEEK: (OR monday tuesday wed
thursday friday) }}

RELAXATION-UTILITY: 2
RELAXATION: wmf1-shift-relaxation }}

Figure 3-8: wmf1-shift-constraint Schema

consideration (i.e., specified inthe state) and return the relaxation
utility.



{{ wmt1-shift-relaxation
INSTANCE: shift-constraint
RELAXATION-VALUE: {{ INSTANCE shift

START-TIME: 16:00
END-TIME: 24:.00
WORK-WEEK: (OR monday tuesday wed

thursday friday) n
RELAXATION-UTILITY: 1.2
DISCRETE-TYPE: inclusive  }}

Figure 3-9: wmft1-shift-relaxation Schema

The basic due-date-constraint is a continuous value
constraint which constrains the due-date slot of a lot. The choice
of a duedate has a  utility specified by the
PIECE-WISE-LINEAR-UTILITY. The utility is specified by (shipping-
lateness utility) pairs. An example of its use is a due date for
forced outage orders. The tester for due-date-constraints takes
the search state and the censtraint as parameters, retrieves the
due date being considered int the state, or predicts one, and
applies the value of the utility function slot to the due date. The
utility function uses the PIECE-WISE-LINER-UTILITY value to
interpolate and return a utility.

fo-due-date specifies that the utility of the due date chosen
is 2 if it less than or equal to the the requested due date. it is
linearly decreasing to 0.2 if it greater than O days late and less than
7. Andis 0.2 if greater than 7 days late.

{{ due-date-constraint
1S-A! range-constraint
DOMAIN:
range: (type “is-a” "lot")
RELATION: due-date
CONSTRAINED-BY;
range: (type "is-a" "due-date-constraint™)
TESTER: due-date-tester
PRIORITY-CLASS: }}

Figure 3-10: due-date-constraint Schema

{{ due-date-const raint-spec
IS-A: continuous-constraint
CONSISTENCY: exclusive
UTILITY-FUNCTION: interpolate
PIECE-WISE-LINEAR-UTILITY: }}

Figure 3-11: due-date-constraint-spec Schema

{{ to-due-date
1S-A: due-date-constraint
PRIORITY-CLASS: forced-outage
CONSTRAINED-BY: {{ INSTANCE due-date-constraint
. PIECE-WISE-LINEAR-UTILITY: ( (O 2)(702)

3.2.4. Performance of {SIS-1

Experiments were performed with a real plant model and
order data. In each experiment, an empty job shop was loaded
with a representative set of 85 orders with arrival times distributed
over a period of two years. The various types of constraint
knowledge influencing the development of schedules in these
experiments included alternative operations, alternative machines,
requested due dates, requested start dates, operation time
bounds, order priority classification, (with orders falling into 4
priority classes), work-in-process restrictions, queue ordering
constraints to reduce setup time, machine constraints on product
form and length, resource availability, and shop stability
(minimizing pre-emption).

A number of experiments were performed. These
experiments explored the effects of alternative constraints,
a!ternative search operators, and beam width size. A detailed
discussion of all experiments may be found in Fox (1983).

The gantt chart® shown in Figure 3-1 depicts a schedule
gﬁnerated by 1SIS-1.
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Figure 3-1: Version 1 Gantt Chart

The schedule is a'poor one; 65 of the 85 orders scheduled
were tardy. To compound the problem, order tardiness led to high
work-in-process times {an average of 305.15 days) with an overall
makespan’ of 857.4 days. The reason for these results stems from
the inability of the beam search to anticipate the bottleneck in the
"final straightening arca” of the plant (the fts®* machine on the
gantt chart in Figure 3-1) during the early stages of its search. Had
the bottieneck operation been known in advance, orders could
have been started closer to the time they were received by the
plant and scheduled earlier through the bottieneck operation.

Beam search sizes between 5 and 20 were tested. Sizes
greater than 10 had little affect on the outcome, while sizes less
than 10 performed more poorly. -

3.2.5. Constraint-Directed Search Concepts

Constraints as Generators. Constraints which specify
precedence between operations and requirements for resources
can be interpreted as search operators. For example, a constraint
which specifies that drilling must following milling can be
interpreted as operator which extends a state for which milling is
defined to be the operation into a new state for which drilling is the
successor operation. Each constraint in ISIS-1 has code which
interprets the constraint as an operator to be used in search.

6Each row represents a machine, and each column a week. If a position in the
gantt chart is empty, then the machine is idle for that week. i a position contains
an "o", then it is ulilized for less than 50% of of its capacity. I the position
contains a "@", then over 50% of its capacity is utilized. Machines that are
encountered earlier in the process routings appear closer to the top of the chart.

7 .
Makespan is the time taken to complete all orders.
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1SIS-1's presearch analysis selects the operators from a subset of
available constraints.

Constraints Bound the Search Space. The omission of
constraints by pre-search analysis (e.g., alternative shifts), when
defining operators, results in a bounding of the search space.
This restriction on the size of the search space is intentional but
can be retaxed by post-search analysis.

Generative Constraint Relaxation. The joint satisfaction
of all constraints simultaneously at one time is impossible due to
confiict among constraints. Relaxation is the process by which
alternative solutions arc explored by relaxing the specification of
the constraints. Consequently, it provides a satisficing approach
to constraint satisfaction. Generative relaxation is one type of
relaxation process. It is a process by which alternative solutions
are generated during the search process. This is accomplished by
extending the code which interprets a constraint as an operator so
thal it uses the specified relaxations to generate alternative
successor states which define alternative bindings of variables. In
some cases, the number of relaxations are large (e.g., a
continuous constraint such as start time of an operation),
requiring the code to use a relaxation's utility to determine
whether it is good enough to be generated.

Constraint Resolution and Dynamic Evaluation. 1S1S-1
extends the concept of dynamic evaluation function construction
by utilizing a more sophisticated form of constraint resolution.

Local Resolution. 1SIS-2 dynamically resolves the set of
applicable constraints at each search state.  Resolution is
perfcrmed by examining each schema (i.e., operation, machine,
etc.) in the current state description. The contents of any
CONSTRAINT slots, or constraints attached to any slots which
enable the schema are added to the local resolution set.
Constraints may originate from four sources:

Model-Based: Constraints may be embedded in any resource or
activity in the factory model. For example,
there may be physical constraints associated
with a machine, sequencing constraints
associated with an operation, queue ordering
constraints associated with certain work
centers.

Lateral Imposition: Constraints can also be propagated lateraily
during the search. A decision made earlier in
the elaboration of a schedule may result in a
constraint being attached to the lot that
restricts a choice point further on in the
search.

Exogenous Imposition: The user may also create and implant
' constraints.  These constraints can be
attached to anywhere in the model, or be
globally attached so that it is considered at
each search state.

Global Resolution. The rating of a state is a rating of the
partial schedule up to the current state, and not the single choice
represented by the state. Hence, the rating of a state must include
not only the local constraints but the constraints applied to all the
states along the partial schedule ending at the current state. Not
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all the constraints locally resovied at each state along the path are
globally resolved. Consider the due-date-constraint (figure
5-10). It is a classic evaluation function as defined in heuristic
search. Part of the constraint calculates the work-in-process time
of the lot to the current state, and the other part predicts the
remaining work-in-process time to the end state. Each time the
constraint is applied, it is a better estimator of the work-in-process
time, and should overide applications of the same constraint
earlier in the partial schedule. On the other hand, the
queue-stability constraint is applied at each state which binds a
queue position. It rates the state by how much it destabilizes
existing queue reservations. The greater the destabilization, the
lower the rating. This constraint measures a decision made at that
state, and remains invariant over future states, since any future
states cannot affect an earlier state.

Constraints are classified into two categories: invariant and
transient. All invariant constraints participate in the globally
resolved constraint set, and only the most recent version of

transient constraints participate. )
Relative Resolution. All constraints are not created equal.

Relative resolution differentially interprets the resolved constraints
by partitioning the constraint set according to the applicable
scheduling goal. A scheduling goal partitions the constraint set
and defines an importance for each partition. The importance is
then uniformly divided amongst the constraints in the partition.

Analytic Relaxation via Constraint Diagnosis and
Repair. The completion of the beam search may result in
schedules which are not acceptable due to the poor satisfaction of
many of its important constraints. Analytic relaxation is defined to
be the process by which the results of the search are examined to
determine which "peep hole” repair of a constraint will generate a
significant increase it the overall constraint rating of a schedule.
In addition to the procedural embedding of situational knowledge
in the form of rules (e.g., IF you cannot meet the due date THEN
relax the start date constraint by starting earlier), a declarative
approach was taken. Each constraint may have a constrains
relation which links it to another constraint. If the first constraint
was not acceptably satisfied (e.g., due date), then by searching
along the constrains relation another constraint could be found
(e.g., shifts) whose further relaxation or strengthening could
impact the first constraint. Consequently, post-analysis could
suggest the increase in number of shifts to pre-search analysis
and have the search re-run.

3.3.1S51S-2

3.3.1. ISI5-2 Goals

ISIS-1 identified the representational requirements of
constraints, and their use in directing search. Neither changes in
beam width, nor alterations to existing constraints were able to
significantly affect the degree to which due date and work in
process constraints were unsatisfied. The cause of this problem
lay with the combinatorics of the search space combined with the

horizon effect. 1SIS-2 was designed reduce the impact the horizon
effect has on the quality of the schedules.

3.3.2.IS1S-2 Architecture

ISIS-2 constructs schedules by performing a hierarchical,
constraint-directed search in the space of alternative schedules.
An additional level was added between order seiection and



resource analysis: capacily analysis. The purpose of this level was
to consider a subset of the more important constraints in order to
"look ahead™ so that capacity bolilenecks could be identified in a
smaller search space.

Capacity analysis takes as input the selected order from the
order selecticn level and uses the following subset of constraints
in its search: due date, start date, operation precedence and
alternatives, machine requirements, and machine reservations.
All other constraints are ignored. The capacity analysis level
performs a dynamic programming analysis of the plant based on
current capacity constraints. It determines the earliest start time
and latest finish time for each operation of the selected order, as
bounded by the order’s start and due date. The times generated
at this level are codified as operation time bound constraints
which hierarchically propagated to the resource analysis jevel.

3.3.3.1S1S-2 Performance

1818-2’s inclusion of a level of abstraction in the top down
search hierarchy had a significant impact on the results,
evidenced by the increased satisfaction of the due date
constraints.

The average utility assigned by the due date constraint to
lower priority "service orders”, for example, almost doubled,
rising from a value of 0.46 in the first experiment to a value of 0,80,
The total number of tardy orders was reduced to 14. Moreover, a
much lower average work-in-process time of 186.73 days was
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Figure 3-2: Version 7 Gantt Chart

achieved, resulting in an overall. makespan of 583.25 days. In this
case, inadequate machine capacity in the “final straightening
area” (fts*) appeared to be the principal limitation affecting order
tardiness.

3.3.4. Constraint-Directed Search Concepts

Periscoping. The improved performance of ISIS-2 rests on
the ability of the capacity analysis level to identify bottlenecks and
encode their effect in the form of operation time bound
constraints. At the resource analysis level, whenever alternatives
are generated for the time to perform a particular operation, the
operation time bound constraint is resolved and evaluated. The
effect is what | call periscoping. It is as if the evaluation of the
state looked "up above" the local situation to see what problems

lay further down the search path it has yet to explore. If there was
a bottleneck, the operation time bound constraint would lower the

utility of times which do not provide enough time to get through
the bottleneck.

Constraint-Directed Focus of Attention. The
hierarchical imposition of constraints- of one level onto the next

results in the lower level's focusing of its search on the "better”
parts of the search space; reduciny the complexity of the search
while increasing the utility of the outcome.

Constraint Stratification. Constraints appear to fall
naturally into a partial ordering in this domain according to the
degree of difficulty with which they can be relaxed. For example,
it is easier to alter a due date by a day than it is to add another
shift. Consquently, a level of the search hierarchy, in addition to
constraining the search of the next level via periscoping, can
determine the values of a subset of constraints which are more
difficult to change than constraints at a lower level. More on this
concept will appear in the next section.

interlevel Analytic Relaxation. The concept of analytic
relaxation is extended to work across levels. If a constraint is
identified as needing to be relaxed, and it is bound at a higher
level, then post-search analysis will re-invoke the higher level. The
level will either alter the constraint and/or re-perform the search
at that level.

3.4.1S15-3/0PIS-0 v

Work began on ISIS-3 (aka OPIS-0) during the summer of
1884. Though ISIS-2 made significant headway in satislying its
constraints in the presence of a high degree of resource
contention, it was still believed that better use of the resources
could be made resulting in higher constraint satisfaction.
3.4.1.1S1S-3 Goals

The goal of ISIS-3 was to explore the problem of varying
perspectives on scheduling (Smith & Ow, 1985). in particular, the
high degree of resource contention in multi-agent
planning/scheduling fcrces one to consider scheduling the
activities of the resource (i.e., machine) as opposed to the agent
(i.e., order). This differs from approaches to problems for which
the number of agents are small and resource contention low (e.g.,
(Konolige & Nilsson, 1980)).

3.4.2.1S15-3 Architecture

The approach was to mix order scheduling with resource
scheduling. (See Smith & Ow (1985) for more details.) This was
accomplished as follows:

* The order selection and capacity analysis levels were
merged into a single level. This new capacity analysis
level used a dispaich rule simulation approach to
scheduling all of the orders in parallel in the presence
of the same subset of constraints associated with this
level.

. The schedule at the capacity analysis level was
examined for bottlenecks. Each bottleneck was then
scheduled (usually one) resuiting in a time at which
each order which flows through the bottieneck is to
be worked on.

» The bottlenecks and the schedules of orders through
them were passed down to the resource analysis
level. This level was modified to perform "island
driving™, similar to that found in Hearsay-ll (Erman et
al., 1980). Each bottleneck was designated an
"island”, and the highest priority order was selected
and scheduled out (forward and backward) from the
island using the original beam search with the added
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constraints of this level.

e The rest of the 1$1S-2 architecture remained the same.

3.4.3.1S15-3 Performance

Mew experiments wera performed comparing ISIS-2, 1SIS-3
and the COVERT dispatch rule (Ow, 1986). In all cases, I1SIS-3
outperformed the other two. The following are some significant

measures:
System
ISIS-3
1SIS-2

COVERT

3.4.4. Constraint-Directed Reasoning Concepts

Islands of Certainty: Constraint-directed Focus of
Attention. The bottleneck schedule produced by capacity
analysis is actually a set of constraints on the search to be
performed at the resource analysis level (i.e., each reservation for
the bottieneck by an order is an availability constraint). Search at
the resource analysis level can identify istands of certainty by the
importance and utiliity of the constraints. Consequently, by
working on each order in priority order, the resource analysis level
is able to identity, for that order, the islands of certainty in its
search space {i.e., bottleneck reservations) and perform the beam
search outward from those islands, resuiting in "island driving".
3.5. OPIS-1

The ISIS-3 architecture is still hardwired in the sense that it
performs a resource centered analysis at the capacity and level
and then an order centered anlaysis at the resource analysis level.
Depending on the state of the factory, one of the perspectives may
be unnccessary. In the summer of 1985 work began on OPIS, the

- beginning of a new series of planning/scheduling systems in

which opportunism in search places a greater role. In particular,
the first version of OPIS, focuses on opportunistic selection of the
scheduling perspective. lts architecture bears many similarities to
Hearsay-Il.

4. Summary

This section has provided an evolutionary view of the ISIS
family of job-shop scheduling systems. Two significant results
appear during this evolution. First, the development of a semantics
for the representation of constraint knowledge, focusing on what
is constrained, relaxation, utility, elasticity, importance,
interactions and relevance. Secondly, the novel use of constraints
in state generation, search space bounding, generative relaxation,
resolution, analytic relaxation, periscoping, focus of attention, and
stratefication. .
5. Role of Constraints in Problem Solving

This section returns to the original hypothesis, that the
development of an adequate semantics of constraints will lead to a
better understanding of how to define the structure of search. This
section ties the semantics of constraints developed in the ISIS
family to the search structures of section two. in particular, a
number of observations of how the semantics of constraints
relates to search structures are explained.
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The first five observations define the basic search
architecture of states and operators.

Observation 1: "Constraints define the
parameters of states in the search space.”

Constraints provide a state-space view of problem solving in
that they define the variables to be bound by the search process.
Examples include:

» due date constrains the date shipped
o shifts constraint constrains the shifts available

* next operation constraints the current operation
» keep cost under x constiains cost of manufacturing

Observation 2: "Constraints define single
state generating operators.”

The specification that an attribute or relation should be
restricted to a single value enables the construction of generators
or search operators which will generate a state with the variable
being bound lo the singie value.

For example, if the constraint specifies that the next
operation after milling is drilling then an operator can be
generated whose action is the generation of a state which binds
the operation to drilling when the preceding operation is milling.
These leads into the third observation:

Observation 3: "Constraints define the
situation or condition of an operator."

Knowledge of constraint relevance determines the situation
in which the constraint is to be applied. It is straightforward how
the relevance knowledge could be transformed into an operator's
condition. For example, a third shift may only be available during
monday through friday. This condition would be encoded as an
operator’s condition.

Observation 4: "Complex operators are the
combination of two or more constraints.”

(This is another version of the question of how to moves
tests into a generator.) Within ISIS are two alternative operators
which choose a time at which an operation is to be performed,
once the operation and machine are bound. These operators are
complex; juggling concerns such as setup time reduction, not
letting the operation be performed too late, order priority, shop
stability, etc. The hand crafting of such an operator can be viewed
as the combining of two or more constraints: .

e Setup sequencing.
» Shop stability.

o Work in process.

o Order priority.

Observation 5: "Constraints define the
evaluation function.”

The utility associated with each constraint relaxation,
coupled with a constraint's importance provides the basis for an



evaluation function. In particular, they define a linear function
which is the weighted average of the utilities of all rescived
constraints.

‘The next three observations focus on the definition of levels
within a hierarchical search space.

Observation 6: "Levels of representation
are defined by constrained variables part-
of hierarchies.”

Many variables whose values are constrained participate in
part-of hierarchies. For example, the miliing machine is part of the
milling machine work center, and a day is part of a week. These
hierarchies define levels of abstraction for each variable. In the
case of scheduling, capacity analysis can be performed using
machines, work centers, plants, etc., or time decisions can be

made by the hour. date, week, etc.
Observation 7: "Levels of search are

defined by the importance of a constraint.”

The importance of a constraint can be used to determine
which variables are to be bound first in a manner similar to that of
ABSTRIPS. ’

Observation 8: "Levels of search are
defined by the elasticity of a constraint.”

Though a constraint can be relaxed, it may be difficult to do

so. For example, it may be easier to ship an order two days later
- (i.e., relax the due date constraint) than it is to put a third shift on
over the weekend. The elasticity of a consiraint defines another
stratification of the search space.

Observation 9: "Levels of search are
defined by constraint interactions."”

The interdependence of constraints define an interaction
hierarchy. For example, the number of shifts available indirectly
affect due date and work in process constraints, but not vice
versa. One stratefication of the search space would have shift
decisions being made at a higher level.

The next two constraints deal with issues of focus of
attention. ’

Observétion 10: "Constraints focus

attention on islands of cerntainty.”

Highly important constraints- with low elasticity define
decisions which have to conform to the constraint. These
constraints define islands of certainty in the search space from
which search is to be initiated. For example, if a constraint
specifies that an order is to be delivered today and it is the most
important constraint without any relaxations, then search begins

with that order at the last operation being completed today.

"Constraints direct the
'repair_ of poor search

Observation 11:
diagnosis and
decisions."

Diagnosis identifies poor search decisions and repair
attempts a correction. In this case, the low utility of a constraint
signals a problem, and a constraint's interaction with another
constraint points to a possible peep hole optimization. Using
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shifts and due date constraints again, a low due date utility could
be corrected by altering the shift decision.

6. Conclusion

it has been the intent of this paper to elucidate the embryo
of a theory which unifies constraints with heuristic search. The
theory suggests that constraints play an important role in search,
That they define much of the structure of the system architecture,
for which until now only heuristics existed. As of yet, the theory is
incomplete; it is composed of 11 observations. Further work
awaits in the elaboration -of constraint semantics and the
development of an interpreter which will solve a problem given a
complete constraint set. -
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