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This paper describes the historical evolution of the 151s/0P1S/
CoORTES family of knowledge-based scheduling systems devel-
oped at Carnegic Mellon University. At the core of the 1515/
oPIS/CORTES family is an approach to automatic scheduling
that provides a framework for incorporating the full range of
real-world constraints. Given the conflicting nature of the
domain’s constraints, the problem differs from typical con-
straint satisfaction problems. One cannot rely solely on propa-
gation techniques to arrive at an acceptable solution, since no
feasible solution may exist. Rather, constraints must be selec-
tively relaxed in which case the problem solving strategy be-
comes one of finding a solution that best satisfies the con-
straints. Secondly, constraints on the available capacity of
resources forces a scheduling system to divert its attention
opportunistically between a job-centered perspective and a
resource-centered perspective.
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1. Introduction

The 1sis family of knowledge-based systems
have been designed to provide intelligent support
in the domain of job-shop scheduling. Job-shop
scheduling is a “uncooperative” multi-agent (1Le.,
each job is to be “optimized” separately) planming
problem in which activities must be selected, se-
quenced, and assigned resources and times of ex-
ecution. Resource contention is high, hence closely
coupling decisions. Search is combinatorially ex-
plosive; for example, 85 orders moving through
eight operations without alternatives, with a single
machine substitution for each and no machine idle
time has over 10%% possible schedules. The selec-
tion of a schedule is influenced by such diverse
factors as due rate requirements, cost restrictions,
production levels, machine capabilities and sub-
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stitutability, alternative production processes,
order characteristics, resource requirements, and
resource availability.

At the core of the 181s /0OPIS / CORTES family of
systems is an approach to automatic scheduling
that provides a framework for incorporating the
full range of real-world constraints described
above. Given the conflicting nature of the domain’s
constraints, the problem differs from typical con-
straint satisfaction problems. One cannot rely
solely on propagation techniques to arrive at an
acceptable solution, since no feasible solution may
exist. Rather, constraints must be selectively re-
laxed in which case the problem solving strategy
becomes one of finding a solution that best satis-
fies the constraints. Secondly, constraints on the
available capacity of resources requires a schedul-
Ing system to divert its attention opportunistically
between a job-centered perspective and a re-
source-centered perspective. Thus, the design of
18IS / OPIS / CORTES has focused on
e constructing a knowledge representation that

captures the requisite knowledge of the job shop

environment and 1ts constraints to support con-
straint guided search, and
« developing a search architecture capable of ex-
ploiting this constraint knowledge to effectively
control the combinatorics of the underlying
search space.
This results in an ability to generate detailed
schedules for production that accurately reflect
the current status of the shop floor, and dis-
tinguishes 1SI1S / OPIS / CORTES from traditional
scheduling systems that are more myopic. 18IS/
OPIS / CORTES is capable of incrementally schedul-
ing orders as they are received by the shop as well
as reactively rescheduling orders in response to
unexpected events (e.g. machine breakdowns) that
might occur.

This paper will describe chronologically the
technical evolution and performance of con-
straint-guided search as embodied in the series of
systems we have developed:

o I81s-1: Constraint guided scheduling.

e 181s-2: Hierarchical constraint guided schedul-
ing.

e 15IS-3: Multiperspective scheduling.

e OPIs-1: Opportunistic scheduling.

e OPIS-2: Reactive scheduling.

e CORTES: Network-based constraint optimiza-
tion.
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2. Problem Definition

In 1980, I was asked to explore the application
of Al techniques to a turbine component plant’s
job-shop scheduling problem. The primary prod-
uct of the plant was steam turbine blades. A
turbine blade is a complex three-dimensional ob-
ject produced by a sequence of forging, milling,
grinding and finishing operations to tolerances of
a thousandth of an inch. Thousands of different
styles of blades were produced in the plant, much
of them as replacements in turbines in service.

The plant continuously received orders for one
to a thousand blades at a time. Orders fell into at
least six categories:

(1) Forced outages (FO): Orders to replace blades
which malfunctioned during operation. It is
important to ship these orders as soon as
possible, no matter what the cost.

(2) Critical replacement (CR) and Ship Direct
(SD): Orders to replace blades during sched-
uled maintenance. Advance warning is pro-
vided, but the blades must arrive on time.

(3) Service and shop orders (SO, SH): Orders for
new turbines. Lead times of up to three years
may be known.

(4) Stock orders (ST): Order for blades to be
placed in stock for future needs.

The portion of the plant studied has from 100 to

200 orders in process at any time.

Parts are produced according to a process rout-
ing. A routing specifies a sequence of operations
on the part. An operation is an activity which
defines:

e resources required such as tools, materials, fix-

tures, and machines;

« machine setup and run times, and

e labor requirements.

In the plant, each part number has one or more
process routings containing ten or more oper-
ations '. Process routing variations may be as sim-
ple as substituting a different machine, or as com-
plex as changing the manufacturing process. Fur-
thermore, the resources needed for an operation
may also be needed by other operations in the
shop.

1 . . L.
Multiple process routings correspond to a network of activi-
ties, each path representing a separate plane.
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In Al terms, job-shop scheduling is a planning
problem with the following characteristics:

e It is a time-based planning problem (i.e., sched-
uling) in which activities must be selected, se-
quenced, and assigned resources and time of
execution.

e Itisa multi-agent planning problem. Each order
represents a separate agent for which a
plan/schedule is to be created. The number of
agents to be scheduled is in the hundreds.

e The agents are uncooperative. Each is attempt-
ing to maximize its own goals.

e Resource contention is high, hence closely cou-
pling decisions.

e Search is combinatorially explosive. 85 orders
moving through ten operations without alterna-
tives, with a single substitutable machine for
each operation and no machine idle time has
over 10%¥ possible schedules.

An expert systems approach was used to con-
struct the scheduler. This approach assumed that
one or more experts could be interviewed to
acquire the rules which govern their decision pro-
cess. During our discussions, we found that orders
were not scheduled in a uniform manner. Each
scheduling choice entailed side effects whose im-
portance varied by order. One factor that continu-
ously appeared was the reliance of the scheduler
on information other than due dates, process rout-
ings, and machine availability. The types and
sources of this information were found by examin-

ing the documents issued by the scheduler. A

schedule was distributed to persons in each de-
partment in the plant. Each recipient could pro-
vide information which could alter the existing
schedule. In support of this observation, we found
that the scheduler was spending 10-20% of his
time scheduling, and 80-90% of his time com-
municating with other employees to determine
what additional “constraints” could affect an
order’s schedule. These constraints included oper-
ation precedence, operation alternatives, operation
preferences, machine alternatives and preferences,
tool availability, fixture availability, NC program
availability, order sequencing, setup time reduc-
tion, machine breakdowns, machine capabilities,
work-in-process time, due dates, start dates, shop
stability, cost, quality, and personnel capabilities /
availability.

From this analysis, I concluded that the object
of scheduling is not only meeting due dates, but
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satisfying the many constraints found in various
parts of the plant. Scheduling is not a distinct
function, separate from the rest of the plant, but is
highly connected to and dependent upon decisions
being made elsewhere in the plant. The added
complexity imposed by these constraints leads
schedulers to produce inefficient schedules. Indi-
cators such as high work-in-process, tardiness, and

low machine utilization support this conclusion .

Hence, any solution to the job-shop scheduling

problem must identify the set of scheduling con-

straints, and their effect on the scheduling process.
Consequently, taking an expert systems ap-
proach to scheduling appeared inappropriate.

There are two problems with the expert systems

approach:

(1) Problems like factory scheduling tend to be so
complex that they are beyond the cognitive
capabilities of the human scheduler. There-
fore, the schedules produced by the scheduler
are poor; nobody wants to emulate their per-
formance.

(2) Even if the problem is of relatively low com-
plexity, factory environments change often
enough that any expertise built up over time
becomes obsolete.

Expert systems appear to be appropriate only

when the problem is both small and stable.

Once the issue of designing a constraint-guided
scheduling system was identified, I decided to
solve the problem by constructing a family of

.systems. The purpose being to investigate the per-

formance of successively more sophisticated search
architectures. At each stage, experiments were run
to measure the effectiveness of the architecture.

3. 1818-1: Constraint-Guided Scheduling {2,6]

Al views problem solving as search in a prob-
lem space guided by heuristics: solutions to prob-
lems are represented as symbol structures. A

? It is unfair to measure a scheduler’s preformance based on
the above measures alone. Our analysis has shown that
scheduling is a complex constraint satisfaction problem,
where the above indicators illustrate only a subset of con-
straints that the scheduler must consider. Schedulers are
expert in acquiring and “juggling” the satisfaction of con-
straints.
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physical symbol system exercises its intelligence in

problem solving by search, 1.e., by generating and

progressively modifying symbol structures until it

produces a solution structure [10]. The problem

space operationalizes the concept of a physical

symbol system. A problem space is composed of

e states which are collections of features that
define some situation;

e operators, that transform one state into another;
and )

e an evaluation function, that rates each state in
the problem space.

Search begins at an initial state, and the problem

is solved when a path is found from it to a goal

state.

Scheduling can be viewed as a search through a
problem space, where states represent partial
schedules, operators extend a partial schedule de-
fined by a state into a new state, and the evalua-
tion function rates each state in the problem space
according to the known constraints. Constraint-
guided search is a form of search where con-
straints can be used to specify operators (e.g.,
operation precedence constraints specify the next
operations) and terms of the evaluation function
(e.g., a due date constraint measures slack in the
schedule). The efficacy of this approach depends
on the ability of the constraints to identify the
more profitable paths to pursue. Experience has
shown that this tends not to be the case. In our
experiments [3], tardiness and work-in-process
were both high except for high priority jobs.

4. 1815-2: Hierarchical Constraint-Guided Schedul-
ing [2-5,15]

Since the problem cannot be solved using either
expert systems or constraint-guided search, more
sophisticated search techniques are required. One
approach is to reformulate the problem as a sim-
pler problem whose solution can be used to guide
the solution of the original problem. Hierarchical
constraint-guided search is one method that em-
bodies this approach.

Search is divided into four levels: order selec-
tion, capacity analysis, resource analysis, resource
assignment. Each level is composed of three
phases: a pre-search analysis phase which con-
structs the problem, a search phase which solves
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the problem, and a post-search analysis phase
which determines the acceptability of the solution.
In each phase, 1SIS uses constraints to bound,
guide, and analyze the search.

Level 1 is responsible for selecting the next
unscheduled order to be added to the existing
shop schedule. Its selection is made according to a
prioritization algorithm that considers order type
and requested due dates. The selected order is
passed to Level 2 for scheduling.

Level 2 represents the simpler reformulation of
the original problem. It simplifies the problem by
removing both resources and constraints from
consideration. It performs a dynamic program-
ming analysis of the plant based on current capac-
ity constraints. It determines the earliest start time
and latest finish time for each operation of the
selected order, as bounded by the order’s start and
due date, and available resources. The times gen-
erated at this level are codified as operation time
bound constraints which serve to influence the
search at the next level by constraining the times
during which operations can be performed.

Level 3 solves the original scheduling problem.
It selects a particular routing for the order and
assigns reservation time bounds to the resources
required to produce it. Pre-search analysis begins
with an examination of the order’s constraints,
resulting in the determination of the scheduling
direction (either forward from the start date or
backward from the due date), the creation of any
missing constraints (e.g. due dates, work-in-pro-
cess), and the selection of the set of search oper-
ators which will generate the search space. A beam
search version of constraint-guided search is then
performed using the selected set of search oper-
ators. The search space to be explored is com-
posed of states which represent partial schedules.

Once a set of candidate schedules have been
generated, a rule-based post search analysis ex-
amines the candidates to determine if one is
acceptable (a function of the ratings assigned to
the schedules during the search). If no acceptable
schedules are found, then diagnosis 1s performed.
Intra-level repair may result in the re-instantiation
of the level’s search. Pre-analysis is performed
again to alter the set of operators and constraints
for rescheduling the order. Inter-level repair is
initiated if diagnosis determunes that the poor
solutions were caused by constraint satisfaction
decisions made at a higher level.



Computers in Industry

Level 3 outputs reservation time bounds for
each resource required for the operations in the
chosen schedule. Level 4 then establishes actual
reservations for the resources required by the
selected operations which minimize the work-in-
process time.

This approach performs well when there exists
adequate capacity in the factory. Relative to 1sIs-1,
tardiness was reduced by 80% and work-in-process
by 33%. But in situations where contention for
resources was high, the performance of the system
was no better than the human scheduler.
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5. 1s15-3: Multiple Perspective Scheduling {16,17]

Work began on 1s1s-3 during the summer of
1984. Though 1s1s-2 made significant headway in
satisfying its constraints in the presence of a high
degree of resource contention, it was still believed
that better use of the resources could be made
resulting in higher constraint satisfaction.

In situations where resources are highly con-
tended for, experience has shown that optimizing
resource allocation by scheduling operations inci-
dent with the resource produces better results than
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scheduling jobs one at a time. Multiple perspective
scheduling [16,17] extends hierarchical search by
first apalyzing the capacity requirements of all
jobs in order to measure the amount of resource
contention. If contention exists for a resource,
then a resource-centered scheduler is chosen to
schedule the operations incident with it (usually a
dispatch rule simulation [11}). The job-centered
scheduler (i.e., 1s1s-2) is used to schedule the jobs
out from the resource. _

The approach was to mix order scheduling with
resource scheduling. (See [16] for more details.)
This was accomplished as follows:

e An additional level was added to 1s1s-2. This
level generated a factory schedule approximated
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schedule wsing a focus approach dispatch rule
[11]. Based upon this schedule, the largest bot-
tleneck was identified and the operations asso-
ciated with it were scheduled.

The bottleneck and the schedules of orders
through it were passed down to the resource
analysis level. This level was modified to per-
form “island driving”, similar to that found in
Hearsay-1I {1]. The bottleneck was designated
an “island”, and the highest priority order was
selected and scheduled out (forward and back-
ward) from the island using the original beam
search with the added constraints of this level.
The rest of the 1S1s-2 architecture remained the
same.
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A new set of experiments were composed of:
120 orders, six priority classes, varying lead times,
33 machines, and varying load on bottlenecks.
Each experiment varied the: product-mix (2), load
on the bottleneck resources (70%, 95%, some
130%), distribution of lead times, and distribution
of intervals between order releases. The experi-
ments tested two types of manufacturing environ-
ments. The job shop environment described earlier,
plus a computer board assembly and test line
configured as a flow shop.

Figures 1-3 shows that the multi-perspective
version of 1S1S-3 minimizes tardiness, work-in-pro-
cess and number of setups better than 1s1s-2 and
the COVERT dispatch rule.

In summary, compared to COVERT, 1s1s-3 dem-
onstrated a 25% improvement in average tardiness
costs in 70% of the experiments, and a 10% im-
provement overall. Average work in process time
over all experiments improved by 50% with vari-
ances of 4-9 days versus 14-225 days. Lastly, the
number of setups at bottleneck was reduced by
50%.

6. opis-1: Opportunistic Scheduling [8,9,18]
The 1s15-3 architecture is inflexible in the sense

that once it identifies the bottleneck resource, it
schedules it and then schedules each job out from
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the bottleneck using the agent centered scheduler
(1.e., 1s1s-2). Depending on the state of the factory,
this sequence may be inappropriate; it may be
more appropriate to schedule the highest priority
job first. In the summer of 1985 work began on
OPIS, the beginning of a new series of planning/
scheduling systems in which opportunism in search
plays a greater role. In particular, the first version
of opis, focuses on opportunistic selection of the
scheduling perspective. Opportunism arises out of
the system’s ability to dynamically determine at
any point during the construction of schedules,
primary/secondary bottleneck and take the op-
portunity to schedule them rather than pursue a
strictly job centered approach.

opis-1 1s implemented as a blackboard architec-
ture [1]. The blackboard contains a model of the
factory’s resources, including parts, machines,
tools, etc., activities such as manufacturing oper-
ations, constraints and generated schedules.
Whenever scheduling decisions are made, or up-
dates of the factory status are received, the black-
board manages the propagation of temporal con-
straints.

Scheduling decisions are made by knowledge
sources (KS). There are two classes of knowledge
sources: Analysis KSs and Decision KSs. opis-1
contains single analysis KS for analyzing capacity.
It constructs a rough schedule using a line balanc-

ing heuristic and then determines the bottlenecks -

from computed demand/supply ratios. The two
decision KSs are the resource scheduler and the
order schedule described in 1515-3.

Search is controlled by the Search Manager.
Each cycle, temporal demands for resources are
propagated both horizontally across operations
and vertically across aggregations of resources.
Significant events such as time and capacity con-
flicts, machine breakdowns, and scheduling deci-
sions are identified and posted on an agenda. The
Search Manager creates a subtask for each event,
prioritizes them and selects the highest priority
task to execute. Upon completion of the subtask
by a KS, the cycle begins again.

Performance data on this system is still being
gathered.

7. OP1S-2: Reactive Scheduling [12)]

Manufacturing environments are -dynamic;
schedules, once generated, are seldom adhered to.
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This 1s due to unanticipated events such as re-
source limitations, e.g., machine breakdowns, and
errors in production processes. Due to the tight
coupling of scheduling decisions, the effect of an
unanticipated event may spread problems to other
parts of the schedule. It is therefore necessary that
a scheduling system perform incremental revision
of existing schedules in response to unanticipated
changes 1n the environment.

The event driven opportunistic control strategy
of oris-1 provides the basis upon which the reac-
tive response to events may be constructed. Given
a schedule represented via operation time bound

-and resource available capacity descriptions, ex-

ternal changes are mapped into this representa-
tion. Constraints resulting from schedule changes
are combined with model-defined constraints to
update these descriptions. Conflicts detected dur-
ing constraint propagation, such as time conflicts
and capacity conflicts, result in events being placed
upon the agenda. Due to the ripple effect of these
events on the schedule, elementary conflicts are
aggregated according to commonality of the re-
sources involved so that they can be dealt with by

a single algorithm.

The Search Manager then selects a knowledge
source to deal with each event. In oris-2 [12], two
more decision knowledge sources are introduced:
e Right shifter—forward “push” of designated

scheduling decisions (along with those conflict-

ing with the push).

e Demand Swapper—exchange of schedule com-
ponents of two orders of the same type (redi-
recting orders to fill each other’s respective de-
mands).

The introduction of these knowledge sources rep-
resents a shift in the orIs approach. In particular,
OPIs-2 extends the multi-perspective view of
scheduling to include alternative scheduling al-
gorithms within a view. That is, within an order
centered view, there is more than one scheduling
algorithm available, such as the “rnght shifter”
and the “order scheduler”. The search manager
has to be able to differentiate among the events in
order to choose the appropriate decision knowl-
edge source. In order to accomplish this, OpIs-2
has a decision tree that defines the conditions
under which a knowledge source is selected.

OPIS-2 was tested on an actual model of a
computer board assembly and test line containing
10 sectors (aggregate resources), planned and un-
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planned revisits to various sectors, and approxi-
mately 20 sector-level operations per board. A set
of 26 reactive problems, such as an operation
failure (implying extra repair operations) or a loss
in resource capacity, were defined relative to a
precomputed schedule. An analysis was performed
comparing OPIS-2’s selected actions to the random
selection of actions. The performance criteria
compared were Schedule Quality: change in tardy
orders, change in tardy time, change in completion
time (WIP), and Schedule Disruption: number of
order schedules changed, number of resource
schedules changed, average time change per re-
scheduled operation. In 60% of the case, orIs-2
produced the best results, in 88% of the cases, it
produced with 0.07 of the best.

8. CORTES: Micro-Opportunistic, Constraint Guided
Scheduling [7,13,14]

The CORTES system [14] represents the next step
in the evolution of the 1s1s /OpIs family of sched-
uling systems. The ISIS systems are primarily order
centered scheduling systems, while the OPIS sys-
tems dynamically switch between being order and
resource centered. The CORTES system takes an
activity centered view of scheduling where activi-
ties are chosen opportunistically to schedule.

In an activity-based approach, each activity is
treated as an aggregate variable, or decision point,
that comprises the activity’s start time, its re-
sources, and possibly its duration. The schedule is
built incrementally by iteratively selecting an ac-
tivity to be scheduled and a reservation for that
activity (i.e., start time, resources and possibly
duration). Every time a new activity is scheduled,
new constraints are added to the initial scheduling
problem, and propagated. If an inconsistency 1s
detected during propagation, the system back-
tracks. The process stops either when all activities
have been successfully scheduled or when all pos-
sible alternatives have been tnied without success.

In order to reduce the combinatorics of back-
tracking based search, it is necessary to have strong
knowledge of where to focus one’s attention. We
achieve this by defining a set of heuristics that we
call problem space textures [7,13] which are used
to identify features of the problem space that
differentiate one state from another.
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Scheduling is performed according to the fol-
lowing steps.

Step 1. A problem space topology is con-
structed where each activity for each order is
represented as a state. States are constrained by
the temporal relations that exist between activities
and resources. Preferences for the start times of
activities are specified as utilities over a temporal
interval.

Step 2. Constraint propagation is performed.
Propagation of temporal constraints in the pres-
ence of temporal preferences is performed as de-
scribed in [13]. The result is a function that de-
fines the preferences for an activity’s start time.

Step 3. Compute texture measures. Texture
measures such as looseness, contention, and elas-
ticity [7] are computed for the states in the con-
straint network. Texture measures are used to
focus search so that backtracking is minimized.
For example, the contention measure is used to
identify temporal intervals during which a re-
source is a bottleneck. It is during this interval
that the scheduler focuses on developing a sched-
ule for the activities incident at the resource.

Step 4. A state is selected based upon the
texture measures. For example, an activity that
demands a large fraction of a highly contended for
resource and is of high priority may be selected.

Step 5. Select rule. A rule is chosen which may
assign a value to a state’s variable, or add a new
state or constraint to the network. In this case, a
resource is assigned to an activity over some time
interval. The system then iterates from Step 2.

The activity based approach to scheduling pro-
vides greater flexibility at the cost of greater search
complexity. Our initial experiments [14] have
shown that both state and value ordering texture
measures can generate quality solutions with low
search complexity.

9. Conclusion

This paper chronicles our approach in using
constraint-guided search to solve the job shop
scheduling problem. The 18IS systems explored a
hierarchical architecture where successive levels
constrained decisions at levels below them. The
oris systems explored both multiple perspective
and opportunistic scheduling. CORTES explores ac-
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tivity based scheduling with probabilistic con-
straint satisfaction. FEach represents a more
sophisticated and powerful approach whose per-
formance is demonstrably better than other ap-
proaches. Though the results are very good, our
exploration continues!
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