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Abstract

ODO: a constraint-based scheduler founded on

a unified problem solving model

Eugene Donald Davis
Master of Science
Department of Computer Science
University of Toronto

1994

We propose a unified model for constraint-based scheduling. This model formulates all problem solv-
ing as an incremental search process, where each step successively asserts a new commitment, propa-
- gates constraints, and releases commitments if the resulting problem state was deemed undesirable.
Decisions are based upon constraint graph measurements called textures. Both constructive and
repair-based search mechanisms can be represented in this framework.

We have implemented a constraint-based scheduling system, ODO, which performs search using this
model. A scheduling heuristic is realized within ODO by specifying the appropriate model parameters
at run-time. ODO provides a texture-based language for the declaration of these parameters. Since all
problem solving adheres to our model and all decisions are based upon constraint graph measures,
ODO serves as a basis for focused empirical analysis of heuristic scheduling methods. Preliminary
experiments demonstrate the sensitivity of scheduling performance to model parameter adjustments.
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Chapter 1 Introduction

The work in this thesis was motivated by observation of the current trends in constraint-based sched-
uling. Many different constraint-based scheduling systems now exist and have been applied success-
fully to various application domains. However, most published results have reported only the
performance of a particular system’s heuristics on a particular domain; we know of little comparative
analysis suggesting when or why one approach might be preferred over another. Although the various
heuristics differ, they all share a common problem representation (a constraint graph), as well as many
problem-solving components.

This combined evidence suggests that there is an unexplored opportunity to isolate the differentiating
components of both the problem and the problem solver, and to correlate these components with
search performance. With this goal in mind we constructed a unified model of search that captures
many known scheduling heuristics. We then implemented ODO, a constraint-based scheduling sys-
tem founded on our problem solving model.

We have performed initial experiments that have provided insight into some of the relations between
problem structure and efficient search methods. This thesis presents our model of problem solving,
describes ODO's current implementation of the model, and presents experimental results.

1.1 Job Shop Scheduling

The term scheduling is used to describe a general class of problems primarily concerned with the allo-
cation of activities to resources over time. One particular scheduling problem class is job shop schedul-
ing, which is representative of many scheduling problems encountered in the manufacturing domain.
The job shop scheduling problem is described with:

« a set of unit-capacity resources

« aset of jobs; each job consists of a set of ordered activities; each activity has positive duration and
specifies a particular resource

* a positive due date.

where execution times are assigned to activities such that:

« the activities within each job are ordered properly
« o two activities requiring the same resource are assigned overlapping execution times, and
« 1o activity starts before time 0 or completes after the due date.

For instance, given:

e three resources, R1, R2, and R3



« twojobs, A and B such that each job consists two activities (A1, A2, B1, B2) and all activity dura-
tions = 2; resource specifications for each activity are: A1, R1; A2, R2; B1,R3; B2, R2
+« aduedateof6

there are several satisfying solutions, one of which we show in Figure 1. (The chart in Figure 1 is
referred to as a Gantt chart [Baker 92]; it displays for each resource the execution times of activities
requiring that resource.)

Figure 1. Gantt chart of a satisfying solution to the example problem.

Although there exist polynomial algorithms for solving restricted versions of the job shop problem,
the general case is known to be NP-complete [Garey 79]. We might still hope that the practical ver-
sions of this problem might yield solutions to some polynomial algorithms, but to date no algorithms
are known.

In some scheduling domains it is important not only to find a solution that orders jobs properly and
ensures that no resource is overallocated, but also to optimize some other criteria. For example, if
inventory is modeled, then schedules which maintain lower inventory levels may be preferred [Fox
871 .

1.2 Constraint-based Problem Solving

Constraint satisfaction describes a general method for representing and solving a problem. In this
approach, the problem is represented by a constraint graph, where the nodes are the variables of the
problem and the arcs are the constraints between the variables [Mackworth 86] . Constraints restrict
the set of acceptable values for the variables to which they are attached. Solving a constraint satisfaction
problem (CSP) amounts to assigning values to variables such that all constraints are satisfied.

A constraint-based representation for a problem may be chosen for several reasons. First, a problem
may have a natural mapping into CSP’s language of variables and constraints. Second, variations of
the problem may be easily created by adding or deleting variables and constraints; this may be of par-
ticular importance in dynamic domains or when it is necessary to solve several versions of the prob-
lem in greater or lesser detail.

Perhaps the most important reason to use a constraint-based representation is to exploit its graph-
based structure during problem solving. The constraint graph enables a powerful mechanism called
consistency enforcement: when a variable’s value or domain is changed, that change can propagate
through the constraint graph and alter actual or possible values on other variables [Mackworth 77].
For CSP’s in general, many consistency enforcing techniques and search mechanisms have been devel-



oped [Bitner 75] [Haralick 80] [Gaschnig 77] [Davis 87] . A CSP may even exhibit a particular graph
structure that guarantees a solution in polynomial time [Freuder 82] . When no known polynomial
algorithm exists, the constraint-based problem structure can be utilized by domain-specific heuristics
during search or propagation [Davis 87] [Waltz 75] . .

When search is required for CSP’s, it often involves an incremental process of assigning a tentative
value to a variable, followed by some form of consistency enforcement. Many incremental search heu-
ristics focus on general overall strategies for variable and value selection that will efficiently lead to a
solution. Constructive and repair-based search methods are two such examples. In the constructive (also
known as backtracking) approach, an assignment is made to a variable only if it is consistent with all
previous assignments; backtracking occurs when it is determined that no complete solution can be
obtained with the current assignments. In the repair-based method, search begins with a problem state
where all variables have assignments (even if those assignments are inconsistent with problem con-
straints); search is performed by repeatedly changing assignments on variables (making “repairs”) in
an attempt to reduce the total number of inconsistencies. Like constructive methods which can back-
track, repair-based methods may revert to a previous search state.

1.3 Constraint-based Scheduling

In recent years the constraint-based approach to scheduling has been gaining attention in both
research and application [Sadeh 91] [Minton 92] [Zweben 94] [Keng 89] [Le 91] [Smith 87] [Fox
87] . The previously mentioned reasons for the appeal of the CSP model — the convenience of the rep-
resentation, the availability of problem-solving tools, and the ability to exploit the problem structure
— apply equally well to scheduling problems. Recent real-world successes [Deale 94] [Johnston 89]
[Saks 93] further fuel interest in the constraint-based scheduling methodology.

A job shop scheduling problem can be readily converted into a constraint satisfaction problem. The
variables are activity execution times and the constraints are restrictions placed on the execution times.
Constraint types are typically either temporal (e.g., ensuring that one activity only executes later in
time than another activity) or resource-oriented (e.g., not allowing two activities to use the same
resource simultaneously). For problems that prefer some solutions over others, additional constraints
can be created to reflect the desired criteria. This type of optimization constraint may never be com-
pletely satisfied in feasible solutions, but the constraint itself can still guide search. CSP’s which con-
tain optimization constraints are sometimes referred to as constrained optimization problems

[Sadeh 91].

Interestingly, several competing approaches have been developed for solving a scheduling problem
represented as a CSP. Distinctions in method range from different variable and value ordering heuris-
tics to completely different search mechanisms. While both constructive and repair-based approaches
have been used successfully in certain scheduling domains, little is understood as to when one method
might be preferred over another. And while it is clear that consistency enforcement is an important
component in both search mechanisms, there exists no consensus on how much enforcement is best for
a given problem dlass. The same is true for the many variable and value selection strategies.

Beyond the fact that we do not fully understand which search parameters are most appropriate for a
given problem, there are other aspects of the problem solving process for which all known methods
can be improved upon. One of these is the criterion for terminating search. Search typically halts if a
solution has not been found within a certain number of pre-specified iterations [Zweben 94] [Minton
92] . We assert that some other measures exist that reflect the current search method’s likelihood for



finding a solution in a reasonable amount of time. An accurate termination condition is clearly useful
for repair-based methods, since those methods are incomplete. But it would also be of value to com-
plete search strategies, since we cannot always afford to wait until either a solution is found or the
search space is exhausted.

1.4 Unifying Constraint-based Scheduling

We believe that there is an opportunity to discover some of the associations between problem structure
and heuristic performance in constraint-based scheduling. If we can find these relationships, we can
then postulate when one search heuristic is preferred over another. In addition, we should be able to
create new heuristics that refine certain aspects of the search process (such as the search termination
criteria). Our approach is to view the representation and solution of a constraint-based scheduling
problem from a unified model that combines common components and isolates essential differences.

1.4.1 A Common Problem Representation

If we employ a constraint-based representation in our model, then all problems will be formulated as
constraint graphs. We propose that graph property measurements can characterize heuristic search
performance. It has already been shown that the width of a constraint graph determines how much
consistency enforcement is required to guarantee backtrack-free search [Freuder 82].In [Fox 89] the
authors introduce fextures as properties of a constraint graph that guide heuristic decision making.
This concept of texture clarifies the separation between a heuristic decision and the constraint graph
information (i.e. the texture measurement) that went into making that decision. In [Fox 89] the
authors describe some texture measures and demonstrate the relations between those measures to
some common heuristics.

By using the constraint representation, we can exploit existing research into correlations between
graph properties and heuristic performance. We will use the term texture to refer to constraint graph
measurements we perform within our model.

1.4.2 A Common Problem Solving Model

We have noted a pattern to the way many constraint-based schedulers perform incremental search. At
each step, a modification is chosen — typically the assignment of a value to a variable. Once this mod-
ification has been asserted, constraint propagation is performed. Propagation may assign new values
to other variables, or it may further restrict the set of possible values for unassigned variables. After
propagation, the resulting state can be retracted if an undesirable or dead-end state is encountered.
This incremental process repeats until some termination conditions are met.

Although the primary modification operator is the assignment of a value to a variable, other modifica-
tions are sometimes used to traverse the search space [Muscettola 93] . The intent of these modifica-
tions in general is to assert some tentative comimitment within the resulting problem-solving state. We
propose that the loop presented in Figure 2 can be used as a template to describe many heuristic search
mechanisms. Each heuristic is characterized by what type of commitments are allowed, how commit-
ments are chosen, how much constraint propagation is performed, how to release a commitment, and
what the acceptance and termination criteria are. We define a policy as a specification of the exact man-
ner in which each component of this search loop is to be performed. Decisions made within a policy
are based upon texture measures.
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Figure 2. A flow diagram of the general search loop.

Given common models for problem representation and problem solving, we have an opportunity to
associate heuristic performance of the problem on a given solver with the properties that make the
problem and/or solver unique.

1.5 ODO: An Implementation of the Unified Model

ODO is a constraint-based scheduling system that implements our unified model. ODO represents the
scheduling problem as a constraint graph, and performs search using the loop shown in Figure 2.
ODO accepts as input both the problem to be solved and the parameters for which search is to be per-
formed. In this sense, ODO is a scheduler “interpreter”, since heuristics are constructed at run-time
with the input language.

Using ODO we have reconstructed several well-known scheduling heuristics of both the constructive
and repair-based variety. We have conducted experiments to verify ODO’s competence at emulating
these and related heuristic variants. Our results demonstrate a heuristic’s sensitivity to the exact
amount of propagation being performed, and show the value of lookahead to some repair heuristics.



1.6 Related Work

ODOQ is clearly related to many constraint-based schedulers, but represents a generalization of their
approach to search with its unified model. ODO’s actual constraint representation has been heavily
influenced by that found in GERRY [Zweben 92] .

ODO's principles of providing the user with a language for use withina constraint-based problem
solver can be found in CHIP [Van 84] and MULTI-TAC [Minton 93] . CHIP extends logic program-
ming to reason explicitly about finite-domain variables and constraint-based consistency techniques.
MULTI-TAC accepts as input a description of a combinatorial problem along with a sample set of
problem instances, and generates an appropriate problem-solver. Both CHIP and MULTI-TAC cur-
rently only attempt to solve problems with constructive approaches, although the designers of
MULTI-TAC plan to add an iterative component in the near future.

GERRY has a declarative rule system for constructing schedules [Zweben 89] . Its rules perform vari-
able and value selection, constraint propagation, and backtracking. The rule system has not been gen-
eralized to incorporate repair-based search.

1.7 Thesis Contributions

The contributions of this thesis are threefold:

1. We describe a unified mechanism for constraint-based problem solving in the context of schedul-
ing. This mechanism provides a model for search in a manner that represents a large set of heuris-
tics of both the constructive and repair-based variety.

2. We have created a constraint-based scheduling system that embodies the above-mentioned prob-
lem solving model. With this system, we demonstrate the ability to emulate many state-of-the-art
scheduling systems and show how alternative heuristics can be designed.

3. We empirically demonstrate the utility of such a system by presenting experimental results. These
results demonstrate the sensitivity of some known scheduling heuristics to adjustments in their
search parameters.

1.8 Thesis Organization

In Chapter 2 we review background material relevant to the thesis. This covers constraint-based prob-
lem solving, the scheduling problem in general, and the constraint perspective as applied to schedul-
ing problems. Chapter 3 introduces our model of constraint-based scheduling as search through the
space of commitments. We show how commitment-based search can be further enhanced with the
addition of problem reformulation techniques.



The next three chapters of the thesis describe ODO and our use of ODO to explore our problem-solv-
ing paradigm. Chapter 4 outlines ODOQ’s problem representation and describes the language for
declaring a scheduling problem. In Chapter 5 we describe ODO’s problem solving mechanism and
how it is used. Chapter 6 presents the results of experiments that demonstrate the competence of
ODO'’s problem solving model.

In Chapter 7 we summarize, provide conclusions, and outline plans for future work.






Chapter 2 Background

In this chapter we review the basic principles of scheduling and constraint-based reasoning. We then
review relevant research in constraint-based scheduling. This background information will set the
context for later chapters, where we describe our particular constraint-based scheduling model.

2.1 Job Shop Scheduling

2.1.1 Problem Description

This thesis focuses on the job shop scheduling problem class as described in Chapter 1. This was pre-
sented as a decision problem. Practically speaking however, we not only want to know if a satisfying
schedule exists, but also what that schedule is. This requirement does not in general add to the com-

plexity of the problem, since it is often the case that the only way to know that a schedule exists is to

actually find one.

Not all scheduling problems fit into the strict job shop description. However, we can extend the basic
definition in a number of ways and still preserve much of the character of the job shop problem. Here
we outline a few of the more common extensions:

o Hierarchy of tasks: The standard job shop scheduling problem described entities referred to as jobs,
which were composed of activities. One generalization of this is to allow for an arbitrary hierarchy
of tasks. Jobs therefore may have parent jobs, and so on. So that we do not have to worry about dis-
tinguishing between jobs and activities, we often refer to any job or activity simply as a task.

« Non-unit resource capacity: We remove the restriction that the capacity for resources be = 1. Some
resources may be able to process more than one activity at a time. We can now think of a group of
human workers as a resource whose capacity is the number of workers in the group. This group of
workers is then a pool of individual resources that can be drawn upon. All members of such a pool
are considered equivalent. We will often refer to resources as the more general notion of resource-
pools.

« Resource class/pool hierarchy: We define a resource pool as an actual resource entity for use dur-
ing scheduling. We use resource classes to define the functionality of each resource pool. Resource
pools have associated with them one or more resource classes. For example, we might define a
L athe” resource class: any resource pool that belongs to this class can perform lathing operations.
When an activity requires a resource during execution, it needs to only specify the class of resource
required. Any valid resource pool should be able to service that requirement.

« Non-unit resource-requests: Individual activities may require more than one unit of a particular
resource class. For example, the task of transporting a palette may require two workers.
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o Multiple resource-requests: Individual activities may require more than one type of resource class.
For example, a lathing operation may require a lathe and a lathe operator. Activities are also
allowed to make 70 requests for resources.

o General precedence relations among tasks within job: We remove the restriction that all tasksina
job must have a fully ordered sequence. Tasks for a job may have only partial or no sequencing.

« Precedence relations between jobs: We can specify that one job must complete before another
begins.

« Unique earliest-start/ latest-finish dates for each job: Instead of all jobs having earliest starts of 0
and identical due dates, specify an earliest-start and latest-finish for each job (or even each activity).

. Relaxable due date: We allow for some activities to be scheduled beyond the due date. Schedules
which minimize the tardiness of these activities are generally preferred.

In this thesis our discussion will focus on the basic job shop problem; however, it is useful to think
ahead about how our problem solving model will generalize when the problem class grows.

21.2 Non-constraint-based Approaches to Job Shop Scheduling

Many non-constraint-based problem solving methods have been developed that apply to job shop
scheduling problems. These approaches vary from finding solutions to large mathematical models to
merely executing some dispatch rules. Here we review some of these methods.

2.1.2.1 Linear/Integer Programming

Operations Research approaches to scheduling traditionally involve representing the problem using a
series of equations and an objective function. If no variables in the equations are restricted to integer
values, then a linear programming method will find the optimal solution (i.e., one that maximizes or
minimizes the objective function) in polynomial time [Hillier 90] .

When scheduling problems are represented in this manner, many variables require integer values.
Integer programming techniques are then necessary, and in the worst case these require exponential
computation. Software packages such as CPLEX [CPLEX 92] perform integer programming search by
assigning integer values to one variable and solving the rest of the problem as a linear-programming
relaxation. This branch and bound [Hillier 90] type of approach can solve problems efficiently; how-
ever, there is an art to representing the problem appropriately, which is further complicated by the
non-intuitive mapping of activities and resources to variables and equations.

2.1.2.2 Bottleneck Analysis

Practitioners have observed that in many scheduling domains only part of the problem may be diffi-
cult to solve, while other parts do not require as much attention. Specifically, those resources that are
maximally utilized by activities over given time periods typically have the greatest impact on the qual-
ity of the overall schedule. These bottleneck resources then become a focus for heuristic problem solv-
ers. Non-constraint-based procedures that reason explicitly about bottlenecks include the Shifting
Bottleneck Procedure [Adams 88] and OPT [Goldratt 90] . The Shifting Bottleneck Procedure solves
one-resource relaxations of the original problem, and uses this information to identify bottlenecks for
subsequent sequencing decisions. OPT’s approach is to schedule activities so that bottleneck resources
are maximally utilized at all times.




2.1.2.3 Priority Dispatch Rules

Another scheduling method often encountered in practice involves the use of simple priority dispatch
rules [Baker 92] . These rules order schedulable activities by some simple criteria (such as the dura-
tion of the task), then assign each activity in turn to the earliest available time slot. Dispatch rules are
not likely to generate schedules of the quality found by more informed techniques, but the results may
be acceptable to the application. :

2.2 Constraint-based Problem Solving

Many problems can be represented and solved in a constraint-based framework. Here we briefly
review the general constraint representation and some of the problem solving methods.

2.2.1 Problem Representation

A constraint model is represented by a set of variables and a set of constraints. Each variable has a
domain of possible values; each constraint is attached to some subset of the variables, restricting the
set of mutually compatible values on those variables.

When we discuss the constraint satisfaction problem, we refer to the simplest class of constraint prob-
Jems: all variables and constraints are predefined, all domains are finite, and only one satisfying solu-
tion is required. There are many variants to this original problem specification:

« New variables and constraints can be added during problem-solving [Mittal 88] .

« All solutions are to be found instead of just one [Nadel 89].

« A solution is to be found that satisfies as many constraints as possible [Zweben 94] [Johnston 89]
[Freuder 92]

« Optimization constraints are added [Sadeh 91] [Zweben 94] .

While these variants are of interest, our discussion will mainly focus on the basic CSP, since this char-
acterizes the greatest body of research in constraint-based reasoning and is most applicable to the job
shop scheduling domain.

2.2.2 Problem Solving Methods

The CSP is decidable [Kfoury 82] , since we can always determine if a solution exists by enumerating
over all possible values for all variables, and testing all constraints for compatibility (sometimes
referred to as generate and test [Mackworth 86] ).l However, this simple enumeration approach might
require exponential time in the number of variables to find a solution: given n variables each with
finite domain D;, the number of unique assignments to all variables is the Cartesian product

Dy xD,%...xXD,.

Unless P=NP, no polynomial-time algorithm exists for solving the general CSP [Mackworth 86] .
Much research has gone into developing various algorithms that can exploit the constraint-based
problem construction. We discuss some of these below.

1. Note that in many of the problem variants described above, decidability is not guaranteed.

11
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2.2.2.1 Backtrack Search

The first improvement we can make to the generate-and-test approach is to incrementally assign a
value to each variable, checking all constraints attached to variables with values at each step, and
abandoning a particular set of assignments as soon as it is clear that no future assignments will lead to
a solution. If performed systematically, this is referred to as bucktrack search [Bitner 75] , since when an
inconsistency is detected, the most recent variable assignment causing the inconsistent value is
retracted and a new value is tried. If no value is consistent for a given variable, then the algorithm
retracts the previous variable, assigning a new value for it, and so on. Though in the worst case back-
tracking does not reduce search at all, in practice it has been shown to be a major improvement over
systematic generate-and-test [Knuth 75] [Golomb 65] .

Backtracking performed in the manner described above is often referred to as chronological backtrack-
ing, and is analogous to depth-first-search of a tree [Kumar 92] . Several enhancements have been
made to the chronological backtracking approach. These enhancements include backjumping
[Gaschnig 78] and backmarking [Gaschnig 77] . Backjumping takes advantage of the principle that the
most recent variable assignment is not always responsible for the current dead-end state. If constraint
testing is performed in an appropriate manner, the algorithm can backtrack to an earlier variable that
was more likely to have caused the inconsistency. In backmarking, a simple data structure cache is
maintained that stores which constraints have been tested positively and negatively. As search pro-
ceeds, some constraint checks can be reduced to a simple lookup in the data structure when it is
known that the stored result is still valid. Dependency-directed backtracking is another enhancement
[Stallman 77] found in truth maintenance systems [Doyle 79] . This method stores information that
“justifies” a particular variable/value assignment, resulting in similar benefits gained from both back-
jumping and backmarking.

Backjumping is one technique that tries to avoid a general backtracking phenomenon known as thrash-
ing. Thrashing refers to the condition where many backtracks are encountered deep in the search tree,
even though the ultimate cause of the of the inconsistencies lies undetected in an early assignment.
However, backjumping cannot eliminate all thrashing,.

2.2.2.2 Repair-based Search

Backtracking search methods incrementally construct a solution one variable at a time. A variable’s
value can only be changed if backtracking occurs back to that variable’s assignment. Backtracking
search methods therefore enforce a particular structure on how variables and values are selected. A
less structured approach to the way in which variables can be assigned values is the so-called repair-
based search. In this search scenario, an initial assignment is made to all variables, where some (maybe
all) constraints remain violated.! New values are selected for variables in the hope that fewer con-
straints will remain violated after the change. Variations on this include hill-climbing and simulated
annealing [Kirkpatrick 83].The GSAT algorithm is one hill-climbing search procedure [Selman 92].
Though not specifically referred to as a constraint satisfaction algorithm, we can easily view it in that
context.

1. We can also consider the initial assignment phase as solving a relaxed version of the problem.
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2.2.2.3 Non-systematic Backtracking

Backtracking is normally applied systematically; sometimes however a nonsystematic backtracking
approach may be preferred. It may be desirable, for example, to restart search after some threshold of
backtracks has been reached. It has been shown that a search method that restarts after even one back-
track will exhibit superior performance over systematic search methods on some problems [Langley
92].

2.2.3 Consistency Checking

In the process of selecting a new value for the current variable, the backtrack algorithm checks all con-
straints between that variable and other previously assigned variables. This consistency checking over a
subset of variables and constraints in the problem allows the search procedure to prune parts of the
search space without removing any solutions.

Consistency checking can be much more extensive than that found in the simplest backtrack mecha-
nisms. Researchers have classified the different levels of consistency checking by the resulting consis-
tency in the constraint network. A graph is considered k-consistent if for any subset of k-1 variables in
the network, a value exists in the domain of a kth variable that is consistent with respect to the con-
straints in the network with all possible values in the other k-1 variables [Freuder 78] .

At the simplest level, a network is 1-consistent (also called node-consistent) if the domains on all vari-
ables in the network are compatible with all unary constraints attached to the variables. 2-consistency
(arc) and 3-consistency (path) are the next highest in complexity. Achieving an n-consistent network
amounts to finding all solutions to the problem. Since the enforcement of k-consistency is exponential
in k in the worst case [Kumar 92, consistency of higher degrees becomes less feasible.

Experience has shown that arc and path consistency tend to be the most practical from the point of
view of pruning the search space efficiently [Dechter 89] [Nadel 89].If the entire network is arc-con-
sistent, then the network has achieved full arc-consistency. Partial arc-consistency is achieved if only
part of the entire constraint network is arc-consistent [Nadel 89] .

Determining how much consistency-checking is appropriate has been a central focus of research in
improving the efficiency of backtracking search. However, as has been noted by [Prosser 93], extra
consistency checking can degrade search. We will see an example of this in Chapter 6.

2.2.4 Variable and Value Ordering

Since in the backtrack search model variables are assigned values incrementally, the order in which
variables are assigned and values are tried can also have a dramatic impact on search performance.
Search would always be O(n) if a solution exists and we select the correct variable and value at each
step. No backtracking would occur.

Much effort has gone into finding efficient variable and value orderings [Brelaz 79] [Bitner 75] [Pur-
dom 83] [Dechter 88]. When systematic search is being performed, the most common approachis to
select the most constrained variable and assign it the least constraining value. The most constrained vari-
able is selected first since it is more likely to cause backtracking than other variables, and backtracking
earlier in the search tree causes less thrashing. Selecting the least constraining value is an attempt to
find an assignment for the current variable that gives the greatest opportunity for finding consistent
assignments to later variables (and hence avoid backtracking).
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How one decides what it means for a variable to be most constrained and a value to be least constrain-
ing remains an issue of research. Constraint-based schedulers, for example, often exploit domain-
dependent constraint information when making these decisions. In [Zweben 92a] the authors demon-
strate how variable and value orderings can be learned from a statistical analysis of previous search
runs.

2.3 Research in Constraint-based Scheduling

At a recent knowledge-based scheduling workshop, most papers in the published proceedings used
the constraint model [IJCAI 93]. This evidence suggests that the constraint framework is useful in the
scheduling domain. In this section we review some relevant research in constraint-based scheduling.

2.3.1 Constraint-Guided Scheduling: ISIS/OPIS/MicroBOSS

ISIS [Fox 87] was the first scheduling system that used constraint information for decision making.
ISIS represented many real-world factory conditions using a constraint model. Constraints repre-
sented not only physical restrictions but also practical (optimization) preferences. ISIS’ problem solv-
ing mechanism however was not capable of efficiently managing the bottleneck resources. Its “job-
centered” approach (namely scheduling all activities within one job before proceeding to the next one)
was vulnerable to creating inefficient schedules around resource bottlenecks when a more resource-
centered approach would have been more appropriate.

OPIS [Smith 87] followed ISIS, and represented a more “opportunistic” approach to decision making.
OPIS was capable of dynamically switching between resource-centered and job-centered scheduling.
The resource-centered approach helped resolve the bottleneck activities efficiently. Still, OPIS was con-
sidered “macro-opportunistic” due to the limitations placed on the way opportunism could be
exploited.

MicroBOSS [Sadeh 91] has a” micro-opportunistic” approach to scheduling. In this approach, activi-
ties are scheduled as a function of constant analysis of the current scheduling state. Therefore Micro-
BOSS is more capable of handling shifting and multiple bottleneck scenarios than its predecessors. In
[Sadeh 91] the author describes how MicroBOSS is a natural evolution of ISIS” and OPIS’ search mech-
anisms. We will discuss more about MicroBOSS in Chapter 6.

2.3.2 Iterative Repair: GERRY and SPIKE

GERRY [Zweben 94] and SPIKE [Johnston 89] are two repair-based scheduling systems. In GERRY
each constraint has a penalty and weight, the product of which determines the degree to which a par-
ticular constraint’s violation degrades the overall quality of the schedule. Each constraint has a repair
function that attempts to lower that constraint’s degree of violation. In each iteration of the repair pro-
cess, repair functions are called on some number of the violated constraints. GERRY typically uses
cheap domain-dependent constraint information to make decisions in its repair functions.

SPIKE uses the Min-Conflicts heuristic [Minton 92], a lookahead repair method. The designers of
SPIKE have reported positive results from the use of this heuristic. We will return to Min-Conflicts in
the experimental section of the thesis.
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Both SPIKE and GERRY have been used successfully in the scheduling domain. The GERRY schedul-
ing system models activities performed in inspecting, repairing and refurbishing space shuttle orbiters
for launch. New schedules are constructed constantly to cope with new problems while still trying to
preserve the overall completion date. The SPIKE system performs long-term experiment scheduling
for the Hubble Space Telescope. Demand always exceeds the experimental capabilities of the tele-
scope’s resources, so the task of generating long-term experiment schedules is an overconstrained
problem. This type of problem is well-suited to a repair method.

2.3.3 Constraint Posting

Both GERRY and SPIKE typically perform repairs by moving activities from one time interval to
another. Constructive approaches such as MicroBOSS incrementally assign times to activities, and
backtrack over those assignments only when it is determined that the assignment leads to no feasible
solution.

An alternative approach used by [Muscettola 93] is referred to as constraint posting. Here instead of
assigning an absolute time value to an activity (and perhaps changing that value later in the search
process as necessary), the search process involves posting additional temporal constraints between
tasks that then force particular orderings between tasks. These postings can be retracted by the search
process as desired.

The advantage to such an approach is that each step in the search process may require less unneces-
sary commitment than methods which assign an actual execution time; if unnecessary commitment is
avoided, greater degrees of freedom are left available for later search steps. Both Muscettola and Smith
[Smith 93] have reported positive results using this procedure.

2.4 Summary

In this chapter we presented relevant background in scheduling, constraint-based reasoning, and con-
straint-based scheduling systems. We have seen that scheduling in general (and job shop scheduling in
particular) has been the focus of research from several perspectives. The constraint-based approach,
though relatively new, has demonstrated its value in several applications and maintains a strong fol-
lowing among knowledge-based scheduling researchers.

We also have noted that different scheduling methods have been employed successfully within the
constraint-based framework. However, the relative strengths and weaknesses of these approaches
remains to be assessed. In the next chapter we describe a model of problem solving that encompasses
many strategies used by schedulers. This model characterizes different scheduling methods by a small
number of decision-making parameters, and thus provides a basis for associating problem solving
performance with parameter settings.






Chapter 3 A Unified Model for
Constraint-based
Problem Solving

In this chapter we present our unified model of constraint-based problem solving. Problem solving is
viewed as transformational search through a set of problem-solving states. Each transformation
involves the assertion or release of some tentative commitment. Transformations are caused by an
explicit commitment, consistency enforcement, or an explicit release of one or more commitments.
These commitment-based transformations can be structured to perform either constructive or repair-
based search.

3.1 Search as Commitment Transformation

Search is sometimes viewed as the traversal of problem-solving states via state transition operators
[Nilsson 71] . A state transition transforms one problem-solving state into another (see Figure 3). Once
a state has been reached that is acceptable, search can terminate. A few systems explicitly represent the
search space this way [Laird 87] [Fox 871 [Drummond 93] . Every decision made during search
results in a “belief” that the decision made transforms the problem state to one “closer” to the desired
solution.

Selected State

Possible State

State Transition

Figure 3. Transformation search through problem solving states.
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Let us consider a constraint-based backtracking search procedure from the transformational perspec-
tive. The actual transformations being performed typically consist of assigning values to variables as
new assertions can be made, and retracting variable assignments during backtracking. As we have dis-
cussed previously, consistency enforcement is an important part of the constraint-based search pro-
cess. When a value is assigned to a variable, the propagation of that assignment may change actual or
possible values on other variables. Therefore propagation is a means of making new assertions as well.

As demonstrated by constraint-posting schedulers, the search process may involve the assertion and
retraction of temporal constraints instead of variable/value assignments. Both constraint-posting and
variable/ value assignment create new solution states that (when going forward) restrict actual and/or
possible values for variables or (when backtracking) release those restrictions. This suggests that in
general search consists of making transformations that create new commitments; when backtracking
occurs, more transformations release those commitments. Once one commitment is made, other com-
mitments may occur as a result of constraint propagation. When an original commitment is released,
dependent commitments may also be released.

Repair-based strategies follow commit-release transformations as well. When a variable is assigned a
new value, its previous commitment to some value is released before the new value is committed to. If
propagation occurs, other new commitments may be created as a result.

Our view of search as the process of asserting and releasing tentative commitments underscores a pri-
mary difference between backtracking and repair-based search mechanisms. The backtracking search
procedure will only release a commitment when it is determined that the commitment is incompatible
with previous commitments. Repair-based techniques can readily release commitments if new com-
mitment opportunities become available.

3.2 Commitment Policies

When we consider existing constraint-based scheduling methods that use a commitment-oriented
search strategy, we observe that they generally conform to the following pattern:

while (not search_termination_condition) do
gelect commitment;
aggert_commitment;
propagate;
if (not acceptablemresulting_state) then
release commitment (g);

We define a policy as a specification of the exact manner in which each component of this search loop is
to be performed. Policies enforce structure on the commit and release transformations. A new policy
can begin once a previous policy has ended. Thus we will assert that a set of commit/release transfor-
mations can be viewed as sequentially executing policies which adhere to the above decision-making
model. Figure 4 shows how two or more policies can work together to perform transformational
search.
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commit
transformation

- OO e
/
release /
transformation
Policyl termination Policy 2 termination
conditions met conditions met

Figure 4. Transformations structured by multiple policies.

Each policy then requires the following pieces of information to be completely specified:

o A method for selecting commitments to assert

« A method for propagating after the selected commitment has been asserted

« A function to evaluate the resulting state after propagation

A release procedure to follow if the resulting state is rejected by the evaluation function
« A condition to determine whether to terminate search using this policy

Both constructive (i.e., backtrack) and repair-based search can be viewed in this way. We note that the
policy model makes explicit the repair-based problem solver’s requirements for a separate mechanism
to generate an initial assignment to all variables.

3.2.1 Constructive Commitment Search

In constructive search, extra information is kept so that backtracking can be performed. This informa-
tion includes a boolean variable (FORWARD) which tracks whether search is proceeding forward or
backward. Other information is kept to determine when the search space has been exhausted.

When going backward, a different commitment selection method may be preferred than when going
forward. We therefore allow for a different selection strategy depending upon the value of FORWARD.

Keeping track of the forward/ packward and fail condition information, and allowing for different
commitment selections according to search direction, results in the following:
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FORWARD = TRUE .
while (not search“termination‘condition) do

if (FORWARD == TRUE) then
select commitment by forward mechanism;
else

select commitment by backward mechanism;
if (commitment selected) then
FORWARD = TRUE;
asgert commitment;
propagate;
if (not acceptablewresulting_state) then
releage previous commitment;
FORWARD = FALSE;
else
if (search_exhausted) then
FAIL = TRUE;
release previous commitment;
FORWARD = FALSE;

This is a nonrecursive version of the basic backtracking search mechanism. For now we restrict our-
selves to the simplest release strategy, which only releases the previous commitment when going back-
wards. Thus our model for backtracking is the standard chronological one.

3.2.2 Repair-based Commitment Search

In repair-based search, there generally is no notion of going forward or backward. In addition, there is
no notion of exhausting the search space. This leads to a commitment policy structure that is a subset
of the one used for constructive search:

while (not search_termination"condition) do
select_commitment;
agsgert commitment;
propagate;
if (not acceptableﬁresulting_state) then
releage previous commitment;

3.2.3 Variable/Value Selection as Commitment

As we have stated, there exists at least two known commitment methods used in constraint-based
scheduling; assigning a value to a variable and posting temporal constraints. For now we will focus on
the more common case where the main operation for performing commitments involves assigning a
value to a variable. Search performed in this framework then becomes the following:

while (not search_terminationﬂcondition) do
gselect var and val;
asgert var and val;
propagate;
if (not acceptable»resulting_state) then
release var and val;



The process of selecting a variable and value can be performed many different ways. Often variable
and value selection is done separately: first a variable is selected and then a value is selected for that
variable. Other methods collect a pool of candidate variable/value pairs and then select from among
the members of the pool. Since the former is actually a special case of the latter, we can use the follow-
ing four steps to do both:

select a set of variables

generate a set of candidate values for each of the variables
evaluate all generated variable/value pairs

gselect one variable/value pair ag a result of the evaluation

Putting it all together for the paradigm of variable/ value selection as commitment, we have the fol-
lowing search template (lines with asterisks do not apply to the repair paradigm):

* FORWARD = TRUE;
while (not search_termination_comndition) do

* if (FORWARD == TRUE) then
gelect vars via forward strategy;
else

gselect vars via backward strategy;
generate candidate vals for vars;
evaluate all var/val pairs;
select var/val pair;
if (var/val pair selected) then
* FORWARD = TRUE;
assert var/val;
propagate;
if (not acceptable_resulting state) then
release var/val;
FORWARD = FALSE;
else
if (search_exhausted) then
FAIL = TRUE;
release var/val;
FORWARD = FALSE;

* % & X X %

We now have a general search loop that applies to many constructive and repair-based search meth-
ods. This loop operates in the space of commitment transformations when each commitment consists
of assigning a value to a variable.

3.3 Other Transformation Types

Our perspective of search through transformational commitment can be used to describe many search
heuristics. However it does not capture some problem-solving mechanisms that involve problem refor-
mulation. If we reformulate a problem during search, we anticipate that this alteration to the problem
will help find a solution. We postulate that reformulations can be considered in the transformational
model along with our commitment strategies.

21
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Let us consider some possible ways to reformulate constraint-based problems. One way is to reduce
the number of variables. Another way is to remove or relax some of the constraints. A third way is to
decompose one problem into several smaller problems. Any problem solving performed on reformu-
Jated versions of the problem may guide search for the original problem or possibly serve as a solution
in its own right.

We propose that problem reformulation techniques can be merged with our general commitment strat-
egy to form an enhanced model of transformational search. We look forward to expanding our com-
mitment search model to incorporate problem reformulation methods. In Figure 5 we show a
hypothetical example of transformational search incorporating both commitment and problem refor-
mulation strategies. :

Acceptable

©Start

Figure 5. A hy;;‘ thetical use of commitment with problem reformulation strategies in
transformational search. The ovals around the commitment transitions represent individual policies.
All other transitions involve some type of reformulation.



Chapter 4 Representing
Scheduling Problems
within ODO

In this chapter we describe ODO’s representation of a scheduling problem. We also describe the set of
input specifications for declaring a problem in ODO.

4.1 ODO'’s Constraint Model

4.1.1 Time

Not surprisingly, time is an essential component in a scheduling problem. A timeline represents the
temporal dimension for scheduling events. Time points are the instances at which events occur ina
scheduling setting (for example, a certain activity begins execution at time point 12).

For scheduling problems, there often is a notion of a time horizon as well. The horizon defines the
lower and upper bounds on the timeline within which we restrict the occurrence of events.

In general, we can allow events to occur anywhere on the timeline. We may instead restrict all events
to only discrete time points on the timeline. Thus time can be represented either continuously or dis-
cretely. If represented discretely, then typically a time granularity is chosen that is appropriate to the
domain. The discrete time representation is applied in most job-shop-type settings. When representing
scheduling problems as constraint satisfaction problems, some variables will represent the time points
at which an event is expected to occur. We refer to these as temporal variables. When time is represented
discretely and a time horizon is defined, all temporal variables will have finite domains of possible
values.

anularity

o
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Figure 6. Timeline.
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In our current implementation, the granularity is set to one time unit, and the time horizon is defined
by the minimum and maximum declared times for activities or jobs (see below).

4.1.2 Jobs/Activities/Tasks

In our description of the job-shop problem, jobs are composed of activities, and activities are the enti-

ties which must be assigned valid execution times in a satisfying schedule. It is often more convenient
to refer to jobs and activities simply as tasks. When a hierarchical relation exists among tasks (as is the
case between jobs and activities), we simply refer to the tasks as parent tasks or subtasks as appropriate.

All tasks have durations associated with them; a duration specifies the relation between the task’s start
and end event time points. If a task has subtasks, its duration is only defined by that of its subtasks.
This is true in the job shop domain of the relationship between jobs and activities: only when we know
the execution times of all activities of a given job will we know when that job itself begins and ends.

In ODO, we represent the task’s start-time and end-time with temporal variables. We also make the
duration a variable. Expressing the relation between a task’s start-time, end-time, and duration is done
in the form of a temporal constraint between the three variables:

sHT) + dur(T) = et{T)

Figure 7 illustrates the basic task object composed of three variables and a duration constraint.

Start-time Var End-time Var

\ 4

\ -

Constraint
~,

Dura%ion Var

Figure 7. Basic Task.

4.1.3 Resources

Resources include concepts such as machines, raw materials, and personnel. In Chapter 2 we dis-
cussed how individual resources can be generalized into resource pools of a particular resource class.

A resource pool object represents a particular resource that is allocated to activities in a schedule. The
resource pool points to its resource class and to its timeline representation [Zweben 92] [Williams 86]
which is called a history. A history tracks the status of a resource pool’s available capacity over time.
This is represented using a list of connected intervals, where each interval specifies a value. For exam-
ple, given:

[-00 . 100 — 1][100 . 200 — 0][200 . +eo —1]

This history specifies that over the time interval —eoto 100, the resource pool has one unit of available
capacity; from 100 to 200, zero units of capacity; from 200 to +o, one unit of capacity.



For search efficiency the history intervals are implemented as a red-black tree [Cormen 91] . This
structure provides O(log(n)) performance in finding, inserting, and deleting elements of the history. In
addition, since updating often occurs to successive tree elements, the tree is threaded so that access to a
particular history element’s successor and predecessor is O(1). For small problems, such a complex
structure is not necessary. However, our use of the red-black tree implementation will ensure that his-
tory access and update performance is affected minimally as the scheduling problem grows.

4.1.4 Temporal Constraints

Temporal constraints are those that connect temporal variables. The duration constraint is one type of
temporal constraint. Others include the constraints between variables of two different tasks or other
temporal variables relevant to the scheduling domain.

Tasks may have absolute time restrictions on the values for the start and end-time variables. These
usually come in the form of earliest start and latest finish (ES/LF) times for the task. In the constraint
framework, we can create temporal variables representing the ES and LF times. Then we can form >=
constraints between the ES/LF variables and the task’s start-time and end-time variables.

When it is specified that one task can begin only after another task has ended, we attach a constraint
between the start-time of one task and the end-time of the other. For example, if T2 cannot start until
T1 has finished, we have the following constraint:

sHT2) >= et(TI)#

Allen [Allen 84] has enumerated 13 possible temporal relations between tasks. Each of these relations
can be readily duplicated in the variable/constraint framework.! As an example, we have the Allen
relation “x DURING y”, which implies that task x’s execution occurs completely within the time span
of task y’s execution. For this relation we need 2 constraints between the start and end time variables
of x and i

st(x) > st(y)
et(x) < et(y)

If these constraints are both satisfied, then Allen’s DURING relation holds.

4.1.5 Resource Constraints

Tasks often require the use of some quantity of some resource pool (see Section 4.1.3). The requirement
is specified at the resource class Jevel. If there are multiple pools, any pool can address the request for
the resource. For example, if task T2 needs a mill operator, then it can look to either Employee Pooll or
Employee Pool2 for an actual resource pool.

In ODO's constraint framework a task is given a resource request variable for each of its resource require-
ments. The resource request variable caches the necessary resource quantity; this variable will be
assigned a resource pool as its value when a pool is allocated to the task. A resource constraint ties the
resource request variable to the start and end time variables of the task. The constraint is satisfied only

1. It should be noted that our temporal constraints alone cannot duplicate logical quantification, con-

junction, and disjunction over Allen relations, as the temporal logic described in [Allen 84] performs.
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if the pool assigned to the resource request variable has the requested amount available from the start
time to the end time of the task. This is determined through the use of the history information of the
assigned resource pool. Once a resource pool has been allocated to a task over a specified period of
time, that resource pool’s history is updated to reflect the allocation.

At the completion of a task, the requested resource may be returned as available (the resource was
only used), or it may have been consumed by the task itself. Personnel are used, whereas raw materials
are typically consumed. Tasks may also produce a particular resource as a result of execution. For
example, a task may produce a subassembly that will be consumed by other tasks in the assembly of a
finished product. In these cases the resource pool’s histories must be updated to represent all con-
sumptions and productions appropriately.

4.2 Problem Declaration in ODO

Problems are constructed within ODO by establishing the above objects, variables, and constraints as
appropriate. It is often tedious to describe a problem using variables and constraints alone. ODO’s
input language accepts a more natural description of the problem, from which ODO can construct the
constraint graph. Many known scheduling input languages describe problems using tables of num-
bers, or cannot easily extend an existing definition of a previously declared object. ODO’s language for
describing problems was designed to be incremental, extensible, and intuitive.

ODO represents a useful superset of the strict job shop scheduling problem class. The following sub-
sections enumerate the problem declarations accepted by ODO as input. Keywords and literal text are
written in courier bold font, identifiers and integers are written in normal font, nonterminals are
written in italic, and optional arguments are placed within square brackets ([ 1- one optional argu-
ment; [ ]* - zero or more optional arguments; [ ]+ - one or more optional arguments). The complete
grammar is summarized in the appendix.

4.2.1 Declaring Resources

Resources are declared by specifying resource classes and the resource pools that belong to those
classes.

e resource_class resource_class_string [parentﬂresource_class_string] ;
Description:
A resource class is declared with name resource_class_string. If parent_resource_-

class_string is specified, resource_class_string is defined as a child of parent_resource_-
class_string.

Restrictions:
The parent resource class must have been previously declared.
Example:

regource_class WorkCenterlA WorkCenterl;

e resource_ pool resource_pool_string initial amount_integer [resource_class_string]+;

Description:
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A resource pool is declared with name resource_pool_string. It belongs to all classes spec-
ified in [resource_class_string]+. The pool’s history is initialized with
initial_amount_integer from time negative-infinity to time positive-infinity.

Restrictions: ‘
The resource classes must have been previously declared.
Example:

resource pool Machinel 1 WorkCenterl;

4.2.2 Declaring Tasks

¢ task task_string [parent_string];
Description:
A task is declared with name task_string. If parent_string is specified, then task_string is
defined as a child of parent_string.

Restrictions:

The parent task must have been previously defined.
Example:

tagk Activityl Jobl;

4.2.3 Declaring Temporal Constraints

¢ duration task_string duration_integer;
Description:
The duration for task_string is set to duration_integer. No units are associated with time.
Restrictions:

The task must have been previously declared. Only non-negative durations are allowed.
Durations for parent tasks are ignored during problem solving.

Example:

duration Activityl 10;

¢ before task_string task_string;
Description:
This establishes a temporal constraint between the first task and the second task. The con-

straint is satisfied only if the end-time of the first task is less than or equal to the start-
time of the second task.

Restrictions:
Both tasks must have been previously declared.
Example:

before Activityl Activity2;

e earliest start task_string earliest start integer;
Description:
This establishes a constraint on the earliest value for the start-time of the task.

Restrictions:
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The task must have been previously declared.
Example:

earliest_ start Activityl 20;

latest_end task_string latest_end_integer;
Description:
This establishes a constraint on the latest value for the end-time of the task.
Restrictions:
The task must have been previously declared.
Example:
latest_end Activityl 50;

4.2.4 Declaring Resource Constraints

e use_ resource task_string resource_class_string amount_integer;

Description:

This specifies that the declared task requires (from its start-time to its end-time) an
amount_integer quantity of some resource pool that belongs to resource_class_string.

Restrictions:
The task and resource class must have been previously declared.
Example:

use_ resource JobAl WorkCenterl 1;

consume_resource task_string resource_class_string amount_integer change_start;
Description:

This specifies that the declared task requires and consumes an amount_integer quantity
of some resource pool that belongs to resource_class_string. The consumption is per-
formed either at the start-time (st) or end-time (et) of the task (indicated by
change_start).

Restrictions:
The task and resource class must have been previously declared.
Example:

consume_regource JobAl RawMateriallPool 10 st;

produce_resource task_string resource_class_string amount_integer change_start;
Description:

This specifies that the declared task produces an amount_integer amount of the specified
resource pool. The production is performed either at the start-time (st) or end-time (et)
of the task (indicated by change_start).

Restrictions:
The task and resource_pool must have been previously declared.
Example:

produce_resource JobAl RawMaterial2Pool 10 et;



4.3 Problem Representation Example

In this section we will demonstrate how to declare a simple job shop problem within ODO. This prob-
lem is identical to an example problem found in [Sadeh 91} . The problem consists of four resources
and four jobs. Each job consists of either two or three activities. All activity durations are three time
units. The earliest-start and latest-end for all jobs is 0 and 15, respectively. Figure 8 presents the job/
activity structure of the problem; Figure 9 depicts the resulting constraint graph created within ODO.

J1 A1l (R1D) = A12(R2) — A13 (R3)
/ T~

ob
J \Temporal

Constraint

2 | A21 (R1) B A22(R2)

13 | A31(R3) = A32(R1) ¥ A33(R2)

Activi( /Name of Class for
R

esource Request

4 | A1 Re) | Ad2 (RS
|2

Activity Name al

Figure 8. Example problem. All activities have duration = 3. All jobs have an earliest start time of 0
and a latest end time of 15. Temporal constraints define what task must finish (the tail of the arrow)
before what task can start (the head of the arrow).
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Figure 9. Constraint graph of example problem. Empty circles are variables; filled circles with lines are
constraints (solid: temporal; gray: resource).

If the following statements are read as input (in this order or something similar but respecting the
restrictions outlined earlier), then this problem will be instantiated within ODO’s structures (ODO
allows lines that begin with ‘#’ to indicate comments):

# declare resource classes and pools (one pool per class,
# capacity of 1 in each pool)

regource_class RCl;

regource_pool RP1 1 RC1;

regource_clags RC2;

regource_pool RP2 1 RC2;

regource_clags RC3;

regource_pool RP3 1 RC3;

regource_class RC4;

regource pool RP4 1 RC4;

# 4 jobs
tagk J1;
tasgk J2;
task J3;
task J4;

# individual activities for each job
task All J1;



task Al2 J1;
task Al1l3 J1;
task A21 J2;
task A22 J2;
task A31 J3;
task A32 J3;
task A33 J3;
task A4l J4;
task Ad2 J4;

# all activity durations are 3
duration All 3;
duration Al2 3;
duration Al3 3;
duration A21 3;
duration A22 3;
duration A31 3;
duration A32 3;
duration A33 3;
duration A4l 3;
duration 242 3;

# temporal relations between activities in the jobs
before All Al2;
before Al2 Al3;
before A21 A22;
before A31 A32;
before A32 A33;
before A4l R42;

# resource requesteg for each activity
uge_resource All RC1 1;
usge resource Al2 RC2 1;
use_resource Al3 RC3 1;
use_resource A2l RC1 1;
uge_resource A22 RC2 1;
use_resgource A3l RC3 1;
use_resource A32 RC1 1;
use_resource A33 RC2 1;
use resource A4l RC4 1;
use_resource A42 RC2 1;

# time bounds on each job
earliegt start J1 0;
latest_end J1 15;
earliest start J2 0;
latest_end J2 15;
earliest start J3 0;
latest_end J3 15;
earliest_start J4 0;
latest _end J4 15;







Chapter 5 Solving Scheduling
Problems in ODO

Problem solving within ODO involves the declaration of all policy parameters followed by the initia-
tion of ODO's search mechanism. In this chapter we describe how to declare the search parameters
and begin problem solving.

5.1 Performing Search

ODO uses the problem solving procedure outlined in Chapter 3 for search using variable and value
selection. We reprint this procedure for convenience (recall that lines with asterisks are only performed
when constructing as opposed to repairing):

*  FORWARD = TRUE;
while (not search_termination_condition) do

* if (FORWARD == TRUE) then
gselect varsg via forward strategy;
else

select varg via backward strategy;
generate candidate valg for vars;
evaluate all var/val pairs;
select var/val pair;
if (var/val pair selected) then
FORWARD = TRUE;
asgert var/val;
propagate;
if (not acceptable_ resulting state) then
releage var/val;
FORWARD = FALSE;
else
if (search_exhausted) then
FAIL = TRUE;
release var/val;
FORWARD = FALSE;

* % % ¥ % %

ODO performs this search according to the declared policy parameters. Once a policy has been
declared, search is begun by calling construct or repair.
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ODO maintains extra problem-solving information during search. For variables, a set of possible values
is kept. This set maintains those values that may be asserted for the variable in this search iteration.
Each search state also maintains a list of those variables that have been assigned values and the
remaining variables that have not. During constructive search, these lists change as new variables are
assigned values or as backtracking occurs. Finally, some number of previous states are kept for the
purposes of backtracking or reverting. In constructive search, all previous states that may be back-
tracked to are stored; in repair-based search, only the previous state is kept.

In the current version of ODQ, the decision variables are the start-times of all activities. Once a start-
time has been determined for a task, the end-time is derived by propagating through the duration con-
straint. We assume that there exists only one resource pool for each resource class, so that decisions do
not involve the selection of a resource pool.

5.2 Declaring Policies

In order to begin search, a policy must be completely specified. Namely:

« How to select a set of candidate variables

 How to generate a set of candidate values for those variables (i.e., make candidate variable/value
“pairs”)

e How to evaluate the candidate variable/value pairs

» How to select from among the evaluated variable/value pairs

» How to perform propagation

« How to decide whether or not to accept the resulting variable/value assertion

» When to terminate search using the above settings

ODO provides a library of texture measures for controlling how each policy parameter is performed.
In the following subsections we describe ODO's policy options. Keywords and literal text are written
in courier bold font, identifiers and integers are written in normal font, nonterminals are written in
italic, and optional arguments are placed within square brackets ([ | - one optional argument; [ ]* - zero
or more optional arguments; [ ]+ - one or more optional arguments). The complete grammar is sum-
marized in the appendix.

5.2.1 Variable and Value Selection

We saw in our description of our unified model (Chapter 3) the following pseudocode to select a vari-
able/value pair for assertion:

select a set of variables

generate a set of candidate values for each of the variables
evaluate all generated variable/value pairs

select one variable/value pair as a result of the evaluation

ODO executes four procedures sequentially to perform this process — SelectVariables, Gener-
ateVarvValPairs, ScoreVarValPairs, and SelectVarValPair. We describe these procedures in
the next four subsections and show how the policy declarations are made for each.



5.2.1.1 The SelectVariables Procedure

The SelectVariables procedure begins the variable/value selection process. Its input is a list of fil-
ter functions. Each filter function takes a list of variables as input and generates as output a subset of
that variable list. SelectVariables calls each filter function in turn, passing as input to a filter func-
tion the output from the previous filter function. The first filter function is passed a list of all activity
start-time variables. The output of the last filter function is passed on to the GeneratevVarvalPairs
procedure.

Each filter function performs a texture measure of the graph. The filter functions are specified using
ODO’s declarative language in the following manner:

var_selection [var_selection_filter]+;

Since we may choose to use a different variable selection procedure when going backward, we also
have:

backward_var_selection [var_selection_filter]+;

Each var_selection_filter uniquely specifies a filter function. Filters are applied in the order they are
declared. The following is the current catalog of the variable-selection filter functions in ODO:

violated - filters the input list to the start-time variables that belong to tasks that have a
violated resource constraint.

most_recent_failure - filters list to the variable that most recently failed in backtrack
search.

smallest_pv_cardinality - filters list to those variables that have the smallest set of
possible values.

orr - filters list to the variables with the highest operations resource reliance value [Sadeh 91]
(described in Chapter 6).

all predecessors_assigned - filters list to those variables whose tasks have no unas-
signed temporal predecessors. This is useful for simple constructive variable selection in a
forward-dispatching manner.

all successors_assigned - filters list to those variables whose tasks have no unas-
signed temporal successors. This is useful for simple constructive variable selection in a
backward-dispatching manner.

unassigned - filters list to those variables that are currently unassigned.

random - nondeterministically filters the input list down to one element. Uses the system’s
random function to select the element to keep in the list.

arbitrary - deterministically filters the input list down to one element (i.e. the first ele-
ment of the list is always kept).

all - redundant (since it performs no filtering), but useful to put down as the only element
in case all variables are to be considered.

none - returns an empty list. This is useful for when a policy should force backtracking.

The following is an example declaration using multiple filters. This declaration will find all unas-
signed start-time variables, filter those down to ones whose predecessors are assigned, and then select
one randomly:

var selection unassigned all predecessors_assigned random;
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5.2.1.2 The GenerateVarValPairs Procedure

GenerateVarValPairs accepts as input the filtered variable list (output from SelectVariables)
and a value generation function. It will output a new list of variable/ value pairs. The generation func-
tion will create some number of unique variable/value-pair entries for each variable in the input list.
Each resulting variable/value pair represents a candidate assertion for the current search process.
ODO passes the list of variable/value pairs to ScoreVarValPairs for evaluation.

ODO's value generation function is declared using the following:

val_generation val_generation_function;

The following is the current catalog of texture measures used as generation functions in ODO:
all_pv - generates variable/value pairs for all values in the variable’s set of possible val-
ues.

all but_current_pv - generates variable /value pairs for all values in the variable’s set
of possible values except for the currently assigned value (assuming the variable has a
value).

arbitrary pv - deterministically generates a single variable/value pair from the vari-
able’s set of possible values.

random_pv - nondeterministically generates a single variable/value pair from the vari-
able’s set of possible values.

5.2.1.3 The ScoreVarValPairsProcedure

ScoreVarValPairs accepts as input a list of variable/value pairs (output from GenerateVarval-
Pairs) and a scoring function. The scoring function is called on each variable/ value pair. The output
of ScoreVarValPairs is a list of variable/value/score triples; this list is passed to the Select-
VarValPair Procedure.

The scoring function is declared using the following:

scoring function scoring function ;

The following is the current catalog of texture measures used as scoring functions in ODO:

cost_lookahead - The specified variable/value pair is asserted, propagation is performed
according to the current propagation method (see below), and the resulting state is scored
using the cost function (see below). After scoring, the original state is restored.

f£ss - The specified variable/value pair is scored via the filtered survivable schedules mecha-
nism [Sadeh 91] (described in Chapter 6).

none - No scoring is performed (for when there is no need to perform-an evaluation of the
variable/ value pairs).
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5.2.1.4 The SelectVarValPair Procedure

SelectVarValPair accepts as input a list of variable/value/score triples (from ScoreVarValPairs)
and a list of selection filter functions. SelectVarValPair calls each filter function in turn, passing as
input to a filter function the output from the previous filter function. The first filter function is passed
the original variable/value/score triple list. The output of the function is the variable/value pair from
the first element of the surviving variable/value/score triple list.

The scoring function is declared using the following:

selection_function [selection_function]+;

The following is the current catalog of texture measures used as selection functions in ODO:
min_score - selects the variable/value/score triples with the lowest score
max_score - selects variable/value/score triples with the highest score
earliest_value - selects variable/value/score triples with the earliest value
latest_value - selects variable/value/score triples with the latest value

earliest_latest_value - selects variable/value/score triples with either the earliest or
latest value

random - selects one among all variable/value/score triples randomly

arbitrary - selects one among all variable/value/score triples arbitrarily
The following example filters all variable/value/score triples down to those that have the lowest
score, then filters that list down to one randomly:

gelection_ function min_score random;

5.2.2 Constraint Propagation

Once a variable and value are selected, the value is asserted for that variable. Since variable and value
selection occur on start-time variables only, the assertion is propagated through the duration con-
straint to the task’s end time. In addition, since we assume only one resource pool per resource class,
we can assign the appropriate resource pool’s to this task’s resource request variables.

At this point, any desired additional constraint propagation will occur. ODO performs this propaga-
tion by calling the Propagate procedure. Propagate accepts as input the variable/ value pair that

has just been asserted and a list of propagation functions to perform. ODO performs the propagation
functions in sequence, passing to each function the variable/value pair.

The propagation functions are declared using the following;:

propagation_method [propagation_functionl+ ;

A propagation function may enforce consistency on either actual or possible values for a variable. The
following is the current catalog of propagation functions in ODO:

none - no propagation is performed.
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temporal_ pv_unassigned - propagates the possible values of all variables connected via
temporal constraints to the input variable/value pair. If full temporal consistency held
before the new variable/value pair assertion, temporal consistency is guaranteed after this
propagation has been performed. For job shop problems, this is performed in O(#activities
per job).

full_temporal_pv_unassigned - propagates the possible values of variables via tem-
poral constraints through the complete temporal constraint network. Regardless of temporal
consistency before the variable/value assertion, full temporal consistency is guaranteed
after this propagation. For job shop problems, this is performed in O(#activities).
temporal_v_assigned - propagates the actual values of variables connected via temporal
constraints. If temporal consistency held before the new variable/value pair assertion, full
temporal consistency is guaranteed after this propagation has been performed. For job shop
problems, this is performed in O(#activities per job).

unit_resource_pv_unassigned - rejects possible values for unassigned variables if
there does not exist available capacity in an eligible resource pool for the duration of the
variable’s task starting at that possible value. This achieves the equivalent of “forward
checking” [Haralick 80] with respect to resource constraints. For job shop problems, this is
performed in O(#activities * p), where p is the maximum number of possible values for the
start-time of the activity.

binary resource_pv_unassigned - eliminates possible values for the variables of two
unassigned tasks that will require the same unit-capacity resource pool and which must
overlap [Sadeh 91] . For job shop problems, this is performed in O(#activities * p), where p is
the maximum number of possible values for the start-time of the activity.

We note that temporal and resource propagation are performed independently. This is due to common
practice in the scheduling domain, since full temporal consistency can be achieved more efficiently
than resource consistency. The unit_resource_pv_unassigned and binary resgource_pv_u-
nassigned resource propagation functions achieve partial resource arc-consistency.

The following is an example of a propagation declaration:

propagation_method temporal_ pv_unassigned
unit_resource_pv_unassigned;

5.2.3 Accept Criteria

After assertion and propagation, the resulting state is checked to see if it is to be kept or if the previous
state should be restored. This acceptance function is declared as follows:

accept_criteria accept_criteria_function ;

The following is the current catalog of texture measures used as acceptance functions:

always - always accept the resulting state.

cost_leq - accept the resulting state when its cost (see below) was kept the same or
reduced from the previous state.

no_empty_pv - accept when the resulting state did not result in emptying any variable’s set
of possible values.
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5.2.4 Backtrack Mechanism

At this point, only chronological backtracking is supported. Therefore no backtrack mechanism needs
to be declared.

5.2.5 Search Termination Criteria

At the beginning of each search iteration, ODO checks to see if the search termination condition has
been met. The search termination condition is an expression that allows for all logical relations and
predicates, arithmetical negation, and a small number of problem-state measurement functions. The
semantics of logical operators follows that of C and C++: for example, a logical negation of a non-zero
number returns zero. The symbols, precedence, and associativity are identical to that found in Cand
C-++ [Stroustrup 91] . Precedence can be overridden with the use of parentheses. We describe the
expressions in greater detail in Appendix A.

The search termination expression is declared using the following:

search_termination_criteria expression;

The following is the current catalog of problem-state measurement functions in ODO:

cost - returns the value of the declared cost function (see below).
gsearch_time - returns the time (in seconds) passed since the beginning of search.
search_iterations - returns the number of iterations since the beginning of search.

num_backwards - returns the number of iterations for which the FORWARD search flag was
= FALSE.

exhaust_search - returns 1 (i.e. TRUE) if the search space has been exhausted.

The following is an example termination declaration:

search termination_criteria (cost == 0) || exhausgt_search;

5.2.6 Cost Function

In various components of the search process it has been convenient to base decisions upon the
returned value of a single 0-ary cost function. This function evaluates the current state and returns an
integer value. The cost function is declared using the following:

cost_function cost_function ;

There are currently two texture-based cost functions in ODO:

num _violated constraints - returns the number of violated constraints.

num_unassigned - returns the number of unassigned (start-time) variables.
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5.3 Problem Solving Examples

In this section we will demonstrate how to use ODO to solve a particular scheduling problem. We use
the same example problem as that shown in Figure 8 (Chapter 4). We will assume that the ODO code
presented there has been previously input into ODO. All that remains to begin search is to declare pol-
icy parameters and run ODO’s problem-solver.

5.3.1 Constructive Search

One way to solve the problem is through a simple constructive scheme. For this policy, we perform the
following at each step:

*

-

one unassigned variable is selected

the earliest possible value for that variable is asserted

temporal and unit resource propagation occurs on the possible values of the remaining unassigned
variables

backtracking occurs if some unassigned variable has an empty set of possible values

search terminates if the search space is exhausted or if the number of unassigned variables = 0

var_sgselection

unassigned
arbitrary;

backward_var_selection

most_recent_failure;

val generation

all_pv;

scoring function

none;

selection_function

earliest;

accept_criteria

no_empty_ pv;

propagation_method

temporal_pv_unassigned
unit_resource_pv_unassigned;

cost_ function

num_varg_unagsigned;

search_termination_criteria

(cost == 0) || exhaust_search;

Figure 10 shows ODO's resulting schedule (the ‘A" is omitted from the activity labels on the Gantt
chart).
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Figure 10. Gantt chart of resulting schedule after constructive search.

5.3.2 Repair-based search

Another way to solve the problem is to search using a repair method. The repair method must be ini-
tialized by executing a policy that assigns values to all variables. We can do that in the following con-
structive manner, where tasks are placed consistently with respect to temporal constraints but without
checking any resource constraints:

var_selection
unassgigned
random;
backward_var_selection
none;
val_generation
all_pv;
scoring function
none;
gelection_function
earliesgt value;
propagation_method
temporal_pv_unassigned;
accept_criteria
no_empty_ pv;
cost_function
num_varsg_unassigned;
search_termination_criteria
(cost == 0);

Figure 11 shows the schedule resulting from the initialization policy. Note here that we can use a Gantt
chart to display a schedule containing violated constraints. If at any time two tasks are placed on the
chart above the resource pool’s capacity line (dotted), then there exist resource violations.
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Figure 11. Temporally consistent schedule after initial assignments (in preparation for repair-based
search).

Now we can call a repair policy to fix the schedule. At each step:

» arandom variable is selected

+ arandom value is asserted for that variable

« propagation enforces temporal constraints; therefore other variables that are linked via temporal
constraints to the newly asserted variable may have their values changed

« the resulting state accepted only if the resulting number of constraint violations was less than or the
same as that found in the previous state

var_gelection

random;
val_generation

random_pv;
scoring function

none;
selection_function

random;
propagation_method

temporal_v_assigned;
accept_criteria

cost_leq;
cogt_function

num_violated constraints;
search_termination_criteria

(cost == 0);

This policy is essentially performing random repairs at each step, accepting only those that lower the
number of violated constraints. Figure 12 shows the resulting schedule.



Figure 12. Resulting schedule after repair policy performed.
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Chapter 6 Experiments Using,
ODO

ODO’s capabilities as an interpreter of scheduling policies allow us to test many heuristics from within
our problem solving model. This gives us the opportunity to isolate the differences between problem
solving methods and correlate search performance with problem properties. In this chapter we
describe some preliminary experimental results. We first demonstrate how ODO emulates two suc-
cessful scheduling mechanisms — one constructive, the other repair-based. We also show how slight
variations to these algorithms alters performance on a known set of scheduling benchmark problems.
Lastly, we show that the Min-Conflicts heuristic may not solve a problem in thousands of iterations
even if search begins one step away from a solution.

6.1 Reconstructing MicroBOSS within ODO

Our reconstruction of MicroBOSS is based upon the version described in [Sadeh 91] . Micro-BOSS
decision-making heuristics rely upon the constructive approach to generating a satisfactory schedule.
The variable selection method is a heuristic aimed at finding the most constrained variable and assign-
ing it the least constraining value. Therefore Micro-BOSS attempts to make its most critical decisions
as early as possible; should backtracking occur, it occurs relatively early and hence avoids much
thrashing.

6.1.1 Variable and Value Selection in MicroBOSS

Micro-BOSS performs separate phases of variable and value selection. Variables are selected by ana-
lyzing the remaining unassigned activities (variables) and finding the activity that most heavily
depends upon the most contended-for resource /time interval. Once this activity has been identified,
an actual temporal assignment (value) is found for that activity that will most likely survive through
later assignments to other activities.

Micro-BOSS performs a complex process to make these decisions. In variable selection, Micro-BOSS
generates (for each unscheduled activity and each resource that activity may use) a demand profile,
which measures the probability that the activity will require a particular resource at a particular time.
Aggregate demand profiles are generated for each resource by summing the individual demand pro-
files associated with a given resource. The resource experiencing the highest aggregate demand is con-
sidered to be the most contended-for resource. The activity contributing the greatest individual
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demand to the aggregate demand peak of this resource is the activity considered most reliant on that
most contended-for resource. Micro-BOSS selects that activity for scheduling. Sadeh refers to this
method of variable selection as the ORR heuristic (for Operations Resource Reliance).

Value selection is then performed for the selected activity. This is done by determining which of the
variable’s possible values appears most promising according to survivability and compatibility mea-
sures. The survivability measure reflects the likelihood that other tasks will not require that resource-
time reservation, and the compatibility measure estimates how many schedules would be compatible
with this assignment. This value-selection method is called the Filtered Survivable Schedules heuris-
tic, or FSS.

Micro-BOSS systematically assigns time-resource reservations to activities using the above methods
for variable and value selection. Propagation is performed after each new assignment that results in
full arc-consistency with respect to temporal constraints but only partial arc-consistency with respect
to resource constraints. Backtracking proceeds in the standard chronological manner.

6.1.2 ODO’s Implementation of Micro-BOSS

In order to emulate Micro-BOSS within ODO, we needed to reconstruct the calculation metrics
described above. We therefore added a new variable selection filter, orr, and a new scoring function,
£s8. MicroBOSS’ problem-solving procedure is then declared within ODO as follows:

cost_function
num_unassigned_vars;
var_selection
unassigned
orr
arbitrary;
backward_var_selection
most_recent_failure;
val_generation
all_pv;
propagation_methoed
full_temporal_ pv_unassigned
unit_resource_unassigned
binary resource_unassigned;
scoring function
fss;
selection_function
max_sgcore
arbitrary;
accept_criteria
no_empty pv;
search_termination_criteria
(cost == 0) || (search_iterations == 1000};

Note that variable selection and the evaluation method ultimately break ties arbitrarily. MicroBOSS is
described as a deterministic algorithm; therefore tie-breaking should not depend upon the state of the
random number seed.



The heuristic described above (including the termination of search after 1000 steps) was used in exper-
iments presented in [Sadeh 91] on a suite of 60 test problems. These problems consisted of six differ-
ent problem “classes”, based upon the number of a-priori bottlenecks (one or two) and how loose the
due-date was set (“wide”,” narrow”, and “0” looseness). Ten problems of each class were created for
the test suite. Each problem comprised ten jobs of five activities.

Figure 13 shows a solution to one of the 1-bottleneck/0-looseness problems. The numbers labeling
each box in the Gantt chart uniquely specify each activity, and are of the form XY, where X is the job
number (0-9) and Y is the activity number within job X (0-4). For any two activities within a job, XY
and XY, if Y7 < Y,, then activity XY; must finish before XY, can begin.

ROO

R10

R20

R3¢

Figure 13. One solution to a problem (1-bottleneck, 0-looseness) from Sadeh’s experimental suite.

For this problem, Resource R20 is the bottleneck: each job’s third activity requires Resource R20, and
each of these activities is relatively long in duration. This bottleneck will likely dictate the difficulty in
finding a solution to the problem.

We have translated these 60 problems into ODO’s problem description language and duplicated the
experiments. Table 1 summarizes our results as compared to those reported in [Sadeh 91] 1t should
be noted that while our results are similar, they do not agree completely. These results however are not
incompatible with other known efforts to duplicate the MicroBOSS heuristic [Sadeh 93] .

Table 1. Number of Problems Solved (out of 10) for the six problem classes. W: wide looseness; N:
narrow looseness; 0: zero looseness.

1 Bottleneck 2 Bottlenecks
W N 0 W N 0
Sadeh MicroBOSS 10 8 7 10 9 8
ODO MicroBOSS 9 7 7 8

1. We note that Sadeh has reported solving all problems using more sophisticated forms of backtrack-
ing [Xiong 92], which we have not implemented yet within ODO.
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One point we can readily check is the impact of the arbitrary decisions made to keep the algorithm
deterministic. We can simply substitute the word random for each occurrence of the word arbitrary
in ODO’s description of Micro-BOSS and observe the net effect over multiple runs. Table 2 compares
the number of problems solved at least once in 20 runs when breaking ties randomly against the num-
ber of problems solved breaking ties arbitrarily. This outcome indicates the potential reliance of
Sadeh’s reported results on the arbitrariness of tie-breaking decisions.

Table 2. Number of Problems Solved (out of 10).W: wide looseness; N: narrow looseness;
0: zero looseness. When random tie-breaking is used, a problem is considered “solved”
if a solution was found at least once in 20 runs.

1 Bottleneck 2 Bottlenecks
w N 0 W N 0

Sadeh MicroBOSS 10 8 7 10 9 8
(arbitrary tie breaking)

ODO MicroBOSS 9 7 7 8 7 6
(arbitrary tie breaking)

ODO MicroBOSS 9 7 7 9 8 7
(random tie breaking)

6.1.3 Varying Consistency Enforcement

Our first (incorrect) policy implementation of the Micro-BOSS heuristic used a slightly different prop-
agation scheme which yielded surprisingly different results. In it we used
temporal_pv_unassigned instead of full temporal pv_unassigned for the temporal com-
ponent of the propagation (see Section 5.2.2 for a description of these propagation methods). We rea-
soned that temporal propagation only needed to occur on those tasks that are temporally connected to
the newly assigned task (i.e., those activities within the same job). This is what

temporal_ pv_unassigned does. In comparison, full temporal_pv_unassigned performsa
full temporal propagation across all activities of all jobs. We assumed that propagating via

full temporal_pv_unassigned instead of temporal _pv_unassigned would require extra
effort without performing any additional propagation.l However, because MicroBOSS does not propa-
gate resource constraints until full resource arc-consistency is achieved, there always exists the possi-
bility that inconsistent possible values remain on some variables after propagation. Therefore, in the
next iteration, full_temporal_pv_unassigned can prune more possible values left inconsistent
from the previous iteration than temporal_pv_unassigned can.

1. It turns out that the extra computation required by full_temporal pv_unassignedis minimal
compared to the computation involved in the orr / £ss variable/value selection process.
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For 1-bottleneck problems, no real difference resulted. For the 2-bottleneck problems however, the dif-
ferent amount of temporal consistency enforcement made a great difference. Table 3 compares the
results of using ODO’s Micro-BOSS policy with the two temporal propagation methods.

Table 3. Number of Problems Solved (out of 10), with 20 tries.

1 Bottleneck 2 Bottlenecks
Temporal Consistency Method W N 0 W N 0
full_temporal_pv_unassigned 9 7 7 9 8 7
temporal_pv_unassigned 9 7 7 3 2 0

The differing sensitivity of the 1- and 2-bottleneck problems to this minor change in consistency check-
ing suggests that extra consistency checking is useful in the more tightly constrained 2-bottleneck
problems. We tested the possibility of improving Micro-BOSS’s performance with slightly increased
consistency checking beyond that used by Sadeh in his thesis. Here we altered temporal checking to
the following:

propagation method
full temporal_pv_unassigned
unit_resource_unassigned
full temporal_pv_unassigned
unit resource_unassigned
binary resource_unassigned;

Table 4 compares the results of the normal propagation method against the results using this extra
propagation. No change occurred with respect to the 1-bottleneck problems. The results of the 2-bot-
tleneck problem however came as a bit of a surprise: we see a slight improvement for finding solutions
to the 0-looseness problems, and a degradation of performance for the narrow-looseness problems.

Table 4. Number of Problems Solved (out of 10), with 20 tries, comparing ODO-MicroBOSS using
the normal propagation method and ODO-MicroBOSS with extra propagation.

ODO-MicroBOSS 1 Bottleneck 2 Bottlenecks
Propagation w N 0 w N 0
Normal Propagation 9 7 7
Extra Propagation 9 7 7 9 6 8
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Ordinarily we do not anticipate that extra consistency enforcement should degrade search perfor-
mance. We therefore sought to determine the cause of this result. The first step in doing so was to iso-
late precisely where the change was occurring. Table 5 enumerates for all 2-bottleneck problems the
number of times a solution was found (out of 20) within 1000 iterations.

Table 5. Number Solved Using ODO’s MicroBOSS, with 20 tries. “=" : Normal Propagation; “>" :
Extra Propagation.

2 Bottlenecks
w N 0
Problem # = > = > = >
1 18 20 0 0 20 19
2 0 0 0 0 0 0
3 20 20 20 20 9 20
4 20 20 20 20 20 20
5 20 20 20 20 20 20
6 14 9 20 20 0 20
7 13 19 20 20 20 20
8 20 20 i2 0 20 20
9 20 20 20 0 0 0
10 20 20 20 20 20 20

Problems 8 and 9 with 2-bottleneck and narrow-looseness settings demonstrated the degradation most
clearly. Problem 8's positive results for the normal setting were subject to arbitrary tie breaking, so we
focused our analysis on Problem 9.

We traced the execution of MicroBOSS using both propagation methods on this problem. At the begin-
ning of the second iteration, Activity 82 has 113 possible values with normal propagation and only 92
possible values with extra propagation. Consequently, different demand profiles are generated by the
orr variable-selection texture measure. When the extra propagation is performed, orr determines
that Activity 82 is the most-constrained task. Unfortunately, the value selected as best by the £ss eval-
uation criteria for Activity 82 is not a good one; as a result, search thrashes until the iteration bound is
reached. Using the normal propagation settings, orr selects Activity 14 (instead of Activity 82); when
Activity 14’s value is propagated, it prunes the “bad” Activity 82 value. When Activity 82 is later
selected, it is ultimately assigned a good value, and a solution is found with minimal backtracking.

This example suggests that it is not always the most-constrained variable that should be selected for
assignment. Rather, variable selection should perhaps be biased by the heuristic’s ability to selecta
good value for that variable. Separate variable and value selection, as performed in MicroBOSS,
misses this opportunity. We plan to look further into this issue in the future.
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6.2 ODO as Min-Conflicts (and Variants)

As described previously, Min-Conflicts is a repair-based heuristic that essentially performs greedy
search. Its variable selection consists of randomly selecting a task with a violation and assigning it a
value that minimizes the overall number of violations. Min-Conflicts” nondeterministic character
helps it avoid cycling during search.

The designers of the Min-Conflicts heuristic have stressed the importance of a good initial starting
state from which repairs are to begin [Minton 92] . What defines a good starting state remains an
jssue. For the moment we will bypass trying to find a good initial start, since we can see some interest-
ing experimental results from using a random initial start (i.e., a starting state where all variables are
given random values). We can also relate this to GSAT'’s repair-based approach to solving satisfiability
problems, which does begin with a random assignment to all variables [Selman 92] .

6.2.1 Generating a Random Initial Assignment

The generation of a random initial assignment is performed using the constructive component of
ODO. Here unassigned variables are selected randomly, and they are assigned random values:

cost_function
num_unagsigned vars:;
var_selection
unasgigned
random;
val_generation
all_pv;
gcoring function
none;
gelection_ function
random;
propagation_method
temporal_ pv_unassigned;
accept_criteria
always;
search termination_criteria
cogt == 0;

Note that temporal consistency is enforced in this initial setup. In our current implementation, we
restrict ourselves only to repairing resource violations. We will allow repairs of temporal constraints in
future experiments.

When the constructive setup phase terminates, all variables have values that are at least temporally
consistent. In any reasonably difficult scheduling problem, we still expect for many resource con-
straints to remain violated. Thus some repair mechanism can be used to resolve the remaining viola-
tions.
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6.2.2 Min-Conflicts Repair

We declare the following to emulate Min-Conflicts within ODO. At each repair step, a variable partici-
pating in a violated constraint is selected (breaking ties randomly), and a new value is assigned to that
variable that minimizes the resulting number of conflicts (breaking ties randomly):

cost_function

num_violated_ constraints;
var_selection

violated

random;
val generation

all_pv;
scoring function

cogt lookahead;
selection_function

min_ score

random;
propagation_method

temporal_v_assigned;
accept_criteria

always;
gsearch_termination_criteria
(cost == 0) || (search_iteratiomns == 1000});

The value for the search iteration bound entered here has no particular significance.

6.2.3 GSAT-like Min-Conflicts Repair

GSAT is a hill-climbing repair heuristic that has performed well on random satisfiability problems
[Selman 92] . A satisfiability problem is a propositional formula in conjunctive normal form (i.e. a con-
junction of clauses, where each clause is a disjunction of literals, and a literal is a propositional variable
or its negation); a solution to the problem is a truth-value assignment to all variables such that the for-
mula is satisfied. GSAT’s hill-climbing search strategy can be paraphrased as follows:

« Begin search with a random truth assignment to all variables.

o At each iteration, reverse the value for the variable that results in the greatest number of satisfied
clauses (breaking ties randomly).

« If an iteration bound has been reached without finding a complete satisfying assignment, generate
a new random initial state and restart search.

We can consider the satisfiability problem as a CSP by mapping each propositional variable into a csp
variable with domain T or F, and then attaching a constraint between the variables in an individual
clause. Each constraint is satisfied only if one of the literals in the clause evaluates to T.

When we view GSAT’s hill-climbing mechanism in the context of the general CSF, we see thatitisa
form of lookahead similar to Min-Conflicts. GSAT performs a greater amount of lookahead than Min-
Conflicts does, but in all other respects the heuristics are identical. It is worthwhile to try a GSAT-like
variation of Min-Conflicts and see if (in the context of constraint-based scheduling) the extra looka-
head is worth its computational expense. In ODO’s policy representation we only have to change two
of Min-Conflicts’ declarations to create a GSAT-like variant:



var_selection

all;
val_generation

all but_current_pv;

We can see that GSAT performs a full one-step lookahead. The all_but_current_pv value genera-
tion is a subtle variation on Min-Conflicts’ all_pv value generation. GSAT can ignore the current
assignment since it evaluates all possible problem states one step away. If the current state is in fact a
true local minima, then GSAT will perform a repair that will create a condition with more violations
than the current state. How much these violation-increasing repairs contribute to the success of the
GSAT heuristic on satisfiability problems is not well understood [Mitchell 93] . Since Min-Conflicts
always evaluates the selected variable’s current value, there does not exist a possibility of selecting a
repair that will create more violations. Without any better choices, the current value will be selected.
Even when the current value is chosen and no change has been performed, the next iteration has the
opportunity to select a different variable to repair.

6.2.4 Other Variants on Min-Conflicts

We can easily consider some other minor variants to the default settings for Min-Conflicts in ODO.

« Random variable selection - Instead of selecting a violated variable, we can simply select a ran-
dom variable. In some cases, a variable that is not violated may be located at a time that prevents
violated variables from moving in a direction that leads to a solution. It may benefit us to allow the
selection of variables that are not violated as well.! Our only change to Min-Conflicts is:

var_selection
random;

o Favor earliest/latest times when breaking ties - when considering how to break ties during the
evaluation phase, break ties using the earliest and latest actual values. This has the net effect of
pushing tasks up against each other, which may be necessary to organize a bottleneck resource effi-
ciently. We enable this within ODO by changing the Min-Conflicts evaluation criteria to the follow-

mg:

scoring function
min_ score
earliest_latest_value
random;

Figure 14 provides an example of the precise behavior of earliest_latest_value whenused asa
scoring filter. In this example, three activities (01, 02, and 03) each require the use of Resource R1.
There are no temporal constraints between these three activities. Note that in the starting state, Activ-
ity 01 and Activity 02 are violated (since they overlap each other). The starting cost = 2.

1. It has been shown in [Papadimitriou 91] that 2-satisfiability problems (i.e. satisfiability problems
where all clauses have two literals) can be solved using random variable and value selection in O( n?)
expected time.
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Suppose we use the standard Min-Conflicts settings to repair the violation, except we use the scoring
function mentioned above. Now suppose that in the first iteration, Activity 02 is chosen during vari-
able selection. Activity 02’s start-time variable has 7 possible values (0-6). Each of these candidate
start-times is evaluated; we note that start-times 0 and 1 result in a cost of 3, and start-times 2 through
6 result in a cost of 2. Themin_score scoring function therefore returns start-times 2 through 6. The
carliest_latest_value scoring function chooses the earliest and latest of these actual values:
namely 2 and 6. One of these is chosen randomly as the final selected value for repair.

By closely examining Figure 14, we see that when a start-time of 2 or 6 is selected for Activity 02, there
is an opportunity to resolve all violations by moving Activity 01 in the next iteration. The same could
not be said if a start-time of 3, 4, or 5 was selected instead. The default Min-Conflicts value-selection
phase does not distinguish between start-times 2 through 6; however by adding the

earliest_ latest_value tie breaking mechanism, we focus repairs to those opportunities that
may better organize activities using bottleneck resources for later iterations.

Activity 02 Resulting Lowest Earliest
Start Time Cost Cost? or Latest?

0 3
/’
1 3
Starting State /
(2' 2 v v
R1 | %? 2 v
.
4 2 v
\5' 2 v
6 2 v e

Figure 14. Demonstration of earliest_latest value scoring function for tie breaking.

These above 2 variations can be performed independently or together. In addition, we can use the
carliest latest_value variant with our GSAT-like variable/value generation settings.



6.2.5 Min-Conflicts and Variants with Random Starts

Table 6 shows the results for Min-Conflicts and these variants on the benchmark problem shown in
Figure 13 (1 bottleneck, 0 looseness) from a random start. The default Min-Conflicts heuristic is
reflected in the first row of the table. The GSAT-like heuristic is found in the fifth-row. Each experiment
was run 10 times for each of 10 random initial setups. Search terminated after 1000 iterations. The
mean number of iterations is reported only for those problems solved by the iteration bound.

Table 6. Results from performing Min-Conflicts and variants from a random start for one 1-
bottleneck /0-looseness problem. Number solved is reported out of 100 runs (10 different random
setups, 10 runs each, 1000 iterations per run).

Avg.Time/

Var Val Early/Late tie | Num Mean Iteration

Selection Generation breaking? ]Solved | Iterations (Seconds)?
violated ran- all_pv N 7 393 07
dom Y 9 107 0.7
random all_pv N 8 644 0.7
Y 53 572 0.7
all all_but_ N 15 426 32
current_pv Y 77 357 32

a. See the appendix for a description of ODO’s hardware and software environment.

We first observe that none of these repair heuristics could reliably find a solution from a random start
in 1000 iterations. Second, the domain-specific bias to break ties using the earliest and latest values
seems to improve all heuristics, not only in the number of solutions found but also in the average
number of iterations required to find solutions. Further, we see that random variable selection gener-
ally improves the likelihood for finding a solution over violated random variable selection; how-
ever, the number of iterations required by random variable selection is noticeably higher. Hence there
exists a trade-off between selecting the more focused violated random variable selection, which, if it
finds a solution will do so relatively quickly, against the more reliable but slower random variable
selection.

Finally, it appears that the full 1-step lookahead variable selection (all/all_but_current)is too
computationally expensive relative to the added power it provides. We have found that the lookahead
process dominates computation time for all of these heuristics. When a problem consists of 50 activi-
ties, we can expect the full lookahead to require approximately 50 times more computation per itera-
tion over a method that performs lookahead on one activity only. Since we do not observe a 50-fold
improvement in search efficiency using full lookahead, we consider the other variable selection meth-
ods to be more economic choices.

Though our GSAT-like version of Min-Conflicts does not appear to be any more promising than Min-
Conflicts itself, we should not discount the possibility that the original GSAT heuristic may perform
well on a version of the scheduling problem represented as a satisfiability problem. GSAT has been
shown to efficiently solve n-queens and graph-colorability problems converted into satisfiability prob-
lems [Selman 92] . However, GSAT required modification before it could efficiently solve a planning
problem [Kautz 92] [Selman 93] . GSAT’s performance (with or without heuristic modifications) on
satisfiability-translated scheduling problems remains to be assessed.



56

Table 7 reports results using the violated random and random variable selection for representative
problems of the six problem classes in the test suite. Not all problems are equally hard for the Min-
Conflicts-like heuristics. In general, we observe that for more constrained problems (more bottlenecks
and/or less looseness), the repair heuristics are less likely to find a solution. Again, we note that the
bias to favor earliest and latest values for tie-breaking purposes almost always improves search perfor-
mance. For the “easiest” problem class (wide looseness and one bottleneck), the random setting with
early/late tie-breaking found a solution 98 times out of 100. Still, we might prefer to use the violated
random setting with early-late tie-breaking instead since a solution is found half as often but (on aver-
age) five times faster.

Table 7. Results using the violated randomand random variable selection for representative
problems of each class (10 different random setups, 10 runs each, 1000 iterations per run).

Problem Type Policy settings Results

# Early/Late tie Num

Looseness | Btlnecks | Var Selection | breaking? Solved |Mean Iter.

0 1 violated ran- N 393

dom Y 107

random N 644

Y 53 572

2 violated ran- N 0 -

dom Y 1 128

random N 0 -

Y 4 608

N 1 violated ran- N 53 193

dom Y 49 79

random N 49 479

Y 971 322

2 violated ran- N 6 233

dom Y 171

random N 657

Y 690

A% 1 violated ran- N 66 155

dom Y 53 44

random N 59 428

Y 98 270

2 violated ran- N 22 253

dom Y 28 78

random N 23 655

Y 57 516




6.3 Min-Conflicts and the Horizon Effect

The good start that the Min-Conflicts heuristic informally specifies appears necessary for solving the
more difficult of Sadeh’s test problems. Though a good start is not well defined, it essentially implies
that, with respect to the heuristic, we are near a solution. The concept of “nearness to solution”, if it
could be captured, could also be usefully applied within search termination conditions. Repair-based
search methods such as Min-Conflicts and GSAT typically use a prespecified iteration bound to deter-
mine whether to terminate the existing search procedure. We assert that other efficient measures exist
that can indicate whether the current search method is near or far from a solution. This is motivated by
the example problem states shown in Figures 15 and 16.
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Figure 16. Very far from a solution for Min-Conflicts.
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In the first case (Figure 15), we appear to be very close to a solution if we are using the Min-Conflicts
heuristic. If Activity 22 (circled) is selected during variable selection, then it will be placed in the avail-
able spot beginning at time 104 and search will terminate.

In the second case (Figure 16) we seem to be very far from a solution if we use Min-Conflicts. This is
because there is no single available spot for either violated task, or for any other task on this resource
for that matter. Somehow the gaps between tasks must be consolidated during Min-Conflicts” repair
process before the violation can be resolved.

The differences between the schedules shown in Figures 15 and 16 capture intuitively what we might
consider one difference between a good and a bad initial start. In addition, we might wish to terminate
search and start over if we found ourselves in Figure 16’s schedule state, whereas we probably want to
continue search from Figure 15’s schedule state. The concepts of initial start and termination condi-
tions are further connected when we consider that we would like to terminate search if we have an
expectation that starting over (with some “g00d” start state) places us in a problem state that is nearer
to a solution.

We considered the possibility that ODO’s MicroBOSS policy might be useful in creating a good initial
starting state. The overall search strategy would then be to run MicroBOSS until it either solves the
problem or reaches an iteration bound; if the bound is reached, then the existing partial solution could
be used as a basis for creating an initial start for a repair policy. We quickly discovered however that
whenever MicroBOSS did not find a solution by the iteration bound, its problem state was relatively
high in the search tree; consequently, perhaps only ten of the fifty activities remained assigned at the
iteration bound. Before any repairs could begin, the remaining activities would have to be placed
using some alternate policy. Our results using various alternate policies were inconclusive; when we
attempted to generate a good initial start we found an actual solution to the given problem more often
than we established a repair situation that Min-Conflicts could resolve.

We then constructed general texture measures that would possibly indicate when Min-Conflicts was
cither near or far from a solution. These measures ranged from the fragmentation of resource utiliza-
tion (where a state such as that shown in Figure 16 would register poorly for Resource R20) to the
number of unique moves available to a violated activity that would not increase the number of vio-
Jated constraints. To date we have found no clear correlation between our texture measures and a
probability of finding a solution.

The examples shown in Figures 17 and 18 underscore the subtleties that can dictate whether or nota
solution can be found within a few iterations. Figure 17 shows a partially violated schedule that
admits a solution to Min-Conflicts readily. Figure 18, however, shows a schedule which does not yield
a solution to Min-Conflicts for many iterations, even with multiple restarts. The only differences
between the two problem states are the relative positions of Activity 60 and Activity 20 on Resource
R30 (circled).
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Figure 18. Far from a solution using Min-Conflicts.

When we analyze these two problem states with respect to Min-Conflicts’ search heuristic, we see why
the small change makes a big difference. Min-Conflicts is able to quickly find a solution if it can place
Activity 62 at time 6. Since we enforce temporal constraints, Activity 60 and Activity 61 are subject to
value propagation when Activity 62 is moved to that time. However, Min-Conflicts will not allow a
move that will cause more violations than it repaired. Therefore, a move that repairs Activity 62’s vio-
lation (and simultaneously Activity 22’s violation) can only do so if it creates less than 2 violations as a
result. For the schedule in Figure 17, moving Activity 61 to time 6 will cause the violations of Activity
61 and Activity 70. Since the number of violations remains the same, Min-Conflicts will allow this
move. However, for the schedule in Figure 18, moving Activity 62 will cause two new violations with
each of Activity 61 and Activity 60. Min-Conflicts will never directly perform this move; consequently
the second state is much further from a solution.
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We found this interaction by looking several steps ahead into the search process Min-Conflicts was
likely to execute. Since Min-Conflicts only evaluates states that are one repair away, these kinds of
interactions are beyond its detection. This is an example of the horizon effect [Berliner 73], a phenom-
enon which occurs to heuristic methods with limited information.

6.3.1 One-Resource Experiments

As we have noted before, Min-Conflicts does not perform a full one-step lookahead. Consequently, the
horizon effect can become apparent within one search step: Min-Conflicts may overlook an available
repair that would solve the problem. The missed opportunity may not heavily impact search conver-
gence if there is a reasonable probability that a solution will be found within a small number of itera-
tions anyway.

We performed experiments to determine Min-Conflicts’ likelihood for finding a solution when search
began with a solution one repair away. To simplify analysis, we focused on one-resource problems of
the kind that would represent a subset of one of Sadeh’s test problems. As we shall see for even these
problems, it is possible for Min-Conflicts to begin search one repair away from a solution but still not
find any solution for 1000 iterations or more. This is because the solution may only be found if a partic-
ular violated variable is selected for repair, and not just any of the violated variables. Figure 19 shows a
graph of state-space transformations which illustrates this possibility.
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Figure 19. Transition graph demonstrating that even though a solution can be found within one step
from the starting state, a solution may not be found after many iterations.

We generated six 11-activity/1-resource problems. The distribution of activity durations varied, but all
durations in each problem summed to 110. By performing the following steps, the problems were ran-
domly initialized to a state that was one repair away from solution:



« Ten of the eleven activities were placed in a manner consistent with respect to all constraints. In
addition, the tasks were placed as compactly as possible so thata gap remained in the resource
large enough to accommodate the eleventh task.

« The eleventh activity was placed randomly instead of into the available resource gap.

Figure 20 shows one initial setup. Activity 07 is the randomly placed task; both Activity 07 and Activ-
ity 10 are violated as a result. If we use the Min-Contflicts heuristic to find a solution, then the variable
selection phase will select either Activity 07 or Activity 10. If Activity 07 is selected, a solution is found
this iteration. If Activity 10 is selected instead, however, no solution can be found this iteration. Even
so, we would still hope to find a solution within a small number of steps.

Figure 20. Sample initial setup for 1-resource problems.

We ran the Min-Conflicts heuristic on each of the six problems 100 times, using a different random ini-
tial setup each time, and terminating search at 1000 iterations if a solution had not been found. We set
each problem’s due date to 120, 115, and 110. Figure 21 shows for each of these due date settings the
average percent of all problems having found a solution as a function of iteration count.
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Figure 21. Average % of problems with solution as a function of iteration count.

For the loosest due date setting tested (120), solutions are almost always found within a few iterations.
When the due date is shortened to 115, fewer problems are solved within a reasonable number of iter-
ations. Finally, with the tightest due date, we see that despite finding solutions over 40% of the time in
the first ten iterations, only about 5% more can be solved in the next 990 iterations.

The data for the 110-due-date problems underscores (at least when a problem contains a tight bottle-
neck) the importance of a good start for a heuristic such as Min-Conflicts. Min-Conflicts’ cost measure
_ the number of violated constraints — cannot seem to keep the search process within short reach of a
solution. Even though we know that the number of violations never increases, we seem to be (probabi-
listically speaking) wandering further from finding a solution. For such a problem the successful over-
all search strategy may depend upon multiple restarts from good starting states.

This data also suggests that, if we know we can generate good starting states, perhaps a broader looka-
head method should be preferred. For example, in the above 11-task problems, if the variable selection
process chose all violated tasks and not just one random violated task, then a solution would have
been found in one iteration every time.

These observations emphasize the value that cost-effective texture measures can provide to a search
heuristic. Appropriate measures can potentially prescribe necessary and sufficient bounds on decision
informedness. The determination of these measures remains a focus of our research.
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6.4 Summary

This chapter has demonstrated ODO’s capabilities in emulating various scheduling heuristics within
its policy model. When we perform experiments on these policies, we start to see some of the relation-
ships between problem structure, heuristic method, and search performance.

Our experiments have shown MicroBOSS’ sensitivity to the amount of constraint propagation per-
formed. Slight alterations in the degree of consistency enforcement caused noticeable changes in the
number of problems that could be solved from the Sadeh experimental suite.

We have also shown that Min-Conflicts (and related repair-based heuristics) do not quickly solve solu-
tions to Sadeh’s problems when given a random initial start. Reasons for why a schedule may or may
not be easy to repair can be subtle; consequently it remains a difficult issue to efficiently determine a
given problem-state’s nearness to solution with respect to the Min-Conflicts heuristic. Further, we
have seen that if Min-Conflicts is given a problem state one repair away from solution, an actual solu-
tion may not be found in many iterations.






Chapter 7 Concluding Remarks

7.1 Summary

In this thesis we have presented a model for constraint-based scheduling that is capable of capturing
many known scheduling heuristics. This model views problem solving as transformational search
through a set of problem-solving states, where transformations are structured by either constructive or
repair-based policies. Policy decisions are based upon constraint graph measures called textures. The
policy structure isolates components of a heuristic search loop that includes variable and value selec-
tion, constraint propagation, intermediate acceptance, and search termination.

We also described ODO, a constraint-based scheduling system that implements a portion of our
model. ODO represents the scheduling problem as a constraint graph, and performs structured search
within our policy. ODO accepts as input both the problem to be solved and the parameters for which
search is to be performed.

Using ODO we reconstructed two well-known scheduling heuristics — one constructive, the other
repair-based. We conducted experiments to verify ODO’s competence at emulating these heuristics
and to test the sensitivity of these heuristics to small changes in some facet of the heuristic. These
results demonstrate a scheduler’s sensitivity to the exact amount of propagation being performed, and
show how some repair techniques can experience poor performance due to the limited information
available for decision-making.

79 Conclusions and Future Research

This thesis represents a first step into unifying the many aspects of constraint-based scheduling. Our
model captures many known heuristics, and isolates some of their essential differences. The next step
is to perform a thorough analysis relating graph-based textures of scheduling problems to the perfor-
mance of heuristic search. We are especially interested in creating a more symbiotic relationship
between constructive and repair-based search strategies. For example, a constructive search process
could be interrupted for intermediate repairs before resuming. Other promising avenues include asso-
ciating the proper amount of consistency enforcement for a given problem class, and determining effi-
cient measures of approximate distance to solution.

The ODO scheduler is employed in research other than that described in this thesis. In addition, it is
being used for research in constraint relaxation [Beck 94],and in agent-oriented decision-making in
manufacturing [Fox 92].
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We continue to enhance ODO’s problem representation and problem solving capabilities. In the near
term, we anticipate adding the following functionality:

.

More consistency checking - To date we have only inserted propagation methods as they were
needed. We plan to incorporate a more complete consistency-checking library within ODO. Recent
results presented in [Nuijten 93] indicate that extensive consistency checking can be beneficial to
efficient search. The time/value trade-off of this extra propagation is worth further investigation.
Optimization constraints - Optimization constraints can add realism to the job shop model. Of
particular interest are activity tardiness and inventory constraints.

Other commitment methods - Beyond variable and value selection, we wish to implement con-
straint posting as an additional commitment method [Muscettola 93] .

Different backtrack schemes - We plan to incorporate a library of backtracking mechanisms,
including backjumping and perhaps dynamic backtracking [Ginsberg 93] .

Iterative side effects - In repair-based heuristics such as those described in [Morris 93] [Selman
93], constraint “weights” can be altered at each iteration. We plan to add a component to the decla-
ration of search that allows for these types of side effects.

We see many possible avenues for more long-term research:

*

Building robust schedules - Many scheduling domains operate under uncertain conditions.
Machines may break down, unanticipated work may be required, etc. We prefer schedules that can
absorb these uncertainties with minimal cost. We believe that the constraint model is adequate to
represent these types of uncertainties, and that heuristics can be developed to build more robust
schedules.

Problem reformulation - Much research into has gone into problem reformulation techniques such
as automated abstraction and relaxation. We assert that the scheduling domain can benefit from
such strategies. We anticipate that problem reformulation methods are compatible with our current
commitment-based problem solving model.

Machine learning - We might be able to create conditions for which a scheduler itself may be able
to determine an efficient heuristic for a problem solving domain. The potential for such heuristics
has been shown in [Zweben 92a] [Minton 93] .
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Appendix

A.1 ODO Implementation Details

ODO is implemented in C++. Its Gantt charts are displayed using the X Library. Parsing of the input
commands is performed using the LEX and BISON (a YACC-compatible parser) utilities. ODO has
been compiled and tested in Gnu C++ in the UNIX environment on a Digital DECstation. Execution
times are reported for a DECstation 5000/240.

ODO currently consists of approximately 10,000 lines of source code. This code compiles into an exe-
cutable of approximately 2.5 MB.

A.2 Complete ODO Grammar

ODO’s complete grammar for problem declaration and problem solving is listed below. Keywords
and literal text are written in courier bold font, identifiers and integers are written in normal font,
nonterminals are written in italic, and optional arguments are placed within square brackets ([ ] - one
optional argument; [ * - zero or more optional arguments; [ ]+ - one or more optional arguments).

commands [command ; 1*

command problem_declaration
| problem_solver_declaration

| problem_solver_action

problem_declaration task task_string [parent_string]
| duration task_string duration_integer

| resource_ class resource_class_string
[parent_resource_class_string]

[  resource_pool resource_pool_string
initial_amount_integer [resource_class_string]+

|  use_resource task_string resource_class_string
amount_integer
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problem_solver_declumtion

problem_solver_action

change_start

var_selection_option

val_generation_option

selection_function

propagation_method_option

consume_resource task_string resource_class_string
amount_integer change_start

produce_resource task_string resource_pool_string
amount_integer change_start

before task_string task_string
earliest_start task_string earliest_start_integer

latest_end task_string latest_end_integer

var_selection [var_selection_option]+
backward var selection [var_selection_optionl+
val_generation val_generation_option
scoring_function scoring_function
selection_function [selection_function]+
propagation_method [propagation_method_option]+
accept_criteria accept_criteria_option
cost_function cost_function_option

search_termination_criteria expression

congtruct
repailr

randomize [seed_integer]

st | et

all | random | arbitrary | violated | orr |
most_recent_failure |

smallest pv_cardinality | unagsigned |
all_predecessors_assignedi
all_successors_assignedl none

all pv | all_but_current_pv | arbitrary pv |
random_pvVv

min_score | max_score | earliest_value |

lategt value | earliest_latest_value | random

| arbitrary

none Itemporal_pv_unassignedl
full temporal_pv_unassigned |
temporal_v_assigned |

unit_resourcewpv_unassignedI
binary resource_pv_unassigned



scoring_function

accept_criteria_option

cost_function_option

expression

binary_operator

unary_operator

problem_state_measurement

none | cogt_lookahead | fss

always | cost_leq | no_empty_pv

num _vars_unassigned |
num_violated_constraints

expression binary_operator expression
unary_operator expression

integer

problem_state_measurement

( expression )

cost | search_time | search_iterations |
num_backtracks | exhaust_search
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Table 8 outlines legal operators for the while-loop conditional expressions. Operators in the same box
have the same precedence. Operators in a given box have higher precedence than operators in lower
boxes in the table. All operators are left-associative except ! and -, which are right-associative. The
symbols, precedence, and associativity are identical to that found in C and C++. Precedence can be
overridden with the use of parentheses.

Table 8. Conditional-expression operators and precedence.

Operat
or Usage Description
! ! expr unary logical negation
- - expr unary arithmetical negation
< expr < expr binary less-than
> expr > expr binary greater-than
<= expr <=expr | binary less-than-or-equal
>= expr >=expr | binary greater-than-or-equal
== expr == expr | binary equal
I= expr !=expr | binary not-equal
&& expr && expr | binary logical and
I expr | | expr | binary logical or




