Mppearéd In: Proceedings of IJCAT '9 3 Workshop on Production Scheduling

ODO: A Constraint-based Architecture for
Representing and Reasoning About Scheduling
Problems

Eugene Davis*
Department of Computer Science
University of Toronto

Toronto, Ontario, M5S 1A4, Canada
gdavis@cs.utoronto.ca

Mark Fox
Department of Industrial Engineering

University of Toronto
Toronto, Ontario M5S 1A4, Canada
msf@ie.utoronto.ca

Abstract

We present work-in-progress on 0DO, a constraint-based scheduling architecture.
0DO employs both constructive and iterative search methods, and bases heuristic deci-
sions on problem property measures (teztures). With the architecture’s command lan-
guage a user specifies a problem to be solved and the search parameters used in solving
the problem. We plan to use 0Do0 to study relationship between problem textures and
efficient search heuristics for both generative and-iterative scheduling methods.

Introduction

In the past few years, research in knowledge-based approaches to scheduling has focused
on graph-based constraint satisfaction and optimization techniques [Sadeh, 1991: Zweben et
al., 1992; Keng and Yun, 1989]. In this approach, a problem is represented by a constraint
graph, where the nodes are the variables of tasks and resources, and the arcs are constraints

"Supported by a University of Toronto Open Fellowship and a Research Assistanceship from the Depart-
ment of Computer Science

among the variables. Solving a problem amounts to assigning values to all variables such
that all constraints are satisfied.

There are two common methods for solving scheduling problems represented in thig way.
The constructive method [Fox, 1987; Sadel, 1991; Keng and Yun, 1989] starts with an
empty schedule and assigns a value to a variable only if it is consistent with al] previous
assignments; if the current set of assignments cannot lead to a feasible solution, then the
method backtracks and tries again. The ierative method [Zweben et al., 1993b; Minton et
al., 1992] starts with values assigned to a] variables and repeatedly modifies those values
until all constraints are satisfied.

Despite their differences, the constructive and iterative problem solvers have at least
one similarity: hoth methods continually modify the current schedule in a seqrel, to find a
solution as quickly as possible. Given that search could in the worst cage take exponential
time, it becomes Important to select appropriate modifications 1n an efficient manner. The

We use the term teztures [Fox ef al., 1989] to describe these properties when the problem
Is represented in a constraint model. To date, little work has been done to explore the
relationship bhetweeq problem textures and the efficiency of problem solving methods.

We are interested iy questions related to textures and efficient search for scheduling
problems: What are the textures of this domain? How might textures be combined? Cap
we correlate textures wit], good heuristics? What is the relationship betweerp constructive
and iterative searcl,? How does problem reformulation (abstra,ction, aggregation) change the
way we solve the problem?

As a platform for exploring these 1ssues, we are building & generic scheduling architec-
ture, ODO, which combines constructive and iterative scheduling approaches, and employs
a texture library with which search heuristics wil] base their decisions. The architecture
mcludes a command langnage for declaring problem mstances, performing texture Imeasures,
and controlling search barameters. In the baper we further discuss the notions of constraint
representation, textures, and search, and describe ouy design of the scheduling architectuye,

Constraint Representation

We see several reasons for the success of coustraint-based representation in the scheduling do-
main. First, 4 constraint mode] is a natural representation: scheduling is a decision problem
that can be described with a finite number of variables, each with g finite domain. Second,
since the scheduling problem is dynamic In nature, the addition and deletion of activities,
machines, deadlines, etc., can be easily realized by adding and deleting appropriate variables
and constraints. Third, a number of tools exists tg manipulate constraint graphs [Mack-
worth, 1977; Dechter and Meiri, 1989] that apply particularly well to scheduling problems
[Smith, 1983; Le Pape and Smith, 1987]. Also, as mentioned before, two powerful search
methods (constructive and iterative) can be efficiently performed iy this framework.

In 0DO’s constraint model, problems are represented by a collection of objects, variables,

2

ODbjects

N

O Variables

N

Tasks Resource Classes Numeric Resource Pools
(Work Centers) (Machines)
Temporal
\(Constraints
Temporal Resource-
/\ available
+= >=
Task-1
O duration
]
+=
start- —,,—"‘\\5 end-
time . - - =~~~ _time Task-3
ra T O duration
L >= |
@ +=
- |start- - -3%_ - end-
ttime . - - "= ~<_time
p ra
Task-2
O duration \ °
1 N
+= ’
start- - L Bt -- end- -
time - - - T~ < _time
O\;z/o
Machine-1
WorkCenter-1

Figure 1: An ODO problem hierarchy and constraint network

and constraints. The objects serve as placeholders for variables and constraints, and may
be used to store measured texture information. Figure 1 presents a hierarchy adequate to
represent simple job-shop scheduling problems, along with a contention graph for a simple
problem instance. As noted in the hierarchy, objects are represented as boxes, variables as
hollow circles, and constraints as filled circles with lines drawn to the relevant constrained
variables.

The problem we initially address is job-shop scheduling with due dates. Though there
exist constraint representations for more complex constraints (see for example [Zweben et
al., 1993a)), we will initially restrict our attention to precedence and resource constraints.

Textures

A texture i1s a property of a constraint graph. Because some textures require exponential
computation to compute, we usually estimate their actual value, hoping that the estimate is
close. These texture estimates are what the heuristics are a function of. The following are
examples:

e In backtracking search, the next schedule modification is chosen that will least likely
cause backtracking to occur. In addition, modifications are ordered such that if back-
tracking will occur, 1t will do so as soon as possible in order to minimize thrashing. In
the constraint model, this modification principle can be summarized as follows: find
the most constrained variable, and assign it a value that least constrains all later as-
signments. In MICROBOSS [Sadeh, 1991}, for example, the most constrained variable
1s the activity that relies upon the most contended resource/time reservation, and the
least constraining value is that reservation estimated as having the highest probability
not to conflict with later activity-resource/time assignments.

e In iterative search, the next modification is chosen that will hopetully reduce the num-
ber of violated constraints by the greatest amount. One approach, a variant of MIN-
CONFLICTS [Minton et al., 1992], selects the activity participating in the most number
of violations and moves 1t to the time that would result in a schedule with the fewest
number of overall violations.

The success of these heuristics 1n their respective domains suggests that the heuristics
should perform equally well on problems with similar textures. In Fox and Sadeh’s ini-
tial paper on textures [Fox et al., 1989], the authors define wvariable/value goodness and
variable tightness textures and show how they relate to the least-constraining value and
most-constrained variable concepts, respectively. Variable/value goodness is defined as “the
probability that the assignment of a particular variable to a particular value will lead to
an overall solution.” Variable tightness is defined as “the probability that an assignment
consistent with all the problem constraints that do not involve that variable does not result
n a solution.”

[Speciﬁcation]

[Execution Generation]

{ Iteration]

Figure 2: ODO architecture

Our intent is to characterize a larger set of textures than those identified in [Fox et al.,
1989], identify close and efficient texture estimators, and show how scheduling heuristics are
functions of these textures for both generative and iterative cases.

Search Techniques

Within the constraint-based framework, we assert that the operations performed by a sched-
uler can be classified into one of the following functional phases:

e Specification - declaring the problem’s variables and constraints
e Generation - assigning values to variables

o Iteration - changing values on variables

-

¢ Execution - assigning the actual values to variables

Typically these phases are encountered in a cycle. First a problem is specified, then a
solution is generated and improved upon, and this solution is executed. We generalized upon
the notion of looping through the functional phases by making ODO capable of performing any
phase at any time (see Figure 2). This makes it straightforward, for example, to incrementally
specify and solve small parts of a large problem.

The phase decomposition captures the functionality of both constructive and iterative
search paradigms. Even though it is quite conceivable to interleave generation and iteration
steps, most well-known systems focus search in one phase until a solution is reached.

The search performed may be systematic or nonsystematic. If systematic, all variable
assignment possibilities are eventually considered: if the search terminates with no solution
found, it is known that no solution exists. Nonsystematic approaches do not eventually
exhaust the search space (or at least are not aware of that fact if they do). Since they
do not maintain information to perform a methodical search, they can more easily move
about the search space. However, they may also visit the same search state many times, and
hence cycle. Constructive approaches are typically systematic!, and iterative approaches are
nonsystematic.

In the systematic constructive approach, a backtracking algorithm [Golomb and Baumert,
1965] is typically employed. Researchers have identified many enhancements to the basic
backtrack algorithm in one of several algorithm components [Haralick and Elliott, 1980;
Dechter and Pearl, 1988; Ginsberg et al., 1990; Bitner and Reingold, 1975; Gaschnig, 1977;
Sadel, 1991]:

» Preprocessing - (e.g. removing symmetrical states from consideration)

Variable Selection - (e.g. most constrained, most constraining)
o Value Selection - (e.g. least constraining)

o Constraint Propagation - (e.g. forward-checking, arc-consistency)

Backtracking Mechanisms - (e.g. dependency-directed, backmarking, backjumping)
The iterative approach also has many options [Minton et al., 1992; Zweben et al., 1993b]:

e Initial Solution Generation - (e.g. CPM)

e Variable Selection - (e.g. most violated variable)

e Value Selection - (e.g. value resulting in the least number of violations)
¢ Constraint Propagation - (e.g. forward-checking, arc-consistency)

* Intermediate Solution Acceptance Criteria - (e.g. strict hill climbing, simulated an-

~

nealing)

Whether constructive or iterative, any assignment could be thought of in terms of making
a modification to the existing scheduling state. These modifications continue in a cycle
(perhaps with the occasional backtrack or rejection of a solution), until some termination
condition is satisfied. In ODO we plan to model all search this way. Figure 3 captures our
perception of this loop.

'We note that the systematic approach may not always be best. In [Langley, 1992] the author shows that
a nonsystematic constructive search can outperform a systematic one.

Measure Textures

Perform Modiﬁcatioﬂ
Propagate Constraintﬂ

(Backtrack/
Revert

Figure 3: Flow chart of the problem solving component

Problem Specification and Execution

During the specification phase of 0DO, the problem is described. Through the built-in
langnage (see below) the user defines tasks, resources, and temporal constraints. In addition,
the user can add or remove variables and constraints, and preassign values to variables.

In the execution phase, the scheduler accepts as input an executable schedule, and uses
that to dispatch activities. It responds to real-world events; however, its flexibility is re-
stricted to the slack provided in the schedule. If the execution phase cannot use the schedule
as provided, then the schedule should be sent back to the iteration phase for repair.

Built-in Language

We have devised a simple command language as a user interface to 0DO. Asg commands are
parsed from the input, the appropriate actions are called. When used this way ODO could
be thought of as an interpreter. With this language the user can completely describe the
problem instance. In addition, the user controls which textures to measure and which search
parameters to use.

The language interface is a module; as such it could be replaced with a graphical interface
without changing the architecture’s tunctionality. In addition, the language module could
be connected to a new module designed to generate compilable source code directly from the
parsed commands.

The following is an example of how the language might be used in a simple problem
that encounters the specification, generation, and iteration phases. The problem specified

1s compatible with that found in Figure 1, and the problem solving mechanism emulates a
version of MIN-CONFLICTS.

resource-class WorkCenter-1
resource Machine-1 WorkCenter-1
task Task-1 100
task Task-2 100
task Task-3 100
constraint temporal-after Task-1 Task-3
constraint temporal-after Task-2 Task-3
constraint resource-dedicated Task-1 WorkCenter-1
constraint resource-dedicated Task-2 WorkCenter-1
constraint resource-dedicated Task-3 WorkCenter-1
set ALL-TASKS Task-1 Task-2 Task-3
assign ALL-TASKS earliest-time
var-heuristic MAX-C most-violated-var random
val-heuristic MIN-C least-violated-val random
arc-consistency-temporal ALL-TASKS
while cost >= 0 do

iterate ALL-TASKS MAX-C MIN-C lookahead-1 hill-climbing

The above statements define the following: three tasks and one resource are declared,
the tasks are given duration 100, and the domains of all of the tasks are pruned by an arc-
consistency algorithm [Mackworth, 1977] on the temporal constraints. All task variables are
assigned values that are earliest in their domains. Finally, iterative-repair is called until no
coustraints remain violated, selecting variables by the maximum number of conflicts (break-
g ties randomly) and values by the locations resulting in the least number of violations
(breaking ties randomly).

Summary, Status, and Future Work

Figure 4 gives an overall view of ODO’s constraint model within its several phases. As a
problem is specified, it is represented as a constraint graph. In the generation and iteration
phases, a search is performed (each square in the search tree represents the constraint graph
at that point in the search), and textures are measured (and cached on the constraint graph)
as desired. If ODO finds a solution, it is passed to the execution phase, which will respond
to real-time events within the solution’s slack parameters.

Our first goals are to create a library of texture measures and heuristics, and to explore the
tradeoff between generative and iterative scheduling. 0DO will be used to model scheduling
activity for the TOVE (Toronto Virtual Enterprise) project [Fox, 1992], which aims to model
dynamic commercial enterprises in a software environment.

One concern we have is to make the utility of ODO as insensitive as possible to imple-
mentation issues (such as whether or not to represent a constraint network in a matrix or

< { Specificatioa

Represent with constraint graph

Measure textures - cache results in graph

Search for Solution

Return solution (with available slack)

Execute solution (assigning actual values)

{ Executionj

Figure 4: Versions of the constraint model within opo

as an array of linked lists). If this cannot be avoided, we may incorporate necessary details
into the architecture’s command language.

In the future we plan to enhance 0DO so that it can also represent schedule abstractions.
Eventually we hope to modify 0DO to become testbed for machine-learning techniques in
heuristic selection and automated schedule abstraction.

Related Work

The principles of providing the user with a declarative programming language for use within
a constraint-based problem solver can be found Van Hentenryck’s CHIP system and Minton’s
MULTI-TAC [Minton, 1993]. CHIP extends logic programming to reason more explicitly about
constraints and to give the programmer more control over the type of backtrack search the
problem solver should perform. MULTI-TAC takes as input a description of a combinatorial
problem and generates an appropriate problem-solver. Both of these currently only attempt
to solve problems with constructive approaches, although the designers of MULTI-TAC plan
to add an iterative component in the near future.

In [Le Pape, 1991], the author summarizes research in the utility of various constraint
propagation and backtracking techniques in the domain of job-shop scheduling, and presents
an architecture for the interaction of a predictive scheduler (our “generator”) and a reactive
dispatcher (our “executor”).

Finally, the constraint-based model used in ODO is based upon that found in GERRY[Zweben
et al., 1993b] and MIcROBOSS[Sadeh, 1991].

References

[Bitner and Reingold, 1975] J. Bitner and E. Reingold. Backtrack programming techniques.
Communications of the ACM, 18(11):651-656, November 1975.

[Dechter and Meiri, 1989] R. Dechter and I. Meiti. Experimental evaluation of preprocessing
techniques in constraint satisfaction problems. In Proceedings of IJCAI-89, 1989.

[Dechter and Pearl, 1988] R. Dechter and J. Pearl. Network-based heuristics for constraint-
satistaction problems. Artificial Intelligence, 34:1-38, 1988.

[Fox et al., 1989] M. Fox, N. Sadeh, and C. Baykan. Constrained heuristic search. In Pro-
ceedings of [JCAI-89, 1989.

[Fox, 1987] M. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
Morgan Kaufman Publishers, Inc., 1987.

[Fox, 1992] M. Fox. The TOVE Project: Towards a Common Sense Model of the Enterprise.
Technical report, Department of Industrial Engineering, University of Toronto, April 1992.

10

[Gaschnig, 1977] J. Gaschnig. A general backtrack algorithm that eleminates most redun-
dant tests. In Proceedings of IJCAI-77, 1977.

[Ginsberg et al., 1990] M. Ginsberg, M. Frank, M. Halpin, and M. Torrance. Search lessons
learned from crossword puzzles. In Proceedings of AAAI-90, 1990.

[Golomb and Baumert, 1965] S. Golomb and L. Baumert. Backtrack programming. Journal
of the ACM, 12(4):516-524, 1965.

[Haralick and Elliott, 1980] R. Haralick and G. Elliott. Increasing tree search efficiency for
constraint satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

[Keng and Yun, 1989] N. Keng and D. Yun. A planning/scheduling methodology for the
constrained resource problem. In Proceedings of IJCAI-89, 1989.

[Langley, 1992] P. Langley. Systematic and nonsystematic search strategies. In Proceedings
of the First International Conference on Artificial Intelligence Planning Systems, 1992.

[Le Pape and Smith, 1987] C. Le Pape and S. Smith. Management of temporal con-
straints for factory scheduling. Technical Report CMU-RI-TR-87-13, Robotics Laboratory,
Carnegie Mellon University, June 1987.

[Le Pape, 1991] C. Le Pape. Constraint propagation in planning and scheduling. Technical
report, Robotics Laboratory, Stanford Universtity, January 1991.

[Mackworth, 1977) A. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8:99-118, 1977.

[Minton et al., 1992] S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing conflicts:
a heuristic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence, 58:161-205, 1992.

[Minton, 1993] S. Minton. Integrating heuristics for constraint satisfaction problems: A case
study. In Proceedings of AAAI-93, 1993.

[Sadeh, 1991] N. Sadeh. Lookahead Techniques for Micro-Opportunistic Job Shop Scheduling.
PhD thesis, Carnegie Mellon University, 1991. CMU-CS-91-102.

[Smith, 1983] S. Smith. Exploiting temporal knowledge to organize constraints. Technical
report, The Robotics Institute, Carnegie Mellon University, 1983.

[Zweben et al., 1992] M. Zweben, E. Davis, B. Daun, E. Drascher, M. Deale, and M. Eskey.
Learning to improve constraint-based scheduling. Artificial Intelligence, 58:271-296, 1992.

[Zweben et al., 1993a] M. Zweben, E. Davis, B. Daun, and M. Deale. Informedness vs.
computational cost of heuristics in iterative repair scheduling. In Proceedings of IJCAI-
93, 1993.

11

[Zweben et al., 1993b] M. Zweben, E. Davis, B. Daun, and M. Deale. Iterative repair for

scheduling and rescheduling. IEEE Transactions on Systems, Man, and Cybernetics, To
Appear, 1993.

12

