ODO: A CONSTRAINT-BASED ARCHITECTURE FOR REPRESENTING AND

REASONING ABOUT SCHEDULING PROBLEMS

Eugene D. Davis
Departiment of Computer Science
University of Toronto
Toronto, Ontario, CANADA M5S 1A4
gdavis@cs.utoronto.ca

ABSTRACT

We present work-in-progress on ODO, a constraini-
based scheduling architecture. ODO employs both
constructive and iterative search methods, and bases
heuristic decisions on problem property measures
(textures). With the architecture's command
language a user specifies a problem to be solved and
the search parameters used in solving the problem.
We plan to use ODO to study the relationship
between problem textures and efficient search
heuristics for both generative and iterative scheduling
methods.

INTRODUCTION

In the past few years, research in knowledge-based
approaches to scheduling has focused on graph-based con-
straint satisfaction and optimization techniques [18] [22]
[11]. In this approach, a problem is represented by a con-
straint graph, where the nodes are the variables of tasks and
resources, and the arcs are constraints among the variables.
Solving a problem amounts to assigning values to all vari-
ables such that all constraints are satisfied.

There are two common methods for solving scheduling
problems represented in this way. The constructive method
[18] [4] {11] starts with an empty schedule and assigns a
value to a variable only if it is consistent with all previous
assignments; if the current set of assignments cannot lead to
a feasible solution, then the method backtracks and tries
again. The iterative method [20] [17] starts with values
assigned to all variables and repeatedly modifies those val-
ues until all constraints are satisfied.

Despite their differences, the constructive and iterative prob-
lem solvers have at least one similarity: both methods con-
tinually modify the current schedule in a search to find a
solution as quickly as possible. Given that search could in
the worst case take exponential time, it becomes important to
select appropriate modifications in an efficient manner. The

INSTITUTE OF INDUSTRIAL ENGINEERS
3rd Industrial Engineering Research Conference Proceedings
©1993. Printed with permission.

Mark S. Fox
Department of Industrial Engineering
University of Toronto
Toronto, Ontario, CANADA M5S 1A4
msf@ie.utoronto.ca

term heuristic is used to describe a modification scheme th
on average performs well.

The successful search heuristic usually exploits structural
properties of the given problem. We use the term textures |i
to describe these properties when the problem is represente
in a constraint model. To date, little work has been done
explore the relationship between problem textures and the
efficiency of problem solving methods.

We are interested in questions related 1o textures and effi-
cient search for scheduling problems: What are the texture
of this domain? How might textures be combined? Can w
correlate textures with good heuristics? What is the relatiol
ship between constructive and iterative search? How does
problem reformulation (abstraction, aggregation) change th
way we solve the problem?

As a platform for exploring these issues, we are building a
generic scheduling architecture, ODO, which combines cor
Structive and iterative scheduling approaches, and employs:
texture library with which search heuristics will base their
decisions. The architecture includes a command language
for declaring problem instances, performing texture mea-
sures, and controlling search parameters. In the paper we
further discuss the notions of constraint representation, tex-
tures, and search, and describe our design of the scheduling
architecture.

CONSTRAINT REPRESENTATION

We see several reasons for the success of constraint-based
representation in the scheduling domain. First, a constraint
model is a natural representation: scheduling is a decision
problem that can be described with a finite number of vari-
ables, each with a finite domain. Second, since the schedul-
ing problem is dynamic in nature, the addition and deletion
of activities, machines, deadlines, etc., can be easily realized
by adding and deleting appropriate variables and constraints.
Third, a number of tools exists to manipulate constraint
graphs {15] [2] that apply particularly well to scheduling

problems [19] [14]. Also, as mentioned before, two power-
ful search methods (constructive and iterative) can be effi-
ciently performed in this framework.

In ODO's constraint model, problems are represented by a
collection of objects, variables, and constraints. The objects
serve as placeholders for variables and constraints, and may
be used to store measured texture information. Figure 1 pre-
sents a hierarchy adequate to represent simple job-shop
scheduling problems, along with a contention graph for a
simple problem instance. As noted in the hierarchy, objects
are represented as boxes, variables as hollow circles, and
constraints as filled circles with lines drawn to the relevant
constrained variables.

O Variables

o
AN

Tasks]};331:&(;};’:5 R(ﬁmme l;)uols Nmrric Resource Requests

Temporat
\(Constraints

Temporal Resource-
o available

Task-1

O duration
;

start- _—"33\ end-

timg. - -~ T~ time Task-3

ra 1. QO duration
w2 ;

», =
~. |start- .- -44= .~ end-
“Himg . -7 ~~-fime

Task-2

Q duration ’
V

>=
sart- _,—"f--_ end- |
timg.~ -~ T~ dime
O\E’/O NS

A Machine-1

WorkCenter-1

Figure 1. Problem constraint hierarchy and sample
constraint network.

The problem we initially address is job-shop scheduling with
due dates. Though there exist constraint representations for
more complex constraints (see for example [22]), we will
initially restrict our attention to precedence and resource
constraints.

TEXTURES

A texture is a property of a constraint graph. Because some
texture measures require exponential computation, we usy-
ally estimate their actual valae, hoping that the estimate is
close. These texture estimates are what the heuristics are 3
function of. The following are examples:

» In backtracking search, the next schedule modification is
chosen that will least likely cause backtracking to occur,
In addition, modifications are ordered such that if back-
tracking will occur, 1t will do so as soon as possible in
order to minimize thrashing. In the constraint model, this
modification principle can be summarized as follows:
find the most constrained variable, and assign it a value
that least constrains ali later assignments. In MicroBOSS
[18], for example, the most constrained variable is the
activity that relies upon the most contended resource/
time reservation, and the least constraining value is that
reservation estimated as having the highest probability
not to conflict with later activity-resource/time assign-
ments.

« Initerative search, the next modification is chosen that
will hopefully reduce the number of violated constraints
by the greatest amount. One approach, a variant of MIN-
CONFLICTS [171, selects the activity participating in the
most number of violations and moves 1t to the time that
would result in a schedule with the fewest number of
overall violations.

The success of these heuristics in their respective domains
suggests that the heuristics should perform equally well on
problems with similar textures. In Fox and Sadeh's initial
paper on textures [6] the authors define variable/value good-
ness and variable tightness textures and show how they relate
to the least-constraining value and most-constrained variable
concepts, respectively. Variable/value goodness is defined as
“the probability that the assignment of a particular variable
to a particular value will lead to an overall solution.” Vari-
able tightness is defined as *‘the probability that an assign-
ment consistent with all the problem constraints that do not
involve that variable does not result in a sohation.”

Our intent is to characterize a larger set of textures than those
identified in {6}, identify close and efficient texture estima-
tors, and show how scheduling heuristics are functions of
these textures for both generative and iterative cases.

SEARCH TECHNIQUES

Within the constraint-based framework, we assert that the
operations performed by a scheduler can be classified into
one of the following functional phases:

672

* Specification - declaring the problem's variables and con-
straints

» Generation - assigning values to variables

* lteration - changing values on variables

* Execution - assigning the actual values to variable

Typically these phases are encountered in a cycle. First a
problem is specified, then a solution is generated and
improved upon, and this solution is executed. We general-
ized upon the notion of looping through the functional
phases by making ODO capable of performing any phase at
any ume (see Figure 2). This makes it straightforward, for
example, to incrementally specify and solve small parts of a
large problem.

Specification

Generation

Figure 2. ODO Architecture.

The phase decomposition Captures the functionality of both
constructive and iterative search paradigms. Even though it
is quite conceivable to interleave generation and iteration
Steps, most well-known systems focus search in one phase
until a solution is reached.

The search performed may be systematic or nonsystematic.
If systematic, all variable assignment possibilities are even-
tually considered: if the search terminates with no solution
found, it is known that no solution exists. Nonsystematic
approaches do not eventually exhaust the search space (or at
least are not aware of that fact if they do). Since they do not
maintain information to perform a methodical search, they
can more easily move about the search space. However,
they may also visit the same search state many times, and
hence cycle. Constructive approaches are typically system-
atic!, and iterative approaches are nonsystematic.

1. We note that the systematic approach may not always be best. In
[12] the author shows that a nonsystematic constructive search can
outperform a systematic one.

673

In the systematic constructive approach, a backtracking
algorithm [9] is typically employed. Researchers have id
tified many enhancements to the basic backtrack algorith
in one of several algorithm componcents [3) [10] [8] [1] [
[18]:

* Preprocessing - (e.g. removing symmetrical states fro
consideration)

* Variable Selection - (e.g. most constrained, most con-
straining)

* Value Selection - (e. g. least constraining)

* Constraint Propagation - (e.g. forward—checking, arc-c
sistency)

¢ Backtracking Mechanisms - (e.g. chronological, back-
marking, backjumping)

The iterative approach also has many options [17] [20]:

* Initial Solution Generation - (e.g. CPM)

* Variable Selection - (e.g. most violated variable)

¢ Value Selection - (e.g. value resulting in the least numb,
of violations)

¢ Constraint Propagation - (e.g. forward-checking, arc-co
sistency)

* Intermediate Solution Acceptance Criteria - (e.g. strict
hill climbing, simulated annealing)

The specific impact of choosing one particular search optio
over another is not well known, and is a focus of our
research. Our first step is to provide a structure to the searc|
process from which the seach options can be utilized.
Whether constructive or iterative, any assignment can be
viewed in terms of making a modification to the existing
scheduling state. These modifications continue in a cycle
(perhaps with the occasional backtrack or rejection of a sol
tion), until some termination condition is satisfied. In ODO
we plan to model all search this way. Figure 3 captures our
perception of this loop

Constraint-based problem solving can be viewed as perform
ing search in the manner described above; the details of the
search process are explicitly represented by the parameters
to the search process: how to perform variable and valye
selection, how much constraint proagation, etc. ODO will
Structure search in this way; thus we will be able to associate
heuristic performance with the actual problem properties and
problem solving parameters from within our model.

PROBLEM SPECIFICATION AND EXECUTION

The problem is declared in the specification phase of ODO.
Through the built-in language (see below) the user defines
tasks, resources, and temporal constraints. In addition, the

user can add or remove variables and constraints, and preas-

sign values to variables.

Measure Textures

[Perform Modification J

Backtrack/
Revert

[Propagate Constraints }

NO_ Keep? > Y& J

Figure 3. Flow chart of the problem solving component.

-

ODO accepts as input an executable schedule, and uses that
to dispatch activities. It responds to real-world events; how-
ever, its flexibility is restricted to the slack provided in the
schedule. If the execution phase cannot use the schedule as
provided, then the schedule should be sent back to the itera-
tion phase for repair.

BUILT-IN LANGUAGE

We have devised a simple command language as a user inter-
face to ODO. As commands are parsed from the input, the
appropriate actions are called. When used this way ODO
could be thought of as an interpreter. With this language the
user can completely describe the problem instance. In addi-
tion, the user controls which textures to measure and which
search parameters to use.

The language interface is a module; as such it could be
replaced with a graphical interface without changing the
architecture's functionality. In addition, the language mod-
ule could be connected to a new module designed to generate
compilable source code directly from the parsed commands.

The following is an example of how the language might be
used in a simple problem that encounters the specification,
generation, and iteration phases. The problem specified is
compatible with that found in Figure 1, and the problem
solving mechanism emulates a version of MIN-CON-
FLICTS.

resource_class WorkCenter-1;
resource Machine-1 WorkCenter-1;
task Task-1 100;

task Task-2 100;

task Task-2 100;

674

before Task-1 Task-3;

before Task-2 Task-3

resource_request Task-1
WorkCenter-1 1;

resource_request Task-2
WorkCenter-2 1;

resource_request Task-3
WorkCenter-3 1;

enforce arc_consistency temporal;

assign_all task _times random;

assign_all task_resource_pools
arbitrary;

var_selection vioclated random;

val_selection all;

evaluation_method cost_lookahead_1;

evaluation_criteria min_value random;

accept_criteria always;

while ((cost > 0) && (search_time
< 150)) do repair;

SUMMARY, STATUS., AND FUTURE WORK

In this paper we have presented our model for constraint-
based scheduling. This model is based upon our analysis of
the common components of constraint-based problem solv-
ers. We have reviewed some of these components and have
described how we anticipate integrating them into a generic
scheduling system, ODO. As a problem is specified, it is rep-
resented as a constraint graph. In the generation and itera-
tion phases, search is performed (each square in the search
tree represents the constraint graph at that point in the
search), and textures are measured (and cached on the con-
straint graph) as desired. If ODO finds a solution, it is passed
to the execution phase, which will respond to real-time
events within the solution's slack parametersVersions of the
Constraint Model in ODO

Our first goals are to create a library of texture measures and
heuristics, and to explore the tradeoff between generative
and iterative scheduling. ODO will be used to model sched-
uling activity for the TOVE (Toronto Virtual Enterprise)
project [5], which aims to model dynamic commercial enter-
prises in a software environment.

One concern we have is to make the utility of ODO as insen-
sitive as possible to implementation issues (such as whether
or not to represent a constraint network in a matrix or as an
array of linked lists). If this cannot be avoided, we may
incorporate necessary details into the architecture's com-
mand language.

In the future we plan to enhance ODO so that it can also rep-
resent schedule abstractions. Eventually we hope to modify

ODO to become testbed for machine-learning techniques in
heuristic selection and automated schedule abstraction,

RELATED WORK

The principles of providing the user with a declarative pro-
gramining language for use within a constraini-based prob-
lem solver can be found Van Hentenryck's CHIP system and
Minton's MULTI-TAC [16]. CHIP extends logic program-
ming to reason more explicitly about constraints and to give
the programmer more control over the type of backtrack
search the problem solver should perform. MULTI-TAC
takes as input a description of a combinatorial problem and
generates an appropriate problem-solver. Both of these cur-
rently only attempt to solve problems with constructive
approaches, although the designers of MULTI-TAC plan to
add an iterative component in the near future.

In {13}, the author summarizes research in the utility of vari-
ous constraint propagation and backtracking techniques in
the domain of job-shop scheduling, and presents an architec-
ture for the interaction of a predictive scheduler (our “gener-
ator”) and a reactive dispatcher (our “executor”).

Finally, the constraint-based model used in ODO is based
upon that found in GERRY [20] and MicroBOSS [18].

REFERENCES

[1] Bitner, J. and Reingold, E. Backtrack Programming
Techniques. Communications of the ACM. 18(11):651-656,
November, 1975.

{2] Dechter, R. and Meiri, L Experimental Evaluation of
Preprocessing Techniques in Constraint Satisfaction Prob-
lems. Proceedings of IJCAI-89. 1989.

(3] Dechter, R. and Pearl, J. Network-Based Heuristics for
Constraint-Satisfaction Problems. Artificial Intelligence.
341-38, 1988.

[4] Fox, M. Constraint-Directed Search: A Case Study of
Job-Shop Scheduling. Morgan Kaufman Publishers, Inc.,
1987.

[51 Fox, M. The TOVE Project: Towards a Common Sense
Moadel of the Enterprise. Technical Report, .

[6] Fox, M. and Sadeh, N. and Baykan, C. Constrained
Heuristic Search. Proceedings of IJCAI-89. 1989.

[7] Gaschnig, J. A General Backtrack Algorithm that
Eleminates Most Redundant Tests. Proceedings of IICAI-77.
1977.

[8] Ginsberg, M. and Frank, M. and Halpin, M. and Tor-
rance, M. Search Lessons Learned from Crossword Puzzles.
Proceedings of AAAI-90. 1990).

[9] Golomb, S. and Baumert, L. Backtrack Programmi
Journal of the ACM. 12(4):516-524, 1965.

[10] Haralick, R. and Elliott, G. Increasing Tree Search
ciency for Constraint Satisfaction Problems. Artificial In
ligence. 14 263-313, 1980.

[11] Keng, N.and Yun, D. A Planning/Scheduling Mett
ology for the Constrained Resource Problem. Proceedin 2
1JCAI-89. 1989,

[12] Langley, P. Systematic and Nonsystematic Search
Strategies. Proceedings of the First International Confere
on Artificial Intelligence Planning Systems. 1992.

[13] Le Pape, C. Constraint Propagation in Planning an
Scheduling. Technical Report, Robotics Laboratory, Stanf
Universtity, January, 1991.

[14] Le Pape, C.and Smith, S. Management of Tempora
Constraints for Factory Scheduling. Technical Report CN
RI-TR-87-13, Robotics Laboratory, Carnegie Mellon Unj
versity, June, 1987.

[15] Mackworth, A. Consistency in Networks of Relatio
Artificial Intelligence. 89-118, 1977.

[16] Minton, S. Integrating Heuristics for Constraint Sati
faction Problems: A Case Study. FProceedings of AAAI-93
1993.

[171 Minton, S. and Johnston, M. and Philips, A. and Lai
P. Minimizing conflicts: a heuristic repair method for con
straint satisfaction and scheduling problems. Artificial Int
ligence. 58 161-205, 1992,

[18} Sadeh, N. Lookahead Techniques for Micro-Opport
nistic Job Shop Scheduling. PhD thesis, Carnegie Mellon
University, 1991. CMU-CS-91-102.

(191 Smith, S. Exploiting Temporal Knowledge to Organ,
Constraints. Technical Report, The Robotics Institute, Ca
egie Mellon University, 1983.

[20] Zweben, M. and Davis, E. and Daun, B. and Deale, |
Iterative Repair for Scheduling and Rescheduling. IEEE
Transactions on Systems, Man, and Cybernetics. Decembx

1993.

[21] Zweben, M. and Davis, E. and Daun, B. and Drasche
E. and Deale, M. and Eskey, M. Learning to improve con-
straint-based scheduling. Artificial Intelligence. 58 271-29
1992,

[22] Zweben, M. and Davis, E. and Daun, B. and Deale, ?
Informedness vs. Computational Cost of Heuristics in Iter.
tive Repair Scheduling. Proceedings of IJCAI-93. 1993.

675

BIBLIOGRAPHICAL SKETCH

Eugene Davis is a Ph.D. student in Computer Science af the
Universtiy of Toronto. Before returning to school he helped
design, develop, and support a constraint-based scheduling
system used at NASA in the preparation of Space Shuttle
orbiters for launch. He has published papers in Artificial
Intelligence and IEEE Transactions on Systems, Man, and
Cybernetics joumnals.

Dr. Mark Fox is Professor of Industrial Engineering, Com-
puter Science and Management Science at the University of
Toronto. He holds positions as NSERC Industrial Research
Chairholder in Enterprise Integration, and Director of the
Collaborative Program in Integrated Manufacturing. His
work in constraint-directed scheduling has led to the creation
of several commercially successful scheduling systems and
the initiation of the field of Knowledge-Based Scheduling.
His current research interests include enterprise integration,
constraint directed reasoning, a unified theory of constraint-
directed scheduling and their application to engineering and
manufacturing problems such as Concurrent Engineering,
Supply Chain Management and Enterprise Design. Dr. Fox
was elected a Fellow of American Assoociation for Artificial
Intelligence in 1991, and a Joint Fellow of the Canadian
Institute for Advanced Research and PRECARN in 1992, He
is a past AAAI councilor, and a member of ACM, IEEE,
SME, CSCSI, IIE and TIMS. Dr. Fox has published over 60
papers.

676

