Propagation over the meets temporal constraint
Andrew J. Davenport, J. Christopher Beck, Mark S. Fox

Department of Computer Science and Department of Industrial Engineering,
University of Toronto,
Toronto, Ontario, CANADA

andrewd@ie.utoronto.ca, chris@cs.utoronto.ca, msf@ie.utoronto.ca

Abstract

Many real life scheduling problems have more complicated temporal con-
straints than that found in the job shop scheduling model. One example
which occurs frequently is the “meets” constraint. Although this constraint
can be dealt with using techniques developed for the job shop scheduling
model, specialised techniques can significantly improve performance. In this
paper we present a simple but effective constraint propagation mechanism for
tackling scheduling problems with the “meets” constraint between activities
in a process plan. On a set of randomly generated benchmark problems we
show significant performance gains by using this propagation scheme.

1. Introduction

The determination and utilisation of implied constraints during search by con-
straint propagation has been found to dramatically improve the performance
of many constraint satisfaction and scheduling algorithms (7, 7). Recently a
number of specialised propagation techniques have been developed for specific
constraints such as the alldifferent constraint (?) and the global cardinality con-
straint (7), as well as many constraints found in scheduling, such as disjunctive
(?, 7) and cumulative resource constraints (7), preemptive scheduling (?) and
scheduling with sequence-dependent changeover constraints (7).

The research described in this paper came about as a result of our experience
on tackling real world scheduling problems, where more complicated constraints
than those found in the job shop model had to be dealt with. The particular
issue we discuss in this paper is propagation through the “meets” constraint.
The meets constraint between two activities A and B specifies that the end time
of activity 4 must “meet”, or be equal to, the start time of activity B (7). The
work described in this paper can also be extended to the “meets with offset”
constraint, which states that a fixed duration must elapse between the end time
of one activity and the start time of another!.

In this paper we describe a simple but powerful constraint propagation mech-
anism for deducing implied constraints for scheduling problems with the meets
constraint. In our application the meets constraint was used in the modelling of
intermediate storage of material between different processing stages. However

1This constraint can be modelled either by including the offset directly in the constraint or
by creating a new “null” activity of duration equal to the offset, which meets (with no offset)
and is met-by the activities to which the meets with offset constraint applies to.

scheduling problems with the meets constraint between activities in a process
plan can be found in many industrial applications; in particular where there are
dangers of product spoilage or where there are safety considerations to take into
account. For example, in semiconductor manufacturing, silicon wafers must be
processed as soon as possible after being made in the clean room, to prevent risk
of contamination. In the pharmaceutical industry there are safety considerations
when volatile materials are created as a result of a reaction at some point in the
manufacturing process. Ideally, one wants to process these materials into some-
thing less dangerous as quickly as possible. In steel industry scheduling there
are many instances where the meets constraint is important. For instance, steel
from a furnace goes into an “acid pickle” for cleaning. The steel must then be
immediately coated, with either an enamel or zinc coating, to prevent oxidation.

The balance of this paper is organised as follows: after formalising the job
shop scheduling problem with meets constraints, we present and illustrate the
ideas behind meets propagation in section 3.1. To evaluate the effectiveness
of this new technique, we generated a number of benchmark problems with a
similar, but simplified, structure to the industrial problem we were trying to
solve. We present results and analysis from an empirical study using these
problems in section 4. We conclude in section 6.

2. Job shop scheduling with meet constraints
2.1 Definition

The n x m job-shop scheduling problem with meets constraints is formally de-
fined as follows: Given are a set of n jobs, each composed of m totally ordered
activities, and m resources. Each activity A; within a job requires exclusive use
of a single resource R; for some processing duration dur;. For this paper we
assume that all activity processing durations are greater than zero. There are
three types of constraints in this problem:

e precedence constraints between two activities in the same job stating that
if activity A is before activity B in the total order then activity A must
execute before activity B;

e meets constraints between two activities in the same job stating that if
activity A meets activity B then the end time of A must be equal to the
start time of B;

e unary resource capacity constraints specifying that no two activities re-
quiring the same resource may execute at the same time.

Jobs have release dates (the time after which the activities in the job may be
executed) and due dates (the time by which the last activity in the job must
finish). Tn the decision problem, the release date of each job is 0 and a global
due date is D. The problem is to determine whether there is an assignment of
a start-time to each activity such that the precedence constraints and resource

constraints are satisfied and the maximum finish time of all jobs 1s less than or
equal to D. This problem is more general than the job shop scheduling problem,
and thus is NP-hard (7).

2.2 Notation

For an activity, A;, ST; is the start time variable, ET; is the end time variable
and STD; is the discrete domain of possible start times. res; represents the
resource required by activity A;. est; and lst; represent the earliest and latest
possible start times, while e ft; and [ft; represent the earliest and latest possible
finish times respectively. dur; is the duration of A;. We will omit the subscript
unless there is the possibility of ambiguity.

Given two activities A and B connected by a precedence or meets constraint
(A — B), activity A is said to be upstream of activity B and similarly, activity
B 1s downstream of activity A.

3. Meets constraint propagation

3.1 An example

Meets propagation is used when a new constraint is posted (i.e., added to the
graph) during the search and one or more of the activities involved in the new
constraint has a meets constraint.

For example, Figure 1(a) illustrates meets propagation when a new prece-
dence constraint is posted. Figure 1(a) displays a problem which has two jobs .J;
and Js, each composed of three activities A1, Ao, Az and A4, A5, Ag respectively.
Activities within each job are connected via meets constraints e.g., in J; activity
A1 meets As and activity As meets Az. These constraints are represented by
solid arcs in the disjunctive constraint graph?.

We also have resource capacity constraints between activities in each job,
represented by dashed arcs in the disjunctive constraint graph of Figure 1. For
instance, activities Az and Ag both execute on the same resource R5. Since all
resources have unary capacity, only one activity may be executing on any one
resource at any time. Thus we have the following disjunctive resource constraint
on the start times of activities Az and Ag:

ST3 + durg S ST6 vV ST6 + du7°6 S ST3 (1)

This constraint states that either activity Az executes before Ag or Ag executes
before Az. At some point in the search we have to make a decision on the
sequencing of activities Az and Ag on resource Ry. Let us consider what would
happen if we posted the constraint that Ag executes before Az on Rs, i.e.;:

2 A meets constraint between two activities A and B can be dealt with by representing the
end time of A and the start time of B by a single interval variable, since they must be equal.
This technique does not work for the meets with offset constraint however.

Process Stage 1 Intermediate Storage ~ Process Stage 2 Process Stage 1 Intermediate Storage ~ Process Stage 2

J1 A1 R1 A2 R2 } A3 R3 ‘ J1 A1 R1 }—' A2 R2 *»‘ A3 R3 ‘

-

J2 | A4R1 A5 R2 (A6 R3 J2 | A4R1 A5R4 >

A6 R3
— meets precedence constraint — meets precedence constraint
”””” resource capacity constraint ------ resource capacity constraint
(a) (b)

Figure 1: A disjunctive constraint graph representing an example scheduling problem
with the meets constraint. Fach node in the constraint graph is characterised by a
2-tuple: (activity name, resource required), e.g., (A1 R1).

ST6 + du7°6 S ST3 (2)

Since activity A; meets Az, activity As meets Ag, and both A5 and As require
the same resource, it must be the case that A5 executes before A,. The reasoning
behind this is as follows:

Activity Ag executes before activity Az. Therefore the end time of
Ag must be less or equal to the start time of A3z. Since activity As
executes before Ag, the end time of A5 must be less than the start
time of As3. However, the end time of A, is the same as the start
time of activity As, since these two activities are connected by a
meets constraint. Thus the end time of A5 must be less than the
end time of A,. Since A; and Ay require the same resource and only
one activity can execute on the resource at any one time, Ay must
execute before As.

Thus we can now post the implied constraint:

ST5 + durg, S ST2 (3)

3.2 Propagation after precedence constraint posting

When posting precedence constraints we have four cases for meets propagation:
upstream and downstream propagation when the neighboring activities are on

3We assume all activity durations are greater than zero.

the same resource and when they are on different resources. The example above
is in the case of upstream propagation to activities which share a resource. More
formally, the propagation rule for this case is:

Va,b,c,d a meets b A ¢ meets d A resource(a) = resource(e)

A d before b
— ¢ before a (4)

Rule 4 states that if the neighboring upstream activities (connected via meets
constraints) must execute on the same resource, then from the posting of a
precedence constraint we can infer the sequence of the upstream pair.

A similar rule can be formulated for downstream propagation:

VYa,b,e,d a meets b A ¢ meets d

Aresource(b) = resource(d) A ¢ before a

— d before b (5)

Rules 4 and 5 are only applicable when the neighboring activities require the
same unary capacity resource. However, even if the neighboring pair (e.g., As
and As in Figure 1(a)) did not execute on the same resource we can still deduce
a necessary relationship between them. Consider the example temporal network
illustrated in Figure 1(b). Here the intermediate storage activities require differ-
ent storage resources. In this case, after posting the constraint that As executes
before Az on Rs, as in our previous example, we can now deduce that As finishes
at or before the end of Ay; that i1s the finish time of A5 must equal to or before
the finish time of As:

ST5 + durg, S ST2 + durz. (6)

This reasoning leads to the following propagation rule which is a weaker form

of Rule 4:

Va,b,c,d a meets b A ¢ meets d A resource(a) # resource(e)

A d before b

— ¢ finishes before or at a finishes (7)

In a similar way, when propagating downstream (e.g., after posting Ay ex-
ecutes before Ay), we can infer a relationship between the start-times of the
neighboring activities (e.g., A2 and As) even if they do not share a resource.
After posting the precedence constraint, we can further post that that A must
start at or before Ay starts: the start-time of A must be less than or equal

to the start-time of As. In terms of a propagation rule, we have the following,
weakened form of Rule 5:

VYa,b,e,d a meets b A ¢ meets d

Aresource(b) # resource(d) A ¢ before a

— d starts before or at b starts (8)

3.3 Propagation after posting other temporal constraints

In above section, we presented four meets propagation rules that can be used
when a precedence constraint is added to the evolving constraint graph. These
rules, themselves, results in further constraint postings. In fact, three types of
temporal constraints are posted by the above rules:

e precedence — Rules 4 and 5
e ends at or before end — Rule 7
e starts at or before start — Rule 8

Generalizing from the above rules, we can, under some conditions,continue
meets propagation after posting either of the latter two constraint types.

3.3.1 PROPAGATION AFTER POSTING FINISHES AT OR BEFORE

With analogy to the propagation rules after precedence constraint posting, we
have four cases for meets propagation after a finishes at or before constraint has
been posted: upstream and downstream propagation when neighboring activities
do and do not share a resource requirement.

Consider once again the example temporal network illustrated in Figure 1(b)
after we have posted the constraint As finishes at or before the end of A;. Can
we determine from this constraint any implied sequencings of the activities A
and A4 upstream of the ones involved in this constraint? This would depend
upon the durations of activities As, A4 and As. If the combined durations of
A4 and As are greater than that of Ay then the end time of activity A4 must
be less than that of Ay, since A7 meets A5 and A4 meets As. Since A; and Ay
require the same resource we can then deduce that activity A4 executes before
Aq. Thus we can now post:

ST4 + du7°4 S ST1 (9)

The propagation rule that allows this deduction is as follows:

Va,b,c,d a meets b A ¢ meets d A resource(a) = resource(e)
A d finishes before or at b finishes
A duration(e) 4+ duration(d) > duration(b)

—s ¢ before a (10)

Similarly, consider activities Az and Ag downstream of the finishes at or
before constraint. Because Ay finishes at or before the end of A5 it must be the
case that the start-time of Ag must start at or before the start-time of A5. The
disjunctive resource constraints prevents Ag and As from overlapping, therefore
it must be the case that Ag must execute before Az. This reasoning results in
another propagation rule:

Va,b,e,d a meets b A c meets d

Aresource(b) = resource(d) A ¢ finishes before or at a finishes

— d before b (11)

Rules 10 and 11 do not apply when the neighboring activities do not execute
on the same resource. For example, we can not, with these rules, deduce a
relationship between this if the activities A; and A4 in Figure 1(b) do not execute
on the same resource. In this case, however, if the duration of Ay is greater than
that of A2 we can still deduce that A4 finishes before A; finishes (which may
aid further upstream propagation), allowing us to post:

ST4 + du7°4 S ST1 + durl (12)

The new propagation rule, a weakened form of Rule 10 therefore, is:

Va,b,c,d a meets b A ¢ meets d A resource(a) # resource(e)
A d finishes before or at b finishes
A duration(d) > duration(b)

— ¢ finishes before or at a finishes (13)

Downstream propagation with different resources is again quite similar based
on a variation of Rule 11:

Va,b,e,d a meets b A c meets d

Aresource(b) # resource(d) A ¢ finishes before or at a finishes

— d starts before or at b starts (14)

Tt should be noted that the weaker rules (e.g., Rules 10 and 14) are not
useful by themselves—their effect on the pruning of domains is equivalent to
that achieved by usual arc-B-consistency temporal propagation (7). However,
with the meets propagation rules that we have introduced here, it is possible
that subsequent meets propagation will results in the deduction of new, stronger
constraints that temporal arc-B-consistency alone would not have been able to

find.

3.3.2 PROPAGATION AFTER POSTING STARTS AT OR BEFORE

Our final set of propagation rules arise from adding the starts at or before
constraints to our graph as is done in Rules 8 and 14. The reasoning here is
analogous to that for the rules that have come before and so we leave the explicit
statement of the reasoning as an exercise.

After posting of a starts at or before constraint, we have the following four
propagation rules that maybe applicable:

e Upstream propagation, same resources

Va,b,c,d a meets b Ac meets d A resource(a) = resource(e)
A d starts before or at b starts

— ¢ before a (15)

e Downstream propagation, same resources

VYa,b,e,d a meets b A ¢ meets d
Aresource(b) = resource(d) A e starts before or at a starts

A duration(a) + duration(b) > duration(c)
— d before b (16)

e Upstream propagation, different resources

Va,b,c,d a meets b A c meets d A resource(a) # resource(e)

A d starts before or at b starts

— ¢ finishes before or at a finishes (17)

e Downstream propagation, different resources

VYa,b,e,d a meets b A ¢ meets d
Aresource(b) # resource(d) A e starts before or at a starts

A duration(a) > duration(c)

— d starts before or at b starts (18)

3.4 Summary

The meets propagation rules and the cases in which they are applicable are
summarized in Table 1. These rules can be applied every time we post a new
temporal constraint on activities executing on the same resource. The worst
case time complexity of meets propagation is O(n?) in the number of activities
in the problem, since we may have to examine all pairs of activities to determine
if the rules apply.

Upstream Downstream
Constraint Same Different Same Different
Added resource resource | resource | resource
before (4) (7) (5) (8)
finishes (10) (13) (11) (14)
starts (15) (17) (16) (18)

Table 1: Summary of propagation rules

4. Empirical evaluation

4.1 Benchmark problems

In order to evaluate the effectiveness of meets constraint propagation, we gener-
ated a range of benchmark problems. We wanted to approximate, but simplify
the structure of the industrial problem we were looking at. To this end, the
problems in our problem set had three process stages, that is three activities
per job. The first and third stages represent a manufacturing process, while
the second stage represents an intermediate storage stage for the products being
manufactured. In each job there are meets constraints between the first and
second stages and the second and third stages. There are only a limited number
of unary capacity resources in this simplified problem, each of which have to be
shared by the activities in different jobs. Thus there are disjunctive resource
constraints between activities requiring the same resource.

We generated problems from 20 to 40 jobs, with 100 problems at each problem
size. We determined the makespan for each problem in the following way: we
first determined its Taillard lower bound (TLB) for job shop scheduling, as
given in (7). We then generated one problem set where each problem had a
makespan of 1.3x its T'LB and another problem set where the makespan was
set to 1.5x its T'LLB. The problems were not guaranteed to be soluble. In fact for
some problems (even at 1.5 x T'LB) initial constraint propagation immediately
detected infeasibility before search commenced.

All experiments were run using NumODO, a constraint-based scheduling sys-
tem developed at the University of Toronto and Numetrix Limited (7). Pseudo-
code for the outline scheduling algorithm is given in Algorithms 1 and 2. In
all experiments we used the VarHeight texture measurement to make heuristic

procedure Scheduling
finished := false;
while (finished = false)
perform constraint propagation;
if (constraint propagation finds no commitments) then
make heuristic activity sequencing commitment;
if (reached dead-end) then
backtrack;
else
arc-B-consistency temporal propagation;
if (all-activities-sequenced or CPU limit reached) then
finished := true;

—~ O 0o SN Y O R W b =

—_~

Algorithm 1: The outline scheduling algorithm

procedure Constraint-Propagation

1 while (new constraints implied) do
2 Meets-Propagate-Upstream;

3 Meets-Propagate-Downstream;

4 Constraint- Based- Analysis;

5 EdgeFinding;

Algorithm 2: Constraint propagation

decisions (line 5 of Algorithm 1) (7). For constraint propagation on resource con-
straints (Algorithm 2) we used constraint-based analysis (7, 7) and edge-finding
(7)* in addition to meets constraint propagation.

We experimented with two backtracking techniques: chronological backtrack-
ing and limited discrepancy search (LDS) (7). Previous results have suggested
that LDS can significantly outperform chronological backtracking on job shop
scheduling problems (7, 7). Thus in total we compared four algorithms:

e NumODO with chronological backtracking and meets propagation
e NumODO with chronological backtracking, no meets propagation
e NumODO with limited discrepancy search and meets propagation
e NumODO with limited discrepancy search, no meets propagation

For each algorithm we set a CPU time bound of 10 minutes to solve each prob-
lem on a HP 100 MHz 9000/712 running HPUX 9.05, after which search was

terminated if no solution had been found.

*We implemented edge finding as described in (?) for job shop scheduling, although it
would be possible to improve the performance of this in the presence of meets constraints.

10

4.2 Results

Results for three stage problems (three activities per job) are presented in Tables
2-6 for 1.3 x TLB, and in Tables 7-11 for 1.5 x TLB.

All search statistics are presented only for the problems solved by each al-
gorithm. If a problem was not solved within the CPU time bound we do not
include that problem in the search statistics.

4.3 Discussion of results

Adding meets propagation to NumODO, either with chronological backtracking
or limited discrepancy search, always resulted in more problems being solved
within the CPU time bound. Furthermore, although using meets propagation
resulted in solving more problems within the CPU time bound, this was done
with a significantly lower mean CPU time, significantly less heuristic commit-
ments and significantly less backtracks than when meets propagation was not
used.

Ranking algorithms by the number of problems solved gives us the following:

1. NumODO with limited discrepancy search and meets propagation
2. NumODO with chronological backtracking and meets propagation
3. NumODO with chronological backtracking, no meets propagation
4. NumODO with limited discrepancy search, no meets propagation

The fact that when there is no meets propagation, chronological backtracking
outperforms limited discrepancy search is surprising. What we find here is that
the difference between LDS with and without meets propagation is much greater
than the difference for chronological backtracking. We believe this can be ex-
plained in the following way, with reference to Figure 1(a). Let’s say that in
the problem state represented by the constraint graph in this figure we post a
precedence constraint stating that activity As executes before activity Ag on
resource Ry. Then later on in the search we try to post the constraint that
activity A4 executes before A; on resource Rj. These two constraints together
lead to a contradiction, since Az — Ag implies that A, — A4. This would
be deduced by meets propagation, however if meets propagation was not being
used the above scenario could occur. LDS would do the wrong thing here. By
reversing this latest commitment (as would occur with chronological backtrack-
ing) the search could proceed, but LDS might go back to somewhere earlier in
the search and reverse a completely unrelated commitment. LDS with meets
propagation would not get into this situation, which we believe explains why
with meets propagation LDS is more effective than chronological backtracking.
Chronological backtracking is also able to quickly escape from such deadends.

11

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 15.51 434.37 65.76 160.01 70

c 8.48 0.00 24.15 84.89 74

I+ m 3.24 158.22 6.62 74.11 72

1 5.66 0.00 12.08 256.37 73
Table 2: Mean 10 jobs , 3 stages, 3 resources, 1.3 x T'LB

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 12.18 202.35 8.06 92.84 63

c 17.51 0.00 9.18 117.28 61

I+ m 12.83 555.22 8.73 263.51 T

1 30.27 0.00 22.75 1083.83 72
Table 3: Mean 15 jobs, 3 stages, 3 resources, 1.3 x TLB

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 12.55 296.86 0.62 147.34 56

c 41.66 0.00 12.33 219.47 55

I+ m 20.26 649.88 2.42 320.03 67

1 100.62 0.00 44.07 3147.73 55
Table 4: Mean 20 jobs, 3 stages, 3 resources, 1.3 x TLB

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 38.97 476.00 1.37 237.13 38

c 114.47 0.00 12.14 307.31 36

I+ m 65.57 1610.89 3.67 794.37 54

1 88.00 0.00 10.52 1911.38 29
Table 5: Mean 25 jobs, 3 stages, 3 resources, 1.3 x TLB

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 49.58 697.33 0.21 347.71 42

c 242.90 0.00 19.78 420.33 36

I+ m 72.32 1214.19 1.04 603.31 52

1 55.93 0.00 4.26 1154.83 23

12

Table 6: Mean 30 jobs, 3 stages, 3 resources, 1.3 x TLB

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 8.72 200.43 31.55 95.64 84

1 1.85 0.00 2.94 58.79 82

I+ m 1.75 118.57 2.45 54.02 84

1 27.75 0.00 88.06 1308.64 81
Table 7: 10 jobs, 1.5 times TLB

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 4.50 166.74 0.74 83.21 86

c 18.68 0.00 17.82 160.53 88

I+ m 3.63 172.64 0.09 85.85 88

1 45.37 0.00 55.73 2001.52 56
Table 8: 15 jobs, 1.5 times TLB

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 14.62 310.34 0.74 154.82 76

c 70.46 0.00 19.50 257.51 80

I+ m 13.37 441.86 1.05 215.41 85

1 29.44 0.00 14.81 954.88 32
Table 9: 20 jobs, 1.5 times TLB

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 25.46 469.34 0.00 234.63 70

c 239.78 0.00 27.63 394.11 73

I+ m 27.99 586.31 0.35 289.47 T

1 38.46 0.00 3.59 716.95 22
Table 10: 25 jobs, 1.5 times TLB

Algorithm | CPU Time Meets | Backtracks | Heuristic | Solved

c+m 54.60 662.96 0.79 331.23 71

c 448.93 0.00 32.48 487.52 61

I+ m 48.70 772.08 0.26 384.59 78

1 76.32 0.00 4.31 1217.15 13

Table 11: 30 jobs,

1.5 times TLB

13

5. Future work

Many industrial scheduling problems bear little resemblance to the job shop
scheduling model, as used as a basis for the work described in this paper. Our
next step is to extend the meets constraint propagation scheme to deal with
multi-capacity resources and activities with alternate resources.

6. Conclusions

In this paper we have presented a simple but effective constraint propagation
mechanism to deduce implied sequencing of activities in scheduling problems
with the meets constraint. Such constraints arise frequently in industrial schedul-
ing problems. We have shown significant performance improvement when using
this constraint propagation scheme on a set of benchmark problems designed to
model a real world industrial problem we are currently tackling.

Acknowledgements

This research was in part funded by the Natural Science and Engineering Re-
search Council of Canada, Numetrix Limited, the TRIS Research Network, the
Manufacturing Research Corporation of Ontario and Digital Equipment of Canada.

We would like to thank Ed Sitarski and Rob Morenz for their valuable com-
ments on this paper.

14

