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Abstract

It is a fact of manufacturing life that machines inevitably malfunction. This paper discusses how 1o attach
a flexible bound by fuzzy algebra to the deterministic processing time to prevent a predetermined
schedule from temporal deviation caused by such machine failures. A simulation of a simple job shop is
conducted where we vary specific parameters of shop load, uncertainty variance for four different
scheduling methods. The method using type-2 bounds outperforms the other three methods (original,
mean, upperbound) with less total cost resulted from work-in-process and tardiness. The upperbound
method occasionally results in minimum total cost; yet it 1acks the flexibility as the type-2 method since it
uses the bound to the highest extent and ends up in larger tardiness when there are tardy jobs.

To test the sensitivity of the result to different unit cost values, several cost structures are used to find the
best condition for the method of type-2 bounds scheduling. The best condition, which is typical in
manufacture industry, is when the unit cost of tardiness is higher than the unit cost of work-in-process.
Furthermore, we explore the feasibility of using standard deviations for the bounds while both the time
between machine failures and the duration of machine failure have normal distributions.

1.0 OVERVIEW

It is a fact of manufacturing life that machines inevitably malfunction. Of many effects of such an
event, operational schedule disruptions are perhaps the most visible ramifications which may send tremor
throughout the entire manufacturing process. A disrupted schedule not only leaves a shop in turmoil, but

also incurs tremendous cost in not meeting promised due dates and cost invested in holding the
inventory.

The goal of our uncertainty management research is to develop a model of uncertainty in a
manufacturing setting so that we can alter the precision with which plans and schedules are formulated.
As uncertainty increases, we would like to decrease precision in the predictive element (i.e., planning and
scheduling) of the system, while at the same time providing the reactive elements (i.e., dispatching) with
greater flexibility in their ability to react to change. Uncentainty may arise from a number of places,
including external sources such as order arrival types and rates, material quality, and personnel

availability, and internal sources of uncertainty such as operation quality, product yield, and material
availability.

In general, a predictive schedule is sketched in advance according to orders. When machines
fail, a dispatcher either gives up the present schedule and reschedules the rest of the orders all over or
needs a reactive scheme to determine the scope of the uncertain effect and patches the schedule locally
if possible. Three common metrics used to evaluate adjusted schedules are (1) the resulting work-in-
process levels, (2) the tardiness induced by the schedule, and (3) rescheduling effort. The last criterion is
dependent on a managerial control decision to abandon a schedule or not and that decision in turn
depends on implementation issues in the shop such as the amount of time that rescheduling activity



takes, how often and so on. It is not easy to draw a line between predictive and reactive scheduling.
Moreover, it is difficult to define the rules for the reactive scheme. Worst thing that can.happen is a
schedule losing track of the events and under tremendous revision introducing more complexity rather
than being a guidance. Under such circumstances there is no point maintaining a precise schedule. The
relevant question becomes how to represent a schedule and to what precision.

The problem domain is a job shop where breakdowns occur frequently. The problem of interest
in this paper deals with deviations in scheduled operation time due to the uncertainty of machine
breakdown. We investigate which representation of protection allowance can yield enough temporal
slack to tolerate machine uncertainty. The basic concept is to add slack to protect the job. With some
known behavior of machine uncertainty, such as the time between failures and the duration of the failure,
we can build up a predictive schedule with protection allowance and a dispatcher can react to uncertain
events as long as they are within the predictive range of time bounds. Thus, the flexibility of a scheduie is
maintained to the precision of the time bounds. The same metrics are used as the criteria of evaluating
the performance of protection against machine uncertainties. In our research, the scheduling method of
using temporal slack generates a schedule that eliminates the need of rescheduling. As a consequence,
we focus on the impacts that machine interrupts-act on a predictive schedule with protection allowance
and we compare different temporal slack performances based on the first two criteria: minimum work-in-
process and tardiness.

This research is intended to be one of the modules in the distributed manufacturing project
CORTES (Fox et. al. [5]). As shown in Figure 1-1, the system consists of the following modules: (1)
Uncertainty Analyzer, (2) Detailed Scheduler, (3) Factory Model, and (4) Dispatcher that are distributed
across many workstations and are connected by a communication network. Concentrated on machine
failures, this paper as well as its later extension is to be the core of the Uncertainty Analyzer module.

Figure 1-1: Modules of Cortes Project

Uncertainty Detailed
Analyzer Scheduler
Dispatcher Factory Model

2.0 LITERATURE SURVEY

Anthony [3] classified the model of control into three broad categories. In brief, these three
categories are described as managerial decisions at three hierarchical levels (Hax and Candea [8]): (1)
strategic planning: top level decision of plans for acquisition of resources, (2) tactical planning: middie
level of plans for utilization of resources, and (3) operation control: low level of detailed execution of
schedules.

The effects of uncertainty to the manufacturing environment have been investigated at the middle
level of the model of control such as well-known analytical approaches to the inventory problem of iot
yielding and safety stock (Gerchak et. al. [6]; Grave [7]). Yet, the temporal deviation from machine
failures in the job shop scheduling was not explicitly addressed. Our focus is to examine the effects of
uncertainty at the lowest level of operations control and scheduling.



Sources of uncertainty can also be described in these three levels. At the top level, the uncertain
market environment can change the product emphasis and labor supply which can in turn'change the
plan of capacity acquisition. At the middle level, changes in forecast and seasonal demand, yield, raw
material quality and quantity can impact the production plan. And, finally at the lowest level, change of
time duration for operations (transition, setup, processing), change of capacity from machine downtime or
tool availability and so on can easily invalid a schedule.

The lowest level of operation control provides the day-to-day flexibility needed to meet customer
requirements on a daily basis within the guidelines established by the more aggregate plans from the
middle level. Taking orders directly from customers, or as generated by the inventory decision system,
detailed schedules are drawn up in advance for a week, then a day, and finally to a shift. Decisions at the
lowest level are dynamic in nature since at this level a shop faces with various sources of uncertainty at a
shorter decision cycle. Unanticipated causes as well as scheduled events contributes to the shop
uncertainty at this level of operations control. Raw materials are not always available. Aged tools wear
out and affect the precision quality. In particular, machines break down from time to time. Uncertainties in
machine performance often cause reality to deviate from schedules. How to tolerate these temporal
deviation is the theme of this research.

One of the previous approaches to scheduling at this level is the Sched-star package by Morton
et. al. [11] [12] that dynamically adjusts to the uncertain environment as it can redecide the urgency index
for the orders at that time from the imputed (dual) prices of the machines. The dual prices of machines
are passed down from an aggregate level for its relative value from these aggregated resources in the
inventory and production level. Then, the lowest level can have a narrower focus and perform local
optimization. The reactive scheme can be either locally as a recomputing minor price changes as in
dispatcher mode, or leaving to rescheduling as in replanning model (Morton [11]). The prices for this
model are computed using heuristics. The disadvantage is that it is hard to return good price estimates
under all conditions for heuristics. An analytical approach with a hierarchical control has been studied for
a flexible manufacturing environment (Akella et. al. [1, 2]). The objective of this algorithm is to calculate
times at which to dispatch parts into a system in a manner which limits the disruptive effects of machine
failures. With this approach, three levels of control are addressed. lIts middle level is the major decision
level of the scheduler and determines the production rate within capacity limits and achieves the objective
function computed off-line by its higher level. lts lowest level decides the actual times at which parts are
joaded into the system according to that production rate. However, it is for cumulative demand instead of
being addressed to the job shop scheduling. The prior approaches have focused on dynamicly
redeciding the urgency index or loading decisions at the time of uncertainty. There are industries with
expensive machines so that building predictive schedules with protection allowance ahead is necessary
for the day-to-day operation. In our approach, we explicitly take environmental uncertainty into account in
order to produce schedules that tolerate temporal deviations and minimize work-in-process and job
tardiness.

3.0 MODEL DESCRIPTION

The simulation is based on a model of a job shop environment with one part type, one machine
and orders with requested due-dates and arrival-dates. The orders are fulfilled by a make-to-order policy.
A scheduler decides its own production schedule for several weeks ahead.

In this simple model, there is one operation per order and as all orders are of the same type there
is no setup required. An order is composed of several number of units. The number of units in an order
is different from one order to another. The unit processing time for the operation is a constant, so the
processing time for an order without any machine failure is the unit processing time multiplied by the
number of units in the order. The processing time without machine interruptions for an order in turn is
different from one order to another. The units in one order are completed together and there is no
preemption among orders.



Machine failures occur from time to time during processing. The mean time between failure and
mean duration of the failure are assumed known. Downtimes is assumed to be in the interrupt-resume
regime, that is, once the downtime duration is completed (i.e. the machine is fixed), processing continues
at the point of interruption and no rework is required. Consequently, machine failures cause a variation in
the processing time and not in the scheduling order sequence. Feeding a fixed processing time to a
deterministic scheduler without any allowance for uncertainty creates a fixed schedule which is vulnerable
to the uncertain environment of disrupted machines. Therefore, we need a different scheme to take care
of the case when the length of the processing time varies as a result of machine failures. The problem
here is whenever a machine fails, the predetermined schedule is no longer valid. However, a
predetermined schedule is needed for the shop to have control over its processing. With this uncertainty,
a certain amount of time can be attached to the processing time in the deterministic schedule to
accommodate the machine interruptions. Our research seeks how to allocate such time and to what
amount to reduce the fragility of generated schedules. The key to reducing the fragility of a schedule in
this manner is by explicitly representing the uncertainty in the processing time in a way that can be
addressed by a scheduling algorithm. :

4.0 UNCERTAINTY REPRESENTATION

Before dealing with machine uncertainty in the scheduling algorithm, we need an adequate
representation to express the effect of uncertainty to processing time explicitly from the duration of
machine failure and the time between failures. Let the original processing time be P, which is
deterministic in the model. Let the time between machine failure be a random variable F and the duration
of interrupt be a random variable D. If these two means are known as F and D, then a direct extension of
the processing time to include the machine interruptions is given as P+(P/F)XD, where P/F gives the

number of interrupts that may occur during the processing and (P/F)<D gives the total length of the
machine downtime. Thus the protection allowance is implicitly absorbed into the extended processing
time.

Instead of being random variables of known distribution, the duration of the failure and the time
between failure may be only known to be bounded approximately. The development of fuzzy number
theory has made it possible to express these imprecise informations. Let the bounds are (D,,,D,,) for D
and (F,F,) for F with the means D and F, we can therefore determine the extended processing time
using fuzzy algebra (Kaufmann and Gupta [9]).

e Fuzzy Number of Type-1 Let A be a number with upper and lower bounds defining a
confidence interval noted as [a;.a,] where a;<a,. Similarly, let B be a number associated
with an interval [b,.b,] (where b, <b,) representing an interval of confidence for B.

« Fuzzy addition: Assuming two intervals of confidence in real numbers R-A=[a;,a,] and
B=[b,,b,]. Hence if xe [a.a)} and ye [by,b,), then x+ye [ay+by.ay+b,l. Symbotically, we write
it as A(+)B=[a1,a2]+[b1,b2]=[a1+b1,a2+b2].

« Fuzzy Subtraction: A(-)B=la;~b,.a)~b,].

« Fuzzy Multiplication: AQOB=[a,xb,,a,%b,}.

« Fuzzy Division: A(/)B=[a,/b,,a,/b,} when A and B are defined in R*.

From the above fuzzy algebra, the bounds of the extended processing time can be given as
follows: P+P(HF()D=P+P()D(/)F where D()F=[DJF 4.0 /F 1}, SO that the upper and lower bounds of
processing time would be: (P+PxDy/F D fF 1)

The values of Fuzzy bounds may originate from subjective known processing characteristics
described by a shop operator, or perhaps from known distributions described by shop statistics. The
representation of such a uncertain duration is called a type-1 fuzzy representation as the bounds are



known in advance.

From the knowledge of the domain, the actual processing time is within the specifiéd uncertain
bounds. In an extension to representation, we can hypothesize the bounds as type-2 bounds similar to
the fuzzy number of type-2 (Prade [14]) representation.

e Fuzzy number of Type-2: The lower and upper bounds of an interval of confidence, instead
of being ordinary numbers, are fuzzy numbers that themselves have interval of confidence.
That is A=[la;.a;].la,a,]l. When a;=a; and a,=a,, the interval of confidence of type 2
becomes an interval of type 1. if a1=a1'=a2=az', we obtain an interval of confidence of type 0,
an ordinary number.

Oftentimes, there is more uncertainty in a scheduling problem that can be handled by a type-1
bound representation. As a consequence, it is more accurate to represent additional uncertainty and less
accurate not to; therefore, the upper and lower bounds must reflect uncertainty in their representation as
type-2 bounds. The procedure of constructing the type-2 bounds in this paper is described through the
following steps (see Figure 4-1):

1. Use the mean processing time and use it as the inner bound of the type-2 representation.

Denote it as p;, . =P+PxDF.

2. Use the upper bound (P+PxD,/F ), as the outer bound of the type-2 representation.
Denote the length of the outer bound as p ..

3. Divide the slack between p . and p, . into two segments and denote them as Plower—slack

?nd p upper—slack That is, Prower—siack™P. upper—slackz(pauter_p imzer)/z’: Px(D ub/ Flb_—uF)/‘2 as shown
in Elgure 4-1. The Plower—slack and. Pupper—siack’ tgmporal slacks of (_aqual amoqnt, are
designed to protect against uncertainty for possible delays of previous operations or
possible delays of consequent operations.

Figure 4-1: lllustration for the type-2 bound
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Thus, type-2 bounds representation o include processing time with protection allowance for a
job is constructed with values A=[la;,a; 11,8, 1}=[[0.0),erstacid WPrower—siackPinner Pouter]] if the operation it
represented starts at time 0. Or, A=[{a}.a; 1.la,.a; N=[[6.04P1 0y stacid [P 1ower—stackPinner P ower )] I it StaTtS
attime t. The type-2 bounds of a job can then be used to reserve time block in a schedule for the job.

A numerical example can be used to illustrate the concepts. In the example with intervals and
means available through estimations that (D,,.D,,)=(12,14), D=13, (F,.F ,)=(1525), F=20 and P=40, where
all time units are in minutes. The bounds of the protection allowance (including the processing time and
interruption estimates) are calculated as:
(P+PxDy[JF , P+PXD , JF  }=(40+40x12/25,40+40x14/15)=(59.2,77.3). While using Dand F gives us the value
of (P+PxOF)=66. Following the steps, we get Plower—slack=Pupper—stack={ 1 1-3-66)/2=5.65. If the operation
starts at time 0, the type-2 bounds representation is [[0,5.55@,[71.65,77.3]]. The results are shown in
Figure 4-2.

Figure 4-2: Numerical example for the type-2 bound

p lower —slack

5.65 66



Thus, extended processing times with temporal allowance for uncertainty can be expressed by
type-2 bounds. With these representations at hand we can focus on devising its scheduling method.

5.0 SCHEDULING WITH BOUNDS

In scheduling method for type-2 bounds, the mean time is used as a reservation  p,,,,, )
necessary for the operation while the protection bounds ( pj,ersiack OF Pupper-stack ) may be overlapped
with the protection bounds of other possible consequent jobs. As in Figure 5-1, operation A is designed
to be overlapped with operation B. If A completes earlier, then B may start earlier to the extent of its lower
bound. If A completes later, then B may start later, again within its bounds. The overlapped section is
the Ppersiack P Of the operation A and py,.,,sack P of the operation B as the bounds are depicted in
Figure 5-1. The inner bound s the reservation to protect the processing for its completion in the
bounds.

+ Pinner |

Figure 5-1: Hlustration for two overlapped type-2 bound operations
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When uncertainty increases, the precision of this predictive schedule is decreased as the slack
segments are larger. These overlapped segments give human dispatchers the flexibility to start the job at
any time within the slack bounds.

One may imagine that the bounds work as the earliest start time and the latest start time with the
earliest finished time and the latest finished times as the activity representation in project management.
However, these slacks are designed for a different purpose to protect against uncertainty. Therefore,
when time progresses to the point of the lower bound, an operation should start, if the machine is
available, to avoid possible subsequent delays in the operation. In project management, slacks exist to
indicate the possible earliest start time and the possible finished time and allow a dispatcher to schedule
other works in the remaining slack. In the context of uncertainty, the mean processing time (p,,,.,) is
reserved for the operation and the slack ime (v, sack O Plower—siack ) 1S ré€Served for protection against
machine uncertainty. For instance, let a job scheduled to start at time ¢, have a type-2 protection
allowance as [[to,lo+p,0wer_slack],[to+ploWer_slack+pmr,lo+power]]. At that particular time 1, the work is
immediately released to the shop and the work-in-process time starts counting from time ¢,. Therefore, in
Figure5-1, the work-in-process time starts from the beginning point of p;,,..._.cx for either operation A or
B. Once an operation is ready for processing, a dispatcher should follow the schedule within the
prescribed bounds.

Further computational study is needed to measure the performance of type-2 bound scheduling
method and its sensitivity to different structures. In the next section, we have included results from
different experiments to verify the advantage of using the type-2 method.

6.0 EXPERIMENTS

In order to determine the effectiveness of this representation on schedule fragility, we conducted
a series of experiments. The first series, Experiment 1, compares type-2 bound scheduling method with
three other fixed processing time bound scheduling methods. The second series, Experiment 2, plots the



total cost performance under various cost structures to investigate its sensitivity to cost. The third series,
Experiment 3, examines different approaches to obtain the bounds from known normal distributions D and
F.

6.1 Experiment 1: Four Scheduling Methods

Independent variables: Four methods of representing time bounds are selected: type-2, original,
mean and upperbound. Two levels of shop load are selected: heavy (eight orders) and light (five orders).
The distribution of the interrupt is simulated by a triangular distribution, so that it has a range of {min, max]
and the mode which is the peak of the triangutar distribution. Two levels of uncertainty variance in F and
D are chosen yet with the same mean F and D. The experiment is a fully-crossed, factorial design
(4x2x2). The cost structure in the first experiment is assumed known and fixed. Orders are taken from
the OPIS experiments (Ow [13]). '

Scheduling Methods: The type-2 method that includes the mean processing time into the
largest bounds is compared with the other three methods in our experiments:  ~

1. type-2 method: using fuzzy type-2 bounds as [[t,t+p,,,.,.rstacd AP ower—stacktPinnerttPowuter)))-
2. original method: using the original processing time P as the fixed processing time,

3. mean method: using the mean processing time as the fixed processing time (i.e.
P+(P/F)<D),

4. upperbound method: using the upper bound as the fixed processing time (i.e. using
P outerzP +PxD lb/ F ub) .
Each of the methods proposes different time bounds for a deterministic schedule. The first method has

fuzzy type-2 bounds and the other three has fixed values of various length for the processing time.

Scheduling Rule: The scheduling rule used in this work is a dynamic version of Jackson’s
algorithm to minimize the maximum lateness (Baker et. al. [4, 10]). For the static version of the n-job
single machine problem, L__ is minimized by the sequence of EDD according to Jackson’s algorithm.
We have it revised to accommodate non-simultaneous order arrivals.

« Jackson’s Algorithm (dynamic version): At each job completion the job with the minimum
due date b. among available jobs is selected to begin processing. Let S be the set of
unscheduled jobs. The algorithm is as the following:

1. Settto 0.
2. Is there at least one job € S such that the arrival time a,< 1? If so, go to 4.
3. Sett=mina,.

4. Among all jobs € S such that a;< t choose the job j that has the smallest due date b;:
break ties on due date by selecting the job with the largest duration 4;.

5. Schedule the chosen job next and update tto t+d;,

6. If S is empty, go to 2. Otherwise, the schedule is complete.

At a time when the rest of the jobs have all arrived, the dynamic version of the Jackson's algorithm is
equivalent to the static version that is the optimal procedure since all orders are now simultaneously
available.

The adaptation of dynamic Jackson’s algorithm is for the methods with the extended processing
time assumed to be of fixed length. Only the method of type-2 bounds requires further attention to the
overlapped segments, since it is desirable to overlap the uncertain slack segments of consequential
operations and undesirable to overlap the reservation segment.



Dependent Variables: All data are represented in rows of:

* work-in-process = Z (actual finish time - planned release time},

o tardiness = Z {actual finish time - requested due date)*,
where the summations are for ail orders. The first dependent variable is the cost component invested in
work-in-process, resulted from the difference between the actual completion time and planned release
time. The second dependent variable, is the cost component occurred from not meeting the due date, the
absolute value of the subtraction between the actual completion time and requested due date. We also
use a total cost measurement including both cost components.

Total Cost = Cy, * Work-in-Process + Cp* Tardiness

Where Cy, and C are unit cost of work-in-process and unit cost of tardiness, respectively. The unit cost,
assumed linear, which we used for experiment 1 and 3 are Cy=2 and C;=10, as the tardiness cost is
generally higher than the holding cost. Resuits for the one-pass dynamic Jackson's algorithm are listed

for four different scheduling methods, namely, type-2, original, mean time and upperbound.

Case 1a: 5-order schedule with smaller uncertainty

Dy D D Fy F F
10 15 20 30 40 50
Cost Type-2 Original Mean Upperbound
work-in-process | 2019 2550 2297 1944
tardiness 0 0 0 0
total cost 2019 2550 2297 1944
Case 1b: 5-order schedule with larger uncertainty
Dy, D D, Fy F F
5 15 25 20 40 60
Cost Type-2 Original Mean Upperbound
work-in-process | 2091 2824 2571 2067
tardiness 0 0 0 516
total cost 2091 2824 2571 2583
Case 1c: 8-order schedule with smaller uncertainty
Dy, D D, Fy F £
10 15 20 30 40 50
Cost Type-2 Original Mean Upperbound
work-in-process | 3436 7137 4500 3194
tardiness 2154 2964 2154 2912
total cost 6590 10101 6654 7106




Case 1d: 8-order schedule with larger uncertainty

Dy, D D, Fy F F
5 15 25 20 40 60
Cost Type-2 Original Mean Upperbound
work-in-process | 3412 8063 5384 3378
tardiness 4808 4418 3300 10062
total cost 8220 12481 8684 13440

Case 2a: 50-order schedule

Dy, D D Fy F Fop
10 15 20 30 40 50
Cost Type-2 Original Mean Upperbound
work-in-process | 30685 57675 43712 21002
tardiness 58852 59948 59180 72506
total cost 89637 117623 102892 93508

Case 2b: 100-order schedule

Dy, D D, Fy, F Fop
10 15 20 30 40 50
Cost Type-2 Original Mean Upperbound
work-in-process | 131513 250964 197948 40637
tardiness 331812 360362 329428 474948
total cost 463325 611326 527376 515585

The above tables show how the original processing time and mean time methods lack proper
protection against uncertainty. They over-estimated the earliness of the completion time in all cases. If
rescheduling cost is to be taken into account, the total cost is even more than the result shown in the
tables. In case 1a and 1b, where the shop is lightly loaded that no job is tardy, the work-in-process of the
type-2 method is larger than that of the upperbound method. As the type-2 method schedules an order to
release at the time when the slack segment overlaps the slack segment of its previous order, it ends up in
larger work-in-process as orders are released earlier. In case 1c and 1d, where there are some
tardiness, the type-2 method gives the minimum total cost from less tardiness cost than upperbound
method, since the larger processing time bounds of the upperbound method pushes the completion time
forward. Comparing case 1a with case 1b and case 1c with case 1d, it is clear that larger uncertainty
results in more total cost of both work-in-process and tardiness. When the number of orders increases as
in case 2a and 2b, type-2 method has the ability of reducing the total cost by the flexibility of the
overlapped slack segments.



6.2 Experiment 2: Different Cost Structures

In this section, we use different vaiues of the unit cost for the previous results to investigate the
conditions for using the type-2 scheduling method. Nine sets of cost structures are used as the additional
independent variable. The first one uses the unit costs of the same magnitude. In cost structures of (2),
(4), (6) and (8), the unit cost of work-in-process is less than the unit cost of tardiness. In cost structures of
(3), (), (7) and (9), the unit cost of tardiness is less than the unit cost of work-in-process. In the tables,
the total costs are listed while the work-in-process parts are listed inside the parentheses.

It shows that the saving from using type-2 bounds is significant when unit cost of tardiness is
higher than unit cost of work-in-process. That unit cost condition is typical true in manufacturing settings.
For other cost structures with a higher unit cost of work-in-process, there is no motivation to add temporal
slack to protect uncertainty as the scheduling method of original processing and mean processing time
perform equivalently well or even better. The performance comparison between the type-2 bound and the
upperbound scheduling method is listed in Figure6-1 under different cost structure ratios (i.e. Cy/C;) : the
upper figure is for 50 orders, and the lower one is for 100 orders.

Table of Different Cost Structures for 50 and 100 orders:

CS 1 2 3 4 5 6 7 9
Cw 1 1 1 1 1 2 5 10 20
Cy 20 10 |5 2 1 1 1 1 1
Result for 50 orders:

CS Type-2 Original Mean Upperbound
1 620205 (30685) 657155 (57675) 635512 (43712) 746062 (21002)
2 325445 (30685) 357415 (57675) 339612 (43712) 383532 (21002)
3 178065 (30685) 207545 (57675) 191662 (43712) 202267 (21002)
4 89637 (30685) 1176231 (57675) 102892 (43712) 93508 (21002)

5 60161 (30685) 87649 (57675) 73320 (43712) 57255 (21002)

6 90846 (61370) 145324 (115350) 117014 (87424) 78257 (42004)

7 182901 (153425) 318349 (288375) 248150 (218560) 141263 (105010)

8 336326 (306850) 606724 (576750) 466710 (437120) 246273 (210020)

9 643176 (613700) 1183474 (1153500) 903830 (874240) 456293 (420040)
Result for 100 orders:

CS Type-2 Original Mean Upperbound
1 3449633 (131513) 3854584 {(250964) 3492228 (197948) 4790117 (40637)
2 1790573 (131513) 2052774 (250964) 1845088 (197948) 2415377 (40637)
3 961043 (131513) 1151869 (250964) 1021518 (197948) 1228007 (40637)
4 463325 (131513) 611326 (250964) 527376 (197948) 515585 (40637)
5 297419 (131513) 431145 (250964) 362662 (197948) 278111 (40637)
6 428932 (263026) 682109 (501928) 560610 (395896) 318748 (81274)
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Figure 6-1: Total cost of Type-2 and Upperbound for 50 and 100 orders
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6.3 Experiment 3: Bounds For Failures Of Normal Distribution

When the two distributions D and F are known to have normal distribution, we can use its
standard deviation to decide the bounds for D, ,D,,.F,, and F . Following is an experiment to investigate
three different bounds from the standard deviations of the distributions. Independent variables are (1)
three different standard deviations: 1, 2 and 3 standard deviations used for the bounds, (2) two different
shop loads: heavy (eight orders) and light (five orders) for this 3x2 experiment design. The dependent
variable is the total cost under the unit cost structure of (Cy=2 and C;=10).

Case 3a: 3 different bounds for 5 orders



Dy, D Dy Fy, F Fup
1 standard dev.{ 12.5 15 175 36 40 44
2 standard dev.| 10 15 20 32 40 48
3 standard dev.| 7.5 15 22.5 28 40 52
Three standard deviation result:

Cost Type-2 Original Mean Upperbound
work-in-process | 3978 5110 4604 3916
tardiness 0 0 0 _, 0
total cost 3978 5110 4604 3916

Two standard deviation result:

Cost Type-2 Original Mean Upperbound
work-in-process | 4150 5110 4604 3928
tardiness 0 0 0 0
total cost 4150 5110 4604 3928

One standard deviation resuit:

Cost Type-2 Original Mean Upperbound
work-in-process | 4448 5110 4604 4218
tardiness 0 0 0 0
total cost 4448 5110 4604 4218

Case 3b: 3 different bounds for 8 orders
Dy, D Dy £y, F Fu
1 standard dev. | 12.5 15 17.5 36 40 44
2 standard dev. | 10 15 20 32 40 48
3 standard dev.| 7.5 15 225 28 40 52
Three standard deviation result:

Cost Type-2 Original Mean Upperbound
work-in-process | 6506 14350 9038 6430
tardiness 12300 15270 10920 21750
total cost 18806 239620 19958 28180

Two standard deviation result:
r Cost Type-2 [ Original Mean Upperboun(d




work-in-process | 7214 14350 9038 6378
tardiness 10920 15270 10920 12630
total cost 18134 29620 19958 19008

One standard deviation result:

Cost Type-2 Original Mean Upperbound
work-in-process | 8214 14350 9038 7490
tardiness 10920 15270 10920 10920
total cost 19134 29620 19958 18410

In case 3a and 3b, the original method and the mean method have the same values in the
columns since these two method do not incorporate the uncertainty variance into the bounds. From
above experiment cases, we can see that type-2 method with 2 to 3 standard deviations gives desirable
protection. One standard deviation gives too short the processing fime bounds, thus orders are released
too early as larger work-in-process is held. '

7.0 CONCLUSION

In summary, we proposed type-2 bounds for the uncertain processing time by bounds and how to
schedule it by overlapping slack segments with possible consequent operations. While compared among
the other methods (original processing time, mean processing time and upper bounds methods), the
result showed its sufficient protection against deviation with less investment in the total cost in general.
The best condition to use type-2 bounds method has been found to be the case that the unit cost of
tardiness is significantly higher than the unit cost of work-in-process. Also, for the case that the
distributions of time between machine failure and the duration of failure have normal distribution, we
showed that methods using even only one standard deviation of the uncertainty distributions into the
bound (i.e. the type-2 method and the upperbound method), would result in lower total cost than the
methods without. And, in general the type-2 method yields better performance than the other methods.

In the future, we will explore different combinations of operations during a predetermined possible
bounds as alternate procedures 1o be delivered to a foreman instead of one operation per bound as in our
experiments. We may also reduce the inner bounds for the reservation that leaves less room for the
interruptions instead of using the mean processing time as the inner bound.
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