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Abstract

In this paper, we expand the scope of constraint-directed scheduling techniques to deal with
the case where the scheduling problem includes alternative activities. That is, not only does the
scheduling problem consist of determining when an activity is to execute, but also determining which
set of alternative activities is to execute at all. Such problems encompass both alternative resource
problems and alternative process plan problems. We formulate a constraint-based representation of
alternative activities to model problems containing such choices. We then extend existing constraint-
directed scheduling heuristic commitment techniques and propagators to reason directly about the
fact that an activity does not necessarily have to exist in a final schedule. Experimental results show
that an algorithm using a novel texture-based heuristic commitment technique together with extended
edge-finding propagators achieves the best overall performance of the techniques tested. 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

The scheduling problems addressed in the constraint-directed scheduling literature
typically have a static activity definition: each activitymustbe scheduled on its specified
resource(s). It is common, however, in real-world scheduling problems to have a wider
space of choices. Typically, in a manufacturing setting, there are choices to be made
in scheduling among alternative resources on which to run an activity or among
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alternative process plans (also called “routings”) of an order through a factory. While this
characteristic is ubiquitous in industry, there has been little examination of such alternatives
in the constraint-directed scheduling literature.

The central contribution of this paper is the expansion of scope of scheduling problems
that can be addressed by constraint-directed scheduling techniques. This expansion is
done by integrating the representation of activity alternatives into the constraint graph
representation of the scheduling problems. We then extend heuristic techniques and
sophisticated propagators to account for the richer representation.

There are two primary motivations for the work in this paper. The first is the expansion of
the scope of constraint-directed scheduling techniques. While there have been considerable
advances over the past few years in the scope and difficulty of scheduling problems that
can be successfully addressed with constraint technology [6], there are still a number of
problem characteristics that have been examined only partially or not at all in the literature.
These characteristics are nonetheless important from the practical perspective of modeling
and solving problems as they existin situ. Choosing resources on which to schedule an
activity as well as amongst different sets of activities with which to achieve the same
goals, are two such characteristics. The second motivation for the work in this paper is
the investigation of the problem structure hypothesis due to Simon [41]. Theproblem
structure hypothesisstates that as a problem becomes more complex, understanding of
its structure becomes increasingly important for successful heuristic search. While the
problem structure hypothesis has been pursued in the context of scheduling by Fox et
al. [4,5,7,8,10,21,22,36,37], the inclusion of activity alternatives results in an additional
dimension of complexity. Therefore, scheduling with alternative activities is a prime
application for the investigation of the hypothesis.

1.1. Plan of paper

The plan of this paper is as follows: in the following section, we provide the necessary
background for the work in this paper. In Section 3, the representation of alternatives is
presented, while Section 4 and Section 5, respectively, examine propagators and heuristic
commitment techniques for alternative activity problems. Our empirical evaluations appear
in Section 6 through Section 8 with the discussion of our results appearing in Section 9.
In Section 10, we briefly note future work stemming from this paper before concluding in
Section 11.

2. Background

Before presenting the extensions to constraint-directed scheduling representation and
techniques to incorporate the activity alternatives, we define the problems of alternative
resources and alternative process plans, and discuss previous work that has examined
these two characteristics. In addition, we introduce two components of constraint-
directed scheduling algorithms that have been previously applied to non-alternative activity
problems: texture-based heuristic commitment techniques and propagators.
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Table 1
Notation

Symbol Description

STi a variable representing the start time ofAi

STDi the discrete domain of possible values forSTi

esti earliest start time ofAi

lsti latest start time ofAi

duri duration ofAi

efti earliest finish time ofAi

lft i latest finish time ofAi

2.1. Notation

For an activity,Ai we use the notation in Table 1 through the balance of this paper. We
will omit the subscript unless there is the possibility of ambiguity.

2.2. Problem definition

In a basic scheduling problem (such as the job shop scheduling problem [23]) each
activity must be assigned a time to execute on a predefined resource. As each activity must
be executed and the resource is already specified, the only component of the problem that
must be decided is when each activity will execute.

In analternative resource scheduling problem, rather than having a unique resource that
it must execute on, each activity may have a set of alternative resources and may execute on
any member of the alternative set. Depending on the resource chosen, other characteristics
of the activity (e.g., duration) may also change. A solution to the problem must specify
which resource the activity executes on as well as when it executes.

In an alternative process plan scheduling problem, the choices are expanded to
encompass multiple sets of activities. Fig. 1 displays four alternative process plans

Fig. 1. Four alternative process plans.



214 J.C. Beck, M.S. Fox / Artificial Intelligence 121 (2000) 211–250

(PP1, . . . ,PP4). The label in the upper-left corner of each activity represents the activity’s
resource requirement while the lower-right label is the identifier of the activity. Thus,
activities with the same identifier (e.g.,A3 in PP1 andA3 in PP2) are the same. The first
two process plans,PP1 andPP2, are simply different orderings of the same activities. The
third process plan,PP3, is a completely different recipe while the fourth,PP4, is a variation
on the third: the first and last activities are identical, but the middle ones are different. Only
one of the alternative process plans is to be executed. Therefore, the scheduling problem
not only consists of decidingwhento execute the activities butwhich of the alternative
process plans will be executed at all.

2.3. Previous work

2.3.1. Alternative resources
In its most basic form, the alternative resource problem can be represented with the use

of multi-capacity resources [31]. A resource of capacityk can be used to model a resource
set ofk identical unary capacity resources and the activities can simply be scheduled on
the multi-capacity resource without representing the unary capacity resources. Significant
representational savings can be gained from this type of representation. Unfortunately, it is
unclear if elaborations of the resource model, such as requiring changeover activities [11],
can be represented in this way.

ISIS [21] provided representation for alternative resources within an order-basedIncre-
mental Decomposition and Incremental Scheduling(IDIS) [27] approach. All the activities
for one order are assigned start times and resource assignments before the next order
is selected for scheduling. A similar order-based decomposition is used in the Dynamic
Scheduling System (DSS) [26] in the context of on-line scheduling. Based on a black-
board system and stochastic order arrival, DSS instantiates process plans with resource
alternatives that include preference information. Based on analyses of the existing schedule
and the preferences, resource reservations are created for each of the newly instantiated
activities. While the scheduling process typically assigns activities to resources in one
order before moving to the next, in more challenging scheduling problems, DSS may
cancel previous reservations in order to search for a global solution among the currently
instantiated activities.

In a constraint programming language, such as ILOG Solver and Scheduler [1],
alternative resources can be modeled with one boolean variable for each resource-choice
of an activity. An activity uses a resource only if the corresponding demand variable
is TRUE. By using a constraint stating that only one of the demand variables can be
TRUE, the alternative resource requirements can be modeled and demand variables can
be incorporated into solution techniques.

A combination of the multi-capacity representation and the boolean representation
can be done by using multiple representations of the same resource requirements [31].
Multi-capacity resources are used to represent resource sets while the unary capacity
resources are directly represented. A multi-capacity version of the edge-finding exclusion
propagator has been implemented and used on the multi-capacity resources at the same
time as edge-finding and other propagators are used on the unary capacity resources.
Extensions of these techniques allow activities to have overlapping resource sets and allow
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the duration of an activity to depend on the assigned resource alternative. Building on
the use of multiple representations, Davenport et al. [19] formulate a number of heuristic
commitment techniques for the alternative resource problems. Again, both the multi-
capacity resource and unary capacity resources are explicitly represented. The central
algorithm for scheduling has two phases: in the first, all the activities are assigned to one
of their resource alternatives, and in the second phase the activities on the unary capacity
resources are sequenced using job shop scheduling techniques.

2.3.2. Alternative process plans
Kott and Saks [27] introduce a spectrum of approaches to alternative process plan

scheduling. At one extreme, theMultiple Alternative Decomposition(MAD) approach,
the alternatives are fully represented and integrated in the scheduling process. The other
extreme is theComplete Decomposition Prior to Scheduling(CDPS) approach where all
alternatives are decided in a pre-scheduling phase of the search. An intermediate approach
along this spectrum is theIncremental Decomposition and Incremental Scheduling(IDIS)
approach where the search through the alternatives and the scheduling is interleaved.

The order-based decomposition approach of ISIS discussed above can be applied to
problems containing alternative process plans [21]. In addition to alternative resources,
the order representation in ISIS allows alternative routings of a single order. After such
an order is chosen for scheduling, the resource allocation heuristics are used to choose a
single routing and resource reservations for all activities along the chosen routing.

The KBLPS scheduling system [14,39] builds on the order-based decomposition of ISIS
by the direct representation of alternative process plans and the incorporation of alternative
information into texture-based heuristics. In KBLPS, a probabilistic representation of all
activities similar to that of Sadeh [36,37] was used. The innovation was to recognize that
the probability that a particular routing is chosen depends on the number of alternative
routings that are available: the individual resource demand for each activity in a routing
was therefore biased to represent the likelihood that the routing itself was chosen. The
resource reservation heuristics, therefore, have deeper information on which to base their
commitments. Kott and Saks [27] extend the KBLPS work by embedding alternative
process plan scheduling in the context of combined planning and scheduling. Viewing
alternative process plans as the result of goal decomposition, the authors examine the
scheduling of multiple, alternative decompositions. Using domain specific rules, a set of
alternative process plans are constructed for each goal to create the scheduling problem.
Then, based on the contention and reliance texture measurements, the activity most reliant
on the most contended-for resource is selected. As in KBLPS, the individual demand of
each activity is biased by its probability of execution given the alternative process plans that
are available to achieve the same goal. The critical activity is used to identify the critical
goal, and a single process plan is selected to achieve that goal based on a combination of
domain specific rules and the reliance of the critical activity. All the activities in the chosen
process plan are scheduled.

A higher-level approach to alternative process plan scheduling can be seen in work
that integrates the process planning task with scheduling. Systems such as Design-to-
Criteria [43,44] and IP3S [38] dynamically create process plans according to a number
of criteria. The Design-to-Criteria work takes into account a combination of uncertainty,
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cost, and time-to-completion in exploring the space of plans with which a set of goals can
be achieved. Based on the high-level evaluation, a set of activities without alternatives is
selected and scheduled. Depending on the quality of the resulting schedule, decisions from
the planning phase may be revisited in order to achieve a better overall schedule. Similarly,
IP3S uses a black-board architecture to integrate process planning and scheduling. IP3S
achieves this integration by taking into account the resource contention when formulating
process plans. As with Design-to-Criteria, non-alternative process plans are generated and
scheduled; however, based on the quality of the schedule, process plans may be generated
specifically to route process plans away from highly contended-for resources. In both
systems, however, the alternative process plans are represented only in the planning phase:
no representation of alternatives is present during the actual scheduling.

Le Pape [28] extends the activity representation of ILOG Scheduler to allow an activity’s
duration to be 0 to represent that the activity does not execute. In an application that
represents activities with varying durations, all activities are initially present in the problem
and the heuristic commitment technique has the choice of setting an activity’s duration to
0, setting it to some lower-bound, and/or assigning a start time. This technique allows
the representation alternative activities; however, no information is given on what, if any,
propagation is done to reason about activity dependencies.

2.3.3. Discussion
We draw two general themes from the literature on activity alternatives. The first is the

constraint programming approach represented by ILOG Scheduler where an alternative
is represented by a full variable in the constraint representation of the problem. The
second theme is the heuristic approach present in KBLPS and [27]: resource and start
time reservations are made with texture-based heuristics which take into account the fact
that alternative choices change the individual demand an activity has for a resource. These
two themes are consistent with the work on scheduling non-alternative activities where
propagators and sophisticated heuristic techniques are two key solution techniques.

Based on the foundation provided by the literature, our approach to scheduling with
alternative activities is as follows:

(1) Represent the fact that an activity has alternatives and therefore may not actually
execute in the constraint graph.

(2) Formulate and/or adapt texture-based heuristics so that they take into account the
existence of alternatives and directly reason about them in generating heuristic
commitments.

(3) Formulate and/or adapt propagators so that they too can take into account the
existence of alternatives yet still derive implied commitments that can be added
to the constraint graph.

3. Representation of alternative activities

In order to represent the fact that an activity present in the problem definition may not be
present in a final schedule, we introduce the notion of an activity’sprobability of existence
(PEX). Informally, PEX is defined to be the probability that an activity will be present in the
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Fig. 2. Modification of the temporal network to directly model the alternatives implicit in Fig. 1.

final solution (assuming such a solution exists). The PEX of each activity is represented by
a PEX variable, which is a standard domain variable with an initial domain of{0,1}. In each
search state, we calculate the expected value1 of the PEX variable and use it to represent
the activity’s probability of existence. In addition, the temporal network is modified so
that the expected PEX values and temporal values are propagated among activities. One of
the key components of this extension is a modification of the temporal graph to explicitly
represent alternative activities.

A general idea of the representational approach can be seen in Fig. 2. The XorNodes in
the constraint graph directly represent the alternative process plans (and sub-process plans)
from Fig. 1. We discuss the addition of XorNodes and PEX variables to the constraint graph
in this section.

3.1. Extending the temporal graph

To represent activity alternatives directly in the temporal graph, we introduce AndNodes
and XorNodes in additional to the regular Activity nodes. The temporal graph has multiple
instances of AndNodes, XorNodes, and Activities connected via temporal constraints.

3.1.1. AndNode
The AndNode has start time and end time temporal variables just as an Activity

does. The duration of an AndNode is 0. There are two semantic components in the
AndNode corresponding to its functionality in temporal and PEX propagation. From a
PEX perspective, all the TemporalNodes linked to an AndNode exist in a solution if the
AndNode exists. Similarly, if one of the non-XorNodes directly linked to an AndNode
exists in a solution, then the AndNode must exist. In terms of expected PEX values,
therefore, all non-XorNodes directly connected to an AndNode must have the same
expected PEX value as the AndNode itself. Since all the nodes an AndNode is connected
to are either going to be present in a solution, or all the nodes, including the AndNode
itself, are removed, it is valid to perform standard temporal propagation.

1 We use the phrases “expected value” and “expected PEX value” informally here, by analogy to the usual
statistical definition of the expected value of a random variable. A formal justification for the use of the phrases
in their statistical sense is beyond the scope of this document.
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3.1.2. XorNode
Like the AndNode, the XorNode has a duration of 0, and start and end time temporal

variables. As the name indicates, the logical semantics of a XorNode are such that if the
XorNode itself is present in the final solution then one and only one of the nodes directly
connected upstream (respectively, downstream) to the XorNode can also be present. Also,
if a node directly connected upstream (or downstream) to a XorNode exists in a solution,
so must the XorNode. From a PEX propagation perspective, these semantics mean that,
in a consistent network, the expected PEX value of the XorNode is equal to the sum of
the expected PEX values from the nodes directly connected upstream and the XorNode
expected PEX value must also be equal to the sum of the PEX values from the nodes
directly connected downstream.

Fig. 3 represents a small temporal graph with XorNodes,X1, X2, andX3. Assuming
that the expected PEX value ofX1 andX3 are both 0.5, the rest of the temporal nodes have
the expected PEX values shown (above or below each node).

From a temporal perspective, the fact that only one of the upstream and one of the
downstream links are to be present in a solution means that temporal propagation is
different from that of the AndNode. A XorNode must end before themaximumlatest start
time of all the nodes directly connected downstream while it must start after theminimum
earliest end time of all activities connected upstream. Assuming that the nodes between
X1 andX3 must be scheduled within a scheduling horizon of[0,100], Table 2 displays
the start and end time windows of each node. Note that for the temporal propagation of
the AndNodes, they are treated simply as activities with zero duration. The XorNodes also
have zero duration, but a more complicated treatment within temporal propagation due to
their semantics. We revisit the issue of PEX and temporal propagation in Section 4.

3.1.3. Illegal temporal networks
We have extended our temporal network representation to allow definition of AndNodes

and XorNodes. Not all temporal networks that are expressible are valid networks, however.
The basic requirement for legality is that for any XorNode,X, in the graph withk upstream
andl downstream links (k, l > 1), there must be:
• a corresponding XorNode,X−, upstream ofX with k downstream links, and
• a corresponding XorNode,X+, downstream ofX with l upstream links.

Fig. 3. A temporal graph with XorNodes.
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Table 2
The time windows for the activities in Fig. 3

Node Start time domain End time domain

X1 [0 90] [0 90]

A6 [0 70] [25 95]

A1 [0 80] [15 95]

A3 [0 90] [5 95]

X2 [5 95] [5 95]

A5 [5 90] [15 100]

A7 [5 95] [10 100]

X3 [10 100] [10 100]

Fig. 4. An illegal temporal network.

For example, the temporal network in Fig. 4 clearly breaks our basic requirement for
corresponding linkage of XorNodes. The first XorNode has 3 downstream links while there
are no other XorNodes in the network with 3 upstream links. Intuitively, the reason that this
network is illegal is an ambiguity for expected PEX values. What should the expected PEX
values be for the middle three activities? Starting from the upstream activity, we would
assign a PEX of 1 to it and to the first XorNode. Following the PEX propagation rules
for XorNodes we would then calculate that each of the middle three activities have an
expected PEX value of 0.33. Consider, however, starting from the last node and doing the
PEX propagation upstream. The final XorNode will have an expected PEX value of 1. The
two nodes directly connected to the final XorNode (i.e., the penultimate XorNode and the
bottom activity) would then have an expected PEX value of 0.5 each and then propagating
from the penultimate XorNode, the top two middle activities would have an expected PEX
value of 0.25 each. The ambiguity over the expected values is the reason that network B
is illegal and therefore the reason for the “matching links” requirement for XorNodes in a
legal temporal network.

3.2. Probability of existence

The probability of existence(PEX) for an activity is the estimated probability at a
point in the search that an activity will be present in a final solution to the problem. This
probability is in the range[0,1]with 1 indicating that an activity will certainly be part of the
solution and 0 indicating that it certainly will not. PEX is represented by the expected value
of boolean demand variables such as were used by Baptiste and Le Pape [1]. While the
boolean PEX variables themselves can only take on the value of 0 or 1, the expected value
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of the PEX variable is on the interval[0,1]. The expected PEX value is a representation of
additional information about each activity which can then be incorporated into the heuristic
commitment techniques based on texture measurements.

It is important to make clear the fact that the PEX variable is a standard boolean
constrained variable: in any solution, each PEX variable must be assigned either to 0 or to 1.
The expected PEX value, however, is a number in the interval[0,1]. When a PEX variable
is assigned, its expected value is equal to its assigned value. When unassigned, however,
the expected PEX value varies according to the propagation rules presented below.

In order to simplify the implementation for our model of alternative activities, we have
placed one major limitation on the PEX representation: if a XorNode has an expected
PEX value ofx, k upstream andl downstream links, the expected PEX value of each
directly connected upstream node isx/k and the expected PEX value of each directly
connected downstream node isx/l. The only exception to the rule of even division is when
an upstream or downstream node has a PEX variable assigned to 0 or 1. If a neighboring,
without loss of generality, upstream node has a PEX variable assigned to 0, it is removed
from the graph: the expected PEX value at the XorNode is simply divided among the
upstream nodes with unassigned PEX variables. Similarly, if the neighboring, without loss
of generality, upstream node has its PEX variable assigned to 1, the PEX variables of all the
other directly linked upstream nodes must be assigned to 0: the XorNode acts as if it only
has a single upstream node. We discuss issues surrounding the removal of this limitation
in Section 10.

4. Propagators for alternative activities

The power of propagators is well-recognized in the constraint-directed scheduling
literature. It appears likely, therefore, that the use of propagators in problems with PEX
variables will lead to improved search performance.

In this section, we discuss three types of propagation on the extended temporal network:
(1) PEX propagation—The expected PEX values of different nodes are related via

the topology of the temporal network. When the network is modified (e.g., by
a commitment that sets the PEX variable of an activity to 0), the effects of the
commitment must be propagated to the expected PEX values of the other nodes in
the network.

(2) Temporal propagation—Standard temporal propagation enforces arc-B-consistency
[29] on the temporal constraints in the scheduling problem. For example, ifAi and
Aj are directly connected via a precedence constraint such thatAj is a successor of
Ai , temporal propagation enforces thatestj > esti + duri andlft i 6 lftj − durj . To
account for nodes that do not necessarily exist in a final solution, we must adapt the
standard temporal propagation algorithm.

(3) PEX-edge-finding propagation—Edge-finding propagators (both exclusion [12,13,
15,16,31] and not-first/not-last [2,3,12,13,15,31]) have been shown to significantly
improve scheduling performance in a number of types of scheduling problems. We
extend edge-finding here to incorporate activities that do not necessarily execute in
a final solution.
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Fig. 5. A process plan with a choice of activities. The duration of each activity is shown in the lower left corner
of the activity.

The small example in Fig. 5 serves to illustrate the first two types of functionality. The
figure represents a single process plan with a choice of activities: eitherA1 can be followed
byA2, A3, A4, and thenA5 orA1 can be followed byA6, A7, and thenA5. The duration
of each activity is indicated by the number in its lower left corner. Assuming thatA1 and
A5 must be executed, we assign their PEX variables to 1. Further, we split the probability
of existence equally between the two choices. Therefore,A2, A3, A4, A6, andA7 have
expected PEX values of 0.5. The PEX propagation must ensure that if we were to make an
arbitrary assignment of a PEX variable, such as assigning the PEX variable ofA3 to 1, the
expected PEX values of the related activities and, perhaps, the PEX variables themselves,
would be appropriately reset. In our example, the PEX variables ofA2 andA4 should also
be set to 1, and the PEX variables ofA6 andA7 should be set to 0.

Returning to the original graph in Fig. 5 (i.e., before assigning the PEX variable ofA3 to
1), the standard temporal propagation algorithm would derive that the start time window of
A1 is [0, 45]. The latest start time ofA1 is found by the calculation of the longest path from
A1 toA5 which happens to includeA6 andA7. If A1 were to start at time point 46, andA6
andA7 were to be executed,A5 would end at time point 101, which is after the end of the
horizon. The difference in this graph, however, is the presence of the alternative path from
A1 toA5. It is possible forA1 to start at time 46 if the path going throughA2,A3, andA4 is
chosen. In fact, with this choice,A1 can consistently start as late as time point 55. Clearly,
then, we need to modify the temporal propagation (or the temporal network) to account for
the possibility that some activities may not be present in the final solution. Furthermore,
assume that the two alternatives in Fig. 5 are still possible and that through some other
scheduling decision the earliest start time ofA1 is increased to 46. Temporal propagation
should detect that such a change makes one of the alternative paths inconsistent: there is
no way thatA6 andA7 can execute.

4.1. Propagation of expected PEX values

The basic PEX propagation algorithm is achieved through the PEX propagation behavior
at each temporal node. As described above, at an AndNode (or Activity),A, all the non-
XorNodes directly linked toA must have the same expected PEX value asA. Therefore,
when PEX propagation enters an AndNode, the local expected PEX value can be modified
and the new local value is propagated to all neighboring nodes. For XorNodes, the sum
of the expected PEX values for all nodes directly connected upstream must be equal to
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the sum for all nodes directly connected downstream which in turn must be equal to the
expected PEX value of the XorNode.

The basic PEX propagation algorithm presented here ignores the current expected PEX
values and re-propagates the entire network. In practice, we also have an incremental
algorithm that updates the expected PEX values after a local change. Details of the
incremental algorithm can be found in Beck [4].

Given our temporal networks, if a node has either no upstream or no downstream links
it cannot be subject to a XorNode and so must be present in the final solution. Any tempo-
ral node that either has no upstream links or no downstream links must, therefore, have its
PEX variable assigned to 1. Also since a requirement of a legal temporal network is that the
expected PEX values are unambiguous, initial propagation may begin with all nodes with
no upstream links or all nodes with no downstream links. We have arbitrarily chosen to per-
form the initial propagation from all nodes with no upstream links. Recall that the expected
PEX value of any node that has its PEX variable assigned is equal to the assigned value.

Pseudo-code for the initial propagation algorithm is given in Fig. 6. Lines 4, 8, and 17
make use of active nodes and active links. Anactive link is a binary temporal constraint
such that the PEX variable of each of its nodes is not assigned to 0. Anactive nodeis a node
connected via an active link. Recall that a topological sort (line 1) in an acyclic, directed
network is an ordering of the nodes such that if there is a path from nodeY to nodeX in
the graph thenY < X in the sort order [33]. In our case, the topological sort establishes
that if Y is upstream ofX in the temporal graph, thenY < X in the sort order. In the loop
beginning at line 2, therefore, we are guaranteed that all upstream nodes already have their
expected PEX values assigned.

1: create downstream topological sort of temporal nodes
2: for each temporal node with unassigned PEX variable in sort

order
3: if the node is an AndNode OR Activity
4: upstreamNode = any directly connected, active upstream node
5: set ExpPEX = downstreamExpPEXValue (upstreamNode)
6: if the node is an XorNode
7: set ExpPEX = 0
8: for upstreamNode = all directly connected, active upstream

nodes
9: set ExpPEX += downstreamExpPEXValue (upstreamNode)
10:
11:
12: procedure downstreamExpPEXValue (Node node)
13:
14: if the node is an AndNode OR Activity
15: return ExpPEX
16: if the node is an XorNode
17: return (ExpPEX / number active downstream links)

Fig. 6. Pseudocode for the basic PEX propagation algorithm.
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The complexity of the initial propagation givenn nodes andm temporal constraints is
O(max(m,n)). The topological sort (implemented with a depth-first search) and the for-
loop are both O(max(m,n)) as all nodes and constraints must be visited.

4.2. Temporal propagation with PEX

There are two differences in temporal propagation when XorNodes are present in the
network.

(1) Propagation through a XorNode is different than propagation through an Activity.
(2) It is possible to derive a dead-end in the search by emptying the domain of a variable

during temporal propagation. When there are nodes with unassigned PEX variables
in the graph, such a state may not be a dead-end, but rather may indicate an implied
PEX commitment.

4.2.1. Temporal propagation through a XorNode
The temporal propagation through a XorNode is straightforward given the temporal

semantics of a XorNode. A XorNode enforces the temporal relationship that it must start at
the same time as or after the end time of at least one of its upstream neighbors, and it must
end at the same time as or before the start time of at least one of its downstream neighbors.
During downstream propagation, therefore, the XorNode sets the lower-bound on its start
time domain based on the minimum earliest finish time of its upstream neighbors. This
start time is then propagated further downstream. Similarly, during upstream propagation
the upper-bound on the end time of a XorNode is set based on the maximum latest start
time of its downstream neighbors and this value is further propagated upstream.

4.2.2. Deriving implied PEX commitments from temporal propagation
In standard temporal propagation algorithms, if a variable’s domain has been emptied,

a dead-end is derived. When PEX variables are present, emptying a domain may not be a
dead-end. Rather it may indicate that a particular PEX variable must have a value of 0.

When a domain is emptied in temporal propagation, the PEX variable of the temporal
node with the emptied domain is examined. If the PEX variable is unassigned, the node
is marked to indicate that the PEX variable has been determined to be 0 and temporal
propagation does not continue from that node. After temporal propagation, a separate
algorithm examines all the temporal nodes to determine if any have been marked to indicate
the derivation of an implied PEX constraint. If such a temporal node is found, a new unary
PEX constraint is asserted, and the usual PEX propagation and temporal propagation is
done.

If the domain of a temporal node with PEX of 1 is emptied, a dead-end is derived as
in the standard temporal propagation. To see why this is the case, imagine emptying the
start time domain of an activity,A, with a PEX variable assigned to 1. By definition, it
cannot have any enclosing XorNodes. Assume that the presence of some activity,B, with
an unassigned PEX variable caused the empty domain. The temporal propagation fromB

to A must occur through one of the XorNodes enclosingB. If that propagation empties
A, then it must be the case that not onlyB but all its alternatives are inconsistent withA.
Therefore, it is a true dead-end. Note that this reasoning holds even if activityB is nested
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inside a number of alternatives: the temporal propagation fromB to A must pass through
the outer-most XorNode enclosingB. This XorNode,X, must have a PEX variable equal
to 1. Since all the alternatives ofX are inconsistent withA, we have a true dead-end.

4.3. PEX-edge-finding propagation

Two types of edge-finding have been widely used in the constraint-directed scheduling
literature [12,13,15,16,31]. The reasoning in edge-finding is based on examining the set of
activities on a resource and deriving temporal constraints that enforce new upper and lower
bounds on the end and start times of activities.

Clearly, edge-finding can be used with activities with PEX variables assigned to 1.
Imagine the situation, however, where the set,S, of activities on a resource contains a
single activity,A, whose PEX variable is not assigned. Further assume that edge-finding
can infer no new commitments or dead-ends when only considering the activities in the set
S \ {A}. When considering all activities inS:

(1) If edge-finding derives a dead-end, we can soundly infer that activityA cannot
execute and therefore set the PEX variable ofA to 0.

(2) If edge-finding derives new unary temporal constraints onA, they can be soundly
asserted. Clearly ifA is to execute, it must be consistent with the rest of the activities
that execute on the same resource. Therefore, any unary temporal constraints onA

are sound: they must be true ifA is to execute and ifA does not execute they do not
affect any other activities.

(3) If edge-finding derives any unary temporal constraints on activities other thanA,
they must be discarded. Since it is possible forA not to execute, and since the

1: procedure PEXEdgeFinding
2: list-of-commitments = EdgeFinding()
3: if list-of-commitments is not empty
4: return list-of-commitments
5:
6: for each activity A such that 0 < A PEX < 1
7: temporarily set A PEX = 1
8: tmp-list = EdgeFinding()
9: for each commitment in tmp-list
10: if dead-end
11: list-of-commitments.insert (set A PEX to 0)
12: else if new commitment on activity A
13: list-of-commitments.insert (commitment)
14: else
15: discard commitment
16: reset A PEX
17:
18: return list-of-commitments

Fig. 7. Pseudocode for PEX-Edge-finding.
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temporal constraints are derived on the assumption thatA would execute, we cannot
soundly constrain the other activities.

This reasoning leads to the PEX-edge-finding algorithms presented in Fig. 7. Note that
this function uses the usual edge-finding algorithms as sub-routines (line 2 and line 8). That
is, the calls toEdgeFinding() are calls to the standard edge-finding functions, which
return a list of commitments that are implied by the current search state. Given that the
standard edge-finding worst-case complexity is O(n2), wheren is the number of activities
on a resource, the PEX-edge-finding worst-case complexity is O(n3) for one resource.

5. Incorporating alternative activities into scheduling heuristics

With the ability to represent and propagate the fact that some temporal nodes may not
be present in a final schedule, it is necessary to extend the heuristic search techniques to
allow direct reasoning about an activity’s probability of existence. The obvious extension
is to expand the type of commitments that a heuristic can make to include setting the PEX
variable of an activity. This, indeed, is the basic extension to existing heuristics.

Before presenting our extensions to texture measurement-based heuristic commitment
techniques, it is necessary to briefly present two texture-based heuristic commitment
techniques from the literature.

5.1. Texture measurement-based heuristics

A texture measurementis an analysis of the constraint graph underlying a problem state
in order to distill information that can be used by the heuristic commitment technique [22].
For example,contention[36,37] is the extent to which variables linked by a disequality
constraint compete for the same value. In the context of scheduling, contention is the
extent to which activities compete for the same resource over the same time interval. Two
texture-based heuristic commitment techniques, SumHeight [8,10] and VarHeight [4,7],
are extended in this paper to address scheduling problems with alternative activities.

The SumHeight texture measurement estimates the contention on each resource, over
time, by summing the probabilistic individual demand curves that each activity has for the
resource. If an activity does not require a resource, its demand is 0. Otherwise, a uniform
probability distribution over the possible start times of the activity is assumed: each start
time has a probability of 1/|STD| whereSTD is the domain of the activity’s start time
variable. The individual demand,ID(A,R, t), is the probabilistic amount of resourceR,
required by activityA, at timet . It is calculated as follows:

ID(A,R, t)=
∑

t−durA<τ6t
σA(τ ), (1)

where

σA(τ)=


1

|STDA| if τ ∈ STDA,

0 otherwise.
(2)
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Fig. 8. Calculating the probability of breakage at eventt with VarHeight.

The VarHeight texture measurement makes use of the same underlying individual
demand curve as SumHeight. Rather than estimating aggregate demand, however, the
VarHeight texture estimates the probability of breakage of a constraint based on the
expected value of the aggregate demand and a distribution around the expected value. The
expected value at each event point is provided by the aggregate curve on a resource as
calculated by SumHeight. The distribution is created by the aggregation of the variance of
the individual demands. In considering resourceR, a time pointt , and an activityA, we
can associate a random variableX with the demand thatA has forR at timet . For unary
resources the domain ofX is {0, 1}. The expected value forX, EX, assuming a uniform
probability distribution for the start time ofA, is ID(A,R, t) as calculated in Eq. (1). We
calculate the variance ofX, VX, as follows (see [4] for the derivation):

VX=EX× (1−EX). (3)

With a number of assumptions [4,7], two curves, representing the aggregate expected
value and aggregate variance are formed by summation of the individual curves. Further
assuming that the aggregate random variable is normally distributed around the aggregate
expected value, the expected value and the standard deviation of the random variable define
a distribution at timet . This is illustrated in Fig. 8. The area under the curve greater than
the maximum capacity constraint is used as an estimate of the probability of breakage.

SumHeight and VarHeight texture measurements are both used to indicate the resource
and time point with maximum criticality. In the case of SumHeight, criticality is defined
using aggregate demand while for VarHeight, it is defined using the estimate probability of
constraint breakage. A heuristic technique can then be used to derive a new commitment
which attempts to decrease that maximum criticality. For example, in [10], the individual
and aggregate curves created by the SumHeight texture are used to identify and sequence
a pair of activities which contend for the critical resource at the critical time point.

5.2. Extending texture-based heuristics

The texture measurements presented above are based on an analysis of the constraint
graph to identify the critical points where a commitment should be made, followed by
a commitment that attempts to decrease that criticality. Expected PEX values represent
potentially important search information and therefore should be embedded in the texture
measurements to ensure that they are taken into account in the estimation of criticality at a
search state.

The PEX variables affect texture-based heuristics in two ways. First, it is desirable to
incorporate the expected PEX values into the underlying texture measurement estimation
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technique. The criticality of an activity may be very different if it has a 0.125 probability
of executing than if it has a 0.5 probability. Second, once textures have been calculated, the
presence of PEX variables expands the types of heuristic commitments that can be made.

5.2.1. Adding PEX to texture curves
The sole modification to texture measurements to incorporate expected PEX values is

to apply a vertical scaling factor to the individual activity demand. If the expected PEX
value of activityA is 0.5, the individual demand at any time pointt , estA 6 t < lftA, is
half what the demand would be if the PEX variable were assigned to 1. This modification
fits with our semantic interpretation of individual demand to be the probabilistic demand
of an activity at a time point. Because we interpret an expected PEX value as an activity’s
probability of existence, an activity that has only a 50% likelihood of existing has half
the probabilistic demand of an identical activity that will definitely exist. This is the same
way that the probability of existence of an activity is taken into account in the KBLPS
scheduler [14].

Recall that the individual demand,ID(A,R, t), is (probabilistically) the amount of
resourceR, required by activityA, at time t as calculated in Eq. (1). The modification
to this calculation that incorporates PEX,IDPEX(A,R, t) simply multiplies byAPEX, the
expected PEX value of activityA:

IDPEX(A,R, t)=APEX× ID(A,R, t). (4)

Clearly, when the expected PEX value is equal to 1,IDPEX is equal toID.

5.2.2. New heuristic commitments
Independent of the texture measurement used, the basic texture algorithm remains the

same (withIDPEX replacingID) up to the point where a commitment is chosen. That is,
the individual demands are calculated and aggregated, and the resource and time point with
highest criticality is identified. To incorporate PEX variables, we follow the same intuition
as in our non-PEX, texture-based heuristics: make a commitment that will tend to most
reduce the criticality of the most critical resource.

The procedure for generation of heuristic commitment techniques in the presence of
PEX variables is as follows. We identify three activities:

(1) The activity, A, with unassigned PEX variable,APEX, and with the highest
individual demand for the critical resource,R∗, at the critical time point,t∗, of all
activities with unassigned PEX variables.

(2) The pair of activities,B andC, that are not currently sequenced, with PEX variables
BPEX= 1 andCPEX= 1, and with the highest individual demand for the critical
resource at the critical time point of all activities with a PEX variable assigned to
1. Without loss of generality, assume that the individual demand of activityB at
the critical time point is greater than or equal to the individual demand ofC at the
critical time point.

The heuristic commitment is found by comparing the individual demand ofA at t∗ with
that ofB. If the individual demand ofA is higher, then it is the most critical activity. Since
A has a possibility of not existing, the heuristic decision to reduce criticality is to remove
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A from the schedule by setting its PEX variable to 0. On the other hand, ifB has the higher
individual demand, then it is necessary to sequenceB andC to attempt to reduce criticality.

If the heuristic PEX commitment is retracted via a complete retraction technique, we
soundly post its opposite, setting the PEX variable ofA to 1. Similarly, if the sequencing
commitment is retracted, we post the opposite sequence.

The adaptation of the SumHeight and VarHeight heuristics by adding the PEX reasoning
results in two new heuristic commitment techniques which we refer to as SH-PEX and VH-
PEX, respectively.

5.2.3. Sequencing the critical activities
The final detail of the texture-based heuristics are the heuristics for sequencing activities

B andC, that is, the pair of critical activities, both of which have a PEX variable assigned
to 1. We use the sequencing heuristics presented in Beck [8,10].

5.3. Other heuristics

To form a basis of comparison for the quality of the texture-based heuristics for PEX, we
modify other heuristics to incorporate the PEX variables. Here we present the modifications
to PCP and LJ heuristics.

5.3.1. PCP-PEX
The Precedence Constraint Posting(PCP) heuristic [17,42] identifies the pair of

activities on the same resource that are not sequenced and that have the minimum biased-
slack measurement. These two activities are sequenced to preserve the maximum amount
of slack. To adapt the PCP heuristic to activities with PEX variables, we follow the intuition
that a commitment should preserve the maximum amount of slack.

The adaptation first specifies that the biased-slack measurement is calculated only for
activity pairs such that neither activity has its PEX variable assigned to 0. The following
three conditions then apply to the activity pair with the smallest biased-slack:

(1) If both activities have a PEX variable assigned to 1, follow the PCP heuristic and
post the sequencing constraint that preserves the most slack.

(2) If one activity,A, has a PEX variable assigned to 1 and the other,B, has an
unassigned PEX variable, the greatest amount of slack will be preserved by setting
the PEX variable ofB to 0.B will be completely removed from competition withA
thereby maximizing the resulting slack.

(3) If both activities have unassigned PEX variables, the greatest amount of slack will
be preserved by setting the PEX variable of the activity with the longest duration
to 0. By removing the activity with maximum duration, we maximize the resulting
slack between the critical activity pair.

If any of these commitments is retracted, we can post its opposite (the other sequence
for case (1), or setting the PEX variable to 1 in cases (2) and (3)) to guarantee a complete
search.

5.3.2. LJ-PEX
TheLeft-Justified Random(LJ) heuristic [31,32], finds the smallest earliest finish time

of all the unscheduled activities and then identifies the set of activities which are able to
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start before this time. One of the activities in this set is selected randomly and scheduled
at its earliest start time. When backtracking, the alternative commitment is to update the
earliest start time of the activity to the minimum earliest finish time of all other activities
on that resource.

Our modification of LJ to incorporate PEX variables, LJ-PEX, performs the following
steps:

(1) Find the smallest earliest finish time of all activities with PEX variable not assigned
to 0.

(2) Identify the set of activities with PEX variable not assigned to 0 that can start before
the minimum earliest finish time.

(3) Randomly select an activity,A, from this set.
(4) AssignA to start at its earliest start time and assign its PEX variable,APEX, to 1.
The alternative commitment, should backtracking undo the commitment on activityA,

is to update the earliest start time ofA to the minimum earliest finish time of all other
activities with the PEX variable not assigned to 0, on the same resource asA. Note that the
alternative does not contain a PEX commitment, which means that subsequent heuristic and
implied commitments can still assignAPEX to either 1 or 0. This ensures completeness of
the search. With chronological backtracking, if the commitment on activityA is undone, it
has been derived thatA cannot start at its earliest start time in any schedule. The alternative
then is thatA starts later or thatA does not execute at all. For a complete search we need
to preserve these two alternatives when backtracking.

5.4. The information content of heuristic commitment techniques

One of the key differences among the heuristics that incorporate PEX is the extent of
that incorporation. The texture-based heuristics use the expected PEX value to calculate
the underlying individual demand of an activity and so it has a deep impact on the heuristic
commitments that are made. LJ-PEX and PCP-PEX, in contrast, only use the PEX variable,
not its expected value: these heuristics do not use the fact that one activity may have an
expected PEX value of 0.125 while another an expected PEX value of 0.5. We predict that,
because the texture-based heuristics take into account the information represented by the
expected value, they will outperform heuristics that do not use that information.

6. Empirical evaluation

The empirical evaluation of the PEX techniques in this paper focuses on problems with
alternative process plans and problems with both alternative process plans and alternative
resources. The PEX techniques presented are applicable, without extension, to both types
of problems as an activity with alternative resources is simply treated as a nested alternative
within a process plan.

6.1. Experimental design

The primary purpose of the experimental evaluation is to determine the efficacy of using
expected PEX values as part of the information underlying heuristic commitments. As
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noted above, among the heuristic commitment techniques, only SH-PEX and VH-PEX
use the expected value of the PEX variable in each search state to inform their decision
making. An important component of the empirical evaluation is to determine if using this
extra information results in better heuristic commitments and overall search performance.
A second purpose is the evaluation of the PEX-edge-finding techniques. Given the
relatively high time-complexity of the propagators, we want to evaluate their efficacy in
terms of overall search performance.

Two of the obvious interesting parameters for alternative process plan problems is the
number of alternatives in each process plan and the size of the overall scheduling problems.
In Experiment 1 we look at the former while examining the latter in Experiment 2. Both
experiments use a fully crossed design with makespan factor as the second independent
variable.

The overall pattern we predict in Experiment 1 is that as the number of alternatives
increases, the requirement for direct reasoning about the alternatives will become more
important to good algorithmic performance. For Experiment 2, we focus on a more global
factor of difficulty: the problem size. Our primary interest is to see how the algorithms
with higher complexity components (such as PEX-edge-finding) are able to scale in terms
of problem solving ability in relation to the lower complexity algorithms.

In our final experiment, Experiment 3, we incorporate alternative resources into the
alternative process plan problem sets from Experiment 1 (see Section 8.1.1 for a detailed
description of this incorporation). The primary impact of the addition of alternative
resources is to greatly increase the range of expected PEX values across the activities in the
problem. As with the increase in the number of alternatives per process plan, we predict
the increase in the range of expected PEX values to favor the heuristics that make detailed
use of them in their heuristic commitment techniques.

6.2. The reporting of time-outs

The experiments in this paper are run with a bound on the CPU time. Each algorithm
must either find a schedule or prove that no schedule exists for a problem instance. If an
algorithm is unable to do so within the CPU time limit (in all our experiments the limit is
20 minutes), a time-out is recorded. A time-out indicates that the algorithm was unable to
find a solution or prove that no solution exists for a particular scheduling problem instance.

The primary reason for reporting time-out results is that it allows us to use problem
sets that contain both soluble and over-constrained problems. The phase transition work
in combinatorial problems such as SAT and CSP [24,25] demonstrates that the hardest
problem instances are found in locations of the problem space where approximately half
of the problems are over-constrained. While the space of scheduling problems is not as
well-understood as SAT or CSP in terms of phase transition phenomena [9], we want
to take advantage of this insight in order to generate challenging problem instances. We
construct our problem sets so that as the independent variable varies, the problem instances
move from an over-constrained area in the problem space to an under-constrained area. In
the former area, proofs of insolubility can often be easily found while in the latter area,
solutions can be easily found. It is in the middle range of problems where we expect to find
the most difficult problems.
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The use of time-outs as a search statistic allows us to integrate search performance on
over-constrained problems and soluble problems into a single statistic. The intuition is that
algorithms fail when they can neither find a solution nor a proof of insolubility. By using
the number of failures, in this way, we get a clearer picture of the algorithm performance.
For example, plotting the number of problems for which a solution is found obscures the
fact that some algorithms may be performing very well on over-constrained problems (by
finding proofs of insolubility) whereas others are not able to find any such proofs.

6.3. Summary of algorithms

Eight algorithms are used in the experiments. Each is an instantiation of the ODO
constraint-directed scheduling framework [5].

All algorithms use chronological backtracking and therefore can each be specified by
identifying the heuristic commitment and set of propagators used. Two sets of propagators
are used:

(1) PEX Propagators: Temporal propagation, PEX-edge-finding exclusion, PEX-edge-
finding not-first/not-last, and Constraint-Based Analysis (CBA).

(2) Non-PEX Propagators: Temporal propagation, Edge-finding exclusion, Edge-find-
ing not-first/not-last, and Constraint-Based Analysis (CBA).

Table 3 presents the names by which we refer to each algorithm in the balance of this
paper.

In our experiments, each algorithm is run until it finds a solution or until a 20 minute
CPU time limit has been reached in which case failure is reported. The machine for all
experiments is a Sun Ultra-Sparc-IIi, 270 MHz, 128 M memory, running SunOS 5.6.

6.4. Performance measures

A number of performance measures are reported:
• Fraction of problems timed-out—A primary measure of performance is the fraction

of problems that each algorithm was neither able to find a solution nor show that none
exists within the experimental time-limit.
• Mean CPU time—For each problem set, we report the mean CPU time for each

algorithm.

Table 3
The eight algorithms used in the alternative process plan experiments (see the text
for the components of the propagator sets)

Algorithms

Heuristic With PEX propagators With non-PEX propagators

SH-PEX SH-PEX-P SH-PEX-NP

VH-PEX VH-PEX-P VH-PEX-NP

PCP-PEX PCP-PEX-P PCP-PEX-NP

LJ-PEX LJ-PEX-P LJ-PEX-NP
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• Mean number of backtracks—We also report the mean number of times that an
algorithm backtracked while searching for a solution to the problems at a point in
the parameter space.
• Mean number of heuristic commitments—The mean number of commitments found

by the heuristic commitment technique. A heuristic commitment is a commitment
made by a heuristic technique. Unlike implied commitments, heuristic commitments
can be mistaken and therefore represent a branching in the search tree.
• Mean number of implied commitments—The mean number of commitments found by

the propagators. An implied commitment is a constraint that is added to the constraint
graph because it is already implied by the problem state. Implied commitments
include those found by all propagators with the exception of temporal propagation.
The temporal propagation commitments are omitted because they are implemented as
the removal of possible values from the domains of the start- and end-time variables
rather than the explicit addition of a constraint.
• Mean number of total commitments—The mean total number of commitments (found

by the heuristic commitment technique and the propagators).
When an algorithm times-out on a problem instance, the performance measures for

that problem are included in the calculation of the mean. While this inclusion means that
our results represent a lower-bound on performance, it avoids skewing results based on
discarding data for a problem that some algorithm times-outs on.

Unless otherwise noted, statistical significance for each performance measure is
evaluated with the boot-strap paired-t test [18] withp 6 0.0001.

Our interest in these experiments is the comparison of the four heuristic commitment
techniques (SH-PEX, VH-PEX, PCP-PEX, and LJ-PEX) and an evaluation of the efficacy
of PEX-edge-finding. The statistical analysis therefore compares the four heuristics with
each other in two conditions: with and without PEX-edge-finding. To address the question
of the usefulness of PEX-edge-finding, we also compare its use in four conditions
corresponding to each of the heuristics. A summary of these groups is shown in Table 4.

7. Alternative process plans

7.1. Experiment 1: Scaling with the number of alternatives

7.1.1. Problems
We expect that the number of alternatives in each process plan will have an impact

on the search performance. To examine algorithm performance under varying numbers
of alternatives, we constructed four problem sets with varying maximum numbers of
alternatives in each process plan. To illustrate this construction we use a problem set with
a maximum of three alternatives.

Each problem begins with an underlying job shop problem. All problems in this
experiment have 10 activities per process plan and 10 resources. For a problem with
a maximum of three alternatives per process plan, we generate 30 jobs of 10 activities
each. These 30 jobs are then transformed into 10 process plans with alternatives. For each
job we randomly choose the number of alternatives,k, it will have uniformly from the
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Table 4
The groups of algorithms used in the statistical tests

Comparison group Purpose

SH-PEX-P

VH-PEX-P Compare heuristics when used with PEX-edge-finding

PCP-PEX-P

LJ-PEX-P

SH-PEX-NP

VH-PEX-NP Compare heuristics when used without PEX-edge-finding

PCP-PEX-NP

LJ-PEX-NP

SH-PEX-P Evaluate PEX-edge-finding with SH-PEX heuristic

SH-PEX-NP

VH-PEX-P Evaluate PEX-edge-finding with VH-PEX heuristic

VH-PEX-NP

PCP-PEX-P Evaluate PEX-edge-finding with PCP-PEX heuristic

PCP-PEX-NP

LJ-PEX-P Evaluate PEX-edge-finding with LJ-PEX heuristic

LJ-PEX-NP

interval [0,3]. We then combine randomly chosen portions of the nextk jobs with our
original job to produce a single process plan withk alternatives. The combination process
randomly chooses the to-be-combined portion and the location in the original process plan
where the alternative is to be inserted. The only requirements are that each path between
a pair of XorNodes representing an alternative must have the same number of activities
and that number must be greater than 1. The latter requirement avoids problem structures
that are better categorized as alternative resources while the former requirement avoids
situations where an entire ten-activity process plan can have a two-activity alternative.
Such a situation would lead to scheduling problems with essentially a single easy decision
to make (choose the shorter process plan). We prefer to generate harder problems and so
avoid such situations. Fig. 9 illustrates the combination of three process plans into a single
process plan with two alternatives.

Sets of problems with a maximum of one, three, five, and seven alternatives per process
plan were generated. Each set contains 20 problems. For each problem the job lower bound
was calculated taking into account the alternatives. This calculation finds the shortest path
(where path length is determined by the sum of the durations of activities on a path) in each
job. We then use a makespan factor spanning 1.0 to 1.5 (in steps of 0.1) to generate a total
of six problem sets of 20 problems each for each number of alternatives.
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Fig. 9. Generating a single process plan with two alternatives.

Table 5
The characteristics of the problems in Experiment 1

Problem set Number of activities per problem

(Max. # of alternatives) Minimum Mean Maximum

1 116 131.6 156

3 142 171.8 200

5 172 204.7 251

7 167 224.2 280

One of the results of this method of problem generation is that a solution to a problem
will have exactly the same number of activities as the underlying job shop problem. Prior
to scheduling, however, each problem has a different number of activities depending on the
randomly chosen number and size of alternatives. Table 5 shows the characteristics of the
problem sets in terms of the number of activities in the problem definition.
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Fig. 10. The fraction of problems in each problem set for which each algorithm timed-out.

7.1.2. Results
The proportion of the problems in each set for which each algorithm times-out is shown

in Fig. 10. Slightly obscured by the graph is the result that SH-PEX-P and VH-PEX-P
do not time-out on any problems across all problem sets, and that there is no difference
between PCP-PEX-P and PCP-PEX-NP. Statistical analysis indicates that regardless of the
use of PEX-edge-finding, the algorithms using VH-PEX, SH-PEX, and PCP-PEX each
time-out on significantly fewer problems than the corresponding algorithm using LJ-PEX.
With PEX-edge-finding there are no significant differences among SH-PEX-P, VH-PEX-
P, and PCP-PEX-P, while without PEX-edge-finding the only significant difference not
involving LJ-PEX is that PCP-PEX-NP times-out on significantly fewer problems than SH-
PEX-NP (p 6 0.0005). In terms of the usefulness of PEX-edge-finding, SH-PEX-P, VH-
PEX-P, and LJ-PEX-P time-out on significantly fewer problems than SH-PEX-NP, VH-
PEX-NP, and LJ-PEX-NP respectively. There is no significant difference in performance
between PCP-PEX-NP and PCP-PEX-P.

Turning to mean CPU time, Fig. 11 displays the mean CPU time across all problem
sets. Overall, there is no significant difference between SH-PEX-P and VH-PEX-P. Both
algorithms use significantly less mean CPU time than PCP-PEX-P, which in turn uses
significantly less mean CPU time than LJ-PEX-P. When PEX-edge-finding is not used,
there is no difference among SH-PEX-NP, VH-PEX-NP, and PCP-PEX-NP, but all three
are significantly better than LJ-PEX-NP.

Holding the heuristic component constant, we see that SH-PEX-P, VH-PEX-P, and LJ-
PEX-P all incur a lower mean CPU time than their corresponding non-PEX-edge-finding
algorithms, while there is no difference between PCP-PEX-P and PCP-PEX-NP.
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Fig. 11. The mean CPU time in seconds for each problem set.

Other search statistics
Other search statistics reveal the following results:
• VH-PEX-P makes significantly fewer backtracks (p 6 0.001), commitments (p 6

0.005), and heuristic commitments (p 6 0.0005) than SH-PEX-P. SH-PEX-P makes
significantly fewer backtracks, commitments, and heuristic commitments than PCP-
PEX-P which in turn makes significantly fewer backtracks, commitments, and
heuristic commitments than LJ-PEX-P.
• VH-PEX-NP, SH-PEX-NP, and PCP-PEX-NP each make significantly fewer back-

tracks, commitments, and heuristic commitments than LJ-PEX-NP. In addition, VH-
PEX-NP makes significantly fewer backtracks (p 6 0.005) and heuristic commit-
ments (p 6 0.005) than SH-PEX-NP. The only other significant differences are in the
overall commitments, where VH-PEX-NP makes significantly fewer than (p6 0.005)
SH-PEX-NP which in turn makes significantly fewer than PCP-PEX-NP (p6 0.005).
• With each heuristic, the use of PEX-edge-finding results in significantly fewer

backtracks and heuristic commitments (p 6 0.0005 when PCP-PEX is the heuristic).
In terms of total commitments, LJ-PEX-P is not significantly different from LJ-
PEX-NP, while the difference is significant for the other three heuristic commitment
techniques (p 6 0.005 for PCP-PEX-P versus PCP-PEX-NP).

7.1.3. Summary
Experiment 1 indicates that:
• The LJ-PEX heuristic when used with or without PEX-edge-finding performs

significantly worse than the other heuristics across all the problem sets.



J.C. Beck, M.S. Fox / Artificial Intelligence 121 (2000) 211–250 237

Table 6
The characteristics of the problems in Experiment 2

Problem set Number of activities per problem

(Size of underlying jobshop problem) Minimum Mean Maximum

5× 5 36 61.7 85

10× 10 172 204.7 251

15× 15 356 430.9 524

20× 20 652 738.8 857

• While there is no significant difference in terms of the number of problems timed-out
among SH-PEX-P, VH-PEX-P, and PCP-PEX-P, all other search statistics indicate
VH-PEX-P and SH-PEX-P perform significantly better than PCP-PEX-P.
• There is little performance difference among VH-PEX-NP, SH-PEX-NP, and PCP-

PEX-NP.
• PEX-edge-finding improves scheduling performance when used with the VH-PEX,

SH-PEX, and LJ-PEX heuristics. No such improvement was found with PCP-PEX
heuristic.

7.2. Experiment 2: Scaling with problem size

The purpose of Experiment 2 is to examine the scaling behavior of the algorithms as the
problem size gets larger, but the number of alternatives remains fixed.

7.2.1. Problems
The problems used in this experiment are generated in the same way as the problems

in Experiment 1. The difference is that rather than changing the maximum number of
alternatives in different problem sets, we hold that parameter fixed at five while varying
the size of the underlying job shop problem. All problems in Experiment 1 had a 10× 10
underlying job shop problem. For this experiment, we look at problems whose underlying
job shop problems are of sizes 5×5, 10×10, 15×15, and 20×20. The problem set from
Experiment 1 with five alternatives is used again in Experiment 2. As with Experiment 1,
we use the job lower bound and varying makespan factors to create six sets of 20 problems
each at each problem size.

Due to the problem generation, different problem instances of the same size problem
have slightly varying numbers of activities. Table 6 shows the characteristics of the problem
sets.

7.2.2. Results
The proportion of problems timed-out for each algorithm is shown in Fig. 12. SH-

PEX-P and VH-PEX-P time-out on significantly fewer problems than PCP-PEX-P which
in turn times-out on significantly fewer problems than LJ-PEX-P. Without PEX-edge-
finding, the results are slightly different as PCP-PEX-NP times-out on significantly
(p 6 0.001) fewer problems than SH-PEX-NP which in turn times-out on significantly
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Fig. 12. The fraction of problems in each problem set for which each algorithm timed-out.

fewer problems than LJ-PEX-NP. VH-PEX-NP times-out on significantly fewer problems
than LJ-PEX-NP, but there are no significant differences between VH-PEX-NP and SH-
PEX-NP, or between VH-PEX-NP and PCP-PEX-NP. PCP-PEX-P shows no significant
difference when compared to PCP-PEX-NP while SH-PEX-P, VH-PEX-P, and LJ-PEX-
P time-out on significantly fewer problems than their respective non-PEX-edge-finding
algorithms.

Turning to the mean CPU time results, the overall results are shown in Fig. 13. SH-
PEX-P and VH-PEX-P each incur significantly less CPU time than PCP-PEX-P which
in turn incurs significantly less CPU time than LJ-PEX-P. Without PEX-edge-finding,
however, PCP-PEX-NP uses significantly less CPU time than SH-PEX-NP (p 6 0.0005)
which in turn uses significantly less CPU time than LJ-PEX-NP. There are no significant
overall differences between VH-PEX-NP and SH-PEX-NP, or between VH-PEX-NP and
PCP-PEX-NP. Evaluation of PEX-edge-finding shows, overall, that using it results in
significantly lower CPU time with SH-PEX, VH-PEX, and LJ-PEXP, but not with PCP-
PEX.

Other search statistics
A summary of the other search statistics is as follows:
• SH-PEX-P and VH-PEX-P each make significantly fewer backtracks, commitments,

and heuristic commitments than both PCP-PEX-P and LJ-PEX-P. There are no
significant differences in these statistics between PCP-PEX-P and LJ-PEX-P, or
between SH-PEX-P and VH-PEX-P.
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Fig. 13. The mean CPU time in seconds for each problem set.

• VH-PEX-NP makes significantly fewer backtracks (p 6 0.001) and heuristic com-
mitments (p6 0.005) than SH-PEX-NP while making significantly fewer backtracks,
commitments, and heuristic commitments than either PCP-PEX-NP or LJ-PEX-NP.
SH-PEX-NP and PCP-PEX-NP each make significantly fewer backtracks and heuris-
tic commitments than LJ-PEX-NP. In addition, SH-PEX-NP makes fewer commit-
ments than either PCP-PEX-NP or LJ-PEX-NP. There are no other significant differ-
ences among the non-PEX-edge-finding algorithms.
• The algorithms using PEX-edge-finding all make significantly fewer backtracks and

heuristic commitments than their counterparts that do not use the propagator. In terms
of total commitments, however, the only significant difference is that PCP-PEX-P
makes significantly fewer than PCP-PEX-NP.

7.2.3. Summary
The results of Experiment 2 indicate that:
• With PEX-edge-finding, the algorithms using the VH-PEX and SH-PEX heuristics

outperform the one using PCP-PEX which in turn outperforms the one using LJ-PEX.
• Without PEX-edge-finding, however, the relative performance changes: PCP-PEX

outperforms SH-PEX which in turn outperforms LJ-PEX. VH-PEX shows few signif-
icant differences with either SH-PEX or PCP-PEX while significantly outperforming
LJ-PEX.
• PEX-edge-finding typically results in better overall performance when used with SH-

PEX, VH-PEX, and LJ-PEX. There is little difference between PCP-PEX-P and PCP-
PEX-NP.
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8. Combining alternative process plans and alternative resources

In our final experiment, we look at problems containing both alternative process plans
and alternative resources.

8.1. Experiment 3: Scaling with the number of alternatives

8.1.1. Problems
All problems for this experiment are transformations of the problems used in Exper-

iment 1. In those problems, each activity has only one resource alternative and a single
possible duration.

Alternative resources were added to each activity by randomly generating the total
number of resource alternatives following the distribution shown in Table 7. The original
resource requirement and duration on that resource are preserved in the new problem.
In addition, the new resource alternatives (if any) are randomly chosen with uniform
probability from among all the other resources in the problem. The duration of the activity
on each new alternative resource is generated by multiplying the activity’s original duration
by a randomly chosen factor in the domain[1.0,1.5] and then rounding to the nearest
integer value. Note that an activity that is specified to have one alternative resource has
only one resource on which it can execute: the original resource from the job shop problem.

These transformations result in problems such that:
• The original job lower bound calculated in Experiment 1 is still a valid lower bound.

All alternative resources require the activity to have at least as large a duration as in the
original problem; therefore, the shortest path in a job, including resource alternatives,
remains the same.
• There is likely to be widely varying expected PEX values between activities. The

theoretical range on the expected PEX value of an activity,A, at the beginning
of a problem with seven alternatives is shown in Expression (5). The minimum
expected PEX value is possible for an activity that represents one of six possible
resource alternatives while the original activity (without resource alternatives) was
nested inside the seven process plan alternatives. Widely ranging expected PEX values
represent non-uniformities in problem structure: an activity with a high expected PEX

Table 7
The distribution of alternative resources for the
problems in Experiment 3

Number of alternative Probability
resources per activity

1 0.03125

2 0.5

3 0.25

4 0.125

5 0.0625

6 0.03125
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Fig. 14. The fraction of problems in each problem set for which each algorithm timed-out.

value is far more likely to execute than an activity with a low expected PEX value.
We would predict, therefore, that heuristics that reason explicitly about the expected
PEX value (i.e., SH-PEX and VH-PEX as opposed to the other heuristic commitment
techniques) will be able to make higher quality commitments.

1
3 × 2−86APEX6 1. (5)

8.1.2. Results
The fraction of problems in each problem set that each algorithm timed-out on is

displayed in Fig. 14. These results indicate, regardless of the use of PEX-edge-finding, that
SH-PEX outperforms VH-PEX which is better than LJ-PEX which in turn outperforms
PCP-PEX. In addition, each heuristic times-out on significantly fewer problems when
using PEX-edge-finding than without it.

The results for mean CPU time are displayed in Fig. 15. These results are consistent
with the timed-out results on all accounts. Comparing heuristics shows that SH-PEX has a
significantly lower mean CPU time than VH-PEX. VH-PEX incurs significantly less CPU
time than LJ-PEX which in turn has a significantly lower mean CPU time than PCP-PEX.
The PEX-edge-finding results indicate that each heuristic incurs a significantly lower mean
CPU time when PEX-edge-finding is used.

Other search statistics
The other search statistics evaluated (number of backtracks, number of commitments,

and number of heuristic commitments) agree in the relative ranking of the performance
of each heuristic: regardless of the PEX-edge-finding condition, SH-PEX significantly
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Fig. 15. The mean CPU time in seconds for each problem set.

outperforms VH-PEX which significantly outperforms LJ-PEX which in turn significantly
outperforms PCP-PEX. The only exception to this pattern is in comparing the number
of heuristic commitments made by LJ-PEX and PCP-PEX where there is no significant
difference.

All heuristics exhibited significantly fewer backtracks and fewer heuristic commitments
when used with PEX-edge-finding. Interestingly, VH-PEX, PCP-PEX, and LJ-PEX all
made significantly more overall commitments when using PEX-edge-finding than when
not using it. There is no significant difference in overall commitments between PEX-edge-
finding conditions when SH-PEX is the heuristic commitment technique.

8.1.3. Summary
Experiment 3 strongly indicates that, independent of the propagator condition, SH-PEX

outperforms VH-PEX which outperforms LJ-PEX which in turn outperforms PCP-PEX. In
addition, PEX-edge-finding results in better performance regardless of the heuristic used.

9. Discussion

The problem structure hypothesis that we set out to investigate in the paper states that
as a scheduling problem becomes more complex, a deeper understanding of the problem
structure is necessary for successful heuristic search [41]. Overall our results support
this hypothesis as it was the heuristics that exploited the PEX information that achieved
superior performance. Support for the problem structure hypothesis is especially clear
when the results of Experiment 3 are contrasted with those of Experiments 1 and 2. While
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the PEX-based heuristics (SH-PEX and VH-PEX) achieved performance that equaled or
bettered all other heuristics in the first two experiments, in the final experiment, their
performance was dramatically superior. The central manipulation to produce the different
problem structure in Experiment 3 was the more widely ranging expected PEX values.
Because this added complexity is represented in the expected PEX values and because SH-
PEX and VH-PEX take the expected PEX values into account in their problem structure
analysis, the PEX-based heuristics achieve significantly better performance: as the problem
complexity increases, knowledge of the problem structure is increasingly important for
successful heuristic search.

9.1. Heuristics

Overall, while SH-PEX and VH-PEX outperform PCP-PEX with PEX-edge-finding,
especially in Experiment 3, their comparison without PEX-edge-finding is less clear-cut.
In Experiment 1 there are few differences; in Experiment 2, PCP-PEX is superior to SH-
PEX; in Experiment 3 SH-PEX is superior to VH-PEX which is superior to PCP-PEX.
LJ-PEX is outperformed by all other heuristics (regardless of the use of PEX-edge-finding)
in Experiments 1 and 2, but outperforms PCP-PEX (again regardless of the use of PEX-
edge-finding) in Experiment 3.

Experiment 3 clearly demonstrates the result of exploiting the extra information
represented by the expected PEX values in the texture measurement upon which the
heuristic commitment technique is based. The widely ranging expected PEX values
represent a non-uniformity in the problem structure that is successfully exploited by the
SH-PEX and VH-PEX heuristics. In the other experiments, though the range of expected
PEX values is not as wide, SH-PEX-P and VH-PEX-P are still the best scheduling
algorithms of the ones tested.

The comparison between PCP-PEX and SH-PEX is interesting:
• Experiment 1 shows no difference regardless of the use of PEX-edge-finding.
• Experiment 2 shows that PCP-PEX is better than SH-PEX without PEX-edge-finding,

but worse with PEX-edge-finding.
• Experiment 3 shows that PCP-PEX is much worse than SH-PEX both with and

without PEX-edge-finding.
These results demand an explanation both for why PCP-PEX performs so poorly in

Experiment 3 and why it performs so well in Experiments 1 and 2.
We know, based on the results of [10], that on some job shop scheduling problem sets

without resource-level non-uniformities, PCP is able to outperform SumHeight. No such
non-uniformities were examined in this paper as our primary interest was the evaluation
of reasoning about alternatives. A possible explanation for the good performance of PCP-
PEX is that no resource-level non-uniformity exists for our experimental problem sets;
therefore, the heuristic that does not specifically look for such non-uniformity achieves
better overall performance.

A second explanation for the good quality of PCP-PEX is the quality of the underlying
biased-slack heuristic. When there are no resource-level non-uniformities, a heuristic based
on the identification of minimum-slack activity pairs and the subsequent commitment to
maintain as much slack as possible has been shown to perform well in job shop scheduling.
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Some of the quality of that heuristic is maintained when PEX is added. Again, in the
absence of resource-level non-uniformities, a heuristic that identifies the pair of activities
with the smallest time in which they may be sequenced and seeks to maximize that time
(through a PEX commitment or a sequencing commitment) seems to be a reasonable
heuristic to establish both a selection of activity alternatives and a sequencing of activities
that satisfies the resource constraints.

Still the results of Experiment 3, especially the relative performance of PCP-PEX and
LJ-PEX, demand explanation. We believe that these results are due to PCP’s degraded
ability to identify critical activity pairs in the presence of PEX values. In the original PCP
heuristic, only activity pairs for which Constraint-Based Analysis (CBA) propagation has
not inferred a sequence are examined to find the pair with minimum biased-slack [17,42].
When at least one member of an activity pair has an unassigned PEX variable, however,
the CBA propagator cannot infer a sequence and therefore, regardless of the activity time
windows, the biased-slack of the activity pair is evaluated. Activity pairs with little overlap
will tend to have a very low biased-slack and therefore the heuristic will tend to focus on
such activity pairs. To take the extreme case of an activity pair with disjoint time windows,
the activities are not actually competing with each other for a resource reservation and so
can hardly be a truly critical pair, yet they have a very small biased-slack. Furthermore,
the commitment to set the PEX value of one of the activities to 0 is made on the intuition
that, if such a commitment is not made, there is a high likelihood that the two activities
will later over-capacitate the resource. But this cannot be the case with disjoint activities,
and the likelihood that an activity pair with a small overlap will lead to an over-capacity
is relatively small. This reasoning points to a modification of the PCP-PEX heuristic to
calculate the biased-slack only for those activity pairs that would not have an implied
sequence if they both had a PEX variable assigned to 1. Such a modification remains as
future work.

9.2. PEX-edge-finding

Through almost all experiments and experimental conditions, PEX-edge-finding was
shown to be beneficial to the overall problem solving ability of an algorithm. The only
exception is when the PCP-PEX heuristic is used: little difference was seen between the
PCP-PEX-P and PCP-PEX-NP except in Experiment 3 where PEX-edge-finding proved
beneficial.

In general, these results are as expected. Given the significant increase in the
performance of scheduling algorithms with the use of edge-finding propagators [31], we
expect that some gain is likely with the PEX-edge-finding variation. Our intuitions as
to why PEX-edge-finding (and indeed propagation, in general) should improve search
performance rests on two impacts of propagation. First, propagation techniques reduce
the search space by removing alternatives that would otherwise have to be searched
through. Second, propagators improve the information upon which heuristics can be
based. PEX-edge-finding improves both the information represented in the expected PEX
values (by pruning inconsistent activity alternatives) and the information represented in
the time windows of activities (because it infers unary temporal constraints on activities
with unassigned PEX variables). SH-PEX and VH-PEX benefit from both improvements.
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Fig. 16. The mean percentage of commitments in each problem set made by the heuristic commitment technique
for Experiment 1.

However, the PCP-PEX heuristic, because it does not use the expected PEX values, does
not benefit from the extra information that they represent.

An additional, and not incompatible, explanation for the PCP-PEX results vis-a-vis
PEX-edge-finding is that PCP-PEX commitments tend to result in less propagation. In
the job shop problems in [10], it was observed that a relatively large percentage of the PCP
commitments were heuristic commitments as compared to those for SumHeight. It was
argued that this arose from the fact that SumHeight tended to make a commitment where
many activities were competing for a resource and time point while PCP simply looked for
the most tightly constrained pair of activities. The subsequent propagation from a heuristic
commitment therefore would tend to be higher when SumHeight is used. The same pattern
can be seen here as shown in Fig. 16. Using the results from Experiment 1, we see that SH-
PEX-P and VH-PEX-P make a significantly smaller percentage of heuristic commitments
than PCP-PEX-P. While a PCP-PEX-P incurs the computational cost, the benefits are not
apparent because the heuristic commitments do not result in significant propagation.

10. Related and future work

Representation and reasoning about alternative activities opens a number of areas of
future research. While we have shown that the use of expected PEX values can lead to
superior scheduling performance, there are a number of issues surrounding the scaling of
the PEX approach that need to be addressed. In particular, the explicit representation of
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each possible alternative activity results in scaling issues [19]. Investigation of methods to
reduce the alternative activities that actually need to be represented forms important future
tasks. Given the positive impact of the PEX-edge-finding propagator, techniques to reduce
its average and worst-case time-complexity will also contribute to overall scheduling
performance and help to combat scaling issues.

The PEX approach to alternative activities scheduling problems can be viewed as a
bottom-up approach. Alternative activities are fully represented in the scheduling problem
and choosing alternatives is fully integrated into the scheduling algorithm. In contrast,
a top-down approach to scheduling with alternatives can be seen in number of places
in the AI research literature [19,27,38,43,44]. In such systems, high-level and, in some
cases, domain dependent, knowledge and heuristics are brought to bear on the problem
of pruning alternatives before the actual scheduling takes place. While these techniques
avoid many of the scaling problems of the PEX approach, the heuristics are not informed
by as much detailed information as the PEX heuristics. As a result, the quality of the
heuristic decisions and overall solution tends to be inferior to the PEX solution in those
problems where the PEX approach is not overwhelmed by the size of the required
representation [19]. Obviously, there is a trade-off in terms of the effort required to
represent and reason about the detailed alternative information, and the quality of the
heuristic decisions that can be made. Further research is required to better understand this
trade-off and, perhaps, to find ways to combine the top-down approach with the bottom-up
approach.

Reasoning about activity alternatives either with a PEX-based formulation or with a
more top-down approach blurs the distinction between scheduling and planning. One of
the major assumptions about the alternative scheduling problems addressed in this paper
is that all activities are known before scheduling begins. Imagine, however, a problem
with demands for a number of finished goods and a number of process plans with which
each can be produced. Each finished good process plan may require a number of other
inventories to be produced and these inventories, in turn, have alternative process plans
which themselves require further inventories to be executed. This cascade of process plans
terminates eventually with raw material supply events. The problem now begins to look
more like planning (with scheduling constraints) than scheduling. A set of goals must be
achieved; however, actions to achieve goals potentially conflict with one another and may
introduce further sub-goals. The combination of scheduling and planning techniques to
address such problems has been begun in work such as [27,38,39]; however, much remains
to be investigated.

In this paper, we made the assumption that the expected PEX values are evenly
distributed among the paths between a pair of XorNodes. This is a “low knowledge”
assumption: we assume we have no other information with which we can bias the expected
PEX values. In an application, we may have a preference for one alternative process plan
over another. Given such a preference, the overall problem then begins to look more
like a fuzzy or valued constraint satisfaction problem [20,34,40]. It would seem natural
to incorporate these preferences by biasing the expected PEX values and, therefore, the
individual texture curves. One difficulty with this approach, however, is the semantics of
the individual demand curves. We have been interpreting these curves as a representation of
the probability that an activity will demand a resource at a time point. It is not clear that this
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interpretation is well-founded if the individual curves are biased by preferences. At the very
least, the heuristic commitment technique used here does not extend to biased curves. The
heuristic chooses, if possible,not to execute the activity with highest individual demand
for a critical time point and resource. If the individual demand is high because there is a
high preference to execute the activity, choosing not to execute the activity is unlikely to
quickly lead to high quality solutions.

Finally, it should be noted that the use of PEX variables to govern the existence of
activities can be seen as an instance of a Conditional Constraint Satisfaction Problem
(CCSP) [35] (originally called Dynamic Constraint Satisfaction Problem [30]). In such
a problem, only “active” variables need be assigned a value in a solution and “activity
constraints” define which variables become active depending on the values assigned to
subsets of other variables. Given an initial set of active variables, the assignment of a
value to a variable may cause new variables to become active and, therefore, to require
a value in order to solve the problem. Such a problem formulation is very natural for
applications such as configuration [30]. In the work presented here, the PEX variables and
any activities not enclosed by XorNodes form the initial set of active variables. The only
type of activity constraint is the one that links the value of the PEX variable with the other
variables in an Activity: if the PEX variable is assigned to 1, all the other variables in that
activity are active, while if assigned to 0, the other variables are inactive. The link between
our work and CCSP suggests that a possible area for future work is in generalizing the
techniques used here. To our knowledge no one has either attempted to extend advanced
constraint propagation techniques to CCSPs (such as we have done for PEX-edge-finding)
nor attempted to incorporate the probability that a variable will be active into heuristic
search techniques for CCSPs.

11. Conclusion

In this paper, we introduced the notion of the probability of existence (PEX) of an
activity and used it to expand constraint-directed scheduling representation and reasoning
to account for alternative activities: an activity present in the original problem definition
does not necessarily have to be scheduled to achieve a solution.

The modeling of PEX required extensions to the constraint representation of activities
and of the temporal network. Algorithms for the propagation of expected PEX values are
presented along with modifications to temporal propagation to account for the fact that an
activity might not exist in a final solution. In addition, heuristic commitment techniques and
two edge-finding propagators are extended to account for the presence of PEX variables.

Experimental results indicated that incorporating expected PEX values into the texture
measurements upon which the heuristic commitment techniques are based results in sig-
nificantly higher quality commitments and better overall search performance. Performance
differences are especially large when there is a wide range of expected PEX values in a
problem. Experimental results also validated the use of PEX-edge-finding which, in most
cases, leads to significantly better overall search performance.

Our primary theoretical motivation for the work in this paper is the investigation
of the problem structure hypothesis which states that as a problem becomes more
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complex, understanding its structure becomes increasingly important for successful
heuristic search [41]. The results in this paper support the problem structure hypothesis: as
the scheduling problems are made more complex by the addition of alternative activities,
representation of the alternative information and heuristic reasoning that takes into account
that information results in superior overall problem solving performance.
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