
Artificial Intelligence 117 (2000) 31–81

Dynamic problem structure analysis as a basis
for constraint-directed scheduling heuristics

J. Christopher Becka,∗, Mark S. Foxb,1
a ILOG, S.A. 9, rue de Verdun, BP 85 F-94253, Gentilly Cedex, France

b Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, ON, M5S 3G9, Canada

Received 6 April 1999

Abstract

While the exploitation of problem structure by heuristic search techniques has a long history in
AI (Simon, 1973), many of the advances in constraint-directed scheduling technology in the 1990s
have resulted from the creation of powerful propagation techniques. In this paper, we return to the
hypothesis that understanding of problem structure plays a critical role in successful heuristic search
even in the presence of powerful propagators. In particular, we examine three heuristic commitment
techniques and show that the two techniques based on dynamic problem structure analysis achieve
superior performance across all experiments. More interestingly, we demonstrate that the heuristic
commitment technique that exploits dynamic resource-level non-uniformities achieves superior
overall performance when those non-uniformities are present in the problem instances. 2000
Elsevier Science B.V. All rights reserved.

Keywords:Scheduling; Heuristic search; Constraints; Problem structure

1. Introduction

The central thesis of this paper is that an understanding of the structure of a
problem leads to high-quality heuristic problem solving performance. While exploration
of this thesis has a history in the artificial intelligence literature [67] and constraint-
directed scheduling in particular [33,34,63], much of the recent work in the latter area
has concentrated on the use of propagation techniques [20–22,50,54,58]. Propagation
techniques are a key component of constraint-directed scheduling algorithms, however,

∗ Corresponding author. Email: cbeck@ilog.fr.
1 Email: msf@eil.utoronto.ca.

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(99)00099-5

32 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

it has been suggested that superior overall scheduling performance can be achieved with
strong propagation and relatively weak heuristic commitment components [25,58,59,72].
In this paper, we evaluate heuristic commitment techniques in the presence of modern
propagators and retraction techniques to investigate our dynamic search state analysis
hypothesis and to evaluate these claims.

Our analysis of problem structure focuses ontexture measurements: algorithms that
implement dynamic analyses of each search state [34]. Texture measurements distill
structural information from the constraint graph which is then used as a basis for heuristic
decision making.

In this paper, we use the job shop scheduling paradigm to investigate our thesis. Given
the well-studied nature of the job shop, there exist a number of heuristics that can be
viewed as performing dynamic search state analysis to varying degrees. Our investigation
examines the dynamic analysis of each of these heuristics and empirically evaluates
the efficacy of each heuristic on a number of problem sets. The specific hypothesis
that we investigate is that more in-depth dynamic search state analysis results in better
overall heuristic search performance. By overall performance, we mean not simply higher
quality heuristic commitments but also that the higher quality commitments lead to better
performance in terms of fewer commitments, lower CPU time, and more problem instances
solved.

1.1. Organization of paper

In the following section, we present the background to our studies including the notation
used throughout the paper, a definition of job shop scheduling, and a brief description of
the ODO scheduling framework, within which this work takes place. Also included in
the section on the ODO framework are brief descriptions of the non-heuristic scheduling
components (retraction techniques and propagators) used in our empirical studies. In
Section 3 we present three heuristic commitment techniques for job shop scheduling.
Two of these techniques (CBASlack and LJRand) are taken from the literature, while the
other one is an extension of an existing texture measurement-based heuristic. In Section 4,
we discuss the heuristic commitment techniques from the perspective of dynamic state
analysis. Section 5 provides an overview of the empirical studies we undertake in this paper
and the results of those studies are presented in Sections 6, 7, and 8. In-depth discussion of
our results and of their meaning vis-a-vis the thesis of this paper is presented in Section 9.
We conclude in Section 10.

2. Background

2.1. Notation

For an activity,Ai , and a set of activities,S, we use the notation in Table 1 through the
balance of this paper. We will omit the subscript unless there is the possibility of ambiguity.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 33

Table 1
Notation

Symbol Description

STi A variable representing the start time ofAi

STDi The discrete domain of possible values forSTi

esti Earliest start time ofAi

lsti Latest start time ofAi

duri Duration ofAi

efti Earliest finish time ofAi

lft i Latest finish time ofAi

lft(S) The latest finish time of all activities inS

est(S) The earliest start time of all activities inS

dur(S) The sum of the durations of all activities inS

2.2. The job shop scheduling problem

One of the simplest models of scheduling widely studied in the literature is thejob shop
scheduling problem. The classicaln×m job shop scheduling problem is formally defined
as follows. Given are a set ofn jobs, each composed ofm totally ordered activities, and
m resources. Each activityAi requires exclusive use of a single resourceRj for some
processing durationduri . There are two types of constraints in this problem:
• precedence constraints between two activities in the same job stating that if activityA

is before activityB in the total order then activityA must execute before activityB;
• disjunctive resource constraints specifying that no activities requiring the same

resource may execute at the same time.
Jobs have release dates (the time after which the activities in the job may be executed)

and due dates (the time by which all activities in the job must finish). In the classical
decision problem, the release date of each job is 0, the global due date (ormakespan) isD,
and the goal is to determine whether there is an assignment of a start time to each activity
such that the constraints are satisfied and the maximum finish time of all jobs is less than or
equal toD. This problem is NP-complete [37]. A recent survey of techniques for solving
the job shop scheduling problem can be found in [18].

2.3. The ODO framework

The ODO framework is the central cognitive and implementational tool developed
in the ODO Project [11,27,28]. It provides concepts with which to model, compare,
and understand constraint-directed scheduling algorithms. The ODO framework is based
around the constraint graph representation of a scheduling problem, a sub-framework
describing schedulingpoliciesor strategies, and the unifying concept of search through
the assertion and retraction of commitments. A high-level view of the ODO framework is
shown in Fig. 1.

34 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 1. A high-level view of the ODO framework.

Fig. 2. A conceptual four-level constraint-directed search tree.

The constraint graph contains a representation of the current problem state in the form
of variables, constraints, and objects built from variables and constraints. A commitment
is a set of constraints, variables, and problem objects that the search strategy adds to and
removes from the constraint graph. Fig. 2 displays our conceptual model of a constraint
graph as the representation of each state in a search tree. As represented in Fig. 2, the state
transitions are achieved by the modification of the constraint graph through the assertion
and retraction of commitments. Examples of commitments in scheduling include:
• assigning a start time to an activity by posting a unary “equals” constraint (e.g., the

start time of activityA is equal to 100).
• posting a precedence constraint between activities (e.g., activityA executes before

activityB) [25,72].
• instantiating a process plan, in response to a demand for some amount of an

inventory. A process plan is a set of activities and constraints that together produce

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 35

some inventory. Assertion of a process plan commitment, like the assertion of any
commitment, adds these new objects to the constraint graph.
• adding a new resource to the problem. It may be that part of the scheduling problem is

to determine (and perhaps minimize) the number of resources used. Such a problem
arises in transportation applications where it is desired to use as few trucks as possible
to meet the shipment requirements. A resource, like an activity, is composed of
variables and constraints that, with an assertion, are added to the constraint graph.

Central to this paper are the constraint graph representation and the search policy. We
discuss these two concepts in this section. In-depth discussion of the ODO framework can
be found in [10,11,15].

2.3.1. The constraint graph representation
As indicated in Fig. 2, the constraint graph is the evolving representation of the

search state. It is composed of components at the constraint/variable level as well as of
components at the higher scheduling level. These higher level components are themselves
composed of sets of variables and constraints. Examples of the lower level components are
instances of variables and constraints as usually understood in the constraint satisfaction
problems [29,46]. In particular, we represent interval variables which can be assigned to
a (possibly non-continuous) interval of integer values and constraints expressing various
mathematical relationships (e.g., less-than, equal) among interval variables. At the higher
level, the constraint graph represents, among other scheduling components, activities,
Allen’s 13 temporal relations [2], and resources and inventories with minimum and
maximum constraints. The higher level constraint graph components can be expressed as,
and are logically equivalent to, sets of basic constraint/variable components. For example,
a unary resource can be represented by a clique of disjunctive constraints among the start
and end time variables of a set of activities [5]. There are two main reasons that higher
level objects are explicitly represented:

(1) Software engineering—Given that we are explicitly interested in the representation
and the search for a solution to scheduling problems, the ability to directly represent
scheduling level concepts is a significant benefit to research and development.

(2) Search efficiency—More importantly, it has been demonstrated [58,61,62,73]
that the use of global constraints (as represented, for example, by a unary
resource) rather than the basic local constraint representation (e.g., a clique of
disjunctive constraints) can result in significant gains in constraint propagation and
corresponding reductions in search effort.

The components of the constraint graph are not an innovation of the ODO model as most
constraint-directed scheduling systems represent these concepts (e.g., [22,33,48,49,65,70,
76]).

2.3.2. The scheduling policy
A policy contains the components displayed in Fig. 3. The commitment assertion

component is trivial as it requires adding a constraint to the existing graph. Aheuristic
commitment techniqueis a procedure that finds new commitments to be asserted. It can
be divided into two components: the first performs some measurement of the constraint
graph in order to distill information about the search state and the second uses this distilled

36 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 3. Schematic of a policy.

information to heuristically choose a commitment to be added to the constraint graph.
A propagatoris a procedure that examines the existing search state to find commitments
that are logically implied by the current constraint graph. Aretraction techniqueis a
procedure for identifying existing commitments to be removed from the constraint graph.
The termination criterionis a list of user-defined conditions for ending the search. There
may be many criteria: a definition of a solution (e.g., all the activities have a start time and
all the constraints are satisfied), determination that a solution does not exist, limits on the
search in terms of CPU time, number of commitments, number of heuristic commitments,
number of retractions, etc.

This paper focuses on heuristic commitment techniques and so we return to them
in Section 3. In the balance of this section we discuss the propagators and retraction
techniques that are used in our empirical studies.

Propagators. A propagator is a function that analyzes the current search state to deter-
mine constraints that are implied by, but are not explicitly present in, the constraint graph.
By making these constraints explicit, we can use them to prune the number of possibilities
to be explored in the search. The advantages of propagators stem from the soundness of
their commitments (a propagator will never infer a constraint that is not a logical conse-
quence of the current problem state) and the fact that, when a constraint is explicitly present
in the graph, it both reduces the search space and often enables further constraints to be
inferred.

Examples of propagators from a CSP perspective include the various consistency
enforcement algorithms such as arc-consistency andk-consistency [35,36,53]. These

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 37

algorithms are typically viewed as removing values (or tuples of values) from variable
domains; however, we treat them as adding implied constraints that, for example, rule out
domain values (e.g., a unary “not-equals” constraint).

Many powerful propagation techniques have been developed for constraint-directed
scheduling in recent years, for instance, variations of edge-finding [20,22,50,58] and
shaving [21]. It has long been known that search can be drastically reduced by enforcing
various degrees of consistency [36]. The effort to achieve high degrees of consistency,
however, appears to be at least as expensive as more traditional algorithms.

In our empirical studies in this paper, we use four propagators. As our focus is on
heuristic commitment techniques, these four propagators are used in all experimental
conditions.
• Temporal Propagation—Temporal propagation enforces arc-B-consistency [52] on

the temporal constraints in the scheduling problem. For example, ifAi andAj are
activities in the same job such thatAj is a successor ofAi , temporal propagation
enforces that:estj > esti + duri and lfti 6 lftj − durj . Arc-B-consistency (where
‘B’ stands for “bounds”) ensures that for the minimum and maximum values of any
variable,v1, there exists at least one consistent assignment for any other connected
variable,v2 (when considered independently of all other variables).
• Constraint-Based Analysis—Constraint-Based Analysis (CBA) [25,30,31,72] en-

forces arc-B-consistency on unary resource constraints. By the examination of the
possible time windows for the execution of each pair of activities, CBA is able, in
some circumstances, to find implied precedence constraints or dead-ends.
• Edge-Finding Exclusion—Edge-finding exclusion [20–23,58] examines subsets of

activities on a resource and the time windows within which all the activities in the
subset must execute. Under some conditions, edge-finding exclusion is able to derive
new lower bounds on the start times of activities, new upper bounds on the end times
of activities, and/or dead-ends.
• Edge-Finding Not-First/Not-Last—Edge-finding not-first/not-last [6,8,20–22,58]also

examines subsets of activities on a resource and their time windows. Under some
conditions, edge-finding not-first/not-last is able to infer that an activity cannot
execute first (or last) of the activities in the subset. This inference allows the derivation
of new upper (or lower) bounds on the time window of an activity and in some cases
leads to the detection of a dead-end in the search.

Retraction techniques.Assume that a search moves through a sequence of statesS =
(s0, s1, s2, . . . , sk) via the assertion of commitments. Further assume that in statesk it is
determined that one or more of the currently asserted commitments must be retracted.
Such a state arises in a constructive search because a mistake has been made: as a result of
one or more of the asserted commitments,sk is inconsistent with respect to the constraints
in the problem. In a local search context,sk is simply any state since, typically, all moves
have some retraction component.

In such a state, the retraction component of the search strategy must then answer two
questions:

(1) Which commitments should be retracted?

38 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

(2) In retracting a commitment that was made, say at statesi , wherei < k, what should
be done with the intervening commitments, that is those made in all statessj , where
i < j < k?

Different retraction techniques answer these questions in different ways [11]. In
the empirical studies in this paper, we examine two retraction techniques in different
experimental conditions:
• Chronological Backtracking—Chronological backtracking retracts the most recently

made commitment. Clearly, since the search space under the most recent commitment
contains one state and it is a dead-end, we can retract the most recent commitment
without missing a solution. The question of intervening commitments is moot as there
are none if the most recent commitment is retracted.
• Limited Discrepancy Search—Limited Discrepancy Search (LDS) [43,44] is based on

the intuition that a good heuristic will only make a few mistakes in an unsuccessful
search for a solution. Therefore, after failing to find a solution while following the
heuristic, a good way to continue search is to examine all those paths in the search
tree that differ from the heuristic path by at most one step, that is with a discrepancy
level of one. If search still fails, then examine all those paths in the search tree with a
discrepancy level of at most two and so on. LDS examines those nodes with a limited
number of discrepancies from the heuristic path, increasing that limit as time allows
and while no solution is found.

2.4. Texture measurements

The hypothesis of this paper is that heuristic commitment techniques based on the
dynamic analysis of each search state lead to high quality overall heuristic search
performance. To test our hypothesis it is necessary to be more precise about search space
analysis. Given the constraint graph representation of a search state, an analysis of a
search state corresponds to measurements of its constraint graph representation. Atexture
measurement, therefore, is a technique for distilling information embedded in the constraint
graph into a form that heuristics can use. A texture measurement is not a heuristic itself.
For example, a texture measurement may label some structures in the constraint graph
(e.g., constraints, variables, sub-graphs) with information condensed from the surrounding
graph. On the basis of this condensed information, heuristic commitments can be made.
A relatively small number of texture measurements have been explicitly identified [34,63],
however, we take the broad view of a texture measurement as any analysis of the constraint
graph producing information upon which heuristic commitments are based.

In non-technical usage, the word “texture” denotes a surface characteristic of an object.
In contrast, “structure” is usually taken to indicate internal, hidden components of an
object. This is precisely the meanings we wish to evoke by the use of the term texture
measurement. Our chief hypothesis is that understanding of the structure of a problem
is important for successful heuristic search. However, problem structure is, in many
cases, internal and hidden. The purpose of texture measurements is to bring some of
the hidden, structural information to the surface so that it can be easily accessed by
heuristic commitment techniques. Texture measurements transform the hidden structural
information into accessible, surface information.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 39

In general, a texture measurement may be prohibitively expensive (e.g., NP-hard or
worse) to compute. Making practical use of texture measurements, then, often requires
a polynomial estimation algorithm. For example, thevalue goodnesstexture is defined
to be the probability that a variable,V , will be assigned to a particular value,va , in a
solution [34]. To exactly calculate the value goodness we need the ratio of the number
of solutions to the problem whereV = va to the total number of complete valuations.
This is clearly impractical. In practice, therefore, we might estimate the goodness ofva by
examining the proportion of values of connected variables that are consistent withV = va .
We may then base a heuristic commitment on the (estimated) value goodness by choosing
to assign the value with greatest (or least) goodness. What information a texture distills,
how that information is practically estimated, and what commitment is made on the basis
of the estimated information form the basic issues surrounding texture measurements.

3. Heuristic commitment techniques

In this section, we present three heuristic commitment techniques. The first, SumHeight,
is an adaptation of the ORR/FSS heuristic due to Sadeh [63,66]. The other two heuristic
commitment techniques, CBASlack and LJRand, are directly taken from the literature
as described below. We also note some criticisms of texture-based heuristic arising from
previous experimental work with CBASlack and LJRand.

3.1. SumHeight: A texture measurement-based heuristic

The SumHeight heuristic commitment technique is based on two texture measurements:
contention and reliance [63]. These two texture measurements are estimated for each search
state and then a heuristic commitment is chosen based on the distilled information.

Contention is used to identify the most critical resource and time point. Reliance is
then used to identify the two activities that rely most on that resource and time point. The
intuition is that by focusing on the most critical resource and activities, we can make a
commitment that reduces the likelihood of reaching a search state where the resource is
over-capacitated. Furthermore, once such critical decisions are made the problem is likely
to be decomposed into simpler sub-problems.

3.1.1. Estimating contention and reliance
Contentionis the extent to which variables linked by a disequality constraint compete

for the same values. In the context of job shop scheduling, contention is the extent to which
activities compete for the same resource over the same time interval.

Relianceis the extent to which a variable must be assigned to a particular value in order
to form an overall solution. In scheduling, one illustration of reliance arises with alternative
resources. If activityA1 requires resourcesR1, R2, R3, or R4 and activityA2 requires
resourcesR2 or R5, clearlyA2 has a higher reliance onR2 than doesA1. If A1 is not
assigned toR2, it has three other resource alternatives; howeverA2 has only one. Reliance
can also be formulated in the context of an activity relying on being assigned to a particular
start time on a particular resource.

40 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

In the SumHeight heuristic, reliance is estimated by an activity’s probabilistic individual
demand for a resource over time, while contention is the aggregation of the individual
activity demands.

If an activity does not require a resource, it has no demand for it, so its demand is 0.
Otherwise, to calculate an activity’s individual demand, a uniform probability distribution
over the possible start times of the activity is assumed: each start time has a probability
of 1/|STD|. (Recall thatSTDis the domain of the activity’s start time variable. A uniform
probability distribution is the “low knowledge” default. It may be possible to use some
local propagation in the constraint graph to find a better estimate of the individual demand
[56,63].) The individual demand,ID(A,R, t), is the probabilistic amount of resourceR,
required by activityA, at timet . It is calculated as follows:

ID(A,R, t)=
∑

t−durA<τ6t
σA(τ), (1)

where

σA(τ)=

1

|STDA| , τ ∈ STDA,

0, otherwise.

(2)

In the straightforward implementation of the individual demand,ID(A,R, t) is calcu-
lated for each time point,t , estA 6 t < lftA. The time complexity of this calculation relies
not only on the number of activities and resources, but also on the length of the scheduling
horizon. To prevent such scaling, we use an event-based representation and a piece-wise
linear estimation of theID curve. The individual activity demand is represented by four
(t, ID) pairs:(

est,
1

|STD|
)
,

(
lst,

min(|STD|,dur)

|STD|
)
,

(
eft,

min(|STD|,dur)

|STD|
)
, (lft,0). (3)

The individual demand level between any two points on theID curve is interpolated with
a linear function.

To estimate contention, the individual demands of each activity are aggregated for each
resource. Aggregation is done by summing the individual activity curves for that resource.
This aggregate demand curve is used as a measure of the contention for the resource over
time.

For example, given the activities in Fig. 4, the individual demand curves for each activity
and the aggregate resource curve are displayed in Fig. 5.

Fig. 4. ActivitiesA1, B2, andC3.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 41

Fig. 5. Event-based individual demand curves(A1,B2,C3) and their aggregate curve(R1).

3.1.2. Heuristic commitment selection
Given the aggregate and individual demand curves, a heuristic commitment for this

search state must be selected. SumHeight makes a commitment on the activities most
reliant on the resource for which there is the highest contention. In more detail, SumHeight
does the following:

(1) Identifies the resource and time point with the maximum contention.
(2) Identifies the two activities,A andB, which rely most on that resource at that time

and that are not already connected by a path of temporal constraints.
(3) Analyzes the consequences of each sequence possibility (A→ B andB→ A) and

chooses the one that appears to be superior based on our sequencing heuristics (see
Section 3.1.4).

3.1.3. Finding the critical activities
After the aggregate demand curves are calculated for each resource, we identify the

resource,R∗, and time point,t∗, for which there is the highest contention (with ties broken
arbitrarily). We then examine the activities that contribute individual demand toR∗ at t∗.
The two critical activities,A andB, are selected as follows:
• A is the activity with highest individual demand forR∗ at t∗ which is not yet

sequenced with all activities executing onR∗ (i.e., at least one activity executing on
R∗ is not yet connected toA via a path of temporal constraints).

42 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

• B is the activity not yet sequenced withA with highest individual demand forR∗
at t∗.

Because these two activities contribute the most to the aggregate demand curve, they are
the most reliant on the resource at that time.

It can be seen in Fig. 5 that one of the critical time points onR1 is 35. There are only
two activities that contribute to this time point, asC3’s latest end time is 22. Therefore,A1
andB2 are selected as the critical activities.

3.1.4. Sequencing the critical activities
To determine the sequence of the two most critical activities, we use three heuristics:

MinimizeMax, Centroid, and Random. If MinimizeMax predicts that one sequence will be
better than the other, we commit to that sequence. If not, we try the Centroid heuristic. If
the Centroid heuristic is similarly unable to find a difference between the two choices, we
move to Random.

MinimizeMax sequencing heuristic.The intuition behind the MinimizeMax(MM)
sequencing heuristic is that since we are trying to reduce contention, we estimate the worst
case increase in contention and then make the commitment that avoids it.MM identifies
the commitment which satisfies the following:

MM =min
(
maxAD′(A,B),maxAD′(B,A)

)
, (4)

where

maxAD′(A,B)=max
(
AD′(A,A→ B),AD′(B,A→B)

)
. (5)

AD′(A,A→ B) is an estimate of the new aggregate demand at a single time point. It is
calculated as follows:
• Given A→ B, we calculate the new individual demand curve ofA and identify

the time point,tp, in the individual demand of activityA that is likely to have the
maximum increase in height.2 This leaves us with a pair:{tp,1height}.
• We then look at the aggregate demand curve for the resource attp and form

AD′(A,A→B) by adding1heightto the height of the aggregate demand curve attp.
The same calculation is done forAD′(B,A→ B) and the maximum (as shown in

Eq. (5)) is used inmaxAD′(A,B). Eq. (4) indicates that we choose the commitment
resulting in the lowest maximum aggregate curve height.

Centroid sequencing heuristic.The centroid of the individual demand curve is the time
point that equally divides the area under the curve.3 We calculate the centroid for each
activity and then commit to the sequence that preserves the current ordering (e.g., if the
centroid ofA is at 15 and that ofB is at 20, we postA→ B). Centroid is a variation of a
heuristic due to [56].

Random sequencing heuristic.Randomly choose one of the sequencings.

2 Subsequent propagation may have an impact onA’s individual demand curve after a heuristic commitment.
As a consequence, we do not calculate the actual increase in height ofA, but rather estimate it based on temporal
arc consistency of the to-be-posted precedence constraint (i.e., we findA’s new lft based on local arc consistency
propagation and use it to calculate the maximum change in the individual demand).

3 This is a simplification of centroid that is possible because the individual activity curves, as we calculate them,
are symmetric.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 43

3.1.5. Complexity
The worst-case time complexity to find a heuristic commitment at a problem state is due

to the aggregation of the demand curves for each resource and the selection of the critical
activities. By storing the incoming and outgoing slopes of the individual curves at each
point, we can sort the event points from all activities and then, with a single pass, generate
the aggregate curve. This process has complexity of O(mn logn) (wheren is the maximum
number of activities on a resource andm is the number of resources). Selection of the pair
of unsequenced activities on the resource requires at worst an additional O(n2). Thus the
overall time complexity for a single heuristic commitment is O(n2)+O(mn logn).

The space complexity is O(mn) as we maintain an individual curve for each activity and
these individual curves make up the aggregate curve for each resource.

3.1.6. The SumHeight heuristic versus the ORR/FSS heuristic
The SumHeight heuristic is an adaptation of the Operation Resource Reliance/Filtered

Survivable Schedules (ORR/FSS) [63,64,66]. In particular, the use of contention and
reliance and the intuitions behind the heuristic commitment are the same in the two
techniques. The differences between the two are as follows:

(1) SumHeight uses an the event-based, linear interpolation implementation of the
demand curves.

(2) SumHeight uses a single time point to identify the resource with maximum
contention.

(3) SumHeight generates a heuristic commitment that sequences the two most critical
activities.

In contrast, the ORR/FSS heuristic identifies the most critical resource andtime interval
in a search state. An interval equal to the average activity duration is used and the area under
the aggregate curve for all such intervals is calculated. The most contended-for resource
and time interval is defined to be the resource and time interval with the highest area under
the aggregate demand curve. The activity not yet assigned to a start time that contributes
the most area to the critical time interval is the most critical activity. This is the activity
that the ORR heuristic predicts is important to schedule at this point in the search: it is the
most reliant activity on the most contended-for {resource, time interval} pair.

A heuristic commitment is found by assigning the critical activity,A, to its most
“survivable” start time. The most survivable start time is found by the FSS portion of
the heuristic which rates each of its possible start times of the critical activity by using
the demand curves. This rating takes into account the effect an assignment toA will have
both on activities competing directly withA and on those temporally connected toA.
A more detailed description of the start time assignment heuristic is beyond the scope of
this document; interested readers are referred to [63,66].

3.2. The Constraint-Based Analysis Slack heuristic

The Constraint-Based Analysis Slack (CBASlack) heuristic forms the heuristic compo-
nent of the Precedence Constraint Posting (PCP) scheduling algorithm [25,72].

Bslack(Eq. (8) below) is calculated for all pairs of activities that compete for the same
resource. The pair with the smallestBslackvalue is identified as the most critical. Once the

44 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

critical pair of activities is identified, the sequence that preserves the most slack is the one
chosen. The intuition here is that a pair with a smallerBslackis closer to being implied
than one with a larger value. Once we have identified this pair, it is important to leave as
much temporal slack as possible in sequencing them in order to decrease the likelihood of
backtracking.

slack(i→ j)= lftj − esti − (duri + durj), (6)

S = min(slack(i→ j),slack(j→ i))

max(slack(i→ j),slack(j→ i))
, (7)

Bslack(i→ j)= slack(i→ j)√
S

. (8)

The intuition behind the use of
√
S is that there is search information in both the

minimum and maximum slack values. While choosing activity pairs based on minimum
slack remains a dominant criterion, the authors hypothesize that more effective search
guidance may be achieved with a biasing factor that will tend to increase the criticality of
activity pairs with similar minimum and maximum slack values. For example, it is unclear
if an activity pair with a minimum slack of 5 and a maximum slack of 5 is more or less
critical than a pair with minimum slack 3 and maximum slack 20.S (Eq. (7)) is a measure
of the similarity of the minimum and maximum slack values for an activity pair and it is
incorporated in the biased-slack calculation as shown in Eq. (8).

3.2.1. Complexity
The worst-case time complexity for the CBASlack heuristic is O(mn2) (wheren is the

maximum number of activities on a resource andm is the number of resources). For each
resource, each pair of activities must be evaluated to determine its biased-slack value.

3.3. The Randomized Left-Justified heuristic

In the Randomized Left-Justified heuristic (LJRand) [58,59] the set of activities that can
execute before the minimum earliest finish time of all unscheduled activities is identified.
One of the activities is randomly selected and scheduled at its earliest start time.

In the job shop scheduling context, a new commitment can be inferred when a heuristic
commitment made by LJRand is undone by chronological backtracking (or another
provable retraction technique). Because a dead-end results when the activity,A, is assigned
its earliest start time, the earliest start time ofA can be updated to the smallest earliest
finish time of all other unscheduled activities on the same resource asA. The provable
backtracking has shown that some other activity must come beforeA in the resource in
question [58].

3.3.1. Complexity
The time complexity of LJRand is O(mn). At worst the start and end times of all

activities must be evaluated to find the minimum end time of all unscheduled activities
and then to randomly choose the activity to start first.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 45

4. Problem structure and heuristic search

Problem structure can be broadly defined to be the relationships among the problem
objects. Study of problem structure concerns the identification of structure and its
correlation to the performance of heuristic search techniques. Given a representation of
a problem, are there relationships among the components of the representation that can be
identified and exploited by heuristic search techniques? For example, it is well known that
constraint satisfaction problems (CSPs) with a tree structured constraint graph are solvable
in polynomial time [36]. Similarly, algorithm-independent measures of problem difficulty
have been developed based on the literal/clause ratio in SAT problems [55].

4.1. The problem structure hypothesis

The importance of the understanding of problem structure for heuristic search can
be traced (within the AI community) at least as far back as the early work of Simon
[67] and has been examined from a constraint perspective by Fox et al. [33,34,63].
Given this history, the question arises as to whether the problem structure hypothesis
is, indeed, still in doubt. Dynamic variable ordering heuristics based on domain size,
number of constraints, and other structural characteristics are relatively well established in
the constraint-satisfaction community [38,42,68]. Despite the acknowledgement that such
orderings have positive impact on heuristic search, however, much of the recent research
has focused away from such heuristics. The majority of work in constraint research over
the past ten years has examined the creation of efficient propagation techniques for global
constraints. Global constraints are used to represent a sub-problem and have been shown
in a number of applications to contribute significantly to problem solving ability [20–22,
50,54,58,61,62,73]. It is fair to say that most of the advances on constraint-directed search
over the past ten years have arisen from the use of global constraints.

We are interested in further investigation of the problem structure hypothesis in the
context of modern constraint techniques for two main reasons. The first is the basic
question as to whether heuristics based on problem structure are still necessary given the
use of global constraints. We believe, following the problem structure hypothesis, that such
heuristics are complementary to the use of global constraints. It is not obvious,a priori,
that this belief is correct. Indeed, some of the global constraint work can be interpreted as
supporting the position that sophisticated heuristics are no longer necessary given strong
global constraint propagation [25,58,59,72].

Our second motivation for the investigation of the problem structure hypothesis is the
realization that specific application areas for constraint-directed search exhibit significantly
more problem structure than generic constraint satisfaction problems. Given the structure
that comes with such areas as scheduling, resource allocation, and configuration, it does not
appear that analysis based on domain size or the number of constraints is really identifying
important problem structure. Given the significantly richer structure of problems within
specific domains, we have the opportunity to perform a much deeper structural analysis.
The question we want to investigate, then, is precisely the problem structure hypothesis:
does the analysis and exploitation of problem structure lead to superior heuristic search
performance?

46 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

4.2. Problem structure and scheduling

The challenge in any specific problem domain, then, is to identify problem structure
that can be exploited by heuristic search techniques. In scheduling, problem structure has
typically referred to examination of a problem state in order to determine the load on each
resource. It is a well-known industrial heuristic to identify the “bottleneck” resource, that
is, the one with the highest usage. Effort can then be spent in scheduling the activities on
the bottleneck.

In constraint-directed scheduling, ISIS [33] used dynamic analysis of resource usage
to temporally constraint activities within an order. ISIS followed an order-based problem
decomposition where the orders were prioritized based on their static properties. When an
order was selected for scheduling, the resource usage was dynamically evaluated based on
the already scheduled activities. The activities in the selected order were then temporally
constrained (via dynamic programming) to execute at times when their resources were
available while ensuring that the order due date would be satisfied. Each activity in the
order was assigned resources and start-times before the analysis was performed again.
OPIS [69,71] built on this analysis by opportunistically choosing a resource-based or
order-based problem decomposition. Based on an analysis of resource usage, OPIS could
schedule all activities in an order (like ISIS) or all activities competing for the same
bottleneck resource. One of the critical advances in terms of problem structure analysis
in OPIS is the fact that bottlenecks resources are not simply identified at the beginning of
the problem solving process. Rather after scheduling a resource or an order, the resource
levels were re-analyzed.

As described above, in the ORR/FSS heuristic of MicroBoss [63,66] a probabilistic
estimate of the activity demand was used to estimate the aggregate demand for each
resource. Following ISIS and OPIS, the major contribution of the ORR/FSS heuristic
was the incorporation of micro-opportunistic search. Rather than following the order-
or resource-based decomposition, micro-opportunistic search makes each activity an
individual choice point. After a heuristic commitment is made to assign a start time to
an activity, the aggregate demand estimations are re-calculated.

As scheduling performance evolved through ISIS, OPIS, and ORR/FSS it was demon-
strated that both more detailed problem structure analysis and finer control of the heuristic
search process based on the problem structure analysis results in better heuristic search
performance. Not only does ORR/FSS re-analyze the problem state more frequently, it is
also guided more strongly by the results of the analysis: rather than having to focus on a
critical resource or critical order, ORR/FSS focuses on critical activities. Muscettola [57]
further demonstrated that worse overall performance results when either the frequency
of the recomputation of search state information is lower or when that information is ig-
nored.

4.2.1. Criticisms of dynamic problem structure analysis
Other work, however, has called into question the efficacy of using in-depth problem

structure analysis as a basis for heuristic commitment techniques.
As part of the evaluation of the PCP scheduling algorithm, Smith and Cheng [25,

72] compare the ORR/FSS heuristic (using temporal and resource propagation, but

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 47

no retraction technique) with the CBASlack heuristic (using the CBA propagator
(Section 2.3), temporal propagation, and no retraction). The results, on a set of job
shop scheduling benchmarks, indicated that equal or better performance is achieved
with the CBASlack heuristic. Given the equal performance and the relative simplicity of
the CBASlack heuristic compared with ORR/FSS, the authors conclude that the more
complicated implementation associated with in-depth problem structure analysis is not
justified.

The SOLVE scheduling algorithm [58] consists of LJRand, a set of sophisticated
propagators including edge-finding exclusion (Section 2.3), and bounded chronological
backtracking with restart as the retraction technique.4 On a set of difficult job shop
benchmark problems from the Operations Research literature [9], SOLVE significantly
outperformed both Sadeh’s ORR/FSS algorithm (using chronological retraction) and
the ORR/FSS heuristic augmented with the propagators used in SOLVE but still using
chronological retraction [58].

Both of these empirical results appear to be evidence against the use of dynamic search
state analyses as a basis for heuristic commitment techniques: dynamic analysis of the
problem structure (as implemented by ORR/FSS) appears to be counterproductive in terms
of overall scheduling performance. In the former case, CBASlack does perform some
analysis of the problem structure through the calculation of slack values on all pairs
of activities. This analysis, however, concentrates on pair-wise relationships while the
ORR/FSS heuristic aggregates information from all activities competing for a resource
over time. If correct, these results indicate that either the aggregate information provides
no advantage and/or that the ORR/FSS heuristic is not able to exploit the advantage that is
possible through the extra information. The latter result is even more damaging to dynamic
problem structure analysis. The LJRand heuristic randomly searches the space of “active”
schedules [4] performing little, if any, search state analysis.

The flaw in both pieces of research is the authors’ model of scheduling algorithms.
Rather than viewing the algorithms as composed of components, the researchers treat them
as monolithic wholes. As a consequence, the heuristic commitment technique is not the
only component that is varied among algorithms. In the case of Smith and Cheng [25,72],
the CBA propagator was used as part of the PCP algorithm, but not as part of the ORR/FSS
algorithm. Similarly, though Nuijten [58] uses the same propagators in SOLVE and in
the augmented ORR/FSS, the retraction techniques are different: SOLVE uses bounded
chronological backtracking with restart while ORR/FSS uses chronological backtracking.
Given these differences, to what should we attribute the observed experimental results? Is
it really the case that the CBASlack heuristic achieves equal performance to ORR/FSS, or
is the quality of the PCP algorithm due to the combination of the CBASlack heuristic with
the CBA propagator? Does LJRand really significantly outperform ORR/FSS, or does the
performance difference arise from the different retraction techniques?

4 Bounded chronological backtracking performs a limited number of chronological backtracks before restarting
the search completely. The randomized nature of the heuristic commitment technique will tend to minimize
repeated visits to the same portion of the search space.

48 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

4.3. Evaluating the heuristic value of problem structure analysis

To further investigate the importance of knowledge of problem structure to heuristic
search performance and to investigate the criticisms of problem structure based heuristics
noted above, we have undertaken an empirical study of scheduling heuristics. In this paper,
we focus on the three heuristics described above: SumHeight, CBASlack, and LJRand.

SumHeight, like ORR/FSS, is based on using the aggregation of the probabilistic
individual demand of each activity to estimate the contention for a resource. Of the three
heuristics, it makes the most use of dynamic information distilled from the constraint graph
in forming heuristic decisions.

CBASlack, though not originally conceptualized as a texture-based heuristic, uses a
form of the contention texture to form commitments. CBASlack calculates the biased-
slack between all pairs of activities that compete for the same resource and selects the pair
with minimum biased-slack as the most critical. We view the pair-wise biased-slack as an
estimation of pair-wise contention: the lower the biased-slack the more the two activities
contend for the same resource over the same time window. While pair-wise contention
distills less information from the constraint graph than the more aggregate measure used
in SumHeight, it is nonetheless a dynamic analysis of the search state. Note that pair-wise
contention is a measure of how much a pair of activities compete for a resource while the
SumHeight texture is a measure of the extent to which all activities compete for a resource.
So while SumHeight and CBASlack are both based on forms of contention, they are not
based on an identical texture measurement: we expect that the difference in aggregation
level will lead to different heuristic performance.

Finally, the LJRand heuristic identifies the unassigned activities that are able to start
before the minimum end time of all unassigned activities. One of these activities is
randomly selected and assigned to its earliest start time. LJRand performs the least analysis
of the search state of the three heuristics tested as it randomly searches the space of active
schedules.

Given these heuristics with differing dynamic analysis characteristics, we want to
evaluate the extent to which analysis of problem structure via texture measurements
correlates with the quality of overall scheduling performance. More specifically, we
want to evaluate the heuristic importance of dynamic information about probabilistic
resource levels. As noted, SumHeight is specifically designed to exploit such information
while CBASlack exploits similar information at the level of activity pairs. LJRand is not
concerned at all with such information.

5. Empirical studies

While the primary purpose of our empirical studies are to evaluate the use of dynamic
problem structure analysis as a basis for heuristic commitment techniques, we do not
limit our experiments to this question. The empirical data can be used more broadly
to provide insight into search behavior. In particular, we use two retraction techniques
(chronological backtracking and LDS) in separate experimental conditions. While the two
conditions provide richer data upon which to base the analysis of the heuristic commitment

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 49

techniques, the data can also be used to compare performance of the two retraction
techniques. While LDS has been used in the context of scheduling [43,44], this is the
first work of which we are aware that compares LDS and chronological backtracking in
the presence of state-of-the-art constraint-directed heuristic and propagation techniques.

In the rest of this paper, we present and analyze empirical results of three experiments.
Experiment 1 uses a well-known benchmark set of job shop scheduling problems. It
provides a baseline for the comparison of scheduling performance without the specific
manipulation of problem characteristics. This is a subset of the problem set used by
Nuijten [58] and so the experiment will evaluate the extent that the experimental flaws
noted above contributed to those previous results. Experiment 2 uses randomly generated
job shop scheduling problems. The independent variable is the size of the problem. Clearly,
problem size is a relevant factor in the evaluation of scheduling performance. In the final
experiment, Experiment 3, we turn directly to the manipulation of resource usage. By
introducing bottleneck resources we directly address the importance of problem structure
information.

5.1. The reporting of time-outs

The experiments in this paper are run with a bound on the CPU time. Each algorithm
must either find a schedule or prove that no schedule exists for a problem instance within
that bound. If an algorithm is unable to do so within a limit on the CPU time (in all our
experiments the limit is 20 minutes), a time-out is recorded. A time-out indicates that the
algorithm was unable to find a solution or prove that no solution exists for a particular
scheduling problem instance.

The primary reason for reporting time-out results is that it allows us to use problem sets
that contain both soluble and insoluble (over-constrained) problems. The phase transition
work in combinatorial problems such as SAT and CSPs [39,40] demonstrates that the
hardest problem instances are found in locations of the problem space where approximately
half of the problems are over-constrained. A “hard instance” is one that cannot be easily
shown to be either over-constrained or soluble: significant search effort is required to find
a solution or show that none exists. While the space of scheduling problems is not as
well-understood as SAT or CSP in terms of phase transition phenomena [17], we want
to take advantage of this insight in order to generate challenging problem instances. We
construct our problem sets so that as the independent variable varies, the problem instances
move from an over-constrained area in the problem space to an under-constrained area. In
the former area, proofs of insolubility can often be easily found while in the latter area,
solutions can be easily found. It is in the middle range of problems where we expect to find
the most difficult problems.

The use of time-outs as a search statistic allows us to integrate search performance on
over-constrained problems and soluble problems into a single statistic. The intuition is that
algorithms fail when they can find neither a solution nor a proof of insolubility. By using
the number of failures, in this way, we get a clearer picture of the algorithm performance.
For example, plotting the number of problems for which a solution is found obscures the
fact that some algorithms may be performing very well on over-constrained problems (by
finding proofs of insolubility) whereas others are not able to find any such proofs.

50 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Table 2
Summary of experimental scheduling algorithms

Strategy Heuristic commitment Propagators Retraction techniques
technique

SumHeightChron SumHeight Alla Chronological backtracking

CBASlackChron CBASlack All Chronological backtracking

LJRandChron LJRand All Chronological backtracking

SumHeightLDS SumHeight All LDS

CBASlackLDS CBASlack All LDS

LJRandLDS LJRand All LDS

a Temporal propagation, edge-finding exclusion, edge-finding not-first/not-last, and CBA.

5.2. Instantiations of the ODO framework

The scheduling algorithms that we evaluate are instantiations of a scheduling strategy
in the ODO framework. As our primary purpose in these experiments is to evaluate the
efficacy of heuristic commitment techniques, the only difference among the strategies in
our experiments is the heuristic commitment technique. Specifically, we hold the set of
propagators constant across all experiments and create two experimental conditions based
on the retraction technique.

Heuristic commitment techniques.We use three heuristic commitment techniques in our
experiments: SumHeight, CBASlack, and LJRand.

Propagators.Four propagators are used in the following order: temporal propagation,
edge-finding exclusion, edge-finding not-first/not-last, and CBA (see Section 2.3.2).

Retraction techniques.We use two retraction techniques in two separate experimental
conditions: chronological backtracking and Limited Discrepancy Search (LDS) (see
Section 2.3.2).

Termination criterion.The termination criterion for all experiments is to find a solution
by fully sequencing the activities on each resource, or to exhaust the CPU limit. The CPU
time limit for all experiments is 20 minutes on a Sun UltraSparc-IIi, 270 MHz, 128 M
memory, running SunOS 5.6. If an algorithm exhausts the CPU time on a problem, it is
counted as a failure to solve the problem.

Table 2 displays a summary of the experimental scheduling strategies.

6. Experiment 1: Operations Research library

6.1. Problem set

The basic set of problems for the first experiment is a set of 20 job shop scheduling
problems (Table 3) from the Operations Research library of benchmark problems [9]. The
problems are the union of the problem sets used in [75] and [7] with the exception of one
problem (la02) which was removed as it was small and easily solved by all algorithms.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 51

Table 3
Test problems

Source Problem(lower bound)

Adams et al. [1] abz5(1234), abz6(943)

Fisher & Thompson [32] ft10(930)

Lawrence [47] la19(842), la20(902), la21(1046), la24(935), la25(977), la27(1235),
la29(1142), la36(1268), la37(1397), la38(1196), la39(1233), la40(1222)

Applegate & Cook [3] orb01(1059), orb02(888), orb03(1005), orb04(1005), orb05(887)

In order to generate a problem set with problems of varying difficulty, we took the set of
20 problems and the known optimal or lower-bound makespan, and created a total of six
problem sets by varying the makespan of the problem instances. Recall that, in the classical
job shop optimization problem, the goal is to find the minimum makespan within which
all activities can be scheduled (see Section 2.2). Rather than adopting an optimization
approach, we attempt to satisfy each problem instance at different makespans. This data
provides more information on the performance of each algorithm across problems with a
range of difficulties. We generate problems with varying makespans by using themakespan
factor, the primary independent variable in this experiment. It is the factor by which the
optimal or lower-bound makespan is multiplied to give the makespan within which we
attempt to solve the problem instances. In this experiment, the makespan factor is varied
from 1.0 (the optimal makespan) to 1.25 (25% greater than the optimal makespan) in steps
of 0.05, producing six sets of 20 problems each.

6.2. Results

Fig. 6 displays the fraction of problems in each problem set for which each algorithm
(using chronological backtracking) was unable to find a solution. Fig. 7 presents the same
data for the algorithms using LDS. Overall, with either retraction technique, LJRand times
out on significantly more problems than either CBASlack or SumHeight, while there is no
significant difference between SumHeight and CBASlack.5 In terms of the comparison
between the retraction techniques, the only significant difference was for LJRand which
was able to find solutions to significantly more problems when using LDS than when using
chronological backtracking.

Figs. 8 and 9 show the mean CPU time for the chronological backtracking algorithms
and the LDS algorithms respectively. As with the number of problems timed out, overall
there is no significant difference between SumHeight and CBASlack while both perform
significantly better than LJRand. These results hold regardless of retraction technique. In
comparing the retraction techniques, we see significantly larger mean CPU times with
chronological retraction than with LDS. The magnitude of the improvement for heuristics
indicates that LJRand has a larger improvement in moving to LDS from chronological
backtracking than the other two heuristics.

5 Unless otherwise noted, statistical tests are performed with the bootstrap paired-t test [26] withp 6 0.0001.

52 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 6. The fraction of problems in each problem set for which each algorithm timed out (chronological back-
tracking).

Fig. 7. The fraction of problems in each problem set for which each algorithm timed out (LDS).

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 53

Fig. 8. The mean CPU time in seconds for each problem set (chronological backtracking).

Fig. 9. The mean CPU time in seconds for each problem set (LDS).

54 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Other measurements of search effort (i.e., mean number of backtracks, mean number
of commitments, mean number of heuristic commitments) parallel the CPU time results:
no significant differences between SumHeight and CBASlack while both are superior to
LJRand. Comparison of the retraction techniques on the other statistics also follow the
CPU time results: all algorithms using LDS significantly outperform the corresponding
algorithm using chronological backtracking and the magnitude of the improvement appears
to be larger for LJRand than for the other two heuristics.

6.3. Summary

The basic results from Experiment 1 are that:
• SumHeight and CBASlack are both superior to LJRand while there are no significant

differences when SumHeight is compared directly with CBASlack.
• LDS is superior to chronological retraction for all heuristics tested.

7. Experiment 2: Scaling with problem size

While Experiment 1 used a set of hard instances of job shop scheduling problems, there
was no effort to evaluate the performance of the algorithms as the size of the scheduling
problems increases. In addition, the use of a variety of problem sets of varying difficulty
and characteristics should aid in the differentiation of algorithms [12]. The primary purpose
of the second experiment, then, is to evaluate the scaling behavior of the algorithms.

7.1. Problem set

Four sizes of problems were selected (5× 5, 10× 10, 15× 15, and 20× 20) and 20
problems of each size were generated with the Taillard random job shop problem generator
[74]. 6 For each problem, a lower bound on the makespan was calculated by running
the propagators used for each algorithm. The lower bound is the smallest makespan that
the propagators, on their own, could not show was over-constrained. This lower bound
calculation is due to [58].

Once the lower bounds were calculated, we applied makespan factors from 1.0 to 1.3 in
steps of 0.05. For this problem set, however, we only know a lower bound, not the optimal
makespan as above. Therefore, the makespan factor is a multiplier of that lower bound, not
of the optimal, and we expect most of the problems to be over-constrained at a makespan
factor of 1.0. For each size of problem, we have 120 problems divided into six equal sets
based on the makespan factor.

7.2. Results

Figs. 10 and 11 display the fraction of problems in each problem set that timed
out. Statistically, CBASlack times out on significantly (p 6 0.005) fewer problems than

6 The duration of each activity is randomly selected, with uniform probability from the domain [1, 100]. Further
details, sufficient to generate similar problem sets (varying only based on the random seed) can be found in [74].

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 55

Fig. 10. The fraction of problems in each problem set for which each algorithm timed out (chronological back-
tracking).

Fig. 11. The fraction of problems in each problem set for which each algorithm timed out (LDS).

56 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 12. The mean CPU time in seconds for each problem set (chronological backtracking).

SumHeight, and SumHeight in turn significantly outperforms LJRand under both the
chronological backtracking and LDS conditions.

Differences between the retraction techniques are similar to the results for Experiment 1.
Overall, LDS times out on significantly fewer problems than chronological retraction when
LJRand is used as the heuristic. The overall differences between retraction techniques when
using SumHeight or CBASlack as the heuristic are not significant, and, in fact, there are
no significant differences between chronological backtracking and LDS on any problem
set when CBASlack is used. These results confirm the observation from Experiment 1
that LDS appears to improve the weaker heuristics (based on their performance with
chronological backtracking) more than the stronger ones.

The mean CPU time results are shown in Fig. 12 for chronological backtracking and
Fig. 13 for LDS. These graphs are quite similar to the results for the percentage of problems
timed out as the CPU time on the unsolved problems tends to dominate the mean results.
Therefore, the overall CPU results tend to mirror the timed-out results: CBASlack achieves
significantly lower mean CPU time than SumHeight (p 6 0.001) which in turn achieves
a significantly lower mean CPU time than LJRand. In terms of comparing the results for
different problem sizes, CBASlack significantly outperforms SumHeight only on the 5×5
and 20× 20 problem sets. There is no significant difference at 15× 15 and SumHeight
achieves a significantly lower mean CPU time than CBASlack on the 10× 10 problems.
LJRand is significantly worse than CBASlack for all problem sizes and significantly worse
than SumHeight for all sizes except 5× 5, where there is no significant difference.

Comparing the retraction techniques, we observe that, overall, LDS with LJRand is
significantly better than chronological backtracking with LJRand. The overall differences

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 57

Fig. 13. The mean CPU time in seconds for each problem set (LDS).

with the other two heuristics are not significant, though they are in favor of LDS
over chronological backtracking. Interestingly, on the 10× 10 problems both CBASlack
and SumHeight use significantly less CPU time (p 6 0.005) when using chronological
backtracking than with LDS. As well, on the 5× 5 problems LJRand with chronological
backtracking significantly outperforms LJRand with LDS. On the two larger problem sizes,
LDS significantly outperforms chronological retraction with LJRand while there is no
significant difference with the other two heuristics.

With other search statistics, CBASlack makes significantly fewer commitments, sig-
nificantly more heuristic commitments, and about the same number of backtracks as
SumHeight with both retraction techniques. Both CBASlack and SumHeight significantly
outperform LJRand on these statistics. Comparing LDS and chronological backtracking,
we see significantly fewer backtracks for LDS, and significantly more commitments and
heuristic commitments for LDS (regardless of heuristic used) than for chronological back-
tracking. As with our other experiments, it appears that the magnitude of the improvement
in using LDS rather than chronological backtracking is greater with heuristics that perform
worse with chronological backtracking.

7.3. Summary

The results of Experiment 2 show that:
• CBASlack significantly outperforms SumHeight which in turn significantly outper-

forms LJRand.
• LDS significantly outperforms chronological backtracking.

58 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

The primary difference between these results and those of Experiment 1 is that we now
see differences between CBASlack and SumHeight. These differences, though significant
in a number of cases, are not as clear cut as the differences between LJRand and the other
two heuristics. On almost every problem set and every performance heuristic, LJRand is
significantly worse than SumHeight and CBASlack.

8. Experiment 3: Bottleneck resources

8.1. Problem sets

The goal in this experiment is to create problems with specific bottleneck resources, and
evaluate the performance of the heuristic commitment techniques and retraction techniques
as the number of bottlenecks in a problem increase.

Our starting point is the 10× 10, 15× 15, and 20× 20 problems, all with makespan
factor 1.2, used in Experiment 2. Recall that the makespan factor is the factor by which
a lower bound on the makespan of each problem is multiplied to generate the makespan
of the problem instance. The makespan factor was chosen so that many, and perhaps all,
of the problem instances in the starting set are not over-constrained. This final choice was
made because by adding bottlenecks we are further constraining the problem instances and
we do not want the problems without bottlenecks to already be over-constrained.

The bottlenecks were generated for each problem and each problem set independently
by examining the base problem and randomly selecting the bottleneck resources. On each
bottleneck resource, we then inserted five new activities of approximately equal duration
to reduce the slack time on that resource to 0. The five new activities (on each bottleneck
resource) are completely ordered by precedence constraints.

For example, for problemA with one bottleneck we may select resourceR2 as the
bottleneck. In the base problem the overall makespan is, perhaps, 200 and the sum of the
durations of all activities onR2 is 120. We insert five new activities, each of which executes
onR2 and each with a duration of 16 time units. The sum of the duration of activities onR2
is 200, the same as the makespan. This has the effect of reducing the slack time onR2 to 0.
To continue the example, when generating the problem set with three bottlenecks, we take
problemA and randomly select three resources to be bottlenecks. These resources may be
R5, R8, andR10. 7 For each of these resources five completely ordered activities are added
to reduce the slack time on the resource to 0.

With this technique, problem sets are generated for each problem size. For the 10× 10
problems, six problem sets, each containing 20 problems, were generated with the number
of bottlenecks ranging from 0 to 10 inclusive, in steps of 2. For the 15×15 problems seven
problem sets of 20 problems each were generated with the number of bottlenecks ranging
from 2 to 14 inclusive, in steps of 2. Finally for the 20× 20 problems, six problem sets
of 20 problems each were generated with the number of bottlenecks ranging from 0 to 20
inclusive, in steps of 4.

7R2 may be selected again as a bottleneck. However,R2 is no more likely to be selected than any other
resource.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 59

8.2. Results

8.2.1. 10× 10 problems
For the 10× 10 problems, the fraction of the problems that each algorithm timed out on

are displayed in Fig. 14 for the algorithms using chronological backtracking and in Fig. 15
for those algorithms using LDS. Slightly obscured by the plot, in Fig. 14, is the fact that
SumHeight does not time out on any problems. Regardless of the retraction technique used,
statistical analysis indicates that SumHeight times out on significantly fewer problems than
CBASlack (p6 0.005 for the comparison using chronological backtracking) and LJRand,
while CBASlack in turn times out on significantly fewer problems than LJRand.

The mean CPU time results are shown in Fig. 16 (chronological backtracking) and
Fig. 17 (LDS). These results are consistent with the timed-out results, as, regardless
of retraction technique SumHeight incurs significantly less mean CPU time than either
CBASlack or LJRand while CBASlack incurs significantly less mean CPU time than
LJRand.

Comparison of the retraction techniques show that there is no significant difference in
terms of the number of problems timed out between the algorithms using chronological
backtracking and those using LDS. However, both SumHeight and CBASlack incur a lower
mean CPU time when used with chronological backtracking rather than LDS.

Results with other search statistics are as follows:
• For the algorithms using chronological backtracking, all statistics tested (the number

of backtracks, the total number of commitments, and the number of heuristic

Fig. 14. The fraction of problems in each problem set for which each algorithm timed out (10× 10 prob-
lems—chronological backtracking).

60 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 15. The fraction of problems in each problem set for which each algorithm timed out (10× 10 prob-
lems—LDS).

Fig. 16. The mean CPU time in seconds for each problem set (10× 10 problems—chronological backtracking).

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 61

Fig. 17. The mean CPU time in seconds for each problem set (10× 10 problems—LDS).

commitments) indicate that SumHeight significantly outperforms CBASlack and
LJRand. CBASlack in turn significantly outperforms LJRand. These results are
repeated when LDS is used as the retraction technique except in the case of the
number of backtracks. For that statistic, while SumHeight is significantly better than
all other heuristics, there is no significant difference between CBASlack and LJRand.
• Comparison of the retraction techniques shows that, for the number of backtracks,

SumHeight incurs significantly fewer when used with chronological backtracking
than with LDS, CBASlack shows no significant differences, and LJRand incurs
significantly fewer backtracks with LDS than with chronological backtracking. For
both the overall number of commitments and the number of heuristic commitments,
SumHeight and CBASlack make significantly fewer with chronological backtracking
while there is no significant difference for LJRand.

8.2.2. 15× 15 problems
The fraction of problems in each problem set for which each algorithm was unable

to find a solution (or show that the problem was over-constrained) is shown in Fig. 18
for those algorithms using chronological backtracking and in Fig. 19 for those algorithms
using LDS.

Statistical analysis mirrors the informal impression of these graphs: SumHeight times
out on significantly fewer problems than CBASlack which, in turn, times out on
significantly fewer problems than LJRand. These results hold in both retraction component
conditions.

62 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 18. The fraction of problems in each problem set for which each algorithm timed out (15× 15 prob-
lems—chronological backtracking).

Fig. 19. The fraction of problems in each problem set for which each algorithm timed out (15× 15 prob-
lems—LDS).

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 63

Fig. 20. The mean CPU time in seconds for each problem set (15× 15 problems—chronological backtracking).

Comparing the retraction techniques while holding the heuristic commitment technique
constant shows no overall statistically significant differences between chronological
backtracking and LDS. For the problems sets with a low number of bottlenecks (two and
four), we see that LDS solves significantly more problems than chronological backtracking
for each heuristic (with the exception of SumHeight on the problems with four bottlenecks
where there is no significant difference). For problem sets with higher number of
bottlenecks (e.g., 12 and 14) we see the reverse: the algorithms with chronological
backtracking time out on fewer problems; however, these differences are not statistically
significant.

The results for the mean CPU time for each problem set are displayed in Fig. 20
(chronological backtracking) and Fig. 21 (LDS).

These results reflect the timed-out results: with either retraction technique SumHeight
incurs significantly less mean CPU time than CBASlack which in turn incurs significantly
less mean CPU time than LJRand.

Comparison of retraction techniques shows no overall significant differences in mean
CPU time. Again, however, the pattern of chronological retraction being inferior at low
bottlenecks and superior at high bottlenecks is observed. Chronological backtracking with
both CBASlack and LJRand on the problem set with two bottlenecks incurs significantly
more CPU time than the corresponding algorithms using LDS. For problem sets with
12 and 14 bottlenecks, chronological backtracking with both SumHeight and CBASlack
incurs significantly less CPU time than the corresponding algorithm with LDS.

Results with other search statistics are as follows:

64 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 21. The mean CPU time in seconds for each problem set (15× 15 problems—LDS).

• With chronological backtracking, SumHeight makes significantly fewer backtracks
than either LJRand or CBASlack. There is no significant difference between
CBASlack and LJRand. With LDS, SumHeight uses significantly more backtracks
than CBASlack; however, LJRand incurs fewer backtracks than both SumHeight
(p 6 0.005) and CBASlack.
• In terms of the number of commitments, there is no significant difference between

SumHeight and CBASlack (in either retraction condition) while LJRand makes
significantly more commitments than the other algorithms, regardless of retraction
technique.
• SumHeight makes significantly fewer heuristic commitments than either of the

other algorithms with both LDS and chronological backtracking. CBASlack makes
significantly more heuristic commitments than LJRand using LDS.
• Finally, in the comparison of the retraction techniques we see that the algorithms using

chronological backtracking make significantly more backtracks, significantly fewer
commitments, and significantly fewer heuristic commitments than the corresponding
algorithms using LDS. These results hold regardless of the heuristic.

It may seem inconsistent that SumHeight makes fewer backtracks and heuristic commit-
ments than CBASlack but not significantly fewer overall commitments. This anomaly can
be understood based on the fact that, for SumHeight, the percentage of the total commit-
ments that are heuristic commitments is significantly smaller than for CBASlack. While
CBASlack backtracks more and makes more heuristic commitments, because it makes
fewer propagated commitments for each heuristic commitment, the overall number of com-
mitments is not significantly different from that of SumHeight. Given the differing com-

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 65

putational expense of heuristic commitments, propagated commitments, and backtracking,
the existence of such a comparison is one reason we use mean CPU time as one of our
primary search statistics.

8.2.3. 20× 20 problems
The fraction of problems timed out for each algorithm on the 20× 20 problems are

shown in Figs. 22 and 23 for chronological backtracking and LDS respectively. Regardless
of the retraction condition, statistical analysis indicates no significant difference between
SumHeight and CBASlack while both time out on significantly fewer problems than
LJRand.

The mean CPU time results are shown in Fig. 24 for chronological backtracking and
Fig. 25 for LDS. As with the timed-out results, the mean CPU time results indicate
that there is no significant differences between SumHeight and CBASlack, regardless of
retraction technique, while both SumHeight and CBASlack incur significantly less mean
CPU time than LJRand, again, regardless of retraction technique.

In comparing the retraction techniques themselves, we see that there are no significant
differences between the chronological backtracking algorithms and the LDS algorithms in
terms of the fraction of problems timed out or the mean CPU time. This result holds for
each heuristic commitment technique.

Results with other search statistics are as follows:
• In terms of the number of backtracks, there are no significant differences among the

heuristics except when LDS is used as the retraction technique. In that condition,

Fig. 22. The fraction of problems in each problem set for which each algorithm timed out (20× 20 prob-
lems—chronological backtracking).

66 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 23. The fraction of problems in each problem set for which each algorithm timed out (20× 20 prob-
lems—LDS).

Fig. 24. The mean CPU time in seconds for each problem set (20× 20 problems—chronological backtracking).

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 67

Fig. 25. The mean CPU time in seconds for each problem set (20× 20 problems—LDS).

SumHeight and CBASlack both incur significantly more backtracks than LJRand
while there is no significant difference between SumHeight and CBASlack.
• Regardless of the retraction technique used, CBASlack makes significantly fewer

overall commitments than SumHeight or LJRand while SumHeight makes signifi-
cantly fewer than LJRand.
• For the number of heuristic commitments, SumHeight makes significantly fewer

than all other heuristics using either chronological backtracking or LDS. Similarly,
LJRand makes significantly fewer heuristic commitments than CBASlack regardless
of retraction technique used.
• Finally, in comparing the retraction techniques, we see that algorithms using

chronological backtracking make significantly more backtracks, significantly fewer
commitments, and significantly fewer heuristic commitments than corresponding
algorithms using LDS.

8.3. Summary

The results from Experiment 3 indicate that:
• With the exception of the 20× 20 problems, SumHeight outperforms CBASlack and

LJRand while CBASlack in turn outperforms LJRand. On the 20×20 problems there
was little difference between SumHeight and CBASlack while both outperformed
LJRand.
• The comparison of chronological backtracking with LDS is less clear. With the

exception of the 10× 10 problems, there is no difference in terms of CPU time

68 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

or the fraction of problems timed out. On the 10× 10 problems, chronological
backtracking is able to achieve a lower mean CPU time when used with SumHeight
or CBASlack. The other statistics show that, typically, chronological backtracking
incurs more backtracks than LDS but fewer overall commitments and fewer heuristic
commitments. An exception is observed in the 10×10 results where SumHeight with
chronological backtracking incurs significantly fewer backtracks than SumHeight
with LDS.

9. Discussion

9.1. Heuristic commitment techniques

The clearest result from the experiments is that LJRand does not perform as well as either
of the other two heuristics. This comparison holds regardless of the retraction technique
and across all the experiments. This result is in conflict with that of Nuijten [58] where it
was shown that LJRand was able to outperform the ORR/FSS heuristic on the Operations
Research library problems (a subset of which were used in Experiment 1). As noted above,
however, for the experiments performed by Nuijten, LJRand was run with a different
retraction technique (chronological backtracking with restart) than the ORR/FSS heuristic
was (chronological retraction). Therefore, in light of our work, Nuijten’s results can be
attributed to the differing retraction techniques used in the experiments rather than as a
result of the differing heuristic commitment techniques.8

The comparison between SumHeight and CBASlack is more complicated as we see no
significant difference in Experiment 1, while CBASlack performs better in Experiment 2
and SumHeight performs better in Experiment 3.

Recall (Section 4) that SumHeight and CBASlack are different methods of measuring
similar underlying characteristics of a constraint graph: the contention for a resource.
Where SumHeight measures this contention by aggregating probabilistic demand of each
activity, CBASlack identifies the pair of activities that compete most with each other. The
results of our experiments can be understood based on the relative sensitivity of the two
heuristics to non-uniformity at the resource level. To understand this concept, it is helpful
to examine the properties of our problem sets. In Experiment 2, the duration of each
activity and the sequence of resources used by each job were randomly generated. There is
little difference, therefore, in resource utilization: these problems have a relatively uniform
resource utilization. In Experiment 3, we augmented the randomly generated problems by
selecting a subset of resources and adding activities such that their utilization was 100%.
A scheduling problem with a wide ranging resource utilization is said to have a non-
uniform resource utilization.

Imagine two scheduling problems,Puniform andPnon-uniform, with a uniform and a non-
uniform resource utilization respectively. Assume thatPnon-uniform was generated from

8 The ORR/FSS heuristic does not have a random component; therefore, it cannot be directly used with a
retraction technique like chronological backtracking with restart which depends on such a component to explore
different paths in the search tree. A number of researchers [19,41,60] have investigated ways of adding a random
component to otherwise deterministic heuristic commitment techniques.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 69

Puniform by the method used to generate bottleneck problems.Pnon-uniform has a superset
of the activities inPuniform. The CBASlack calculations (before any commitments have
been made) onPuniform find the biased-slack for each pair of activities. The calculation
depends wholly upon the time-windows of each activity which in turn depend on the
precedence constraints within a job: there are, as yet, no inter-job constraints. When the
same calculations are done onPnon-uniform the pairs of activities that the problems have
in common will have exactly the same biased-slack values. CBASlack only estimates the
contention between pairs of activities and so it will calculate the same biased-slack value
for a pair of activities regardless of the other activities contending for the same resource.
Therefore, the biased-slack value of two activities inPuniform is the same as inPnon-uniform.
Gradually, as commitments are made, the activities on a bottleneck resource will tend to
have lower biased-slack values; however, for the first few commitments, CBASlack does
not detect the non-uniformity.As has been noted elsewhere [43], the first few commitments
are often critical to finding a solution. SumHeight, in contrast, immediately focuses on one
of the bottlenecks as it aggregates probabilistic demand information from all activities
on the resource. Assuming that it is truly more important to make decisions on tighter
resources, the ability to focus on bottleneck resources,when they exist, is an explanation
of why SumHeight is able to outperform CBASlack on non-uniform problems as in
Experiment 3.

When problems have a uniform resource utilization, no bottleneck resources exist.
SumHeight identifies a critical resource and time point; however, it is likely that other
resources and time points have criticality measurements that are close (or even equal) to
the one selected. Only the activities on the “critical” resource are then examined in order to
post a commitment. In contrast, CBASlack looks at all pairs of activities. It may be the case
that though the resource utilization is uniform, there are pairs of activities that have a very
low biased-slack value. For example, imagine a pair of activities such asA andB in Fig. 26.
The wide time windows on each activity lead to a relatively low contention as measured by
SumHeight, but CBASlack will identify these activities as critical. While SumHeight may
identify some other resource as critical and make a commitment, CBASlack will focus on
a critical pair regardless of the resource utilization and, therefore, it is likely to make a
commitment at a more critical area of the search space than SumHeight.

An underlying assumption in this explanation is that when a resource-level non-
uniformity exists, it is more important to make a commitment on activities that execute
on a highly contended-for resource even though there may be an activity pair with a lower
biased-slack value on another resource. While we believe this assumption to be reasonable,
at this time we have no empirical evidence to support it (without begging the question we
are trying to explain).

Fig. 26. ActivitiesA andB.

70 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

To lend support to this explanation, we examined the resource uniformity of the
problems in Experiments 2 and 3. The resource usage of a resource,R, is the fraction
of the total scheduling horizon during which a resource is used by some activity. We
represent the resource usage byRU(R) which can be found by summing the durations
of the activities onR and dividing by the length of the scheduling horizon. GivenRU(R)
for each resource in a problem,RU(P) is defined to be the mean resource usage across all
resource in problem,P . Assuming thatRES(P) denotes the set of resources in problemP ,
the standard deviation for the resource usage in a problem,σ(RU(P)), can be calculated
as shown in Eq. (9).

σ
(
RU(P)

)=
√∑

R∈RES(P)(RU(R)−RU(P))2

|RES(P)| − 1
. (9)

The standard deviation of resource usage in a problem is a measure of its resource non-
uniformity. The higher the standard deviation, the more varied is the resource usage in the
problem.

Fig. 27 plots the difference in CPU time between SumHeight and CBASlack (both
using chronological backtracking) against the standard deviation of resource usage in
each problem. Points above zero on they-axis indicate problems where SumHeight
incurred greater CPU time than CBASlack, while those below zero indicate problems

Fig. 27. The standard deviation in resource usage for each problem in the 10×10, 15×15, and 20×20 problems
sets of Experiment 2 and Experiment 3 versus the difference in CPU time in seconds between SumHeight and
CBASlack (chronological backtracking).

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 71

where SumHeight incurred less CPU time. The horizontal axis is the standard deviation
of the percent resource utilization for each problem. A larger standard deviation indicates
a larger difference in utilization among resources in a problem and therefore a greater
resource-level non-uniformity.

Fig. 27 indicates that on problems with more resource-level non-uniformity, SumHeight
tended to outperform CBASlack. The reverse is true with problems with more uniform
resource usage. These results do not prove that the difference in resource-level uniformity
causes the performance difference. The results do, however, indicate a correlation which
we see as lending credence to the resource-level uniformity explanation.

9.1.1. Heuristic commitments versus implied commitments
Given the use of both heuristic commitment techniques and propagators in our

algorithms, it is instructive to examine the percentage of heuristic commitments with
different algorithms. It has been suggested [7] that, given the power of propagators in
constraint-directed scheduling, a good heuristic is one that makes decisions that result in
many subsequent propagated commitments. The intuition seems to be primarily pragmatic
(i.e., to maximize the contributions from sophisticated propagators) however there is some
theoretical evidence from SAT heuristics that is consistent with such a suggestion [45].
While further research is necessary to evaluate whether a good heuristicnecessarilyresults
in more propagated commitments, it is interesting from the perspective of understanding
the search behavior to examine the interactions between heuristic commitment techniques
and propagators.

The graphs in Figs. 28 and 29 display the percentage of commitments in the search that
were heuristic commitments for each algorithm in Experiment 1. Recall that the total set of
commitments are composed of heuristic commitments found by the heuristic commitment
technique and the implied commitments found by the propagators.9 The graphs show
that LJRand makes a significantly smaller percentage of heuristic commitments than does
SumHeight, which in turn makes a significantly smaller proportion of commitments than
CBASlack. This holds with both chronological backtracking and LDS.

There are two requirements for such a comparison to be meaningful. First, it is important
that the heuristics make the same type of commitment. Clearly, if one heuristic completely
sequences a resource in a single heuristic commitment, it will incur a lower percentage
of heuristic commitments than a heuristic that posts a sequencing constraint between a
pair of activities. The second requirement is similar search performance. A search state
for a problem is more constrained if it occurs deep in a search tree (after a number
of commitments have been added to the graph) than early in the tree. A chronological
backtracking algorithm that is not performing well is likely to spend a great deal of time
near the bottom of a search tree where each heuristic commitment results in many implied
commitments. In contrast, an algorithm that easily finds a solution spends a relatively small
portion of the search at the bottom of the tree and therefore will have a higher percentage
of heuristic commitments.

9 For this statistic we take into account the commitments found by both types of edge-finding and by CBA. We
do not count the commitments found by temporal propagation as these commitments are typically implemented
by removing values from the domains of start time variables rather than by the explicit assertion of a constraint.

72 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 28. The mean percentage of commitments made by the heuristic commitment technique (chronological
backtracking).

Fig. 29. The mean percentage of commitments made by the heuristic commitment technique (LDS).

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 73

LJRand makes a different type of commitment than the other two heuristics. By
assigning an activity a start time, LJRand makes a highly constraining commitment from
which we might expect a large number of implied commitments to be readily identifiable.
This appears to be the case in our experimental results as LJRand demonstrates the lowest
percentage of heuristic commitments. Given the difference in heuristic commitment type
and the fact that LJRand is significantly worse than the other heuristics on all the problem
solving performance measures, it is not very useful to compare the LJRand percentage of
heuristic commitments to that of SumHeight and CBASlack. It is interesting, however, to
note that the percentage of heuristic commitments for LJRand does not vary much with
the makespan factor. This is somewhat surprising: as the makespan factor gets smaller, the
problems get tighter and therefore it is expected that the percentage of commitments that
are implied should grow.

The comparison of the heuristic commitment percentage between SumHeight and
CBASlack is striking. Recall that there were no statistically significant differences in
either the number of commitments or the number of heuristic commitments between
CBASlack and SumHeight. Nonetheless, SumHeight averaged (non-significantly) more
overall commitments and (non-significantly) fewer heuristic commitments than CBASlack.
When these results are combined, significant differences arise. These results show that,
as compared with SumHeight, a much larger portion of the CBASlack commitments are
heuristic even though exactly the same set of propagators were used in the experiments.
These results can be understood based on how the heuristics choose a pair of activities to
sequence. CBASlack chooses the activity pair with minimum biased-slack regardless of
the presence of any other competing activities. After a CBASlack commitment, it may be
the case that few other activities are affected and, therefore, there is little propagation.
SumHeight, on the other hand, selects a pair of activities precisely because they are
part of a larger subset of highly competitive activities. SumHeight explicitly looks for
areas where there are a number of activities. It is reasonable, therefore, to expect that
a single commitment will, though the propagators, lead to a greater number of implied
commitments than CBASlack.

Heuristic commitment percentage and heuristic quality.An important consideration of
the difference in heuristic commitment percentage is the meaning, if any, that it has
for the quality of the heuristic. Here we present intuitions about the nature of heuristic
commitment techniques. These intuitions are speculative and their investigation forms the
basis for our future work on heuristics.

We believe that there are two characteristics that correlate highly with the success of a
heuristic commitment technique.

(1) The Short Dead-end Proof Intuition: the ability of a heuristic to quickly discover
that the search is at a dead-end. Imagine a search that progresses through a series
of states to stateS. Assume that there are no solutions in the subtree belowS, but
that we are unable to prove this atS. Some heuristic commitments must be made to
explore the subtree belowS in order to prove thatS is a dead-end.10 A heuristic
that is able, through its heuristic commitments and subsequent propagation, to prove

10 We are assuming a provable retraction technique like chronological backtracking.

74 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

a dead-end while exploring a small number of states in the subtree will be superior
to one that must explore a larger subtree.

(2) The Few Mistakes Intuition: a high likelihood of making a commitment that leads
to a solution. A heuristic that has a higher likelihood of making a commitment that
leads to a solution, that is one that does not result in a dead-end, is likely to be
a higher quality heuristic than one with a lower probability of making the correct
decision.

These two characteristics are independent from the perspective that if either characteris-
tic were infallible, search performance would be independent of the other characteristic. If
a heuristic never made a commitment that resulted in a dead-end state, the ability to detect
such a state is irrelevant. Similarly, if a search could immediately detect that it was at a
dead-end, then the quality of the commitments is irrelevant: any mistake is immediately
detected and repaired.

With real, fallible heuristics, these two characteristics interact: it may be the case that a
heuristic with a high probability of making the right decision results in a relatively large
effort in discovering when it has made a mistake. Conversely, a heuristic with a lower
probability of making a right decision may be able to find a shorter proof of a dead-end (on
average) and therefore recover from mistakes quickly. The best heuristic will be the one
that minimizes the size of the overall search tree and this may well be achieved by some
trade-off between the two characteristics.

Returning to SumHeight and CBASlack, it is our intuition that the lower percentage
of heuristic commitments for SumHeight than for CBASlack indicates that SumHeight is
able to find shorter proofs of a dead-end. More commitments in the search tree below an
unknown dead-end will be implied commitments and therefore the size of the subtree that
must be heuristically investigated will tend to be smaller.

In Experiments 1 and 2, this ability to find short proofs (if our intuitions are accurate)
does not result in superior performance. A possible explanation for this is a higher
probability for CBASlack to make the correct decision. CBASlack identifies an activity
pair, such as the one shown in Fig. 26, where the sequence is almost implied by the
existing time windows. SumHeight on the other hand selects a pair of activities that
may have significantly more overlapping time windows. We speculate, therefore, that
in Experiment 2, the “more obvious” commitment made by CBASlack has a higher
probability of being in a solution than the commitment made by SumHeight and further,
that this higher probability is enough to overcome the shorter-proof characteristics of
SumHeight.

In Experiment 3, we believe that the presence of bottleneck resources reduces the
probability that CBASlack will make the correct commitment to such a point that the
short proof characteristic of SumHeight results in superior overall performance. Imagine
two problems,P andPbottleneck, with the only difference between them being that extra
activities are added to resourceR1 in Pbottleneckto make it a bottleneck resource. A heuristic
commitment inP can have greater impact on the activities ofR1 without resulting in an
eventual dead-end than the same commitment would have inPbottleneck. Because CBASlack
ignores the presence of a bottleneck, the likelihood that it will make a correct commitment
is smaller inPbottleneck, where a bottleneck is present, than inP . We speculate that this

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 75

reduction in the likelihood that a commitment will be correct can account for the results of
Experiment 3.

While it is reasonable that the presence of a bottleneck enhances SumHeight short proof
characteristic, it is not clear what effect it has on the probability that SumHeight will make a
correct commitment. The sequencing heuristics are based on the individual demand curves
of each activity, which are unchanged whether or not the two activities participate in a
bottleneck. Therefore, there does not appear to be a compelling reason to speculate that the
presence of a bottleneck changes the correct commitment characteristic.

9.2. Retraction techniques

For Experiments 1 and 2, LDS was clearly superior to chronological backtracking both
in terms of the number of problems and mean CPU time. There was little statistically
significant overall difference in Experiment 3. One pattern seen in almost all experiments
is that LDS significantly outperforms chronological backtracking on the looser problems
(e.g., problems with higher makespan factor or fewer bottlenecks) while there is no
significant difference on the tighter problems.

In general, these results are consistent with previous work and our expectations. LDS
makes larger jumps in the search space than chronological backtracking, undoing a
number of commitments in one backtrack. The larger jumps mean that there will often
be more effort for each backtrack of LDS than of chronological backtracking. Often, as in
Experiments 1 and 2, the extra effort pays off in terms of solving more problems in less
time. In Experiment 3, however, the extra effort at each backtrack did not result in better
overall performance: the effort incurred by making significantly more commitments (while
making fewer backtracks) was not reflected in solving more problems.

LDS significantly outperforms chronological backtracking on the looser problems (e.g.,
problems with higher makespan factor or fewer bottlenecks) while there is no significant
difference on the tighter problems. This pattern can be understood by the presence of over-
constrained problems in our problem sets. In an over-constrained problem, an algorithm
using LDS will expend more resources proving a problem is over-constrained than the
corresponding algorithm using chronological backtracking. This is due to the fact that LDS
must revisit some search states in performing a complete search. In our experiments, the
problems on which chronological backtracking outperforms LDS can be attributed to the
presence of over-constrained problems.

9.2.1. Improving heuristics
In terms of comparing the retraction components, we see that on all the search

performance measures, the LDS algorithms tend to outperform their counterparts using
chronological backtracking. The size of the improvement when using LDS rather than
chronological backtracking is also an interesting statistic. It has been observed [14,51] that
when moving from chronological backtracking to LDS, the heuristics that performed worse
with chronological backtracking are improved more than the heuristics that performed
better: the differences among the heuristics are less with LDS than with chronological
backtracking. If we examine the magnitude of improvement, we also observe this trend.
Fig. 30 plots the mean difference in CPU time between LDS algorithms and chronological

76 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

Fig. 30. The mean reduction in CPU time in seconds when using LDS instead of chronological backtracking for
each heuristic.

backtracking algorithms for each problem set in Experiment 1. The greatest improvement
is seen with LJRand which is improved significantly more (p 6 0.005) by using LDS
than either SumHeight or CBASlack. No significant difference in the magnitude of the
improvement is observed between CBASlack and SumHeight.

While the trend of a greater improvement for weaker heuristics has been observed
before, it remains at the level of observation. It may be that some or all of this phenomenon
is due to a ceiling effect:11 because LJRand does so poorly with chronological
backtracking there is much more room for improvement when using LDS than is the
case for the other, better heuristics. If the effect is real, rather than an artifact of the
experimentation, we do not have and are not aware of any explanation for it. It remains
an interesting observation, but whether it has any implications for retraction techniques or
heuristics remains future work.

It should be noted that despite improving the weaker heuristics more than the stronger
ones, LDS did not change the relative heuristic performance. In many cases where there
was a significant difference among heuristics, that difference was manifest with both
chronological backtracking and LDS. In some cases, a significant difference disappeared;
however, we were not able to find results where there was a significant difference between

11 A ceiling effect is when two techniques are judged to be not significantly different due to the fact that they both
perform very well on an experimental problem set. It may be the case that with a more difficult set of problems a
significant difference would be detected. In this context, we speculate that a ceiling effect may contribute to the
smaller improvement of SumHeight over LJRand when using LDS instead of chronological backtracking.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 77

heuristics with one retraction technique and the opposite significant difference with the
other technique.

9.3. Statistical significance and real significance

Our goal in conducting these experiments was to investigate if superior search
performance is achieved by heuristic commitment techniques that exploit dynamic problem
structure information. Given that we demonstrated statistically superior performance in
the presence of resource non-uniformities, the question arises as to the real significance
of these results: can we expect similar results to be observed with other types of
scheduling problems or even with non-scheduling problems modeled in the constraint-
directed paradigm?

For scheduling problems, there are two main dimensions for generalizability. The first
dimension is whether the results can be generalized to larger scheduling problems. The
experiments using 20× 20 job shop problems indicate that there is little difference among
the heuristics: none were very likely to solve the problems within the 20 minute CPU
time limit. While the experimental design, specifically the use of a time limit, may
hide differences among the heuristics, we interpret these results to indicate that,from a
practical perspective, there is currently little difference among the heuristics on larger
job shop problems. The second dimension of generalizability is whether the results can
be extended beyond the job shop scheduling model. Given the simplicity of the job shop
model, many other scheduling models, and, in particular, real-world scheduling problems,
have significantly more complex structure [33]. In scheduling problems involving, for
example, alternative activities [16], activities that can consume and produce inventory [10],
or non-unary resource capacities [24], there are more problem characteristics that can
be dynamically exploited by heuristic commitment techniques. Given the results of
Experiment 3, we expect therefore, that the superior results observed for the heuristics
that incorporate dynamic analyses of each search state will also be observed in more
complicated scheduling domains.12

Finally, we expect that the superior performance of heuristics based on dynamic search
space analysis will also be observed in non-scheduling problems that are formulated in
the constraint-directed search paradigm. As noted in Section 3.1, the contention texture
measurement is based on the estimation of the extent the two variables, connected by a
disequality constraint compete for the same values. Such constraints are not limited to
scheduling problems and, furthermore, there exist extensions of contention can be applied
to more general classes of constraints [10,13]. Therefore, we believe that our results can be
generalized to other constraint-directed problem models.

10. Conclusions

In this paper, we conducted empirical analysis of three heuristic commitment techniques
for constraint-directed scheduling. Our primary goal was to evaluate the efficacy of

12 Indeed, this expectation, has been borne out by empirical results [10,16,24].

78 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

using dynamic search state analysis (in the form of texture measurements) as a basis
for heuristic commitment techniques. Results support the use of texture measurements
as a basis for heuristic commitment techniques as the two heuristics (SumHeight and
CBASlack) based on an analysis of each search state outperformed the less informed
heuristic (LJRand) across all experiments. The comparison of SumHeight and CBASlack
suggests that an explanation of their relative performance depends upon the presence (or
absence) of non-uniformities in problem structure. This result also supports the use of
texture-based heuristics as one of the key motivations for texture measurements is to distill
non-uniformities in a search state.

We also examined the percentage of the commitments in a search that are created by
the heuristic commitment technique as opposed to those created by propagators. Even
though SumHeight and CBASlack post the same type of commitment and achieved the
same overall search performance (on the specific problem set used), SumHeight makes a
significantly smaller percentage of heuristic commitments than CBASlack. These results
are used as a basis for a further, though speculative, explanation of the overall search
differences between the heuristic search techniques.

Our experiments made use of two retraction techniques (chronological backtracking
and Limited Discrepancy Search (LDS)) in two experimental conditions. In general, the
performance of the heuristics was similar in the two conditions. In some cases significant
differences with one retraction technique were not observed with the other, however it was
never the case that a significant difference with one retraction technique was replaced by
the opposite significant difference with the other. This demonstrates the robustness of our
comparison of heuristic commitment techniques. Overall, algorithms using LDS achieved
superior search performance when compared to those using chronological backtracking.
This is consistent with previous work on such a comparison, however, this is the first work
of which we are aware that compares LDS with chronological backtracking in the presence
of state-of-the-art propagation and heuristic techniques. In addition, it was observed
that while LDS tends to improve performance when used in place of chronological
backtracking, it tends to improve the weaker algorithms more than the stronger. The
performance gain by the LJRand algorithm in using LDS rather than chronological
backtracking was significantly greater than the improvement of the other two algorithms.

Overall, this paper supports the thesis that an understanding of the structure of a problem
leads to high-quality heuristic problem solving performance. In the presence of modern
propagation and retraction techniques, it was demonstrated that heuristic commitment
techniques based on the dynamic analysis of the constraint graph representation of
each search state achieve better overall heuristic search performance in terms of fewer
commitments, lower mean CPU time, and more problem instances solved.

Acknowledgements

This research was performed while the first author was a Ph.D. student at the Department
of Computer Science, University of Toronto. It was funded in part by the Natural Sciences
Engineering and Research Council, IRIS Research Network, Manufacturing Research
Corporation of Ontario, Baan Limited, and Digital Equipment of Canada. Thanks to

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 79

Andrew Davenport, Angela Glover, Edward Sitarski, and Ioan Popescu for discussion of
and comments on previous versions of this paper.

References

[1] J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job shop scheduling, Management
Science 34 (1988) 391–401.

[2] J.F. Allen, Maintaining knowledge about temporal intervals, Comm. ACM 26 (11) (1983) 832–843.
[3] D. Applegate, W. Cook, A computational study of the job-shop scheduling problem, ORSA J. Comput. 3

(1991) 149–156.
[4] K. Baker, Introduction to Sequencing and Scheduling, Wiley, New York, 1974.
[5] P. Baptiste, C. Le Pape, Disjunctive constraints for manufacturing scheduling: Principles and extensions, in:

Proc. 3rd International Conference on Computer Integrated Manufacturing, 1995.
[6] P. Baptiste, C. Le Pape, Edge-finding constraint propagation algorithms for disjunctive and cumulative

scheduling, in: Proc. 15th Workshop of the UK Planning and Scheduling Special Interest Group, 1996.
Available from http://www.hds.utc.fr/baptiste/.

[7] P. Baptiste, C. Le Pape, W. Nuijten, Constraint-based optimization and approximation for job-shop schedul-
ing, in: Proc. AAAI-SIGMAN Workshop on Intelligent Manufacturing Systems, IJCAI-95, Montreal, Que-
bec, 1995.

[8] P. Baptiste, C. Le Pape, W. Nuijten, Incorporating efficient operations research algorithms in constraint-
based scheduling, in: Proc. First Joint Workshop on Artificial Intelligence and Operations Research, 1995.
Workshop Proceedings available on World Wide Web from http://www.cirl.uoregon.edu/aior/.

[9] J.E. Beasley, OR-library: Distributing test problems by electronic mail, J. Oper. Res. Soc. 41 (11) (1990)
1069–1072. Also available by ftp from ftp://graph.ms.ic.ac.uk/pub/paper.txt.

[10] J.C. Beck, Texture measurements as a basis for heuristic commitment techniques in constraint-directed
scheduling, Ph.D. Thesis, University of Toronto, 1999.

[11] J.C. Beck, A.J. Davenport, E.D. Davis, M.S. Fox, The ODO project: Toward a unified basis for constraint-
directed scheduling, J. Scheduling 1 (2) (1998) 89–125.

[12] J.C. Beck, A.J. Davenport, M.S. Fox, Five pitfalls of empirical scheduling research, in: G. Smolka (Ed.),
Proc. 3rd International Conference on Principles and Practice of Constraint Programming (CP-97), Springer,
Berlin, 1997, pp. 390–404.

[13] J.C. Beck, A.J. Davenport, E.M. Sitarski, M.S. Fox, Beyond contention: Extending texture-based scheduling
heuristics, in: Proc. AAAI-97, Providence, RI, AAAI Press, Menlo Park, CA, 1997.

[14] J.C. Beck, A.J. Davenport, E.M. Sitarski, M.S. Fox, Texture-based heuristics for scheduling revisited, in:
Proc. AAAI-97, Providence, RI, AAAI Press, Menlo Park, CA, 1997.

[15] J.C. Beck, M.S. Fox, A generic framework for constraint-directed search and scheduling, AI Magazine 19 (4)
(1998) 101–130.

[16] J.C. Beck, M.S. Fox, Scheduling alternative activities, in: Proc. AAAI-99, Orlando, FL, AAAI Press, Menlo
Park, CA, 1999.

[17] J.C. Beck, K. Jackson, Constrainedness and the phase transition in job shop scheduling, Technical Report,
School of Computing Science, Simon Fraser University, Burnaby, BC, 1997.

[18] J. Blazewicz, W. Domschke, E. Pesch, The job shop scheduling problem: Conventional and new solution
techniques, European J. Oper. Res. 93 (1) (1996) 1–33.

[19] J.L. Bresina, Heuristic-based stochastic sampling, in: Proc. AAAI-96, Portland, OR, 1996, pp. 271–278.
[20] J. Carlier, E. Pinson, An algorithm for solving the job-shop problem, Management Science 35 (2) (1989)

164–176.
[21] J. Carlier, E. Pinson, Adjustment of heads and tails for the job-shop problem, European J. Oper. Res. 78

(1994) 146–161.
[22] Y. Caseau, F. Laburthe, Improved CLP scheduling with task intervals, in: Proc. 11th International Conference

on Logic Programming, MIT Press, Cambridge, MA, 1994.
[23] Y. Caseau, F. Laburthe, Improving branch and bound for jobshop scheduling with constraint propagation,

in: Proc. 8th Franco-Japanese Conference CCS-95, 1995.

80 J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81

[24] A. Cesta, A. Oddi, S.F. Smith, An iterative sampling procedure for resource constrained project scheduling
with time windows, in: Proc. IJCAI-99, Stockholm, Sweden, 1999.

[25] C.C. Cheng, S.F. Smith, Applying constraint satisfaction techniques to job shop scheduling, Ann. Oper. Res.
(Special Volume on Scheduling: Theory and Practice) 70 (1997) 327–378.

[26] P.R. Cohen, Empirical Methods for Artificial Intelligence, MIT Press, Cambridge, MA, 1995.
[27] E.D. Davis, ODO: A constraint-based scheduler founded on a unified problem solving model, Master’s

Thesis, Enterprise Integration Laboratory, Department of Industrial Engineering, University of Toronto,
Toronto, Ontario, 1994.

[28] E.D. Davis, M.S. Fox, Odo: A constraint-based scheduling shell, in: Proc. IJCAI-93 Workshop on Production
Planning, Scheduling and Control, Chambéry, France, 1993.

[29] R. Dechter, A. Dechter, J. Pearl, Optimization in constraint networks, in: R. Oliver, J. Smith (Eds.), Influence
Diagrams, Belief Nets, and Decision Analysis, Wiley, Chichester, England, 1990.

[30] J. Erschler, F. Roubellat, J.P. Vernhes, Finding some essential characteristics of the feasible solutions for a
scheduling problem, Oper. Res. 24 (1976) 772–782.

[31] J. Erschler, F. Roubellat, J.P. Vernhes, Characterising the set of feasible sequences forn jobs to be carried
out on a single machine, European J. Oper. Res. 4 (1980) 189–194.

[32] H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling rules, in: J.F.
Muth, G.L. Thompson (Eds.), Industrial Scheduling, Prentice Hall, Englewood Cliffs, NJ, 1963, pp. 225–
251.

[33] M.S. Fox, Constraint-directed search: A case study of job-shop scheduling, Ph.D. Thesis, CMU-RI-TR-85-7,
Carnegie Mellon University, Intelligent Systems Laboratory, The Robotics Institute, Pittsburgh, PA, 1983.

[34] M.S. Fox, N. Sadeh, C. Baykan, Constrained heuristic search, in: Proc. IJCAI-89, Detroit, MI, 1989,
pp. 309–316.

[35] E.C. Freuder, Synthesizing constraint expressions, Comm. ACM 21 (11) (1978) 958–966.
[36] E.C. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1) (1982) 24–32.
[37] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

Freeman, New York, 1979.
[38] I. Gent, E. MacIntyre, P. Prosser, B. Smith, T. Walsh, An empirical study of dynamic variable ordering

heuristics for the constraint satisfaction problem, in: E.C. Freuder (Ed.), Proc. 2nd International Conference
on Principles and Practice of Constraint Programming (CP-96), Springer, Berlin, 1996, pp. 179–193.

[39] I.P. Gent, E. MacIntyre, P. Prosser, T. Walsh, The constrainedness of search, in: Proc. AAAI-96, Portland,
OR, Vol. 1, 1996, pp. 246–252.

[40] I.P. Gent, T. Walsh, The hardest random SAT problems, in: B. Nebel, L. Dreschler-Fischer (Eds.), Proc. KI-
94: Advances in Artificial Intelligence. 18th German Annual Conference on Artificial Intelligence, Springer,
Berlin, 1994, pp. 355–366.

[41] C.P. Gomes, B. Selman, H. Kautz, Boosting combinatorial search through randomization, in: Proc. AAAI-
98, Madison, WI, 1998, pp. 431–437.

[42] R.M. Haralick, G.L. Elliot, Increasing tree search efficiency for constraint satisfaction problems, Artificial
Intelligence 14 (1980) 263–314.

[43] W.D. Harvey, Nonsystematic backtracking search, Ph.D. Thesis, Department of Computer Science, Stanford
University, 1995.

[44] W.D. Harvey, M.L. Ginsberg, Limited discrepancy search, in: Proc. IJCAI-95, Montreal, Quebec, 1995,
pp. 607–613.

[45] J.N. Hooker, V. Vinay, Branching rules for satisfiability, J. Automat. Reason. 15 (1995) 359–383.
[46] V. Kumar, Algorithms for constraint satisfaction problems: A survey, AI Magazine 13 (1) (1992) 32–44.
[47] S. Lawrence, Resource constrained project scheduling: An experimental investigation of heuristic scheduling

techniques (Supplement), Ph.D. Thesis, Graduate School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh, PA, 1984.

[48] C. Le Pape, Implementation of resource constraints in ILOG Schedule: A library for the development of
constraint-based scheduling systems, Int. Syst. Engrg. 3 (2) (1994) 55–66.

[49] C. Le Pape, Using a constraint-based scheduling library to solve a specific scheduling problem, in:
Proc. AAAI-SIGMAN Workshop on Artificial Intelligence Approaches to Modelling and Scheduling
Manufacturing Processes, 1994.

J.C. Beck, M.S. Fox / Artificial Intelligence 117 (2000) 31–81 81

[50] C. Le Pape, P. Baptiste, Constraint propagation techniques for disjunctive scheduling: The preemptive case,
in: Proc. 12th European Conference on Artificial Intelligence (ECAI-96), Budapest, Hungary, 1996.

[51] C. Le Pape, P. Baptiste, An experimental comparison of constraint-based algorithms for the preemptive job
shop scheduling problem, in: Proc. CP-97 Workshop on Industrial Constraint-Directed Scheduling, Schloss
Hagenberg, Austria, 1997.

[52] O. Lhomme, Consistency techniques for numeric CSPs, in: Proc. IJCAI-93, Chambery, France, Vol. 1, 1993,
pp. 232–238.

[53] A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1977) 99–118.
[54] P. Martin, D.B. Shmoys, A new approach to computing optimal schedules for the job shop scheduling

problem, in: Proc. 5th Conference on Integer Programming and Combinatorial Optimization, 1996.
[55] D. Mitchell, B. Selman, H. Levesque, Hard and easy distributions of SAT problems, in: Proc. AAAI-92, San

Jose, CA, 1992, pp. 459–465.
[56] N. Muscettola, Scheduling by iterative partition of bottleneck conflicts, Technical Report CMU-RI-TR-92-

05, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 1992.
[57] N. Muscettola, On the utility of bottleneck reasoning for scheduling, in: Proc. AAAI-94, Seattle, WA, 1994,

pp. 1105–1110.
[58] W.P.M. Nuijten, Time and resource constrained scheduling: A constraint satisfaction approach, Ph.D. Thesis,

Department of Mathematics and Computing Science, Eindhoven University of Technology, 1994.
[59] W.P.M. Nuijten, E.H.L. Aarts, D.A.A. van Arp Taalman Kip, K.M. van Hee, Randomized constraint

satisfaction for job shop scheduling, in: Proc. IJCAI-93 Workshop on Knowledge-Based Production,
Scheduling and Control, Chambéry, France, 1993, pp. 251–262.

[60] A. Oddi, S.F. Smith, Stochastic procedures for generating feasible schedules, in: Proc. AAAI-97, Providence,
RI, AAAI Press, Menlo Park, CA, 1997.

[61] J. Régin, A filtering algorithm for constraints of difference in CSPs, in: Proc. AAAI-94, Seattle, WA, Vol. 1,
1994, pp. 362–367.

[62] J. Régin, Generalized arc consistency for global cardinality constraint, in: Proc. AAAI-96, Portland, OR,
Vol. 1, 1996, pp. 209–215.

[63] N. Sadeh, Lookahead techniques for micro-opportunistic job-shop scheduling, Ph.D. Thesis, CMU-CS-91-
102, Carnegie-Mellon University, Pittsburgh, PA, 1991.

[64] N. Sadeh, Micro-opportunistic scheduling, in: M. Zweben, M.S. Fox (Eds.), Intelligent Scheduling, Morgan
Kaufmann, San Francisco, CA, 1994, Chapter 4, pp. 99–138.

[65] N. Sadeh, M.S. Fox, Preference propagation in temporal/capacity constraint graphs, Technical Report CMU-
RI-TR-89-2, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 1989.

[66] N. Sadeh, M.S. Fox, Variable and value ordering heuristics for the job shop scheduling constraint satisfaction
problem, Artificial Intelligence 86 (1) (1996) 1–41.

[67] H.A. Simon, The structure of ill-structured problems, Artificial Intelligence 4 (1973) 181–200.
[68] B.M. Smith, S.A. Grant, Trying harder to fail first, Technical Report 97.45, School of Computer Science,

University of Leeds, 1997.
[69] P.S. Smith, S.F. Ow, D.C. Matthys, J.Y. Potvin, OPIS: An opportunistic factory scheduling system, in: Proc.

International Symposium for Computer Scientists, 1989.
[70] S.F. Smith, Exploiting temporal knowledge to organize constraints, Technical Report CMU-RI-TR-83-12,

The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 1983.
[71] S.F. Smith, OPIS: A methodology and architecture for reactive scheduling, in: M. Zweben, M.S. Fox (Eds.),

Intelligent Scheduling, Morgan Kaufmann, San Francisco, CA, 1994, Chapter 2, pp. 29–66.
[72] S.F. Smith, C.C. Cheng, Slack-based heuristics for constraint satisfaction scheduling, in: Proc. AAAI-93,

Washington, DC, 1993, pp. 139–144.
[73] K. Stergiou, T. Walsh, Encodings of non-binary constraint satisfaction problems, in: Proc. AAAI-99,

Orlando, FL, 1999, pp. 163–168.
[74] E. Taillard, Benchmarks for basic scheduling problems, European J. Oper. Res. 64 (1993) 278–285.
[75] R.J.M. Vaessens, E.H.L. Aarts, J.K. Lenstra, Job shop scheduling by local search, Technical Report COSOR

Memorandum 94-05, Eindhoven University of Technology, 1994. Submitted for publication in INFORMS
Journal on Computing.

[76] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press, Cambridge, MA, 1989.

