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Abstract
A number of pitfalls of empirical scheduling research are illustrated using
real experimental data. These pitfalls, in general, serve to slow the progress
of scheduling research by obsfucating results, blurring comparisons among
scheduling algorithms and algorithm components, and complicating valida-
tion of work in the literature. In particular, we look at difficulties brought
about by viewing algorithms in a monolithic fashion, by concentrating on
CPU time as the only evaluation criteria, by failing to prepare for gathering
of a variety of search statistics at the time of experimental design, by con-
centrating on benchmarks to the exclusion of other sources of experimental
problems, and, more broadly, by a preoccupation with optimization of
makespan as the sole goal of scheduling algorithms.

Introduction
With the recent burgeoning of interest in empirical approaches to artificial intelligence
[AAAI Empirical Workshop, 1994; ECAI Empirical Workshop, 1996], a number of
authors have made calls for a more scientifically rigorous basis for such research
[Hooker, 1994; Cohen, 1995]. While much of the field of the empirical study of algo-
rithms is relatively immature, empirical scheduling research may be especially so due
to the widespread (and currently unmet) demand for scheduling solutions to real prob-
lems in industry and elsewhere. This demand has significant positive impact for the
research in terms of funding, sources of challenging problems, and opportunities to
contribute beyond the academic world. However, the same demand can result in a
retardation of the progress of the science through the strong temptation to concentrate
on delivering an acceptable solution method for a particular problem rather than on
developing an understanding of the relative merits of existing and novel techniques.

We do not claim that developing a novel solution method for a problem is, in itself,
anti-productive for the science of scheduling. Indeed, much progress has been pro-
duced from such seminal work [Fox, 1983; Zweben et al., 1993]. However, having this
mode of progress as the sole or primary motive force is characteristic of an immature
field and leads to a balkanization of the research community: each research group has
its own problem sets and solution techniques and, though these may both be published
and available, there is little cross-fertilization.

A more progressive approach to scheduling research involves not only exploratory
forays into new problem areas, but also rigorous adaptation and re-implementation of
the work of other researchers, reproduction of results, and hypotheses testing to
develop a deeper understanding of the behaviour of scheduling techniques across a
wide body of problems. In short, we urge that the calls for a rigorous empirical science
of algorithms be heeded particularly well in the scheduling community
[Hooker, 1994].

In this paper we present a number of pitfalls that we have observed and experi-
enced in our research. The data used to illustrate each pitfall comes from experiments
we have performed over the past few years. The motivation for writing this paper is
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similar to that of earlier work describing the dangers of empirical testing in the design
of algorithms for SAT [Gent et al., 1997]: we hope that by describing our experiences
we will further the progress and maturity of the research.

Pitfall I: The Scheduling Monolith
Consider the following experiment, in which two scheduling algorithms, Monolith1

and Monolith2, are compared on a set of problems from the Operations Research
library [Beasley, 1990]. Five different CPU time bounds (10 minutes to 50 minutes) are
used and the mean relative error1 from optimal for which each algorithm was able to
find a solution is displayed in Figure 1. (See [Beck et al., 1997b] for a full description
of this experiment using the 20 minute CPU time bound.) The results are clear-cut:
Monolith1 significantly outperforms Monolith2 at each time limit.

Based on this experiment, we can make conclusions concerning the relative abilities
of the two algorithms: Monolith1 is better than Monolith2 (at least on the problems
tested—see Pitfall IV). There are, however, two major difficulties with the experiment:
1. We are unable to achieve any deeper understanding of the scheduling algorithms

because conclusions beyond those comparing the algorithms as a whole are not jus-
tified. In particular, this experiment provides no insight as to why Monolith1 outper-
forms Monolith2.

2. If we know the components of Monolith1 (e.g., the heuristic or backtracker that is
used), as is common, it is tempting to draw the conclusion that a particular part of
the Monolith1 algorithm is responsible for the performance differences.
Algorithms Monolith1 and Monolith2 are actually both of the form shown in

Figure 2. Both algorithms use constraint propagators: temporal arc-B-consistency
[Lhomme, 1993], constraint-based analysis (CBA) [Erschler et al., 1976; Erschler
et al., 1980], and edge-finding [Carlier and Pinson, 1989; Nuijten, 1994]. The differ-
ences between the two algorithms are how the heuristic decisions are made (line 7) and
how a commitment (search decision) is retracted at a dead-end (line 9).
• Monolith1: uses a heuristic based on the SumHeight contention estimation algo-

rithm [Beck et al., 1997b] and limited discrepancy search (LDS) [Harvey, 1995;
Harvey and Ginsberg, 1995] for retraction.

1. Mean relative error (MRE) is the mean smallest amount above the optimal makespan that an
algorithm could find a solution expressed as a percentage of the optimal makespan.
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• Monolith2: uses the CBASlack heuristic [Smith and Cheng, 1993; Cheng and
Smith, 1996] and chronological backtracking.
With this internal information, we see that, due to poor design, the experiment does

not provide any insight as to why Monolith1 is better than Monolith2: is it the heuristic
or is it the retraction method?

An obvious solution, if we are to examine which heuristic is better, is to use a more
rigorous, non-monolithic experimental design. More revealing results are displayed in
Figure 3. The results from Figure 1 (Monolith1 is now identified by SumHeight+LDS,
Monolith2 is now CBASlack+Chron) are re-displayed together with two other algo-
rithms: CBASlack with LDS (CBASlack+LDS) and SumHeight with chronological
backtracking (SumHeight+Chron). These results show an interesting interaction
between the heuristic and retraction techniques. With chronological backtracking Sum-
Height performs significantly better than CBASlack, however this difference disappears
when using LDS.

Our point is not the actual comparison of SumHeight and CBASlack (see [Beck
et al., 1997b] for a comparison) but rather that:

1: finished := false
2: while(finished = false){
3: edge-finding
4: if (edge-finding makes no commitments)
5: CBA
6: if (no commitments from CBA or from edge-finding)
7: make heuristic commitment
8: if (dead-end)
9: retract some commitment
10: else
11: arc-B-consistency temporal propagation
12: if (all-activities-sequenced OR CPU limit reached)
13: finished := true
14: }

Figure 2. The Template for Monolith1 and Monolith2
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1. Any claim of superiority of the heuristics based on the results of the monolithic
experiment is unjustified.

2. The monolithic experiment, even when the components of the algorithms are
known, may hide interesting data such as the interactions between heuristics and
retraction techniques that we see in Figure 3.
Such experiments do appear in the literature due, partially, to the fact that research-

ers often work on whole algorithms and test new algorithms against existing ones. For
example, [Smith and Cheng, 1993] compare four algorithms:
• PCP – using temporal arc-B-consistency and CBA propagation techniques, the

CBASlack heuristic which posts precedence constraints between activities, and no
backtracking.

• ORR/FSS [Sadeh, 1991] – using the ORR/FSS heuristic which assigns start-times
to activities, temporal arc-B-consistency and resource arc consistency propagation,
and chronological backtracking.

• ORR/FSS+ [Xiong et al., 1992] – the same as ORR/FSS using a form of intelligent
backtracking instead of chronological backtracking.

• CPS [Muscettola, 1992] – using a heuristic which posts unary temporal constraints,
temporal arc-B-consistency, resource arc consistency, and restart backtracking.
Experimental results showed that PCP was competitive (in terms of number of

problems solved) with the other algorithms while using significantly less CPU time. In
the comparison of scheduling algorithms, we agree with these results and the interpre-
tation. However, among the four algorithms there are four different retraction tech-
niques (chronological backtracking, a form of intelligent backtracking, restart, and no
backtracking), three different sets of propagation techniques, and four different types of
heuristic commitments (e.g., assigning start-times, posting precedence constraints). On
that basis, we do not believe the following conclusion is justified: “Evaluation … has
shown that our heuristics provide comparable results at very low computational
expense.” [Smith and Cheng, 1993, p. 144]. The results may be due to the CBASlack
heuristic as claimed, or to the CBA propagation or to the differing types of commit-
ments that each heuristic makes. What happens if we use the CBA propagator with the
ORR/FSS heuristic? What happens if we post precedence constraints with CPS?

As a second example, [Nuijten, 1994] compares the SOLVE algorithm (using a ran-
domized heuristic commitment technique to assign start-times, sophisticated propaga-
tion (edge-finding, temporal and resource arc consistency), and bounded chronological
backtracking with restart) against ORR/FSS (as described above) and against ORR/FSS
augmented with the propagation techniques used by SOLVE. The results showed that
SOLVE strongly outperforms augmented ORR/FSS which in turn strongly outperforms
ORR/FSS. From the comparison of augmented ORR/FSS and ORR/FSS, it is observed
that the sophisticated propagation techniques contribute significantly to the scheduling
algorithms. In comparing SOLVE and augmented ORR/FSS, however, there are two
candidates for the performance difference: the heuristic commitment technique and the
retraction technique. Nuijten states that these results do not mean that sophisticated
heuristics such as those used in ORR/FSS are not useful, however, despite this state-
ment, the results cast them in a poor light given that they were not directly tested.

In our analysis of existing constraint-directed scheduling techniques [Beck, 1997],
we have identified, four key components present in many scheduling algorithms:
• Commitment Type We take the general view that a commitment is a set of con-

straints added to the constraint graph. However, we expect that different types of
constraints (e.g., assigning start-times by adding unary equals constraints, sequenc-
ing activities by adding binary precedence constraints) will have different effects on
scheduling performance. Given that the same heuristic techniques can be used to
make different types of commitments, the commitment-type is an important and
orthogonal component of a scheduling algorithm.



• Propagators A propagator is an algorithm that analyzes the current search state to
find new constraints that are logically implied by, but not explicitly present in, the
constraint graph. Examples of propagators include the arc-B-consistency, CBA, and
edge-finding noted above.

• Heuristic Commitment Techniques Heuristic commitment techniques are algo-
rithms that heuristically suggest that a constraint or a set of constraints, though not
necessarily implied by the current search state, are likely to lead to a solution.
Above we noted the CBASlack heuristic and the heuristic based on the SumHeight
contention estimation algorithm.

• Commitment Retraction Techniques When a dead-end (i.e., a search state where
one or more existing constraints is broken) is reached, the commitment retraction
technique identifies a previously made commitment or commitments to be removed
from the constraint graph and determines how to handle intervening commitments
(i.e., those made between the dead-end state and the state chosen to backtrack to).
For example, chronological backtracking and LDS are two retraction techniques.
It is critical that researchers isolate the components of a scheduling algorithm and

perform experiments that compare components of the same type. Furthermore, such
comparison can not be done simply under one experimental design (i.e., by holding all
the other components constant) because, as demonstrated in Figure 3, there is the possi-
bility of interactions among components. Identifying and investigating these interac-
tions is an invaluable addition to understanding at a deep level the behaviour of search
on a scheduling problem.

Pitfall II: Measuring CPU Time
Unfortunately, even when taking into account different components of a scheduling
algorithm, the basis upon which competing algorithms are evaluated may be a source of
errors, confusion, and difficulty. Consider the following experiment designed to test the
effectiveness of two heuristic commitment techniques: CBASlack and SumHeight.

The two heuristic commitment techniques are tested with the propagators noted
above (CBA, edge-finding, temporal arc-B-consistency) and with the LDS retraction
component. The problems are 5 sets of 60 job shop scheduling problems, with sizes of
{10×10, 12×12, 15×15, 18×18, 20×20} generated using Taillard’s problem generator
(Taillard, 1993). A CPU time bound of 20 minutes was allowed for each algorithm on
each problem. If the bound was reached, failure on that problem was returned. Results
in terms of number of problems solved are shown in Figure 4. The mean CPU time for
the problems that both algorithms solved is displayed in Figure 5.

These results indicate that CBASlack and SumHeight perform about equally on
these problem sets. However, Figure 6 and Figure 7 show a different perspective on the
same experiment. On problems solved by both algorithms, we plot the mean number of
implied commitments (those made by a propagator) in Figure 6 and the mean number
of heuristic commitments in Figure 7.

Contrary to appearances the only significant difference between the implied com-
mitments is for problems of size 10×10. Figure 6 and Figure 7 demonstrate that by far
most of the commitments are implied commitments. Given the shape similarities
between Figure 6 and Figure 5, we also might infer that the CPU time is dominated by
the propagators.2 Using CPU time, therefore, when our goal is to compare the heuris-

2. Figure 5 and Figure 6 do not directly amount to evidence of the dominance of CPU time by the
propagators, however, two additional pieces of information help in the inference. First, we have
implemented Nuijten’s edge-finding algorithm [Nuijten, 1994] which has a time complexity, in
each search state, of O(mn2) (m is the number of resources, n the number of activities per
resource) in both average- and worst-case. This is greater than the worst-case complexity of Sum-
Height and the average-case complexity of CBASlack. Second, anecdotal evidence indicates that,
in our implementation, over 30% of the CPU time is spent in edge-finding alone.



tics does not appear to be helpful. Differences in the heuristic performance are not
reflected in the overall CPU time. In particular, CPU time hides the fact that, as shown
in Figure 7, SumHeight makes significantly fewer heuristic commitments on each prob-
lem set and that SumHeight makes significantly more implied commitments per heuris-
tic commitment on each problem set, as can been seen by comparing Figure 6 and
Figure 7.

One view is that if our goal is to solve as many problems as we can in as short a time
as we can, the number of heuristic commitments made is not a relevant statistic. We are
interested in the bottom line performance and whether that performance is achieved
with implied, heuristic, or divine commitments is not important. This view, typical of
end-users of scheduling systems, is important especially if we want the systems we are
developing to have industrial relevance. However, given that we are developing systems
and that experiments must be on some set of problems, differences such as the number
of heuristic commitments or the ratio of implied commitments to heuristic commit-
ments are important. We take, for instance, the commitment ratio results to indicate that
SumHeight is able to better identify critical, highly constrained areas in the constraint
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graph than CBASlack and further argue that this ability is important and will be
reflected in bottom line performance as we move toward larger, industrial problems
[Beck et al., 1997a].

The basis upon which algorithms are compared is an important issue in empirical
scheduling research and, indeed, empirical algorithm research more generally. Compar-
isons based on overall CPU time, though important, lead to a number of issues
[Hooker, 1996] such as the need to compare research code against industrial code and
therefore to spend time in the software engineering of code optimization rather than on
research. As we have shown, an additional difficulty is that overall CPU time may not
speak to a comparison of the components of a scheduling algorithm in which the
researcher is interested.

Conversely, CPU time can be very relevant in decisions as to the viability of sched-
uling approaches. For example, we have observed a three order of magnitude improve-
ment in CPU time in algorithms when we have restructured them to optimize average
time complexity. This has had significant impact in the research that we have pursued.
Results that indicate an average performance of, say 200 CPU seconds, on small job
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shop problems, might be taken as evidence that our approach is not going to be able to
address larger industrial problems and so we may choose to investigate other options.
In contrast, if that performance is 0.2 CPU seconds, our confidence in our methods and
their scalability is significantly higher.3

We find that both of these arguments have merit and propose a balanced approach.
Comparisons should be done both using CPU time and other search statistics (e.g.,
number of commitments, number of backtracks, the ratio of commitments to back-
tracks). In the end, gathering and analyzing all these statistics will significantly aid in
diagnosing performance and developing a deeper understanding of the algorithm
behaviour. Even if CPU time is the main (or only) industrially relevant statistic, in the
long term a balanced basis for evaluation will lead to a better understanding and, as a
result of the deeper understanding, hopefully, to better CPU performance.

Pitfall III: Measuring Other Search Statistics
One of the problems with gathering multiple search statistics is that the experimental
design can effect the validity of the data gathered. In optimization problems, it is com-
mon to compare algorithms on the basis of the mean relative error from optimal. Satis-
faction algorithms can be tested on optimization problems by using a time bound and
attempting to solve the problem at its known optimal. If the algorithm fails, the problem
is relaxed (by some percentage of the optimal) and the algorithm is run again. This pro-
cess is repeated until the problem is solved. The researcher then reports the mean rela-
tive error: the mean percentage above the optimal cost at which an algorithm was able
to find a solution.

Unfortunately, this method can lead to mistaken assumptions about search statistics
other than mean relative error. The difficulty arises because each algorithm (potentially)
solves a completely different set of problems. On a single problem in the set, one algo-
rithm may solve it to optimality while another may solve it to 1% of optimality, and a
third only to 5%. Each algorithm has solved a different problem. If the problem charac-
teristics change at different percentages of the optimal, this experimental design may
have significant impact on results and conclusions. In particular, the interpretation of
potentially interesting search statistics other than mean relative error may be suspect.

Table 1 presents a set of results from such a mean relative error experiment
designed to test the efficacy of a number of heuristic commitment techniques.4 A num-
ber of potentially interesting search statistics were gathered with the intention of using
them subsequently to diagnose search behaviour. Because we are running propagators
as well as a heuristic commitment component, an obvious statistic is to identify how
many of the commitments are implied, that is, found by propagators. We also calculate
the number of commitments for each probe in the search tree (Commitments/Probe),
the number of heuristic commitments for each probe (HC/Probe), and the number of
implied commitments for each heuristic commitment (IC/HC). A probe is defined to be
the sequence of consecutive commitments not interrupted by a dead end.

In examining these statistics we may be able to develop insights into performance
differences. Why, for example, was SumHeight able to solve problems significantly
closer to optimal than LJRand? We observe that SumHeight has significantly fewer
commitments per probe and heuristic commitments per probe. A possible explanation
for the performance difference is that the SumHeight heuristic is able to detect dead-

3. The argument here is not that because we have good performance on small problems our algo-
rithms will necessarily scale to industrial problems. Rather it is that if we have poor performance
on small problems, there is little hope that the algorithms will improve when applied to larger
problems. Another pitfall, however, that we do not have space to discuss here, is the common
assumption that algorithms that show good results on small problems will scale up. Our experi-
ence with large industrial problems suggests that this is not necessarily the case.
4. See [Beck et al., 1997b] for a discussion of each of these heuristic commitment techniques.



ends earlier and therefore backtrack earlier, wasting less time in a sub-tree that will
eventually prove fruitless. Unfortunately, an alternative explanation is that SumHeight
solved problems with a smaller makespan (i.e., a smaller mean relative error) which
correlates highly with how constrained the problem is. Because the problems are more
constrained, SumHeight is able to detect dead-ends sooner than LJRand on less con-
strained problems. The results may not have anything to do with a difference between
SumHeight and LJRand but rather between the problems each solved.

To take another example, in Table 1 we see that SumHeight averages almost three
times the number of implied commitments per heuristic commitment than CBASlack. It
is tempting to conclude that the reason that SumHeight is able to find better solutions is
that it is better able to identify and make commitments in highly constrained areas of
the graph. This argument is again hampered by the experimental design. CBASlack
solved problems with a larger makespan, which therefore are less constrained than
those solved by SumHeight. Based on the results in Table 1 it is not justified to attribute
the success of SumHeight to the ability to identify highly constrained sub-graphs. The
problems solved by SumHeight are more highly constrained and so the IC/HC ratio
may simply be an artifact of the problems that were solved.

There do not appear to be easy ways to avoid having experimental design affect the
validity of the search statistics. This is especially the case if the gathering of a particular
statistic was not planned at design time. While design-for-measurement is important
and preferable, unfortunately, it is not always the case that the researchers foresee all
the data that might be interesting before the experiment is designed and run. A prag-
matic approach suggests care with experimental design to take into account statistics
that might be of interest and the less satisfying practice of a posteriori vigilance:
researchers need to be particularly aware of alternative explanations arising from arti-
facts of experimental design.

Pitfall IV: Dangers of Benchmarking
Until recently, at least within the AI community, there were no widely used scheduling
benchmarks. With Sadeh’s problem set [Sadeh, 1991] and the adoption of the OR-
library benchmark set [Beasley, 1990] this has changed.5 This is not to say that problem
sets were not previously available, but rather than there was little or no effort to cross-

a. HC: Heuristic Commitment, IC: Implied Commitment

5. ORLIB has existed for sometime within the OR community, but it is only in the past few years,
due primarily to cross-fertilization from the OR world, that it has been used in the AI community.

Heuristic Relative
Error

Commitments
(HC, IC)a Backtracks Commitments/

Probe
HC/

Probe
IC/
HC

Sum-
Height 2.26 29751

(1426, 28325) 676 87.13 8.93 20.08

CBA-
Slack 3.05 10215

(1162,9053) 400 120.74 35.45 6.99

First-
Commit 4.49 25650

(1494, 24155) 947 112.79 5.78 19.15

LJRand 10.54 1329
(144, 1184) 9 448.64 50.32 7.86

Table 1: Mean Search Statistics for MRE Experiment with CPU Time Limit of
1200 Seconds



validate scheduling strategies on problems generated by other researchers. We view the
rise of benchmark sets that are used by a variety of researchers as a positive step in the
maturity of the field; however this step is not without its perils. Chief among the perils
is a concentration solely on existing benchmarks rather than their use as part of the
overall evaluation strategy.

To illustrate a simple interpretation of special case results, we use data from an
(unpublished) pilot experiment. The experiment was designed to test the efficacy of a
new idea for retraction of commitments that had been developed in our lab, TestBT.6

We decided to test the new retraction technique against three existing techniques: LDS,
chronological backtracking, and random backtracking (RandomBT—randomly select a
previously made heuristic commitment, backtrack to it (undoing all intervening com-
mitments) and make an alternative commitment). Each algorithm used the same heuris-
tic commitment technique and propagators.

We had at our disposal the two benchmark sets noted above, Sadeh’s problems and
the ORLIB set. We first used Sadeh’s problems and found that 53 of the 60 problems
could be solved with no backtracking. This cut our problem set down to the remaining 7
problems. Table 2 shows the results of running three of the backtracking techniques on
the problems (chronological backtracking was not able to solve any of these problems
within a bound of 1000 backtracks).

Based on these results, TestBT does not look promising—it is even worse than ran-
dom! Fortunately, we also tested LDS which we had reason to believe would perform
better than RandomBT [Harvey, 1995]. The fact that RandomBT is competitive with
LDS leads us to believe that the problem set is distorting our results. Possible explana-
tions for these results include the small sample size and/or a floor effect: the problems
are just too easy to show any differences among the retraction techniques.

To further investigate the efficacy of TestBT, we used 13 of the ORLIB problems.
Using a 600 CPU second time bound, each algorithm attempted to solve each problem
at its optimal makespan. If it was unsuccessful, the makespan was expanded by 0.005
times optimal. This continued until 1.1 times optimal, where, if the algorithm could not

6. We do not specify the actual retraction technique as it is irrelevant to this discussion and would
detract from our main point.

Problem
TestBT RandomBT LDS

Commitments BTs Commitments BTs Commitments BTs

1 291 11 191 3 172 1

2 427 20 203 4 197 2

3 748 48 251 6 203 2

4 288 12 157 1 205 2

5 745 24 179 1 642 7

6 1086 26 1386 42 2593 69

7 237 12 170 2 155 1

Table 2: Number of Commitments and Number of Backtracks (BTs) for 3
Retraction Techniques



solve the problem, it gave up. Figure 8 shows the results of this experiment (relative
error values of 1.11 are used to indicate that the algorithm did not solve the problem at
all within the time and makespan bounds).

Results in Figure 8 are very different from Table 2. Now the best algorithm (in
terms of finding the closest to optimal makespan) is always either LDS or TestBT while
the worst algorithm is always either chronological backtracking or RandomBT. On the
basis of these results, we are lead to believe that exploration of TestBT is justified.

Generally, we have one or more of the following goals when running experiments:
• The ability to draw conclusions that are applicable to problems outside the bench-

mark set. Our benchmark sets, therefore, need to be representative of some interest-
ing population of scheduling problems.

• The ability to draw conclusions that are applicable (or extendible) to industrial
scheduling problems. Industrial problems may be a particular case of an interesting
population; however we note them explicitly due to the scope of characteristics that
have not been rigorously addressed (see Pitfall V).

• The ability to compare various algorithms.
It is unlikely that one benchmark set can be used toward all these goals. Further-

more, the relative evaluation of algorithms may change depending on the priority of
these aims. With these goals in mind, we suggest the following types of problems
should make their way into future benchmark sets.
1. Randomly generated problems An algorithm independent notion of difficulty

(such as the identification of a phase transition [Cheeseman et al., 1991; Gent
et al., 1996; Beck and Jackson, 1997]) requires statements about the entire space of
problems. Therefore, sets of randomly generated problems of varying sizes are a
necessary vehicle of demonstration.

2. Structured randomly generated problems Structured problems that are generated
with some random component are also necessary. The structure is likely to stem
both from the empirical notions of difficulty (e.g., the intuition that bottleneck
resources lead to more difficult problems [Sadeh, 1991]), and from structures in and
characteristics of real world problems.
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3. Standard benchmarks As noted above, standard benchmark problems are becom-
ing widely used in the scheduling community. While these sets are unlikely to be
representative of the entire space of problems, their usefulness as data points, given
the mass of work that has addressed the problems, is significant.

Pitfall V: Makespan Considered Harmful
A lot of research and CPU cycles have been devoted to the optimization of makespan in
job shop problems while, with a few notable exceptions [Saks, 1992; Nuijten, 1994;
Le Pape, 1994b; Brucker and Thiele, 1996; Caseau and Laburthe, 1996; Nuijten and
Aarts, 1997], little has been done on expanding the scope of constraint-directed sched-
uling technology much beyond the job shop. This is particularly distressing since, from
the inception of constraint-directed approaches to scheduling, it has been recognized
that real industrial scheduling is not simply meeting due dates, but rather satisfying
many complex (and interacting) constraints from disparate sources within the plant and,
indeed, the enterprise as a whole [Fox, 1983; Fox, 1990]. In fact, this was one of the
original reasons to believe that scheduling was a prime application of constraint tech-
nologies.

It is unclear whether our preoccupation with makespan has allowed us to make
many in-roads into the realities of scheduling problems that have existed for decades in
industrial settings. Consider the following examples:
• Varying release dates and due dates Jobs are released for execution and due to be

completed at varying time points over the scheduling horizon. While many
advances in makespan optimization (e.g., edge-finding) carry over to these prob-
lems, it is not clear if they will have as much of an impact on this class of problems.
Furthermore there has been little work of which we are aware that examines tech-
niques (e.g., problem decomposition) that might be especially applicable to such
problems. The addition of independent release times and due dates for different jobs
is a trivial addition to the job shop model, yet it is unclear what techniques for
makespan optimization can be carried over.

• Advanced temporal constraints The overwhelmingly most popular temporal rela-
tion among activities in scheduling research is the precedence constraint. Given that
the 13 Allen relations [Allen, 1983] (e.g., meets, during) have been recognized for
many years and have been noted in many scheduling papers, it is surprising how lit-
tle they have been addressed. Industrially such constraints arise in contexts such as
curing, cooling, and spoilage, among others. These constraints have been so ignored
that simple-minded techniques can result in surprising gains in scheduling ability in
problems that contain such constraints [Davenport et al., 1997].

• Inventory Inventory is produced and consumed (often at varying rates) by activities
in a manufacturing setting. Inventory must be stored and there may be a host of con-
straints, both temporal and capacity-based, with respect to how long and where it
can be stored. While existing systems (notably ILOG Schedule [Le Pape, 1994b;
Le Pape, 1994a] and KBLPS [Saks, 1992]) represent inventory, the only published
results appear to be algorithms that are crafted for specific problems rather than gen-
erally addressing scheduling with inventory.

• Time-varying constraints Constraints, especially resource and inventory con-
straints in the manufacturing context, change over the scheduling horizon. The sim-
plest example of this is scheduled down-time for a resource. More complicated
examples exist, including time varying supply and demand (e.g., in a seasonal busi-
ness it is desirable to enforce a minimum inventory level that increases as the pre-
dicted high-season approaches), changes in staffing (e.g., “learning” time during
which new operators are not able to perform at peak speed or the fact that more peo-
ple call in sick on Friday), and shift-specific operations (e.g., clean-outs can only be
done at night or on the weekend).



• Production choices There may be many ways to produce any particular finished
good or intermediate product. The activity model from raw materials to final prod-
uct is not, in fact, a simple acyclic temporal network (as it is often modeled) but an
acyclic graph with specific choice points. These choices may represent trade-offs in
quality, cost of production, or time, and are subject to resource and inventory use.
Until we have a partial, evolving schedule, we do not know which choices should be
made at these points.
These examples are low-level issues concerning specific scheduling constraints that

have received little treatment in the literature. There are also a host of higher-level
issues such as the robustness of schedules and the ease of rescheduling at execution
time [Ow et al., 1988; Drummond et al., 1994; Hildum, 1994], relaxation of constraints
in over-constrained problems [Beck, 1994], and, more generally, what constitutes a
good solution. For example, imagine a system that creates schedules with a probabilis-
tic measure of the ability to execute the schedule. Rather than guaranteeing a execut-
able schedule (as is part of the definition of a solution in the research world), the system
guarantees that the schedule can be executed with a probability of, say, 95%. In the cur-
rent view of scheduling research, such a scheduler would not solve any problems at all,
yet related concepts (e.g., probabilistic customer service levels7) are commonly used in
the industrial setting.

Constraints can model scheduling problems in a much more flexible, accurate, and
representational way than other methods, for example, that rely on mathematical pro-
gramming techniques. Why then are we spending an inordinate effort in attempting to
squeeze the last 0.5% from the makespan of a particular instance of a scheduling prob-
lem?

Conclusion
Our purpose in this paper is to raise points for discussion with the eventual goal of
facilitating the maturation of the field of empirical scheduling research. We believe that
wide awareness of these pitfalls will encourage such maturation and make advances
easier to achieve and validate.

In this paper, we have looked at five pitfalls that we have observed in our work in
empirical scheduling. In particular, using data from actual experiments, we examined:
• the view of a scheduling algorithm as a monolithic whole,
• the use of CPU time as a performance measure,
• how experimental design can effect search statistics,
• the use of benchmarks, and finally,
• the use of makespan optimization as a primary goal in scheduling research.

The goal of scheduling research is to increase the ability to solve interesting prob-
lems. The source of the interest (e.g., industrial need) may be important; however
greater and more regular progress will be made if we can form an understanding of the
behaviour of scheduling techniques on different problem types. This understanding will
arise neither out of a concentration on delivering a solution to a particular type of prob-
lem nor out of a wholly abstract approach. A balanced approach suggests two research
engines: application of theory to real world problems and generalization of practical
advances to theoretical concepts. We believe that an understanding of pitfalls such as
we have described here will aid in both of these efforts.

7. A probabilistic customer service level of 95% allocates inventory to a warehouse such that all
customer orders will be met at least 95% of the time.
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