
Texture-Based Heuristics for Scheduling Revisited

J. Christopher Beck*, Andrew J. avenpor6, Edward M. §itarsk& Mark S. Fox**

Department of Computer Science* and Department of Industrial Engineering$ Numetrix Limited’
University of Toronto

- -
655 Bay St., Suite 1200

Toronto, Ontario, CANADA, M5S 3G9 Toronto, Ontario, CANADA, M5G 2K4
{Chris, andrewd, msf} @ie.utoronto.ca ed@tor.numetrix.com

Abstract

Recent scheduling work has challenged the need for sophisti-
cated heuristics such as those based on texture measurements.
This paper examines these claims in the light of advances in
scheduling technology. We compare a number of current heu-
ristic commitment techniques against a texture-based heuris-
tic. Our results demonstrate that texture-based heuristics can
outperform these widely-used heuristic commitment tech-
niques.

tics with the same consistency techniques
(Nuijten, 1994).
In this paper we re-evaluate texture-based heuristics in

light of recent advances in scheduling technology and show
that on two job shop scheduling problem sets (a widely
used set of Operations Research benchmark problems and a
set of randomly generated, hard problems) a texture-based
heuristic outperforms heuristic commitment techniques
found in the literature.

Introduction
Our research goal is to be able to model and quickly solve
scheduling problems as they exist in the real world. We are
less interested in optimal solutions than in fast approximate
solutions: a quickly found solution that takes into account
all the constraints in the real problem is of significantly
more use than an optimal solution that either takes too long
to find or does not accurately represent the problem. We are
applying and extending constraint-directed scheduling tech-
niques toward this end.

The n x m Job Shop Scheduling Problem Given are a set
of n jobs, each composed of m totally ordered activities, and
m resources. Each activity Ai requires exclusive use of a
single resource Rj for some processing duration duri.. There
are two types of constraints in this problem:
0 Precedence constraints between two activities in the same

job stating that if activity A is before activity B in the total
order then A must execute before B (that is, A + B).

0 Resource constraints specifying that no activities requir-
ing the same resource may execute at the same time.
Jobs have release dates (the time after which the activi-

Our search philosophy is to spend significant but low
polynomial effort (0(n2) or even 0(n3)) in the analysis of
each search state to find the most critical constraint in that
state, and then make a heuristic decision to reduce this criti-
cality. We believe this will lead to strong algorithms due to
the decomposition of a problem after critical decisions are
made and the related minimization of the need for back-
tracking. Investigation of the validity of this philosophy of
constraint-directed problem solving forms our long-term
research agenda.

ties in the job may be executed) and due dates (the time by
which the last activity in the job must finish). In the deci-
sion problem, the release date of each job is 0 and a global
due date is D. The problem is to determine whether there is
an assignment of a start-time to each activity such that the
constraints are satisfied and the maximum finish-time of all
jobs is less than or equal to D. This problem is NP-complete
(Garey and Johnson, 1979).

In this paper we address the use of texture measurements
(Fox et al., 1989). Texture measurements are a foundation
for sophisticated heuristic decision making and, as such, are
complementary to recent advances in scheduling research
(e.g., edge-finding (Carlier and Pinson, 1989;
Nuijten, 1994), constraint-based analysis (Smith and
Cheng, 1993; Cheng and Smith, 1996), limited discrepancy
search (Harvey and Ginsberg, 1995)).

A number of criticisms have appeared in the scheduling
literature with regard to texture-based heuristics. In particu-
lar, it is claimed that:
e Texture measurements are too complicated and equal per-

formance can be achieved with simpler heuristics (Smith
and Cheng, 1993).

Notation For an activity, Ai, Sl;: is the start-time variable
and STDi is the discrete domain of possible start-times. esti
and ZSti represent the earliest and latest possible start-times,
while efti and Zfti represent the earliest and latest possible
finish-times. duri is the duration of Ai. We will omit the sub-
script unless there is the possibility of ambiguity.

xture easurements for SC ding
euristics

e A simple heuristic with sophisticated consistency tech-
niques (edge-finding) outperforms texture-based heuris-

It is our conjecture that an understanding of the structure of
a problem will lead to more effective methods to solve the
problem. Therefore, our goal is to formalize the concept of
problem structure. Experience of both Operations Research
and constraint-directed problem solving provides evidence
that many problems can be adequately modeled by a con-
straint graph and that the structure of these graphs has sig-
nificant impact on the efficacy of problem solving methods.
Therefore we adopt the view that a problem’s structure is
defined by its constraint graph.

Copyright 0 1997, American Association for Artificial Intelligence (www.aaai.org). All
rights reserved.

HEURISTICS FOR SCHEDULING 241

Given a constraint graph representation, are there prob-
lem invariant measurements of the problem topology that
may form a basis for heuristic problems solving tech-
niques? A number of such measures, called texture mea-
surements, have been identified and experimented with
(Fox et al., 1989; Sadeh, 1991). A texture is a measurement
of a fundamental property of a constraint graph. A search
heuristic (e.g., variable and value ordering heuristics) is a
function of one or more textures. A texture measurement is
not a heuristic. Rather, it is a method of gathering informa-
tion from the constraint graph which heuristics can then
use. For example, a texture measurement may label some
structures in the constraint graph (e.g., constraints, vari-
ables, sub-graphs) with information condensed from the
surrounding graph. On the basis of this condensed informa-
tion, heuristic decisions are made.

The chief example of the use of texture measurements in
scheduling is the Operation Resource Reliance/Filtered
Survivable Schedules (ORR/FSS) heuristic implemented in
the MicroBOSS Scheduler (Sadeh, 1991; Sadeh and
Fox, 1996). ORR/FSS assigns start-times to activities using
the contention and reEiance texture measurements as a basis
for the variable and value ordering heuristics. In general,
contention is the extent to which two variables, connected
by a disequality constraint, compete for the same value.
Similarly, reliance is the extent to which a variable must be
assigned a particular value if a solution is to be found. In
scheduling, contention is the extent to which two activities
compete for the same resource at the same time while reli-
ance is the extent to which an activity must be executing on
a specific resource at a particular time point in order to find
a schedule. The exact calculation of these textures is pro-
hibitively expensive, therefore, an estimation of the actual
textures are used.

MicroBOSS identifies the most contended-for {resource,
time interval} and assigns it to the activity that is most reli-
ant on that resource and time interval. Simple chronological
backtracking and intelligent backtracking (Sadeh
et al., 1995) have been used in MicroBOSS to solve a num-
ber of constraint satisfaction and constraint optimization
problems better than the best existing dispatch rules.

The SumHeight Heuristic’
The texture-based heuristic used here, SumHeight, is a vari-
ation on ORlUFSS. As with ORR/FSS, SumHeight makes a
commitment on the activities most reliant on the resource
for which there is the highest contention. In more detail,
SumHeight does the following:
1. Identifies the resource and time point with the maximum

contention.
2. Identifies the two activities, A and B, which rely most

on that resource at that time and that are not already
connected by a path of temporal constraints.

1. By referring to the “SumHeight heuristic” we are conflating two
notions: the estimation of the texture measurements and the heu-
ristic based on that estimation. Strictly speaking, SumHeight is the
algorithm for the estimation of contention and reliance, that is, for
the calculation of the individual and aggregate demand curves.
The heuristic then, based on the contention and reliance estimate,
identifies the commitment to be made. Because SumHeight is the
only texture measurement estimation algorithm used in this paper,
we refer to the SumHeight heuristic. It should be noted however
that the same heuristic technique may be based on a different
underlying texture measurement estimation algorithm (see (Beck
et al., 1997b) for examples of such).

242 CONSTRAINT SATISFACTION 6r SEARCH

Al I
dur=40

I est=l5

%I+ dur=20
est=O lft=22

dur= 10
trme

Figure 1. Earliest Start-times, Latest Finish-times, and
Durations of A,, A,, and A,

0 20 40 60 60 100
Time

Figure 2. Individual Demand Curves for A,, A,, and A3

3. Analyzes the consequences of each sequence possibility
(A -+ B and B + A) and chooses the one that appears to
be superior.

The intuition is that by focusing on the most critical
resource and activities, we can make a decision that reduces
the likelihood of reaching a search state where the resource
is over-capacitated and furthermore once such critical deci-
sions are made the problem is likely to be decomposed into
simpler sub-problems.

In the balance of this section, we present our estimations
of the contention and reliance textures and expand on the
SumHeight heuristic. These calculations rely heavily on
Sadeh’s original formulation (Sadeh, 1991).

Calculating Individual Demand
To calculate an activity’s demand for a particular resource,
a uniform probability distribution over the possible start-
times for an activity is assumed: each start-time has proba-
bility 111S7”1.2 The individual demand, ID(A,R,t), is (prob-
abilistically) the amount of resource R, required by activity
A, at time t. It is calculated as follows, for all estA I t < ZfA:

ID(A, R, t) =
min(t, IstA) - max(t - durA + 1, estA)

IsTDl
(1)

For example, we have 3 activities, Al, A,, and A,, on
resource, Rl. The earliest start-times, the latest finish-times,
and the durations of each activity are shown in Figure 1.

2. A uniform probability distribution is the “low knowledge”
default. Local propagation of value preferences can be used to find
a different estimate of the individual demand (Sadeh, 1991;
Muscettola, 1992).

The individual demand curves of each activity as calcu-
lated by Equation (1) are illustrated in Figure 2 (the “step”
functions: sadehA1, sadehA2, and sadehA3). For an intui-
tive feel for the calculation of the curve for A3, one may
imagine placing A3 at its earliest start-time, 0, and, for all
time points at which A, is “executing”, adding a demand of
l/13 (A3 can start at time points 0 through 12 inclusive). We
can then place A3 at its second earliest start-time, 1, and
again add l/13 for all the time points and so on through to
the latest start-time of A3.

A naive calculation of individual demand results in an
algorithm that scales with the number of activities and
resources, and with the length of the scheduling horizon. To
escape the dependence on the scheduling horizon, we use
an event-based representation and a piece-wise linear esti-
mation of the ID curve. The individual activity demand is
represented by four (t, ID) pairs:

(f?St, &)y (ISty min(‘si dur))p

(
eft min(~STDI, dur)

9
ISTDl)

7 u..~, 0)
(2)

The use of Equation (1) to calculate the points in Expres-
sion (2) results in the second set of curves displayed in Fig-
ure 2 (eventAl, eventA2, and eventA3).

Aggregating Individual Demand
To estimate contention, the individual demands of each
activity are aggregated for each resource. Aggregation is
done by summing the individual activity curves for that
resource. This aggregate demand curve is used as a measure
of the contention for the resource over time.

With the example used above, the aggregate resource
demand curve for resource Rl is shown in Figure 3
(sadehR1 is the aggregate curve using Sadeh’s original for-
mulation and eventR1 is the aggregate curve using our
event-based implementation).

Finding the Critical Activities
Once the aggregate demand curves are found for each
resource, we identify the resource and time point for which
there is the highest contention (with ties broken arbitrarily).
We then examine the activities that contribute individual
demand to the resource at that time point. The two activities
which are not connected to each other by a path of temporal
constraints and which contribute the most demand to the
aggregate resource demand at the critical time point are
defined to be the most critical activities. Because these two
activities contribute the most to the aggregate demand
curve, they are the most reliant on the resource at that time.

It can be seen in Figure 3 that one of the critical time
points on RI is 35. There are only two activities that con-
tribute to this time point, as A,‘s latest end-time is 22 (see
Figure 2). Therefore, Al and A2 are selected as the critical
activities.

Sequencing the Critical Activities
ORRZFSS assigns start-times to activities and so identifies
the single most reliant activity and uses a value ordering
heuristic to determine a value assignment.3 Because we
post sequencing constraints between the two most critical
activities, rather than assigning start-times, we do not use

0 20 40 60 80 100
Ttme

Figure 3. The Aggregate Demand Curve on IpI

Sadeh’s value ordering. Instead, to determine the sequence
of the two most critical activities, we use three heuristics:
MinimizeMax, Centroid, and Random. If MinimizeMax
predicts that one sequence will be better than the other, we
commit to that sequence. If not we try the Centroid heuris-
tic. If the Centroid heuristic is similarly unable to find a dif-
ference between the two choices, we move to Random.
MinimizeMax Sequencing Heuristic MinimizeMax
(MM) identifies the commitment which satisfies the follow-
ing:

MM = min(maxAD,(A, B), maxADv(B, A))

where:

(3)

maxAD,(A, B) = max(AD’(A, A + B), AD’(B, A + B)) (4)

AD’(A, A + B) is an estimate of the new aggregate
demand at a single time point. It is calculated as follows:
0 Given A + B, we calculate the new individual demand

curve of A and identify the time point, tp, in the individ-
ual demand of activity A that is likely to have the maxi-
mum increase in height. This leaves us with a pair: { tp,
Aheight}.

0 We then look at the aggregate demand curve for the
resource at tp and form AD’(A, A -+ B) by adding
Aheight to the height of aggregate demand curve at tp.
The same calculation is done for AD’(B, A + B) and the

maximum (as shown in Equation (4)) is used in
~‘?ZUXAD*(A, B). Equation (3) indicates that we choose the
commitment resulting in the lowest maximum aggregate
curve height. The intuition is that since we are trying to
reduce contention, we estimate the worst case increase and
then make the commitment that avoids it.
Centroid Sequencing euristic The centroid of the indi-
vidual demand curve is the time point that equally divides
the area under the curve.4 We calculate the centroid for
each activity and then commit to the sequence that pre-
serves the current ordering (e.g., if the centroid of A is at 15
and that of B is at 20, we post A + B). Centroid is a varia-
tion of a heuristic due to (Muscettola, 1992).

3. ORRFSS also uses a time interval equal to the average activity
duration rather than a single time point in identifying the critical
resource and activities.
4. This is a simplification of centroid that is possible because the
individual activity curves, as we calculate them, are symmetric.

HEURISTICS FOR SCHEDULING 243

Random Sequencing Heuristic Randomly choose one of
the sequencings.

In our example the MinimizeMax heuristic calculates
that maxAD (Al, A$ = 1.357 and K?UXAD’(A2, Al) = 1.700.
Therefore the commitment Al + A2 is made.

Complexjty
The worst-case time complexity to find a heuristic commit-
ment at a problem state is due to the aggregation of the
demand curves for each resource and the selection of the
critical activities. By storing the incoming and outgoing
slopes of the individual curves at each point, we can sort all
the event points and then, with a single pass, generate the
aggregate curve. This process has complexity of
O(mn log n) + O(mn). Selection of the pair of unsequenced
activities on the resource requires at worst an additional
O(n2). Thus the overall time complexity for a single heuris-
tic commitment is O(n2) + O(mn log n) + O(mn).

The space complexity is O(mn) as we maintain an indi-
vidual curve for each activity and these individual curves
make up the aggregate curve for each resource.

The Left-Justified andomized Heuristic
Nuijten (Nuijten et al., 1993; Nuijten, 1994) presents a ran-
domized scheduling algorithm, SOLVE, which uses power-
ful propagation techniques (edge-finding) to identify
commitments that are implied by the search state. Heuristic
decisions are made using the Left-Justified Randomized
Heuristic (LJRand). LJRand finds the smallest earliest fin-
ish-time of all the unscheduled activities and then identifies
the set of activities which are able to start before this time.
One of the activities in this set is selected randomly and
scheduled at its earliest start-time. Bounded chronological
backtracking with restart is used to escape dead-ends.

Experiments compared SOLVE with the ORR/FSS heu-
ristic (using chronological backtracking, temporal propaga-
tion and arc-consistency propagation on the resource
constraints) and with ORR/FSS augmented with the consis-
tency techniques used in SOLVE. These experiments found
that SOLVE strongly outperforms augmented ORR/FSS,
which in turn strongly outperforms unaugmented ORR/
FSS. It is not clear whether chronological backtracking or
the ORIUFSS heuristic are to blame for the poor perfor-
mance relative to SOLVE.

Alternative Heuristics for Schedu
A number of techniques have been suggested for making
heuristic decisions in the job shop scheduling problem. We
look at three of these in this section.

The time-complexity of the LJRand heuristic is O(mn) as
all the unsequenced activities must be examined and then
one randomly chosen.

The FirstCommit

The CBASlack Heuristic
The CBASlack heuristic was originally proposed as part of
the Precedence Constraint Posting (PCP) algorithm (Smith
and Cheng, 1993; Cheng and Smith, 1996). PCP uses the
Constraint-Based Analysis (CBA) (Erschler et al., 1976;
Erschler et al., 1980) propagator to find implied commit-
ments and the CBASlack heuristic to identify heuristic
commitments.

CBASlack analyzes all pairs of activities, not connected
by a path of temporal constraints, on each resource. The
heuristic decision is made using the Bslack (“biased-slack”)
calculation in Equations (5) through (7).

BsZack(Ai + Aj) =
sZack(Ai + Aj)

G (5)
4J3

S
min(sZack(Ai + Aj), sZack(Aj + Ai))

= max(sZack(Ai + Ai), sZack(Aj + Ai)) (6)

sZack(Ai + Aj) = Zftj - esti - (duri + durj) (7)

Bslack is calculated for all temporally unconnected pairs
of activities on the same resource and the pair with the
smallest Bslack value is identified as the most critical. The
sequence of the critical pair that preserves the most slack is
the one chosen. The intuition here is that a pair with a
smaller Bslack is closer to being non-viable than one with a
larger value. Once this pair is found, it is important to leave
as much temporal slack as possible to decrease the likeli-
hood of backtracking to this decision.

The time complexity of the CBASlack heuristic is
O(mn2) as all pairs of activities on each resource may have
to be examined.

(Baptiste et al., 1995) propose a technique for making heu-
ristic decisions implemented with the ILOG Schedule con-
straint library (Le Pape, 1994). The heuristic finds the
resource with the least slack and then analyses the unse-
quenced activities on that resource. Based on comparison of
the time-windows available for each unsequenced activity
on the critical resource, one is selected to execute first. All
activities on the critical resource are sequenced before iden-
tification of the next critical resource.

Slack on a resource is defined to be the difference
between supply of the resource (the time interval between
the minimum est and the maximum lj? of all unsequenced
activities) and demand (the sum of the durations of all unse-
quenced activities). The resource with the smallest slack is
selected. Once a resource is selected, an activity is chosen
to execute first among the unsequenced activities on the
resource. Consistency techniques can be used to identify
activities that can not execute first, however it is unclear
precisely which are used by (Baptiste et al., 1995). Once
the set of activities that can execute first is identified, one
activity is selected by the EST-LST rule: the activity with
the smallest est breaking ties with the smallest Zst. All activ-
ities on a resource are scheduled before moving to another
resource.

Following (Baptiste et al., 1995), we have implemented
FirstCommit. The resource with smallest slack is identified
as described above and the set of activities that can execute
first is found using an O(n) consistency algorithm based on
(Caseau and Laburthe, 1995). From this set the EST-LST
rule is used to choose the activity to execute first. Once the
resource is completely sequenced, FirstCommit moves to
the next unsequenced resource with minimum slack.

Time-complexity is O(mn) to calculate the resource slack
(which is not done for every heuristic commitment) and
O(n) to identify the activity to schedule first once the criti-
cal resource is known.

244 CONSTRAINT SATISFACTION & SEARCH

Experiments
Our experiments are designed to focus on the evaluation of
techniques for making heuristic commitments and so we
manipulate only the way in which heuristic commitments
are made. Three consistency techniques (edge-finding,
CBA, and temporal arc-B-consistency (Lhomme, 1993))
are used after each new heuristic commitment is made. If
the domain of possible start-times of any activity becomes
empty, a dead end in the search has been reached and we
backtrack. We use two backtracking techniques: chronolog-
ical backtracking and limited discrepancy search (LDS)
(Harvey and Ginsberg, 1995). The scheduling algorithm is
outlined in Figure 4. The CPU time limit for all experi-
ments is 20 minutes on a 100 MHz. HP 9000/7 12 running
HPUX 9.05.

Experiment 1
We used a set of 21 job shop scheduling problems (see
Table 1) from the Operations Research library of bench-
mark problems (Beasley, 1990). The problems are the
union of the problem sets used in (Vaessens et al., 1994)
and (Baptiste et al., 1995).

Each heuristic commitment technique is run on a number
of instances of each problem with a range of makespans.
Specifically, for each problem, the optimal (or best known
upper bound) makespan is used initially. If a solution can
not be found within the time limit, we increase this
makespan by 0.005 times the optimal makespan and re-run
the algorithm. Lengthening of the makespan continues until
a solution is found. Algorithms are then compared based on
the mean relative error between the makespan that they
were able to solve and the optimal makespan.

Figures 5 and 6 plot mean relative error for each heuristic
against the mean number of heuristic commitments made,
for chronological backtracking and LDS respectively. The
graph layout means that the better algorithms will be closer
to the lower left corner. Note the differing scales of the two
graphs. We do not report CPU time because it is dominated
by our relatively inefficient implementation of edge-find-
ing. This issue is discussed in detail in (Beck et al., 1997a).

With chronological backtracking, we see that LJRand
finds schedules with significantly higher mean relative error
(tested with a boot-strap paired t test (Cohen, 1995)) than
all the other heuristics (p < 0.0001) with significantly fewer
heuristic commitments @ 5 0.001, tested with a boot-strap,
two-sample t test (Cohen, 1995)). SumHeight finds signifi-

(Adams et al., 1988)
(Fisher and

Thompson, 1963)

(Lawrence, 1984)

(Applegate and
Cook, 1991)

Tal le 1: Test Problems

laO2(655), la1 9(842), la20(902),
la21(1046), la24(935), la25(977),
la27(1235), la29(1130/l 153)
la36(1268), la37(1397), la38(1196),
la39(1233), la40(1222)
orbOl(1059), orb02(888), orb03(1005),
orb04(1005), orbO5(887)

finished := false
while(finished = false) {

edge-finding
if (edge-finding makes no commitments)

CBA
if (no commitments from CBA or

from edge-finding)
make heuristic commitment

if (dead-end)
backtrack

else
arc-B-consistency temporal propagation

if (all-activities-sequenced OR
CPU limit reached)

finished := true
>

Figure 4. Basic Scheduling Algorithm

10 -

7 6-
@
b
5

2 6-
2

s

f 4-

0
LJRand

0
FwstCommit

CBASlack +

SumHeIght ’

I

0 200 400 600 600 1000 1200 1400 1600
Mean # of Hewsttc Commitments

Figure 5. Mean elative Error vs. Mean # of
Commitments Using Chronological Backtracking

5 I

45 -

4-
LJRand o

3.5 -

g
E 3
3 0
: 25- FlrstCommlt

s
(r
5 2
f

15 - SumHeIght x
CBASlack +

1 -

05 -

0
2000 3000 4000 5000 6000 7000

Mean # of HeurWc Commitments

Figure 6. Mean Relative Error vs. Mean # of Heuristic
Commitments Using LDS

HEURISTICSFORSCHEDULING 245

cantly better schedules that both CBASlack (p < 0.05) and
FirstCommit (p I 0.0001) and CBASlack in turn finds bet-
ter schedules than FirstCommit (p < 0.01). There are no sig-
nificant differences in the number of heuristic commitments
amongst SumHeight, CBASlack, and FirstCommit.

The LDS results show no significant difference between
SumHeight and CBASlack in terms of mean relative error
but FirstCommit finds significantly worse schedules
(p 5 0.001) and LJRand finds significantly worse schedules
than FirstCommit (p < 0.0001). In terms of the number of
heuristic commitments the only significant result is that
FirstCommit uses fewer heuristic commitments than any of
the other heuristics (p 5 0.05).

In terms of comparing chronological backtracking with
LDS, we see that all heuristics find significantly better
schedules with LDS, although requiring significantly more
heuristic commitments to do so. SumHeight has signifi-
cantly less improvement than all other heuristics (p < 0.05,
tested using the boot-strap paired t test) when it uses LDS
as compared to when it uses chronological backtracking.
LJRand has significantly more improvement in using LDS
than all the others (p < 0.0001). This may be the result of a
ceiling effect (i.e., SumHeight has less room for improve-
ment than LJRand due to its better performance with chro-
nological backtracking), but it appears that LDS is helping
the weaker heuristics (as judged by their performance with
chronological backtracking) more than the stronger.

Experiment 2
A difficulty with the results of Experiment 1 is that the
experimental design, though common in scheduling
research, may result in each algorithm solving different
problems due to different makespans. This limits the con-
clusions we can draw from an analysis of the experiments
using data other than mean relative error. For example, for
the chronological backtracking results we see that LJRand
uses significantly fewer heuristic commitments than all
other heuristics. Perhaps this is a real effect due to some
characteristic of LJRand; however there is an alternative,
and, in this case, more likely, explanation: LJRand solves
problems with significantly larger makespans and fewer
heuristic commitments simply due to the easier problems.
Any explanation of performance differences (other than
those concerning mean relative error) is suspect: there is
always the argument that the difference is due to solving
different problems.

To address this issue we ran a second experiment using a
larger problem set of varying sizes and (expected) difficul-
ties. Using Taillard’s (Taillard, 1993) generator of job shop
scheduling problems, we created 5 sets of 60 problems
each, with sizes of { 10x10, 12x12, 15x15, 18x18, 20x20).
We generated a makespan for each problem so that the
problems within each size span the phase transition that has
been observed in job shop problems (Beck and
Jackson, 1997).

Using a CPU bound of 20 minutes an attempt was made,
using each algorithm, to solve each problem. If the bound
was reached, failure on that problem was returned. The
results using chronological backtracking are shown in Fig-
ures 7 and 8 while the LDS results are displayed in Figures
9 and 10. In Figures 8 and 10 (note the differing scales) we
display the mean number of heuristic commitments made
by each heuristic. For problems that are not solved, we
include the number of heuristic commitments that were

246 CONSTRAINT SATISFACTION & SEARCH

.. . .
. ._

D- ._ .. 0 V _^ Q
10 12 14 16 16 20

Problem SW

Figure 7. Number of Problems Solved vs. Problem Size for
Chronological Backtracking

2000 . #
x CBASlack +

SumHeight -+-
FlrstCommlt .B-.

LJRand x

x

0’ ’
10 12

I
14 16 18 20

Problem Sze

Figure 8. Mean Number of Heuristic Commitments vs.
Problem Size for Chronological Backtracking

made when the CPU time limit was reached. Therefore, the
mean number of heuristic commitments is a lower bound on
the actual number of heuristic commitments required to
solve these problems.

In terms of the number of problems solved with chrono-
logical backtracking (tested using a boot-strap paired t test
on each problem size), there is no significant difference
between SumHeight and CBASlack. SumHeight solves sig-
nificantly more problems than FirstCommit (p I 0.001) and
LJRand (p < 0.005) as does CBASlack (p 5 0.001 for both).
FirstCommit solves significantly more problems than
LJRand (p I 0.005).

Boot-strap, paired t tests on the number of heuristic com-
mitments made for each problem show that all differences
in Figure 8 are significant (p I 0.001) with the exception of
that between FirstCommit and LJRand on problems of size
15x15 where there is no significant difference. In particular,
SumHeight makes significantly fewer heuristic commit-
ments than CBASlack across all problems sizes @ I 0.0001
for all sizes except 12x12 where p I 0.001).

Turning to the results with LDS, we again see no signifi-
cant difference in terms of the number of problems solved

between SumHeight and CBASlack, while each solves sig-
nificantly more problems than each of FirstCommit and
LJRand (p I 0.005). FirstCommit solves significantly more
problems than LJRand (p I 0.05).

All the differences in the number of heuristic commit-
ments shown in Figure 10 are significant (p I 0.05) except
for those between SumHeight and FirstCommit at both
10x10 and 15x15 and that between LJRand and CBASlack
at 18x18. In particular, SumHeight makes significantly
fewer heuristic commitments than CBASlack at all problem
sizes (p < 0.0001).

In comparing the chronological backtracking results with
those for LDS, we observe that each heuristic solved signif-
icantly more problems with LDS than with chronological
backtracking. The only significant difference in the magni-
tude of the difference is between CBASlack and LJRand:
using LDS instead of chronological backtracking increases
the number of problems LJRand solves significantly more
than it increases the number of problems CBASlack solves
(p I 0.05). From the perspective of the number of heuristic
commitments, for all heuristics, on problems of size 15x15
or larger the algorithm using LDS makes significantly
(p IO.0001) more heuristic commitments than that using
chronological backtracking. For the 12~ 12 problems there
is no significant differences except for LJRand (p I 0.0001)
and for the 10x10 problems CBASlack shows no significant
difference while SumHeight with LDS makes significantly
more heuristic commitments than SumHeight with chrono-
logical backtracking (p 5 0.01). Interestingly, for FirstCom-
mit and LJRand, chronological backtracking results in more
heuristic commitments than LDS on the 10x10 problems
(p I 0.005 and p I 0.05, respectively).

Summary of Experimental Results
On the OR-Library benchmark problems of Experiment 1
SumHeight outperforms the LJRand and FirstCommit heu-
ristics in terms of the quality of the schedules found within
our CPU time bound. The quality of the schedules found by
SumHeight was better than those found by CBASlack with
chronological backtracking, although equal performance
was achieved with LDS.

Experiment 2 indicates that SumHeight and CBASlack
solve the same number of problems across all problem sizes
while both solve significantly more than either LJRand or
FirstCommit. In equaling the performance of CBASlack in
terms of the number of problems solved, SumHeight uses
significantly fewer heuristic commitments

These results strongly support our contention that tex-
ture-based heuristics are still worthwhile in the context of
modern scheduling techniques.

Conclusions
In this paper we have examined texture-based heuristics for
scheduling in the light of several criticisms concerning their
performance, and in light of recent advances in scheduling
technology (e.g., constraint propagation techniques, limited
discrepancy search).

The central aim of this paper is the comparison of tex-
ture-based heuristics with other heuristic commitment tech-
niques for scheduling. We have shown that, with
experimental designs that manipulate only the heuristic
commitment technique, claims of the inferiority of texture-
based heuristics are not supported. In fact, we have demon-

I d J

10 12 14 16 20
Problem

$I&

Figure 9. Number of Problems Solved vs. Problem Size for
LDS

0

10 12 14 16 16 20
Problem S,ze

Figure 1Q. Mean Number of Heuristic Commitments vs.
Problem Size for LDS

strated significant performance gain in using such sophisti-
cated heuristics.

In addition, this is the first work of which we are aware
that evaluates limited discrepancy search (LDS) in schedul-
ing in the context of state-of-the-art heuristics and propaga-
tion techniques. The results strongly show that LDS results
in increased performance over chronological backtracking.
The fact that LDS appears to help the weaker algorithms (as
judged by their performance with chronological backtrack-
ing) to a greater extent than the stronger algorithms is inter-
esting but preliminary.

Our results are consistent with our aim: sophisticated
heuristics based on texture measurements can outperform
other heuristic commitment techniques, and therefore
deserve to be re-examined.

Acknowledgments
This research was funded in part by the Natural Science and
Engineering Research Council of Canada, Numetrix Lim-
ited, the IRIS Research Network, the Manufacturing

HEURISTICS FOR SCHEDULING 247

Research Corporation of Ontario, and Digital Equipment of
Canada.

Thanks to Ioan Popescu, Rob Morenz, Ken Jackson,
Morten Irgens, Victor Saks, Angela Glover, and the anony-
mous reviewers for comments on and discussion of earlier
drafts of this paper.

References
Adams, J.; Balas, E., and Zawack, D. (1988). The shifting
bottleneck procedure for job shop scheduling. Management
Science, 34:391+01.
Applegate, D. and Cook, W. (1991). A computational study of the
job-shop scheduling instance. ORSA Journal on Computing,
3:149-156.
Baptiste, P., Le Pape, C., and Nuijten, W. (1995). Constraint-based
optimization and approximation for job-shop scheduling. In
Proceedings of the AAAI-SIGMAN Workshop on Intelligent
Manufacturing Systems, IJCAI-95.
Beasley, J. E. (1990). OR-library: distributing test problems by
electronic mail. Journal of the Operational Research Society,
41(11):1069-1072. Also available by ftp from ftp://
graph.ms.ic.ac.uMpub/paper.txt.
Beck, J. C., Davenport, A. J., and Fox, M. S. (1997a). Pitfalls of
empirical scheduling research. Technical report, Department of
Industrial Engineering, University of Toronto, Department of
Industrial Engineering, 4 Taddle Creek Road, Toronto, Ontario
M5S 3G9, Canada.
Beck, J. C., Davenport, A. J., Sitarski, E. M., and Fox, M. S.
(1997b). Beyond contention: extending texture-based scheduling
heuristics. In Proceedings of AAAI-97. AAAI Press, Menlo Park,
California.
Beck, J. C. and Jackson, K. (1997). Stalking the wily phase
transition: kappa and job shop scheduling. Technical report,
Department of Industrial Engineering, University of Toronto,
Department of Industrial Engineering, 4 Taddle Creek Road,
Toronto, Ontario M5S 3G9, Canada.
Carlier, J. and Pinson, E. (1989). An algorithm for solving the job-
shop problem. Management Science, 35(2): 164-l 76.
Caseau, Y. and Laburthe, F. (1995). Improving branch and bound
for jobshop scheduling with constraint propagation. In
Proceedings of the 8th France-Japanese Conference CCS’9.5.
Cheng, C. C. and Smith, S. F. (1996). Applying constraint
satisfaction techniques to job shop scheduling. Annals of
Operations Research, Special Volume on Scheduling: Theory and
Practice, 1. To appear, forthcoming.
Cohen, P. R. (1995). Empirical Methods for Artficial Intelligence.
The MIT Press, Cambridge, Mass.
Erschler, J., Roubellat, F., and Vernhes, J. P. (1976). Finding some
essential characteristics of the feasible solutions for a scheduling
problem. Operations Research, 241772-782.
Erschler, J., Roubellat, F., and Vernhes, J. P. (1980).
Characterising the set of feasible sequences for n jobs to be carried
out on a single machine. European Journal of Operational
Research, 4: 189-l 94.
Fisher, H. and Thompson, G. L. (1963). Probabilistic learning
combinations of local job-shop scheduling rules. In Muth, J. F. and
Thompson, G. L., editors, Industrial Scheduling, pages 225-25 1.
Prentice Hall, Englewood Cliffs, New Jersey.
Fox, M. S., Sadeh, N., and Baykan, C. (1989). Constrained
heuristic search. In Proceedings of IJCAI-89, pages 309-3 16.
Garey, M. R. and Johnson, D. S. (1979). Computers and
Intractability: A Guide to the Theory of NP-Completeness. W.H.
Freeman and Company, New York.
Harvey, W. D. and Ginsberg, M. L. (1995). Limited discrepancy
search. In Proceedings of IJCAI-95, pages 607-6 13.

248 CONSTRAINT SATISFACTION & SEARCH

Lawrence, S. (1984). Resource constrained project scheduling: an
experimental investigation of heuristic scheduling techniques
(Supplement). PhD thesis, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh,
Pennsylvania.
Le Pape, C. (1994). Implementation of resource constraints in ilog
schedule: A library for the development of constraint-based
scheduling systems. Intelligent Systems Engineering, 3(2):55-66.
Lhomme, 0. (1993). Consistency techniques for numeric CSPs. In
Proceedings of IJCAI-93, volume 1, pages 232-238.
Muscettola, N. (1992). Scheduling by iterative partition of
bottleneck conflicts. Technical Report CMU-RI-TR-92-05, The
Robotics Institute, Carnegie Mellon University.
Nuijten, W. P. M. (1994). Time and resource constrained
scheduling: a constraint satisfaction approach. PhD thesis,
Department of Mathematics and Computing Science, Eindhoven
University of Technology.
Nuijten, W. P. M., Aarts, E. H. L., van Arp Taalman Kip, D. A. A.,
and van Hee, K. M. (1993). Randomized constraint satisfaction for
job shop scheduling. In Proceedings of the IJCAI’93 Workshop on
Knowledge-Based Production, Scheduling and Control, pages
25 l-262.
Sadeh, N. (199 1). Lookahead techniques for micro-opportunistic
job-shop scheduling. PhD thesis, Carnegie-Mellon University.
CMU-CS-91-102.
Sadeh, N. and Fox, M. S. (1996). Variable and value ordering
heuristics for the job shop scheduling constraint satisfaction
problem. Artificial Intelligence Journal, 86(1).
Sadeh, N., Sycara, K., and Xiong, Y. (1995). Backtracking
techniques for the job shop scheduling constraint satisfaction.
Artificial Intelligence, 76:455-480.
Smith, S. F. and Cheng, C. C. (1993). Slack-based heuristics for
constraint satisfaction scheduling. In Proceedings AAAI-93, pages
139-144.
Taillard, E. (1993). Benchmarks for basic scheduling problems.
European Journal of Operational Research, 641278-285.
Vaessens, R. J. M., Aarts, E. H. L., and Lenstra, J. K. (1994). Job
shop scheduling by local search. Technical Report COSOR
Memorandum 94-05, Eindhoven University of Technology.
Submitted for publication in INFORMS Journal on Computing.

