
 Learning and Using Hyper-Heuristics for Variable and
Value Ordering in Constraint Satisfaction Problems

Sean A. Bittle
Department of Mechanical and Industrial Engineering,

University of Toronto
King’s College Road

Toronto, Ontario, Canada, M5S 3G9
416-978-682

sean.bittle@utoronto.ca

 Mark S. Fox
Department of Mechanical and Industrial Engineering,

University of Toronto
King’s College Road

Toronto, Ontario, Canada, M5S 3G9
416-978-682

msf@eil.utoronto.ca

ABSTRACT

This paper explores the use of hyper-heuristics for variable and
value ordering in binary Constraint Satisfaction Problems (CSP).
Specifically, we describe the use of a symbolic cognitive
architecture, augmented with constraint based reasoning as the
hyper-heuristic machine learning framework. The underlying
design motivation of our approach is to "do more with less."
Specifically, the approach seeks to minimize the number of low
level heuristics encoded yet dramatically expand the
expressiveness of the hyper-heuristic by encoding the constituent
measures of each heuristic, thereby providing more opportunities
to achieve improved solutions. Further, the use of a symbolic
cognitive architecture allows us to encode hierarchical preferences
which extend the effectiveness of the hyper-heuristic across
problem types. Empirical experiments are conducted to generate
and test hyper-heuristics for two benchmark CSP problem types:
Map Coloring; and, Job Shop Scheduling. Results suggest that
the hyper-heuristic approach provides a dramatically higher level
of representational granularity allowing superior intra-problem
and inter-problem solutions to be secured over traditional
combinations of variable and value ordering heuristics.

Categories and Subject Descriptors
 I.2.8 Problem Solving, Control Methods, and Search

General Terms

Algorithms

1. INTRODUCTION
In this paper we present a novel approach for learning and using
hyper-heuristics to address the problem of variable and value
ordering in binary constraint satisfaction problems. Our approach
uses a symbolic cognitive architecture, augmented with constraint
based reasoning as the hyper-heuristic machine learning
framework. Research has demonstrated variable and value
ordering heuristics can dramatically improve the efficiency of
search [7]. While a variety of heuristics have been developed to
guide both variable and value ordering, most are problem specific;

experimentation is often required to select heuristics for new
problem types and few have demonstrated their effectiveness
across a range of problem types [4, 13]. Consequently, the central
problem with using heuristics to guide variable and value ordering
is the tradeoff between generality and effectiveness.

One recent technique to achieve more effective generality is the
use of hyper-heuristics or heuristics to choose heuristics. More
formally, a hyper-heuristic is a high-level heuristic which uses
some type of learning mechanism in order to choose between
various low-level heuristics [2]. Often hyper-heuristics achieve
some level of generality at the expense of computational effort by
encoding a large yet fixed number of low level heuristics.

The machine learning approach used in the current study is CHS-
Soar [1]. CHS-Soar integrates two different problem-solving
paradigms ― constraint and rule-based reasoning ― into a
unified, declarative symbolic architecture. This is achieved by
introducing Constrained Heuristic Search (CHS) [6] to the Soar
cognitive architecture [8]. The approach allows us to encode the
relative performance of all constituent measures associated with
each low level heuristic and thereby expands the number of
selection operators beyond the fixed number of low level
heuristics considered.

2. RELATED WORK
Historically, the principal application of hyper-heuristics has been
in the area of optimization where the hyper-heuristic is focused on
selecting between a set of low level meta-heuristics. For example
a unified graph based hyper-heuristic (GHH) framework is
defined in which different local search based algorithms are
considered to search upon sequences of low level graph coloring
heuristics for university timetabling problems [10].

The idea of using hyper-heuristics for variable ordering in binary
constraint satisfaction problems has also been considered by
Terashima-Marin et.al.[14]. Their overall approach is based on
using a variable-length Genetic Algorithm (GA) where the
chromosome is made up of a series of blocks representing
condition-action rules used to switch between seven different
variable ordering heuristics.

The Adaptive Constraint Engine (ACE) is described as a
“cognitively oriented” architecture that can learn from experience
in solving problems in the CSP domain [3]. ACE’s learning
mechanism is focused on learning the appropriate importance,
called “weights”, of individual advisors. ACE manages search
heuristics and attempts to learn new heuristics for variable and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GECCO’09, July 8–12, 2009, Montréal Québec, Canada.

Copyright 2009 ACM 978-1-60558-505-5/09/07...$5.00.

2209

value ordering. It then extrapolates what it learns on simple
problems to solve more difficult ones. Because ACE does
unsupervised learning through trial and error with delayed
rewards, it qualifies as a reinforcement learner.

3. SOLUTION APPROACH: CHS-SOAR
CHS-Soar problem solving is formulated by applying operators to
states within a problem space in order to achieve a goal. A goal
or solution in CHS-Soar is a complete assignment of variables
which satisfy all problem constraints. A state in CHS-Soar is
represented as a binary constraint graph. Each change to the
constraint graph ─ initiated by a new variable and/or value
assignment ─ corresponds to a new state. CHS-Soar operators are
used to transform states via variable and value ordering decisions.
Consequently, problem solving in CHS-Soar can be described as
the process of moving state to state in a problem space by
heuristically choosing variables and values to instantiate. This
allows us to incrementally move from an initial to a final goal
state. Finally, we consider an “improved” or “superior” CSP
solution to be one that requires a lower total number of
consistency checks to secure a solution.

3.1 Textures and Heuristics Considered
Textures describe structural features of the constraint graph [6].
A heuristic usually relies on an associated set of textures to make
a decision; consequently, textures can be viewed as the
constituent parts of a heuristic. For example, consider the well
known Minimum Remaining Value (MRV) heuristic which is
often cited for variable ordering in CSPs [7]. It is useful to
differentiate between the MRV heuristic and the MRV textures.
The MRV heuristic suggests we select the variable that has the
smallest domain of legal values remaining. In order to use this
heuristic we first need to tabulate the MRV textures, namely the
number of remaining values in each variable domain. While the
MRV heuristic is focused on the variable with the smallest texture
value, we are still required to calculate all MRV textures to locate
the smallest one. In the current work we are interested in
reasoning about the impact of each individually observed texture
value.

In order to demonstrate the efficacy of our hyper-heuristic
approach we consider two frequently [7] cited variable ordering
heuristics, e.g. MRV and DEG, and one value ordering heuristic,
e.g. LCV, and associated textures as outlined in Table 1.

Table 1. Textures and Associated Ordering Heuristics

3.2 Hyper-Heuristic Representation
Central to the design of an effectiveness hyper-heuristic is a
suitable heuristic ordering mechanism or switch function [2]. The
switch essentially decides, based on selected state measures
(which we call textures), when to select and apply each encoded
heuristic. A variety of techniques have been investigated to
encode the hyper-heuristic switch algorithm with the most popular
approach based on some form of Genetic Algorithm (GA)
encoding [11]. GA approaches are “integrative” in that they
require a training phase comprising a large number of training
instances to generate an averaged set of conditions which trigger a
discrete heuristic action. It is useful to note that while GA
approaches generate very compact hyper-heuristic representations,
they achieve compactness at the expense of discarding almost all
of the rich structural “detail” generated. The structural detail
refers to the underlying textures associated with each heuristic.
Further, the level of expressiveness for each switch “action” is
typically the selection of a specific heuristic. Consequently the
effective generality of the hyper-heuristic is limited by the number
of heuristics encoded as possible switch actions.

The design of our hyper-heuristic seeks to capture and exploit the
influence of this underlying texture detail. We do this by learning
the problem-solving impact of each individual texture value. Our
hyper-heuristic operators are defined by a tuple of four data
elements: texture type, e.g. MRV; texture value, e.g. MRV = 0.3;
relative frequency; and percent problem complete, e.g. tuple ≡
<type, value, relative frequency, percentage complete>. In order
to generalize our hyper-heuristic; for each texture type, e.g. MRV,
DEG, LCV, we prune out duplicate texture type values and
normalize each value between 0 (minimum value) and 1
(maximum value).

3.3 Hyper-Heuristic Generation
The hyper-heuristic generation process employs Soar’s internal
reasoning ability called “subgoaling.” Internal reasoning in Soar
arises out of its impasse detection and substate creation
mechanism. CHS-Soar operators are used to transform states via
variable and value ordering decisions. CHS-Soar automatically
creates a subgoal whenever preferences are insufficient for the
decision procedure to select a variable and/or value ordering
operator.

Our hyper-heuristics are generated as a by-product of problem-
solving. After propagation, CHS-Soar generates an updated set of
variable textures, e.g. MRV and DEG, and the associated set of
tuples, e.g. tuple ≡ <type, value, relative frequency, percentage
complete>. CHS-Soar then dynamically casts each tuple as an
operator. Since CHS-Soar has no prior knowledge as to which
operator to select (assuming no previous learning) it will detect an
impasse and automatically subgoal to evaluate each operator in
order to establish a clear preference for one. A separate problem
space is created allowing it to perform a simple look-ahead search
in order evaluate the problem solving impact of each operator.
The evaluation of each operator involves assigning a symbolic
and/or numeric preference to each operator currently under
evaluation. The numerical evaluation assigns a higher preference
to an operator that can advance a current partial solution the
farthest using the fewest number of consistency checks. Once
CHS-Soar has resolved which variable, and then, which value
ordering operator to select, it encodes, i.e. learns, the results.

Name Texture Heuristic

Minimum
Remaining
Values (MRV)

Di, number of
remaining values
in domain.

Select the variable with the
smallest Di, value i.e. pick the
variable with the fewest legal
values.

Degree
Heuristic (DEG)

Ci, number of
constraints linked
to variable.

Select the variable with the
largest Ci value i.e. pick the
variable that is involved in the
largest number of constraints on
other unassigned variables.

Least-
Constraining-
Value (LCV)

Fi, number of
available values
in domain of
linked variables
not instantiated.

Select the value with the largest
Fi value i.e. pick the value that
rules out the fewest choices for
the neighboring variables in the
constraint graph.

2210

Soar includes a single, uniform learning mechanism, called
“chunking”, that converts the results of problem solving in
subgoals into new production rules called “chunks.” While
encoded using Soar syntax, chunks have a Condition → Action
semantic structure. Resulting chunks have either a unary or
binary condition composed of operators. Chunk actions encode
the symbolic and/or numeric preferences for these operators.
Texture values are normalized between 0 and 1 to extend their
generality. Figure 1 provides a pseudo-code example of a binary
chunk. At a macro level, the generated “hyper-heuristic” is the
aggregate collection of a large number, perhaps thousands, of
individual chunks, i.e. production rules.

Condition [Op1 ≡ (MRV = 0.2) and Op2 ≡ (DEG

= 1.0)] → Action [(Op1) Preference (Op2)]

Figure 1: Pseudo-code example of a binary chunk.

4. EXPERIMENTS
We report on two experiments conducted that assess the intra, i.e.
within, and inter, i.e. across, problem type problem solving
characteristics of the hyper-heuristic design approach. We
consider two benchmark problem types: Map Coloring Problem
(MCP); and, the Job Shop Scheduling Problem (JSP). The MCP
instances were generated and adapted from [5]. The JSP instances
were generated and adapted from [12]. For each problem type,
e.g. Map Coloring, we have a set of problem instances. Each
problem instance corresponds to a different size of that problem
type. Results are presented in terms of “consistency checks.” As
noted by [14] the count of consistency checks is a common
criterion to measure the efficiency of a CSP search algorithm.
CHS-Soar utilizes the AC-3 algorithm [9] to conduct propagation
and, when required, employs simple chronological backtracking.
In all experiments the benchmark for comparison uses standard
CSP techniques where the variable ordering heuristic is the MRV
heuristic, i.e. select variable with minimum remaining values in
domain. If the MRV cannot select a variable we use the DEG
heuristic, e.g. select variable that participates in the most
constraints on unassigned variables. For value ordering we use
the Least Constraining Value (LCV) heuristic which selects the
domain value that is least constraining to other unassigned
variables. If the LCV heuristic does not identify a unique value,
the value is selected randomly. Each problem instance was solved
10 times and results averaged.

4.1 Experiment 1
Experiment 1 tests the hypothesis that expanding the
expressiveness of the hyper-heuristic beyond the simple encoding
of each low level heuristic operator will secure superior intra-
problem type solutions over traditional combinations of fixed
unary variable and value ordering heuristics. Specifically, for
each problem type and size instance considered, we encode a
“custom” hyper-heuristic. Figures 2 and 3 compare the
performance of the custom hyper-heuristics to the benchmark for
each problem type. As illustrated for the MCP and JSP problem
types we can observe that each custom hyper-heuristic secures
improved problem solving performance over the benchmark for
each problem size instance considered. Further, we can see that as
problem size increases for the MCP and JSP problem types we
can observe a relative increase in the overall problem solving
performance of the custom hyper-heuristics as compared to the

results delivered by the benchmark combination of heuristics.
Results suggest for these problem types, as problem size increases
more opportunities for improved solutions are observed and
exploited by the hyper-heuristic.

Map Coloring Problem (MCP)

0

1.5

3

4.5

6

10 25 50 100

 Problem Complexity (Size)

C
o
n
s
is
te

n
c
y
 C

h
e
c
k
s
 (
x
 1
0
0
0
)

Benchmark

Hyper-heuristic (Custom)

Figure 2. Custom Hyper-Heuristic Performance as a Function

of Problem Complexity for the Map Coloring Problem.

Job Shop Scheduling Problem (JSP)

0

15

30

45

60

16 25 36 49 64 81

 Problem Complexity (Size)

C
o
n
s
is
te

n
c
y
 C

h
e
c
k
s
 (
x
1
0
0
0
)

Benchmark

Hyper-heuristic (Custom)

Figure 3. Hyper-Heuristic Performance as a Function of

Problem Complexity for the Job Shop Scheduling Problem.

4.2 Experiment 2
Experiment 2 explores the inter-problem solving effectiveness of
hyper-heuristics generated from one problem type and used to
solve a different problem type. Specifically, for each problem
type, we generate a single hyper-heuristic from the smallest
problem instance considered. We then transfer and use it to use
solve a different problem type.

Figures 4 and 5 compare the performance of the hyper-heuristics
generated for each problem type and used to solve a different
problem type. As illustrated for each problem type, we can
observe that the transferred hyper-heuristics secure improved
problem solving performance over the benchmark for the range of
problem sizes considered. However, we note that neither of the
transferred hyper-heuristics secures superior problem solving
performance to the custom (Experiment 1) hyper-heuristics.
These results would appear to support the observation, that as the
hyper-heuristics generated from one problem type are applied to
problems that are different in size as well and type, their effective
generality appears to diminish incrementally as problem
complexity increases.

2211

Map Coloring Problem (MCP)

0

1.5

3

4.5

6

10 25 50 100

 Problem Complexity (Size)

C
o
n
s
is
te
n
c
y
 C

h
e
c
k
s
 (
x
 1
0
0
0
)

Benchmark

Hyper-heuristic (JSP)

Figure 4. JSP Hyper-Heuristic Performance as a Function of

Problem Complexity for the Map Coloring Problem.

Job Shop Scheduling Problem (JSP)

0

15

30

45

60

16 25 36 49 64 81

 Problem Complexity (Size)

C
o
n
s
is

te
n
c
y
 C

h
e
c
k
s
 (
x
1
0
0
0
)

Benchmark

Hyper-heuristic (MCP)

Figure 5. MCP Hyper-Heuristic Performance as a Function of

Problem Complexity for the Job Shop Scheduling Problem.

5. CONCLUSIONS
This paper has demonstrated how hyper-heuristics can be
generated and used for variable and value ordering in binary
Constraint Satisfaction Problems (CSP). We have outlined a
novel technique to encode hyper-heuristics using a symbolic
cognitive architecture (Soar), augmented with constraint based
reasoning (CHS) as the machine learning framework. Results
suggest this approach confers a number of observed design
benefits over traditional hyper-heuristic representations and
evolutionary encoding approaches.

First, using a minimum number of low level heuristics, our
approach dramatically expands the expressiveness of the hyper-
heuristic by encoding the constituent textures of each heuristic —
not simply the low level heuristics. Second, the approach encodes
and exploits the rich problem solving “detail” associated with the
possible selection of each constituent texture. This is in contrast
to evolutionary approaches which must integrate and average
training insight. Finally, the use of a symbolic cognitive
architecture allows us to encode hierarchical preferences which
extend the effectiveness of the hyper-heuristic across problem
types.

We have demonstrated the ability to discover, learn and use
texture based hyper-heuristics for variable and value ordering that
produce superior intra-problem solving performance over
traditional combinations of unary heuristics for two problem
types. Further, we have demonstrated the ability to learn a hyper-

heuristic while solving one problem type can be successfully
applied in solving a different problem type and deliver superior
problem-solving performance over traditional combinations of
unary heuristics.

6. REFERENCES
[1] Bittle, S.A., Fox, M.S. Introducing Constrained Heuristic

Search to the Soar Cognitive Architecture, Second Annual

Conference on Artificial General Intelligence, Arlington
Virginia. 2009.

[2] Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P.
Schulenburg, S. Hyper-heuristics: an emerging direction in
modern search technology, Handbook of Metaheuristics,
chapter 16, Hyper-heuristics: an emerging direction in
modern search technology, pp. 457--474. Kluwer Academic
Publishers, 2003.

[3] Epstein, S. L., Freuder, E.C., Wallace, R.J, Morozov, A.,
Samuels, B. The Adaptive Constraint Engine. In P. Van
Hentenryck, editor, Principles and Practice of Constraint

Programming -- CP 2002: 8th International Conference,

Proceedings, volume LNCS 2470 of Lecture Notes in
Computer Science, pages 525--540. SpringerVerlag, 2002.

[4] Gent., I.P., MacIntyre, E., Prosser, P., Smith, B.M., Walsh,
T. An empirical study of dynamic variable ordering heuristics
for the constraint satisfaction problem, Principles and

Practice of Constraint Programming- CP’96, pp 179–193,
1996.

[5] Fleurent C. Ferland J.A. Genetic and hybrid algorithms for
graph coloring, Annals of Opns Res. 63, 437-461. 1996.

[6] Fox, M.S., Sadeh, N., Bayken, C. Constrained Heuristic
Search. Proceedings of the Eleventh International Joint

Conference on Artificial Intelligence, pp: 309– 315. 1989.

[7] Kumar, V. Algorithms for constraint-satisfaction problems:
A survey. AI Magazine, 13(1):32--44, 1992.

[8] Laird, J.E., Newell, A., Rosenbloom, P. Soar: An
Architecture for General Intelligence. Artificial Intelligence,
33: 1-64. 1987.

[9] Mackworth, A.K. Consistency in Networks of Relations, J.
Artificial Intelligence, vol. 8, no. 1, pp. 99-118, 1977.

[10] Qu, R., Burke, E.K. Hybridisations within a Graph Based
Hyper-heuristic Framework for University Timetabling
Problems. to appear at Journal of Operational Research

Society (JORS), 2008. Online publication Oct, 2008. doi:
10.1057/jors.2008.102

[11] Soubeiga, E. Development and application of hyperheuristics
to personnel scheduling. PhD Thesis, University of

Nottingham. 2003.

[12] Taillard, E. Benchmarks for basic scheduling problems,
European Journal of Operational Research 64, (1993), 278-
285

[13] Tsang, E. Foundations of Constraint Satisfaction. Academic

Press. 1993.

[14] Terashima-Marín, H., Ortiz-Bayliss, J.C., Ross, P.,
Valenzuela-Rendón, M. Using Hyper-heuristics for the
Dynamic Variable Ordering in Binary Constraint Satisfaction
Problems. MICAI 2008: 407-417 2008.

2212

