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ABSTRACT 

This paper explores the use of hyper-heuristics for variable and 
value ordering in binary Constraint Satisfaction Problems (CSP).  
Specifically, we describe the use of a symbolic cognitive 
architecture, augmented with constraint based reasoning as the 
hyper-heuristic machine learning framework.  The underlying 
design motivation of our approach is to "do more with less."  
Specifically, the approach seeks to minimize the number of low 
level heuristics encoded yet dramatically expand the 
expressiveness of the hyper-heuristic by encoding the constituent 
measures of each heuristic, thereby providing more opportunities 
to achieve improved solutions.  Further, the use of a symbolic 
cognitive architecture allows us to encode hierarchical preferences 
which extend the effectiveness of the hyper-heuristic across 
problem types.  Empirical experiments are conducted to generate 
and test hyper-heuristics for two benchmark CSP problem types: 
Map Coloring; and, Job Shop Scheduling.  Results suggest that 
the hyper-heuristic approach provides a dramatically higher level 
of representational granularity allowing superior intra-problem 
and inter-problem solutions to be secured over traditional 
combinations of variable and value ordering heuristics.   
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1. INTRODUCTION 
In this paper we present a novel approach for learning and using 
hyper-heuristics to address the problem of variable and value 
ordering in binary constraint satisfaction problems.  Our approach 
uses a symbolic cognitive architecture, augmented with constraint 
based reasoning as the hyper-heuristic machine learning 
framework. Research has demonstrated variable and value 
ordering heuristics can dramatically improve the efficiency of 
search [7].  While a variety of heuristics have been developed to 
guide both variable and value ordering, most are problem specific; 

experimentation is often required to select heuristics for new 
problem types and few have demonstrated their effectiveness 
across a range of problem types [4, 13].  Consequently, the central 
problem with using heuristics to guide variable and value ordering 
is the tradeoff between generality and effectiveness.   

One recent technique to achieve more effective generality is the 
use of hyper-heuristics or heuristics to choose heuristics.  More 
formally, a hyper-heuristic is a high-level heuristic which uses 
some type of learning mechanism in order to choose between 
various low-level heuristics [2].  Often hyper-heuristics achieve 
some level of generality at the expense of computational effort by 
encoding a large yet fixed number of low level heuristics.  

The machine learning approach used in the current study is CHS-
Soar [1].  CHS-Soar integrates two different problem-solving 
paradigms ― constraint and rule-based reasoning ― into a 
unified, declarative symbolic architecture. This is achieved by 
introducing Constrained Heuristic Search (CHS) [6] to the Soar 
cognitive architecture [8].  The approach allows us to encode the 
relative performance of all constituent measures associated with 
each low level heuristic and thereby expands the number of 
selection operators beyond the fixed number of low level 
heuristics considered.   

2. RELATED WORK 
Historically, the principal application of hyper-heuristics has been 
in the area of optimization where the hyper-heuristic is focused on 
selecting between a set of low level meta-heuristics. For example 
a unified graph based hyper-heuristic (GHH) framework is 
defined in which different local search based algorithms are 
considered to search upon sequences of low level graph coloring 
heuristics for university timetabling  problems [10]. 

The idea of using hyper-heuristics for variable ordering in binary 
constraint satisfaction problems has also been considered by 
Terashima-Marin et.al.[14].  Their overall approach is based on 
using a variable-length Genetic Algorithm (GA) where the 
chromosome is made up of a series of blocks representing 
condition-action rules used to switch between seven different 
variable ordering heuristics.   

The Adaptive Constraint Engine (ACE) is described as a 
“cognitively oriented” architecture that can learn from experience 
in solving problems in the CSP domain [3].  ACE’s learning 
mechanism is focused on learning the appropriate importance, 
called “weights”, of individual advisors.  ACE manages search 
heuristics and attempts to learn new heuristics for variable and 
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value ordering.  It then extrapolates what it learns on simple 
problems to solve more difficult ones.  Because ACE does 
unsupervised learning through trial and error with delayed 
rewards, it qualifies as a reinforcement learner. 

3. SOLUTION APPROACH: CHS-SOAR 
CHS-Soar problem solving is formulated by applying operators to 
states within a problem space in order to achieve a goal.  A goal 
or solution in CHS-Soar is a complete assignment of variables 
which satisfy all problem constraints.  A state in CHS-Soar is 
represented as a binary constraint graph.  Each change to the 
constraint graph ─ initiated by a new variable and/or value 
assignment ─ corresponds to a new state.  CHS-Soar operators are 
used to transform states via variable and value ordering decisions.  
Consequently, problem solving in CHS-Soar can be described as 
the process of moving state to state in a problem space by 
heuristically choosing variables and values to instantiate.  This 
allows us to incrementally move from an initial to a final goal 
state.  Finally, we consider an “improved” or “superior” CSP 
solution to be one that requires a lower total number of 
consistency checks to secure a solution. 

3.1 Textures and Heuristics Considered 
Textures describe structural features of the constraint graph [6].  
A heuristic usually relies on an associated set of textures to make 
a decision; consequently, textures can be viewed as the 
constituent parts of a heuristic.  For example, consider the well 
known Minimum Remaining Value (MRV) heuristic which is 
often cited for variable ordering in CSPs [7].  It is useful to 
differentiate between the MRV heuristic and the MRV textures.  
The MRV heuristic suggests we select the variable that has the 
smallest domain of legal values remaining.  In order to use this 
heuristic we first need to tabulate the MRV textures, namely the 
number of remaining values in each variable domain.  While the 
MRV heuristic is focused on the variable with the smallest texture 
value, we are still required to calculate all MRV textures to locate 
the smallest one. In the current work we are interested in 
reasoning about the impact of each individually observed texture 
value.  

In order to demonstrate the efficacy of our hyper-heuristic 
approach we consider two frequently [7] cited variable ordering 
heuristics, e.g. MRV and DEG, and one value ordering heuristic, 
e.g. LCV, and associated textures as outlined in Table 1.   

Table 1. Textures and Associated Ordering Heuristics 

3.2 Hyper-Heuristic Representation 
Central to the design of an effectiveness hyper-heuristic is a 
suitable heuristic ordering mechanism or switch function [2].  The 
switch essentially decides, based on selected state measures 
(which we call textures), when to select and apply each encoded 
heuristic.  A variety of techniques have been investigated to 
encode the hyper-heuristic switch algorithm with the most popular 
approach based on some form of Genetic Algorithm (GA) 
encoding [11].  GA approaches are “integrative” in that they 
require a training phase comprising a large number of training 
instances to generate an averaged set of conditions which trigger a 
discrete heuristic action.  It is useful to note that while GA 
approaches generate very compact hyper-heuristic representations, 
they achieve compactness at the expense of discarding almost all 
of the rich structural “detail” generated.  The structural detail 
refers to the underlying textures associated with each heuristic.  
Further, the level of expressiveness for each switch “action” is 
typically the selection of a specific heuristic.  Consequently the 
effective generality of the hyper-heuristic is limited by the number 
of heuristics encoded as possible switch actions.   

The design of our hyper-heuristic seeks to capture and exploit the 
influence of this underlying texture detail.  We do this by learning 
the problem-solving impact of each individual texture value.  Our 
hyper-heuristic operators are defined by a tuple of four data 
elements: texture type, e.g. MRV; texture value, e.g. MRV = 0.3; 
relative frequency; and percent problem complete, e.g.  tuple ≡ 
<type, value, relative frequency, percentage complete>.  In order 
to generalize our hyper-heuristic; for each texture type, e.g. MRV, 
DEG, LCV, we prune out duplicate texture type values and 
normalize each value between 0 (minimum value) and 1 
(maximum value).   

3.3 Hyper-Heuristic Generation 
The hyper-heuristic generation process employs Soar’s internal 
reasoning ability called “subgoaling.”  Internal reasoning in Soar 
arises out of its impasse detection and substate creation 
mechanism.  CHS-Soar operators are used to transform states via 
variable and value ordering decisions.  CHS-Soar automatically 
creates a subgoal whenever preferences are insufficient for the 
decision procedure to select a variable and/or value ordering 
operator. 

Our hyper-heuristics are generated as a by-product of problem-
solving.  After propagation, CHS-Soar generates an updated set of 
variable textures, e.g. MRV and DEG, and the associated set of 
tuples, e.g. tuple ≡ <type, value, relative frequency, percentage 
complete>.  CHS-Soar then dynamically casts each tuple as an 
operator.  Since CHS-Soar has no prior knowledge as to which 
operator to select (assuming no previous learning) it will detect an 
impasse and automatically subgoal to evaluate each operator in 
order to establish a clear preference for one.  A separate problem 
space is created allowing it to perform a simple look-ahead search 
in order evaluate the problem solving impact of each operator.  
The evaluation of each operator involves assigning a symbolic 
and/or numeric preference to each operator currently under 
evaluation. The numerical evaluation assigns a higher preference 
to an operator that can advance a current partial solution the 
farthest using the fewest number of consistency checks.  Once 
CHS-Soar has resolved which variable, and then, which value 
ordering operator to select, it encodes, i.e. learns, the results.   

Name Texture Heuristic 

Minimum 
Remaining 
Values (MRV) 

Di, number of 
remaining values 
in domain. 

Select the variable with the 
smallest Di, value i.e. pick the 
variable with the fewest legal 
values.  

Degree 
Heuristic (DEG) 

Ci, number of 
constraints linked 
to variable. 

Select the variable with the 
largest Ci value i.e. pick the 
variable that is involved in the 
largest number of constraints on 
other unassigned variables.  

Least-
Constraining-
Value (LCV) 

Fi, number of 
available values 
in domain of 
linked variables 
not instantiated. 

Select the value with the largest 
Fi value i.e. pick the value that 
rules out the fewest choices for 
the neighboring variables in the 
constraint graph.  
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Soar includes a single, uniform learning mechanism, called 
“chunking”, that converts the results of problem solving in 
subgoals into new production rules called “chunks.”  While 
encoded using Soar syntax, chunks have a Condition → Action 
semantic structure.  Resulting chunks have either a unary or 
binary condition composed of operators. Chunk actions encode 
the symbolic and/or numeric preferences for these operators.  
Texture values are normalized between 0 and 1 to extend their 
generality.  Figure 1 provides a pseudo-code example of a binary 
chunk.  At a macro level, the generated “hyper-heuristic” is the 
aggregate collection of a large number, perhaps thousands, of 
individual chunks, i.e. production rules. 

Condition [Op1 ≡ (MRV = 0.2) and Op2 ≡ (DEG 

= 1.0)] → Action [(Op1) Preference (Op2)] 

Figure 1: Pseudo-code example of a binary chunk. 

4. EXPERIMENTS 
We report on two experiments conducted that assess the intra, i.e. 
within, and inter, i.e. across, problem type problem solving 
characteristics of the hyper-heuristic design approach.  We 
consider two benchmark problem types: Map Coloring Problem 
(MCP); and, the Job Shop Scheduling Problem (JSP).  The MCP 
instances were generated and adapted from [5]. The JSP instances 
were generated and adapted from [12]. For each problem type, 
e.g. Map Coloring, we have a set of problem instances.  Each 
problem instance corresponds to a different size of that problem 
type.  Results are presented in terms of “consistency checks.” As 
noted by [14] the count of consistency checks is a common 
criterion to measure the efficiency of a CSP search algorithm.  
CHS-Soar utilizes the AC-3 algorithm [9] to conduct propagation 
and, when required, employs simple chronological backtracking. 
In all experiments the benchmark for comparison uses standard 
CSP techniques where the variable ordering heuristic is the MRV 
heuristic, i.e. select variable with minimum remaining values in 
domain.  If the MRV cannot select a variable we use the DEG 
heuristic, e.g. select variable that participates in the most 
constraints on unassigned variables.  For value ordering we use 
the Least Constraining Value (LCV) heuristic which selects the 
domain value that is least constraining to other unassigned 
variables.  If the LCV heuristic does not identify a unique value, 
the value is selected randomly.  Each problem instance was solved 
10 times and results averaged.    
 

4.1 Experiment 1 
Experiment 1 tests the hypothesis that expanding the 
expressiveness of the hyper-heuristic beyond the simple encoding 
of each low level heuristic operator will secure superior intra-
problem type solutions over traditional combinations of fixed 
unary variable and value ordering heuristics.  Specifically, for 
each problem type and size instance considered, we encode a 
“custom” hyper-heuristic. Figures 2 and 3 compare the 
performance of the custom hyper-heuristics to the benchmark for 
each problem type.  As illustrated for the MCP and JSP problem 
types we can observe that each custom hyper-heuristic secures 
improved problem solving performance over the benchmark for 
each problem size instance considered. Further, we can see that as 
problem size increases for the MCP and JSP problem types we 
can observe a relative increase in the overall problem solving 
performance of the custom hyper-heuristics as compared to the 

results delivered by the benchmark combination of heuristics.  
Results suggest for these problem types, as problem size increases 
more opportunities for improved solutions are observed and 
exploited by the hyper-heuristic.  
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Figure 2. Custom Hyper-Heuristic Performance as a Function 

of Problem Complexity for the Map Coloring Problem. 

 

Job Shop Scheduling Problem (JSP) 

0

15

30

45

60

16 25 36 49 64 81

 Problem Complexity (Size)

C
o
n
s
is
te

n
c
y
 C

h
e
c
k
s
 (
x
1
0
0
0
)

Benchmark

Hyper-heuristic (Custom)

 

Figure 3. Hyper-Heuristic Performance as a Function of 

Problem Complexity for the Job Shop Scheduling Problem. 

4.2 Experiment 2 
Experiment 2 explores the inter-problem solving effectiveness of 
hyper-heuristics generated from one problem type and used to 
solve a different problem type.  Specifically, for each problem 
type, we generate a single hyper-heuristic from the smallest 
problem instance considered.  We then transfer and use it to use 
solve a different problem type. 
 
Figures 4 and 5 compare the performance of the hyper-heuristics 
generated for each problem type and used to solve a different 
problem type.  As illustrated for each problem type, we can 
observe that the transferred hyper-heuristics secure improved 
problem solving performance over the benchmark for the range of 
problem sizes considered.  However, we note that neither of the 
transferred hyper-heuristics secures superior problem solving 
performance to the custom (Experiment 1) hyper-heuristics.  
These results would appear to support the observation, that as the 
hyper-heuristics generated from one problem type are applied to 
problems that are different in size as well and type, their effective 
generality appears to diminish incrementally as problem 
complexity increases. 
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Figure 4. JSP Hyper-Heuristic Performance as a Function of 

Problem Complexity for the Map Coloring Problem. 

 

Job Shop Scheduling Problem (JSP) 
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Figure 5. MCP Hyper-Heuristic Performance as a Function of 

Problem Complexity for the Job Shop Scheduling Problem. 

5. CONCLUSIONS 
This paper has demonstrated how hyper-heuristics can be 
generated and used for variable and value ordering in binary 
Constraint Satisfaction Problems (CSP).  We have outlined a 
novel technique to encode hyper-heuristics using a symbolic 
cognitive architecture (Soar), augmented with constraint based 
reasoning (CHS) as the machine learning framework.  Results 
suggest this approach confers a number of observed design 
benefits over traditional hyper-heuristic representations and 
evolutionary encoding approaches.   

First, using a minimum number of low level heuristics, our 
approach dramatically expands the expressiveness of the hyper-
heuristic by encoding the constituent textures of each heuristic — 
not simply the low level heuristics.  Second, the approach encodes 
and exploits the rich problem solving “detail” associated with the 
possible selection of each constituent texture.  This is in contrast 
to evolutionary approaches which must integrate and average 
training insight.  Finally, the use of a symbolic cognitive 
architecture allows us to encode hierarchical preferences which 
extend the effectiveness of the hyper-heuristic across problem 
types.   

We have demonstrated the ability to discover, learn and use 
texture based hyper-heuristics for variable and value ordering that 
produce superior intra-problem solving performance over 
traditional combinations of unary heuristics for two problem 
types.  Further, we have demonstrated the ability to learn a hyper-

heuristic while solving one problem type can be successfully 
applied in solving a different problem type and deliver superior 
problem-solving performance over traditional combinations of 
unary heuristics.  
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