KNOWLEDGE PROVENANCE: AN APPROACH TO MODELING AND
MAINTAINING THE EVOLUTION AND VALIDITY OF KNOWLEDGE

Jingwei Huang

A thesis submitted in conformity with the requirements
for the degree of Ph.D.
Graduate Department of Mechanical and Industrial Engineering
University of Toronto

Copyright (©) 2008 by Jingwei Huang

Abstract

Knowledge Provenance: An Approach to Modeling and Maintaining The Evolution and

Validity of Knowledge

Jingwei Huang
Ph.D.
Graduate Department of Mechanical and Industrial Engineering
University of Toronto

2008

The Web has become an open decentralized global information / knowledge repository,
a platform for distributed computing and global electronic markets, where people are
confronted with information of unknown sources, and need to interact with “strangers”.
This makes trust and the validity of information in cyberspace arise as crucial issues.

This thesis proposes knowledge provenance (KP) as a formal approach to determining
the origin and validity of information / knowledge on the Web, by means of modeling
and maintaining the information sources, information dependencies, and trust structures.
We conceptualize and axiomatize KP ontology including static KP and dynamic KP. The
proposed KP ontology, provides a formal representation of linking ¢rust in information
creators and belief in the information created; lays a foundation for further study of
knowledge provenance; provides logical systems for provenance reasoning by machines.
The web ontology of KP can be used to annotate web information; and KP reasoner can
be used as a tool to trace the origin and to determine the validity of Web information.

Since knowledge provenance is based on trust in information sources, this thesis also
proposes a logical theory of trust in epistemic logic and situation calculus. In particular,
we formally define the semantics of trust; from it, we identify two types of trust: trust
wn belief and trust in performance; reveal and prove that trust in belief is transitive;

trust in performance is not, but by trust in belief, trust in performance can propagate in

i

social networks; by using situation calculus in trust formalization, the context of trust
is formally represented by reified fluents; we also propose a distributed logical model for
trust reasoning using social networks, by which each agent’s private data about trust
relationships can be protected. This study provides a formal theoretical analysis on the
transitivity of trust, which supports trust propagation in social networks. This study
of trust supports not only knowledge provenance but also the general trust modeling in

cyberspace.

11

Acknowledgements

First of all, I would like to thank my supervisor Professor Mark S. Fox, for his support
and guidance. His insight, methodology and criticism, are invaluable not only in this
work, but also in my future research. Mark’s sound of correcting my pronunciation still
vibrates in my mind.

I wish to thank my committee members Professor Michael Gruninger and Professor
Thodoros Topaloglou. Michael’s mentoring on logics helps me a lot to improve the quality
of this thesis. I also very appreciate Thodoros’ comments and many kindly helps on this
thesis, general research thinking and writing.

I also wish to give sincere thanks to my external examiner Professor Victor Lesser.
His appraisal and questions inspire me to think deeper and wider on both this work and
research methodology.

Thanks to Professor Eric Yu. His valuable feedbacks and questions help me to improve
this research.

During my time at Toronto, I got helps from many people. Sincere thanks to Dr.
Harold Boley for his important comments. I also appreciate the feedbacks from Professor
Mark Chignell and Professor Joseph Paradi. Thanks to Dr. Zhongdong Zhang, Dr.
Mihai Barbuceanu, and Dr. Yannick Lallement, for the discussions with them. I very
appreciate Zhongdong’s encouragement in my difficult time and his many helpful tips in
software development. Thanks to Professor Jun Wu for her helps and support. Thanks
to Professor Michael Carter and Professor Chris Beck for their kindly helps.

Thanks to the English Language & Writing Support program offered by the School
of Graduate Studies in the university. I largely benefit from this program on surviving
in English academic world. Particularly, I wish to thank Dr. Valia Spiliotopoulos for her
many kindly helps on improving my English.

Finally, thanks to my parents, Yujun Huang and Yunhua Chen, and my wife, Ming-

ming Wang, for their understanding and constant support.

v

Contents

1 Introduction 1
1.1 Background and Motivations Lo 1
1.2 Thesis Outline 3
1.3 Major Contributions 6

2 Literature Review 8
2.1 Information Characteristic Based Judgment 8

2.1.1 Information Quality Assessment 9
2.1.2 Web Information Quality Evaluation 10
2.2 Trust and Trust Based Judgment 13
2.2.1 Trust Conceptualization 13
2.2.2 Trust Management oL 17
2.2.3 Trust in Distributed AT. 17
2.2.4 Trust in Social Networks 19
2.2.5 Trust in e-Commerce 21
2.3 Provenance Based Judgmento 21
2.4 Relevant Technologies 23
2.4.1 Digital Signature and Certification 24
2.4.2 The Semantic Webo oo 24
2.4.3 Knowledge Representation Technologies 26

2.5 SUMMATY . . . o v o e 30

Static Knowledge Provenance 32
3.1 Motivating Scenarios 34
3.2 Informal Competency Questions 36
3.3 Terminology 37
3.3.1 Proposition Taxonomy, 37
3.3.2 Properties about Information Source and Authentication 38
3.3.3 Truth Values and Other Properties 41
3.3.4 Trust Relationships oo 41
3.3.5 Other Predicates, Function and Symbols 41
3.3.6 KP_props and Their Properties 43
34 Axioms. 45
3.4.1 The Object Logic in Static KP 47
3.4.2 Domain Closure 49
3.4.3 Proposition Taxonomy 50
3.4.4 Information Sources and Authentication 51
3.4.5 Semantics of Trust and Belief 53
3.4.6 Believed Truth Values 5Y)
3.4.7 Property Constraints 60
3.5 Reasoning with Negation 66
3.6 Consistency and Completeness 68
3.6.1 Consistency 68
3.6.2 Completeness 69
3.7 Web Implementation L. 74
3.7.1 Web Ontology of KPin OWL 75
3.7.2 Application Exampleo 7
3.8 Summary and Discussion Lo 84

vi

4 Dynamic Knowledge Provenance 86

4.1 Motivating Scenario 86
4.2 Informal Competency Questions 88
4.3 Methodology and Terminology 89
4.3.1 Time Ontology 89
4.3.2 Effective Periodso 90
4.3.3 Other Symbols 92

4.4 Axioms.o 92
4.4.1 Axioms Inherited from Static KP 92
4.4.2 Relations among Time Points 93
4.4.3 Effective Periods oL 93
4.4.4 Belief at a Time Point 95
4.4.5 Believed Truth Values 96
4.4.6 Property Constraints 99

4.5 Reasoning with Negation 101
4.6 Consistency and Completeness 101
4.6.1 Consistencyo 102

4.6.2 Completeness 103

4.7 Temporal Extension of Web Ontology 104
4.8 Example 105
4.8.1 KP Annotation 106
4.82 KP Reasoningo 107

4.9 Summary 108
5 A Logic Theory of Trust 111
5.1 Imtroduction 112
5.2 What is Trust? 114
5.2.1 Meaning of Trusto 114

Vil

5.2.2 Properties of trusto 115

5.3 Motivating Scenarios 117
5.4 Methodology, Terminology and Competency Questions 121
54.1 Methodology 122
5.4.2 Informal Competency Questions 123
5.4.3 Terminology 124
5.4.4 Formal Competency Questions 126
5.5 Axioms. 128
5.5.1 Formal Semantics of Belief 128
5.5.2 Formal Semantics of Trust 131
5.5.3 Reasoning with Trust Relationships 135
5.6 Transitivity of Trust 136
5.7 Sources of Trust 138
5.8 Trust Propagation in Social Networks 140
5.8.1 Trust Networks 140
5.8.2 Formal Semantics of Trust Networks 143
5.9 Application Examples oL 145
5.9.1 Example 1: Web of Trust in PGP 145
5.9.2 Example 2: Trust in Web Services 148
5.10 Summary and Discussiono 150
Distributed Trust Reasoning 152
6.1 Terminology 153
6.2 Actions, Preconditions and Effect Axioms 153
6.2.1 Action: request(e,query(e,e’,q)) 154
6.2.2 Action: acceptQ(€’, query(e,€’,q)) 156
6.2.3 Action: replyQ(e, query(e,e’;q)) 157
6.2.4 Action: checkAnswer(e, query(e,e’,q),w) 159

viil

6.3 Successor State AXIomS, 161

6.4 Distributed Trust Reasoning: Example 164
6.4.1 Changesin Ey’s World oo 164
6.4.2 Changesin Ey’s World 0L 166
6.4.3 Changesin E3’'s World 169
6.4.4 Entity Eyo 170
6.4.5 Changesin E5’s World 171
6.4.6 Changesin Ex’s World (2) 172
6.4.7 Changesin Ey’s World (2) oL 174

6.5 Summary e 176

KP Application in Finance 177

7.1 Financial Information and XBRL 177
7.1.1 XBRL Data Structure 179

7.2 Financial Data Annotation and Validation 180
7.2.1 Annotation 180
7.2.2 Authenticity Validation of XBRL Data 182

7.3 Financial Knowledge Provenance 183
7.3.1 Example of Investment Newsletter 185
7.3.2 Annotation 187
7.3.3 Provenance Reasoning 188

7.4 Discussiono 190

Summary and Future Work 193

8.1 Summary of Contributions 193
8.1.1 Knowledge Provenance 193
8.1.2 Formalizing Trust in Social Networks 194

8.2 Discussion 196

1X

8.3 Future Work 197

A Knowledge Provenance Ontology in OWL 201
B Trust Ontology in OWL 213
C Proof of Theorems 217

C.1 Chapter 3 Static KP 217

C.2 Chapter 5 Trust 229
D Example: Output from KP Reasoner 253
E Example: KP Annotation in Finance 255
Bibliography 268

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

5.1
5.2
5.3

6.1
6.2

Predicates - Proposition Types. 39
Predicates - Information Sources and Authentication 40
Predicates: Properties of Propositions 42
Predicates: Trust-related o0 43
Other Predicates and Function 44
Symbols Representing Logical Systems 45
KP _props and Their Properties 46
Truth Table of Logical Operators 48
Predicates: time-relatedo 91
Predicates: temporal-extension 91
Symbols Representing Logical Systems 92
Relational Fluents 125
Predicates 126
Notation for trust networks 142
Actions L 154
Fluents 155

X1

List of Figures

1.1

3.1
3.2

4.1

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3

The Structure of KP models

The taxonomy of KP propositions

Example for Web document annotation

Application example of dynamic Knowledge Provenance

Three forms and conditions of trust propagation in a social networks

example: trust in a social network of web services and users

Action: request L L
Action: acceptQ
Action: replyQ L
Action: checkAnswer
Dependency relation among trust related fluents

Example: distributed trust reasoning in social networks

A snapshot from MarketWatch
Dependency relations in the sample investment newsletter

Provenance reasoning on proposition “Argument-posi-17

xii

Chapter 1

Introduction

This thesis proposes knowledge provenance (hereafter referred to as KP) to address the
problem of how to determine the origin and validity of information /knowledge on the
Web by modeling and maintaining information sources, information dependencies and
trust structures. In the following sections, we introduce the background and motivations

of the research, the outline of this thesis and the major contributions.

1.1 Background and Motivations

This thesis is motivated by two tightly related problems. The first problem is how
to determine the validity of the information / knowledge on the web. Because of the
widespread use of the Web and the development of Web technologies and telecommu-
nication technologies, the Web has fast become an open decentralized global informa-
tion/knowledge repository, where anyone is able to produce and disseminate informa-
tion, so that the information on the Web may be true or false, current or outdated;
however, few tools exist to discern the difference. Information validity has become a
serious problem on the Web. For example, in 1999, two individuals posted fraudulent
corporate information on electronic bulletin boards, which caused the stock price of a

company (NEI) to soar from $0.13 to $15, resulting in their making a profit of more than

CHAPTER 1. INTRODUCTION 2

$350,000 [125]. In order to solve this problem, methods and tools need to be developed
to determine the validity of web information. Based on traditional information qual-
ity evaluation criteria, researchers developed web information quality evaluation criteria
such as authority, accuracy, objectivity, currency and coverage 9] [3]. Nevertheless, most
proposed information quality evaluation models are not formal models. In other words,
by using these models, human users need to be involved in information quality evaluation
process. So that these models cannot be automated to judge the quality of information.
This thesis aims to develop a formal model used to determine the origin and validity of
web information by computers. The origin of a piece of information can help information
users to determine the validity of the information; the origin is also an important part of

context of this information, which can help information users in using this information.

The second problem to be addressed in this thesis is trust problem on the web. Due to
the development of new Web technologies such as the Semantic Web|[14], web services[143]
and P2P[132], the Web is not only a global information/knowledge repository, but also
a distributed computing platform. In this new territory of cyberspace, people, organiza-
tions and software agents need to interact with “strangers” i.e. entities with unknown

identifications. In such an open and uncertain territory, can people trust “strangers”?

Interest in addressing this issue has appeared under the umbrella of the “Web of
Trust” which is identified as the top layer of the Semantic Web and is still in its infant
stage of development ([12] slides 12; [11] slides 26&27). Web of Trust aims to create
a trusted Web. Basically trust is established in the interaction between two entities.
However, any single entity only has a finite number of direct trust relationships, which
cannot meet the needs of various interaction with unknown or unfamiliar entities on the
Web. As a promising remedy to this problem, social networks-based trust, in which A
trusts B, B trusts C, so A indirectly trusts C, is receiving considerable attention. A
necessary condition for trust propagation in social networks is that trust needs to be

transitive. However, is trust transitive? What types of trust are transitive and why?

CHAPTER 1. INTRODUCTION 3

There are neither theories nor models found so far to answer these questions in a formal
manner. Most models either directly assume trust transitive or do not give a formal
discussion of why trust is transitive. To fill this gap, this thesis will build a logical theory
of trust that formally defines the semantics of trust and derive the transitivity of trust
and the conditions for trust propagation in social networks.

The first problem of Web information validity may be reduced to a specific trust
problem: to determine the validity of information by evaluating the trustworthiness of
information sources. However, the drawbacks of this pure trust-based approach are: the
validity of information is determined only by the trust placed in information sources; other
features of information such as information dependencies are neglected. This thesis pro-
poses KP to determine the validity of information by taking both trust and information

dependencies into account.

1.2 Thesis Outline

This thesis is aimed at creating a logical theory of knowledge provenance in the form
of ontology which can be used to determine the validity and origins of the informa-

tion/knowledge on the Web. The basic questions KP attempts to answer include:

Can this information be believed to be true?

Who created it?

Can its creator be trusted?

- What does it depend on?

Can the information it depends on be believed to be true?

Is trust transitive?

What types of trust are transitive and why?

CHAPTER 1. INTRODUCTION 4

Dynamic KP Uncertainty KP
-- temporal truth values -- uncertain truth values
-- temporal trust relationships -- uncertain trust relationships
Static KP

-- hasic concepts of KP
-- static and certain information

A

Logical Theory of Trust and Trust Judgment

-- formal semantics of trust
-- transitivity of trust
-- trust propagation in social networks
-- formal representation of the context of trust
-- trust judgment models

Figure 1.1: The Structure of KP models
- Is trust able to propagate through social networks?

By using technologies developed in the semantic web [11], and based on the logical
theory of KP, we design a web ontology of KP used to annotate web documents with KP
metadata to describe the provenance-related attributes, such as who is the proposition
creator and what is the support proposition which this proposition depends on; develop
a web ontology of trust used to define personalized trust relationships in social networks;
develop a KP reasoner used to trace KP metadata in web documents across web pages,
combining information sources and dependencies, as well as trust relationships, to deduce
the origin and validity of tagged information.

The focus of this thesis is a logical theory of KP. We identify four modules in KP as
shown in figure 1.1. From simple to complex, we start from static KP to develop the basic

concepts of KP in the simplest case in which only deterministic and static information

CHAPTER 1. INTRODUCTION 5

is considered; following static KP, we extend it into dynamic KP; then, we turn to trust
modeling which supports KP. In this thesis, we do not cover uncertain KP. Uncertain KP
is studied in [87] and [93]. Regarding the relation between KP and trust, on one hand,
KP concerns information trustworthiness — a specific trust problem; on the other hand,
KP uses a trust judgment model to determine whether the information sources cab be

trusted.

In Chapter 2, the research relevant to information validity judgment is reviewed in
three aspects: the information characteristic based judgments, provenance based judg-

ments and trust based judgments.

In Chapter 3, static KP, which focuses on certain and static information, is studied.
On one hand, static KP can be used in the situation where the validity of information is
either true or false and the validity does not change over time; on the other hand, static

KP provides fundamental concepts for constructing more general KP models.

In Chapter 4, dynamic KP, which addresses the provenance problems where the va-

lidity of information and trust relationships change over time, is studied.

In Chapter 5, a logical theory of trust in the form of ontology is constructed. In the
theory, the semantics of trust is formally defined in epistemic logic and situation calculus;
from the formal semantics, the transitivity of trust in belief and the condition for trust
i performance propagation in social networks are revealed and proved; based on this
trust ontology, trust networks, a straightforward representation of trust reasoning using

social networks, is constructed.

In chapter 6, a social network-based distributed trust reasoning model is proposed,
and constructed in situation calculus. This distributed model can be implemented with
web services, then each entity in social networks only answers whether to trust a ques-
tioned entity, and need not to publish personal trust data online, so that this model
facilitates social network-based trust reasoning, and at the same time privacy is better

protected.

CHAPTER 1. INTRODUCTION 6

In Chapter 7, an application of KP in financial information is developed.
Finally, in Chapter 8, a summary of the contributions of this thesis and a discussion

about future work is given.

1.3 Major Contributions

The major contributions of this thesis are listed as follows.

1. This thesis proposes the concepts of knowledge provenance, and constructs a logical
theory of knowledge provenance in the form of ontology for determining the origin
and validity of information / knowledge on the Web. In particular, this work

includes:

axiomatization of a static KP ontology that defines the basics of KP, and is

used for determining the validity of static and certain information;

axiomatization of a dynamic KP ontology used for determining the validity of

information whose validity changes over time;

a web ontology of KP in OWL used for annotating web information;

an application case study to demonstrate how to combine KP and XBRL for

financial information provenance.

2. This thesis constructs a logical theory of trust, by formalizing trust in epistemic

logic and situation calculus, including:

- formalization of the semantics of trust based upon belief, which gives a formal
explicit definition of trust, so that it facilitates the use of trust in formal

systems;

- identification of two types of trust: trust in belief and trust in performance;

CHAPTER 1. INTRODUCTION 7

- revealing and proof of that trust in belief is transitive, trust in performance is

not, but can propagate in social networks by trust in belief;

- a trust networks model, which is a straightforward graph representation of the
computationally intensive logic model of trust, and turns the logical reasoning

of trust into trust path searching, so that it is easier to be used in practice;

- a distributed trust reasoning model, which facilitates social network-based
trust judgment, and at the same time better protects the privacy of entities

in social networks regarding data on trust relationships.

Chapter 2

Literature Review

In this chapter, we present a review of the research related to knowledge provenance. As
discussed in Chapter 1, the problem to be solved in KP is how to determine the validity
of information/knowledge on the Web. In accordance with judgment approaches, we
divide the related research into 3 classes: (1)judgments based on the characteristics of
the information; (2) judgments based on trust; (3)judgments based on the provenance of
the information. These three categories of research are examined in sections 1, 2, and 3
separately. Furthermore, section 4 gives a review of the related technologies that support
KP such as the semantic web, digital signature, and situation calculus. Finally, we give

a summary of this literature review in section 5.

2.1 Information Characteristic Based Judgment

The validity of a piece of information may be judged by analyzing the characteristics of
the information. We examine the related research conducted in management information

systems community and library and information science community separately.

CHAPTER 2. LITERATURE REVIEW 9

2.1.1 Information Quality Assessment

Research on information quality assessment is originally developed from data quality
assessment for databases [183]. MIT Total Data Quality Management program (TDQM)
developed AIMQ method [111] to improve information quality in organizations. AIMQ
includes 3 components. (1) IQ dimension, (2) Questionnaire methods to assess 1Q, and
(3) IQ Analysis, e.g. using benchmark to find gap to best practice, and finding opinion
gap between different classes of reviewers.

TDQM defines information quality in 16 dimensions organized in 4 categories: intrin-
sic, contextual, representational and accessibility, reflecting the properties of information
itself, relevance to user’s task, information form, and accessibility respectively [111]. The
proposed criteria [148] relevant to our research are as follows (Note: in their context,
data is used as a general term that includes the meaning of information). (1) Believ-
ability, the extent to which data is regarded as true and credible; (2) Free-of-Error, the
extent to which data is correct and reliable; (3) Objective, the extent to which data is
unbiased, unprejudiced, and impartial; (4) Reputation, the extent to which data is highly
regarded in term of its source or content. (5) Timeliness, the extent to which the data is
sufficiently up to date for the task at hand.

Naumann and Rolker [138] unify IQ criteria from different sources, and give a list
of synonymous criteria and explanation to them. Regarding information quality assess-
ment methods, since “IQ criteria are often of subjective nature and can therefore not
be assessed automatically” [138], usually, questionnaire method is applied for 1Q assess-
ment, and then functors such as min, max, or weighted average are applied to get overall
evaluations.

TDQM explored an approach that derives an overall data quality value from detailed
criteria or indicators by using local dominance relationships among quality parameters
[184]. Local dominance relationships can be illustrated by the following example: “time-

liness is more important than the credibility of a source for this data, except when

CHAPTER 2. LITERATURE REVIEW 10

timeliness is low”.
This research area mainly focuses on Information Quality in Management Information
Systems. The IQ assessment is human-dominated process, and the information sources

to be assessed are determinate.

2.1.2 Web Information Quality Evaluation

In library and information science, information quality (IQ) evaluation criteria have been
studied for IQ management and relevance judgments. Relevance judgments are informa-
tion users’ judgments regarding whether the information found in a search meets the
users’ needs. In relevance judgments, except topic relevance, information quality is an-
other necessary criterion. Validity is one of the most important aspects of information
quality.

A set of information quality evaluation criteria, which are used by scholars in aca-
demic environment who perform information retrieval from traditional text-based print
documents, has been identified in an empirical study [8] for the purpose of relevance
judgments. Another empirical study [159] examined the criteria used by professionals
who perform weather-related information retrieval from various sources such as weather
documents, information systems, the mass media, and interpersonal communications. A
comparison of these two studies found that the general criteria employed in two cases
are the same or similar, and this result suggests that “the existence of a finite range
of criteria that are applied across types of users, information problem situations, and
information sources” [9].

The criteria common to both studies and relevant to validity are listed as follows.

e Depth/Scope/Specificity. The extent to which information has sufficient detail

and range to meet user’s needs.

e Accuracy/validity. “The extent to which information is accurate, correct, or

CHAPTER 2. LITERATURE REVIEW 11

valid.”

e Clarity. “The extent to which information is presented in a clear and well-

organized manner.”

e Currency. “The extent to which information is current, recent, timely, or up-to-

date.”

e Tangibility. The extent to which “information relates to real, tangible issue”, or

“definite, proven information is given.”

e Quality of Sources. The extent to which ”source is reputable, trusted, expert”,

or “general standards or specific qualities can be assumed based on the source”.

e Verification. “The extent to which information is consistent with, or supported

by other information in the field.”

Although these criteria are proposed to evaluate traditional information, they are
basically universal for all kinds of media including Internet information.

Many criteria used in traditional information evaluation have been recommended by
researchers and libraries (see [3], [171]; [174]; [31]) to evaluate web information content.
Most of these criteria can be covered by five general criteria: Authority, Accuracy,
Objectivity, Currency, and Coverage. The detailed criteria can be found in [3], [154]
and [171]. Obviously, Barry and Schamber’s criteria discussed earlier in this section are
very close to these 5 general criteria.

From the perspective of information science, these studies discussed above provide
us with useful clues regarding what features of information should be considered in con-
structing a KP model. However, the information quality evaluation methods in these
studies are informal. That is to say, the evaluations is supposed to be conducted by
information users in an informal manner, typically in a question-answer style. Informa-

tion users need to answer each evaluation question and to make overall evaluations by

CHAPTER 2. LITERATURE REVIEW 12

themselves. There are no formal models to reveal the relations among these criteria, and

there are no automated tools to support such analysis.

The difficulties in constructing formal models are: (1) many criteria are content-
dependent; and (2) many criteria “are of subjective nature and can therefore not be
assessed automatically” [138]. There are two approaches to solving the problems. One
is semantic annotation of Web information. We will discuss this stream of research in

section 4. Another approach is the use of content-independent criteria.

The criteria regarding authority (or quality of sources) are content-independent; fur-
thermore, authority is highly associated with information quality. Some empirical stud-
ies (e.g. [154]) show that the source credibility and authority plays an important role
in information quality evaluation, and “people depend upon such judgments of source
authority and credibility more in the Web environment than in the print environment.”
The connection between authority and information quality is also supported in theory by
Wilson’s book Second-Hand Knowledge (1983)[186]. In the book, the author developed
a theory of “cognitive authority”. “Cognitive authority”, different from “administrative
authority”, is addressed as “influence on one’s thought that one would consciously recog-
nize as proper”. Note that the word “authority” we used earlier in this section is referred
to “cognitive authority”. According to the author, the cognitive authority of a text may
be tested from four characteristics: (1) the author; (2) the publisher; (3) the document
type such as dictionaries; (4) the intrinsic plausibility of the text. Especially, relevant
to the connection between authority and information quality, the author argued that “a
person’s authority can be transferred to his work as long as the work falls within the
sphere of his authority”. This theory is tightly related to trust based judgment which we

will discuss in the next section.

CHAPTER 2. LITERATURE REVIEW 13

2.2 Trust and Trust Based Judgment

As addressed by Wilson (1983), “we can trust a text if it is the work of an individual or
group of individuals whom we can trust”. Trust is an important and efficient approach to
judge the validity of information / knowledge. This section discuss the related research
on trust and trust modeling.

Trust is widely concerned by many disciplines such as psychology, philosophy, sociol-
ogy, politics, economics, management sciences, and computer science. In the following,
we discuss (1) trust conceptualization mainly in social sciences; then we turn to the trust
formalization mainly in computer science and management sciences including (2) trust
management developed in computer network security; (3) trust in distributed AI; (4)

trust in social networks; and (5) trust in e-business.

2.2.1 Trust Conceptualization

Trust is a complex social phenomenon. In order to construct a formal model of trust on
the web, it is important to learn the concepts, structure and nature of trust from the
theories of trust developed in social sciences. In the following, we discuss the major views

of trust.

Trust as Decision

Since 1950s, Deutsch [38, 40] studied trust in the context of cooperation . He defined
trust as a trusting choice under an uncertain situation: (1) this choice may lead to two
possible outcomes: a beneficial one and a harmful one; (2) which outcome occurs depends
on the behavior of another individual; (3) the strength of the harmful outcome is stronger
than the beneficial one. A set of conditions and hypotheses on the decision of trust were
given. The hypothesis to make trusting choice is that the difference of the expected

utility of beneficial outcome and the expected utility of harmful outcome is greater than

CHAPTER 2. LITERATURE REVIEW 14

the decision maker’s personal “security level”. However, how to calculate this security
level remains unclear. Coleman [29] proposed a condition to place trust purely based
on the postulate of maximization of utility. Coleman’s condition is similar to Deutsch’s
trusting choice hypothesis but without that “security level”. A common problem of these
two conditions is that the utility of choosing not trust is missed in decision. A decision
should be made based on the expected utilities of both trusting and not trusting.

The definition of trust in Deutsch’s approach is to regard trust as decision in the
cooperation/ interaction between individuals. Deutsch’s work lays an important part of
foundations for the formalization of trust. However, this view of trust does not reveal

the conceptual structure of trust.

Trust as Psychological State

A large body of research has contributed to the evolution of the conceptualization of
trust. Rotter [155] defined “interpersonal trust” as “an expectancy held by an individual
or a group that the word, promise, verbal or written statement of another individual
or group can be relied on.” This definition reveals the essential aspect of trust — the
expectancy that the trusted party will keep its word.

Many researchers recognized that trust is associated with risk. For example, Gam-
betta [57] addressed that trust is fragile due to the limit of knowledge, foresight and the
uncertainty of the behaviors of the trusted agent(s). Mayer et al [124] further incorpo-
rated risk factor into the definition of trust. The authors defined trust as “the willingness
of a party to be vulnerable to the actions of another party based on the expectation that
the other will perform a particular action important to the trustor, irrespective of the
ability to monitor or control that other party.” This definition is one of most frequently
cited ones.

Rousseau et al [156] synthesized the concepts of trust in different disciplines and

addressed that “Trust, as the willingness to be vulnerable under condition of risk and

CHAPTER 2. LITERATURE REVIEW 15

interdependence, is a psychological state”. The authors further emphasize that trust is
not a behavior or a choice but an underlying psychological condition of these actions.

There are many other views of trust, for example, from the view of economists, trust
is “implicit contracting” [196]; in Fukuyama’s view, “trust is the expectation that arises
within a community of regular, honest, and cooperative behavior, based on commonly
shared norms” [56].

Finally, Blomqvist [19] analyzed the concepts of trust in different fields and compared
with trust-related concepts such as incredibility, confidence and so forth. The author
presented a wide landscape of trust studies in social sciences. McKnight and Chervany
[128] examined 65 definitions in different disciplines and proposed a topology of trust,

which is helpful to distinguish and to connect different types of trust.

Types of Trust

Trust can be classified into different types. In accordance with the psychological states
of making trust choice in different decision situations, Deustch [40] presented many dif-
ferent types of trust. Typical examples are “trust as confidence”, “trust as innocence”,
“trust as virtue” and “trust as gambling”. In the dimensions of rationality and emotion-
ality, Lewis and Weigert [113] presented a spectrum of trust. For examples, “cognitive
trust” is the trust with high rationality and low emotionality; “emotional trust” is the
trust with low rationality but high emotionality; in extreme situations, high rationality
but no emotionality corresponds to “rational predication”; and no rationality but high
emotionality corresponds to “faith”.

More relevant to our work, trust can also be classified by the sources of trust. Some
scholars may refer the term of “sources of trust” to the characteristics of trustee, which
make trustor trust, such as trustee’s “competency” and “goodwill”. By this term, we
mean where or how trust comes from. The most direct and common source of trust is

interaction experience. The trust with this type of source is called interpersonal trust, or

CHAPTER 2. LITERATURE REVIEW 16

more generally, inter-individual trust. This type of trust is the most fundamental type of
trust, so that it is the major body of trust study. However, a considerable attention has
given to “system trust” - a different mechanism of trust emerging at the turn of the last
century to meet people’s increasing demands of more and more interaction with strangers
in industrial society (a bigger world ever before). This situation is very similar to the

trust problem we are facing today in the cyberspace.

System trust is first revealed by Luhmann in his influential book Trust and Power
[118]. System trust is the trust placed in the function of a system in society. System trust
has many manifestations. Barber [7] studied three types of expectations: (1) expectation
of “persistence and fulfillment of the natural and the moral social orders”; (2) expecta-
tion of “technically competent role performance” of professionals; (3) expectation of the
“fiduciary obligations and responsibilities” of the partners in interaction. Zucker [196]
examined the evolution of the trust mechanism in American economic system and iden-
tified three modes of “trust production” (trust building): (1) “process-based”, in which
trust is built on past history of interaction; (2) “characteristic-based”, in which trust is
dependent on “social similarity”, such as ethnicity, age and gender; (3) “institutional-
based”, in which trust is built on “formal social structure” comprising of “membership in
a subculture” and “intermediary mechanism”, such as regulation, legislation, functions
of governments and banks. The “process-based” actually is interpersonal trust, and the
latter two (types (2) and (3)) are the manifestations of system trust. System trust is

based on the predictable behaviors of trustee in a (social or natural) system.

Most recently, trust propagation in social networks is receiving much attention. This
type of trust is based on the transitivity of trust. We call this type of trust as “relational

trust” and will discuss its related research in subsection “trust in social networks”.

CHAPTER 2. LITERATURE REVIEW 17
2.2.2 Trust Management

In computer science, trust was initially a concern of the security community. For the
purposes of secure web access control, Blaze et al [17] first proposed “decentralized trust
management” to separate trust management from applications. The authors introduced
the fundamental concepts of policy, credential and trust relationship, and they also devel-
oped the PolicyMaker system. Chu [28] introduced trust protocol in REFEREE system;
Yahalom et al [191] introduced recommendation type of trust in security system; Khare
and Rifkin [102] proposed basic principles of trust management. However, Trust Man-
agement focuses on one specific type of trust — “is this individual trusted to access or
to do a specific operation in my system?” The concerns from “Web of Trust” are more
general, e.g., whether the information created or action conducted by an individual could
be trusted. Recently, research interests in trust management field are expanding from

security to general purposes, especially, towards trust management in e-commerce.

2.2.3 Trust in Distributed Al

Trust is also a concern of the distributed Al community.

Based on a thorough examination of the trust concepts developed in social sciences,
Marsh [122] constructed a quantitative model of trust as a formal tool to study trust
decisions in the interaction among agents by means of quantitatively simulating the psy-
chological process for those decisions. In this model, trust is associated with situations
and the utilities of situations. This work is among the first to formalize trust. However,
several limitations exist. For example, this study is limited to only interpersonal trust;
although “situation” is introduced in the trust model, the model does not clearly dis-
tinguish two types of “situations”: (1) the situation in which the trustee conducts the

expected things; (2) the situation in which trustor makes a trust decision.

Demolombe [37] constructed a modal logic model of trust. Based on operators belief

CHAPTER 2. LITERATURE REVIEW 18

and strong belief, the author defined the formal semantics of the trusts in trustees’ prop-
erties of sincerity, credibility, cooperativity and vigilance in delivering information. This
work is among the first to formalize trust using belief. However, this approach suffers
from the problem regarding what is the possible world semantics of belief (see discussion
in 2.4.3). The author seems to treat belief as “necessitation”, which leads to that believed
proposition must be true, but in fact belief is not necessarily true. Furthermore, similar
to the “logical omniscience” problems in epistemic logic, trust regarding to vigilance (in
which trustor a strongly believes that if a proposition is true then trustee b believes
this proposition) is not true in the real world. In addition, the logic used in this model
seems beyond first order modal logic. These features may make the model difficult to
use. Another problem is that this model does not tell the difference between the infor-
mation believed and the one created by the trustee, which have different trust properties.
Finally, the trust addressed focuses on interpersonal trust, so that transitivity of trust is

not studied.

Falcone & Castelfranchi [46] constructed a socio-cognitive model of trust that suggests
to calculate the trustworthiness of an agent about a task in a context by counting the
degree of ability and the degree of willingness (motivation) of the agent. It is interesting
to connect trust with context. However, It is hard to measure the degree of willingness

of the trustee.

Gans et al [59] developed a Trust-Confidence-Distrust model for representing collabo-
ration in agent networks. Perhaps because trust problem in DAI arises in the interaction

among agents, all the work discussed above focus on inter-individual trust.

Ramchurn et al [149] classified the approaches to trust in multi-agent systems into
individual-level trust and system-level trust. Individual-level focuses on learning, trust
evolving, trust evaluation; and system-level focuses on the mechanisms of trustworthy
interaction and reputation building. They discussed the approach to reputation building

and evaluation using social networks.

CHAPTER 2. LITERATURE REVIEW 19

In addition, several technologies developed in autonomous agents and multi-agent
systems are tightly related to trust formalization, for examples, belief, goals, intention,

commitments, coordination and so forth [21, 187, 50, 193].

2.2.4 Trust in Social Networks

A “social network” is a network representing the relationships between individuals or
organizations, indicating the ways in which they are connected through various social
familiarities ranging from casual acquaintance to close familial bonds [185]. Milgram’s
experiments in 1960s [131] reveal an interesting finding — six degree of separation, which
suggests that any two randomly chosen individuals in America are connected, on average,
by a chain of 6 acquaintances. This finding provides a compelling evidence for “small
world phenomenon” - a hypothesis that any two individuals in a social network are likely
to be connected by a short chain of acquaintances [106]. Dodds et al [43] conducted an
experiment in email users which further confirms the small world theory in cyberspace.

In recent years, trust models based on social networks are receiving considerable
attention. Particularly, the trend is powered by “web of trust” which is identified as the
top layer of the semantic web.

The concept of “web of trust” perhaps is first developed in PGP as a trust model
used for public key validation by using social networks. However, “trust” in PGP is
specifically on public key validation. FOAF project (http://foaf-project.org/) attempts
to create social networks on the web by facilitating people to describe acquaintance re-
lationships in machine-readable web pages. Although acquaintance relationships are not
trust relationships, FOAF is a good starting point. Recently, many models of trust on the
web using social networks have emerged. For examples, Yu and Singh [192] constructed
a model of reputation (trust) updating and propagation using the testimonies from the
trustee’s neighbors; Golbeck et al [66] extended the acquaintance relationships in FOAF

model by introducing levels of trust and applied the model for filtering emails; Richard-

CHAPTER 2. LITERATURE REVIEW 20

son et al [153] proposed an algebra representation of trust propagation and applied it
in bibliography recommendation; Guha and Kumar [79] constructed a trust propagation
model considering distrust; Abdul-Rahman and Hailes [1] proposed a trust model includ-
ing “direct trust” and “recommender trust”, in which trust propagates in social networks;
Josang et al [99] argued that trust is not always transitive and “referral trust” (the same
as “recommender trust”) is transitive. However, they did not reveal why recommendation

is transitive in a formal manner.

A common perspective of most of these models is that trust propagates in social
networks. However, is trust transitive? What types of trust are transitive and why? Few
theories and models found have answered these questions in formal manner. The models
found either directly assume trust transitive or do not give formal discussion why trust

is transitive, due to no formal representation of the semantics of trust.

Most of social networks-based trust models are quantitative models in which a trust
degree is interpreted as subjective probability. The advantages of quantitative models
include: (1) the uncertainty feature of trust is addressed; (2) trust models may be built
based on the well established uncertainty theories. However, on the other hand, many
quantitative models still suffer from the lack of an explicit formal interpretation of the
meaning of trust degree, due to the lack of formal semantics of trust, so that the trust
degree is defined quite subjective. Another problem is that probabilistic models usually
need many parameters, but it is difficult to obtain these parameters. Perhaps for this
reason, in many quantitative models, on one hand, trust degree is interpreted as proba-
bility, on the other hand, the models used for computing trust degrees are not based on
probability theory. It is a problem regarding how to explain those models in probability

theory.

CHAPTER 2. LITERATURE REVIEW 21

2.2.5 Trust in e-Commerce

Both the conceptual models and formal models of trust developed in social sciences and
computer science are widely applied to analyze the trust in online trade [128] [108] [100].
In addition to trust modeling’s manifestations and applications in the field of e-commerce,
two interesting approaches developed: reputation systems and third party certification.

A “reputation system” collects, aggregates and distributes the feedback about online
trade participants’s past behaviors [151]. Typical examples include: eBay, amazon and
epinions. The “reputation” of a participant is the aggregated evaluation from other
participants regarding past interaction, which could be approximately regarded as the
trust obtained from a community. However, “reputation systems” have several limitations
[151]. One major problem is unfair rating [194]; another is the missing of contexts, for
example, from the overall “reputation”, users cannot find whether a retailer is only good
at some specific products like books.

Coming from the concerns of security and privacy, “trust seal” is developed as another
approach to trust by a type of third party certification. Examples include “WebTrust”,
“Thawte web server certification”, “TRUSTe”, et al. Currently, trust seal programs only
ensure that a sealed website complies with the principles on security and privacy, but do

not ensure information trustworthiness.

2.3 Provenance Based Judgment

As addressed in [13], “provenance information is extremely important for determining
the value and integrity of a resource”. The role of provenance in the validity of data,
information / knowledge has received attention by several research projects.

Buneman et al [22][23] addressed “Data Provenance” problem: the data in the Web
or a database may be extracted, copied, edited, or annotated from somewhere else in the

Web or databases, and this situation leads to the question regarding whether this data

CHAPTER 2. LITERATURE REVIEW 22

is valid. From the perspective of database technology, the authors proposed a syntactic
approach to computing the provenance of a piece of data generated by a database query.
The data provenance considered includes two types: why-provenance (why the data
is there) and where-provenance (where the data come from). The motivation for this
research is very similar to the motivation for knowledge provenance. However, data
provenance only targets the data returned by queries from structured or semistructured
data sets; the syntactic approach of data provenance only traces the provenance of the

data but does not answer the trustworthiness of data sources.

Most recently, EU provenance project [136] [70] [135] proposed an open provenance
architecture to enable documentation of the process that led to the data in grid comput-
ing and e-science. This system also provide tools for creating, recording and querying

provenance information.

TRELLIS (trellis.semanticweb.org)[63] is a web-based tool that enables users to an-
notate their information analysis or argumentation, to justify, update and share their
analysis and to add their viewpoints and evaluations to other information analysis. In
TRELLIS, users are able to judge the quality of a piece of information used in argumenta-
tion, by examining other users’ evaluations and the usefulness of the information in other
argumentation, as well as by tracing back to the provenance of the information. One of
the distinguished features of TRELLIS is that the quality of a piece of information can
be assessed by not only other users’ evaluations but also the usefulness and provenance
of the information, that is, the use and the original context of the yield of this infor-
mation. However, TRELLIS does not provide a formal model to assess the quality of a
piece of dependent information by considering the quality of the information it depends
on. TRELLIS can be a useful tool in practice but there is little work on formalizing the

judgment of information trustworthiness.

Coming from an automated reasoning perspective, KSL at Stanford [127] developed

“Inference Web (IW)”. IW enables information creators to register proofs with prove-

CHAPTER 2. LITERATURE REVIEW 23

nance information in IW, and then IW is able to explain the provenance of a piece of
requested knowledge. IW only provides provenance information (registered by creators)
to information users, and the users make decisions whether to trust or not trust the
requested knowledge. IW mainly focuses on the explanations to reasoning by providing
provenance information. In IW, there is no formal models for trust judgments. In ad-
dition, IW may be suitable for only formalized information rather than various forms of

web data.

Ding et al [42] proposed provenance and trust based heuristics for homeland security
information search, information integration and analysis on the Semantic Web. Very
interestingly, some important information could be discovered by integrating the data
spread over the Semantic Web; the trustworthiness of the discovery depends on the the
provenance and the corresponding trustworthiness of each piece of information used for

that derivation.

Provenance tells not only what is the information source but also how this information
is derived, what is the context of this information, and how this information is used.
However, processing rich provenance information needs human beings’ participation, so
research have to trade off the range of provenance information, what human beings do,

and what machines do.

2.4 Relevant Technologies

Many Al technologies and web technologies, in particular, the Semantic Web technologies,
can be used to support KP. We briefly introduce these technologies in the following

subsections.

CHAPTER 2. LITERATURE REVIEW 24
2.4.1 Digital Signature and Certification

Digital signatures are an approach to enable information recipients to verify the authen-
ticity of the information origin and data integrity [195]. PKI (Public Key Infrastructure)
is a security architecture to support digital certification. Currently, there are several PKI
standards. The most well known is X.509/PKIX [26], which is a hierarchically structured
PKI with a root certificate authority (RCA). In a PKI of x.509 type structure, the trust
is centered at the root, and then transferred hierarchically to all the users in the network
via certificate authorities (CAs)[168]. Other examples of PKI standards include PGP
[Jand SDSI/SPKI [134]. In contrast to X.509’s hierarchical structure, they have unstruc-
tured frameworks, and they are issued by individuals. In particular, we are interested in
PGP’s certification model “ web of trust” which have been discussed earlier.

XML digital signature has been developing in W3 Consortium [178]. XML signatures
are digital signatures for XML data documents. XML signatures have some new features
[167], e.g. it is able to sign only specific portions of the XML tree rather than the
complete document, and it can sign more than one type of resources in a single signature.
The development of XML digital signature will facilitate the certification in knowledge
provenance.

No doubt, digital signature and digital certification play important roles in the Web of
Trust. However, they only provide an approach to certifying an individual’s identification
and information integrity, but they do not determine whether this individual can be

trusted.

2.4.2 The Semantic Web

Most information on the Web is designed for human consumption, so that it is very dif-
ficult to maintain the evolution and validity of information automatically by machines.

The development of the Semantic Web technologies shows a promising approach to sup-

CHAPTER 2. LITERATURE REVIEW 25

port knowledge provenance.

The Semantic Web is an extension of the current Web in which information will be
represented in a machine processable or “understandable” form, so that machines are
able to share and process the data on the Web [10]. The semantic web approach is to
use metadata to describe the web data and to use commonly shared web ontologies to
construct new ontologies. Metadata is “data about data”, specifically, here it is “data
describing Web resources”. “Ontology is a term borrowed from philosophy that refers to
the science of describing the kinds of entities in the world and how they are related.” [179]

More specifically, ontologies are formal and explicit definition of concepts.

As first steps towards semantic web, RDF (Resource Description Framework) [177]
is recommended by W3C (World-Wide Web Consortium) for representing the metadata
of Web resources. RDF is a simple and general-purpose language designed to provide
interoperability between applications that exchange machine-understandable information
on the Web. This feature enable automated processing of web resources. Even though
RDF is originally designed for representing metadata about web resources, in fact, it can
be used to describe any object on the Web, for anything on the web can be regarded as
web resource. RDF with digital signatures will be the key to building the "Web of Trust’

for e-commerce, collaboration, and other applications [177].

RDF uses RDF graph as a knowledge representation model. A RDF graph can be
defined as a set of triples of the form < O, A,V > that represents that object O has
attribute A which has value V, or a statement with subject O, predicate A, and object
V. RDF uses URI (Uniform Resource Identifier) to identify one thing from the others. In
this way, RDF is used to represent information on the Web and to make the information
exchangeable between different applications. RDFS (RDF Schema) [181] extends RDF
by introducing basic facilities to describe classes, properties, instances, and constraints

on the relation between classes and properties.

RDF is defined based upon XML [182]. So, any RDF data file is a XML data file

CHAPTER 2. LITERATURE REVIEW 26

also. XML is designed as a text format extensible markup language. It can be used to
assign data with semantics; It represents information in structured data; its text format
makes it be a good platform-free data exchange media. Due to these features, it widely
used as data file in many heterogeneous applications.

To facilitate publishing and sharing ontologies on the Web, OWL, web ontology lan-
guage, is recommended by W3C to define and instantiate classes and relations. From a
set of web ontologies, facts not given but entailed by the ontologies can be derived by
using OWL formal semantics [179]. “OWL is a vocabulary extension of RDF [180].” In
this way, an OWL ontology is an RDF graph (a set of RDF triples). OWL has three
subsets: OWL Lite, OWL DL and OWL Full. Among them, OWL DL is supported
with Description Logic reasoners. OWL Lite is a light version of OWL DL. OWL Full is
designed to be compatible with RDF, so that any RDF graph is a OWL Full ontology.

In addition to the infrastructure to facilitate machine understandable information /
knowledge representation on the web, such as RDF, RDF schema and OWL, the semantic
web community mainly focus on web data integration and knowledge sharing. Regarding
KP, although “ web of trust” is identified as the top layer of the semantic web, except
XML digital signature as an essential step towards knowledge provenance, currently no

standard for knowledge provenance level exists.

2.4.3 Knowledge Representation Technologies

Various knowledge representation technologies developed in artificial intelligence provide
many alternatives for knowledge representation in KP. This section reviews several di-

rectly relevant technologies.

Knowledge and Belief in Epistemic Logic

From the literature on trust, belief is the kernel element of trust. The logic of knowledge

and belief has been studied in epistemic logic. Epistemic logic [130] is a particular modal

CHAPTER 2. LITERATURE REVIEW 27

logic. Modal logic [27] is the logic of necessity and possibility. Necessity refers to that
propositions are necessarily true (i.e. “must be true”, denoted as Op, and p denotes a
proposition); and possibility refers to that propositions are possibly true (i.e. “may be
true”, denoted as {p).

The most commonly used axioms in modal logic include [33][187]:
K :O(p > q) > (Bp > Ug)
T:UpDp
D:OpD><p
4 :Op > O0p
5:0p D> 0Gp

Based on these axioms, several representative modal logic systems (refer to [129][187])
are defined. Typically, the system T has axioms K and T'; the system S4 has axioms
K., T and 4; the system S5 has axioms K, T and 5; the system K45 has axioms K,
4, and 5; the system KD45 (also called weak-S5) has axioms K, D, 4, and 5. These
systems are widely used to represent the logic of knowledge and belief in epistemic logic.

In epistemic logic, knowledge and belief are formalized with the possible world seman-
tics [85][109]. By the semantics, a model, M, is a triple < W, R,V >, where W is the set
of possible worlds, R is accessibility relation, RO W x W and V : W x P — {T,F}is a
truth assignment function for each atom proposition in each possible world. In Kripke’s
view, the semantics of accessibility relation is as follows. (w,w’) D R means that w’ is
“possible relative to” w, i.e., every proposition true in w is possible in w’. Corresponding
to the axioms T, D, 4, and 5, the accessibility relation R should be reflexive, serial,
transitive, and Euclidean respectively.

In possible world semantics, proposition p is necessarily true, if the proposition is true

in all accessible possible worlds, i.e.
< M,w>EOp,if f:Vu', (w,w') € RD< M,w' >Ep (2.1)

Proposition p is possibly true, if the proposition is true in some of the accessible

CHAPTER 2. LITERATURE REVIEW 28

possible worlds, i.e.
< M,w>EOp,iff: 3w, (w,w') € RA< M,w' >Ep (2.2)

In epistemic logic, knowledge is defined as the propositions necessarily true. The
systems T, 4, and especially 5, are used as the logics of knowledge. Different from
knowledge, belief need not to be necessarily true, so that axiom T cannot be applied to
the logic systems of belief. For this reason, the systems K45 and KD45 (weak-S5) are
used as the logic of belief.

From our point of view, belief is possibly true; on the other hand, a proposition
possibly true is not necessarily to be believed. In other words, possibly true is a necessary

condition of belief, but it is not the sufficient condition.

Situation Calculus

The situation calculus is a logic language specifically designed for representing dynami-
cally changing worlds [150]. It works in the following way: the changing world is repre-
sented by a set of fluents. A fluent is a property (of the world) whose value is dependent
on situations. In other words, a fluent dynamically changes when the situation does. The
situation, in turn, changes when an action is performed by agent(s) in the world.

The situation calculus language is a sorted second order logic language [150]. We
will only use the first order logic part of the situation calculus. In a sorted logical
language, the universe is participated into disjoint sub-universes, and each sub-universe
corresponds to a sort. Sorts are similar to the “types“ in a programming language. In
the situation calculus, there are four domain independent sorts: A, S, F', and D denote
actions, situations, fluents and domain objects respectively.

The representation of actions, situations and fluents are further discussed as follows.

Actions Actions are represented with terms. A term is the same as its definition in

the first order logic. A term can be a variable, or a function of arity n, f(t1,...,t,), where

CHAPTER 2. LITERATURE REVIEW 29

t1, ..., t,, are terms. (Note: a constant actually is a function of arity 0).

Situations Situations are represented with terms. There is an initial situation, called
So, representing the situation in which no actions have been done. Function “do(a, s)”

maps to the situation after doing action a in situation s.

Fluents There are two types of “fluents”: (1) “relational fluents”, refer to relations
that have true values of “true” or “false”; (2) “functional fluents”, refer to the functions
as defined in mathematics. Functional fluents are represented as terms. For relational
fluents, there are two types of representation: reified and non-reified representation [147].
In non-reified representation (used by the classical situation calculus), a fluent is repre-
sented as a predicate in the form of f(z,s), where f is the name of the predicate to
represent a fluent, denotes the objects in the domain of this fluent, and s is the situa-
tion in which the fluent holds. In reified representation, a fluent is represented as a term
in the form of f(z), and a fluent f(z) is true in situation s is represented by predicate
holds(f(x),s). In this way, a fluent is a term. So that a fluent may have other fluents as
parameters.

The situation calculus interests us for two reasons: first, situations in the situation
calculus provide a solution to formally represent the contexts of trust; secondly, trust
dynamically changes with the growth of the knowledge related to trust. These two

features make the situation calculus a good tool used to formalize trust.

Truth Maintenance Systems

Information dependency is a factor considered in knowledge provenance. Truth Main-
tenance System (TMS) is a good tool to facilitate the representation of dependency
networks for derivations.

Truth Maintenance System (TMS), which was designed to maintain beliefs for general

problem solving systems, was proposed by Jon Doyle in 1979 [44]. Since then, it has

CHAPTER 2. LITERATURE REVIEW 30

become a common and widely used piece of AI technology [35]. Truth Maintenance
Systems are classified in three types: Justification-based TMS (JTMS), Logic-based TMS
(LTMS)[36], and Assumption-based TMS (ATMS) [34]. JTMS uses two values in, out
where in means “having evidence to believe a proposition to be true”, and out means
“no evidence to believe a proposition to be true”. LTMS uses three-valued logic True,
Unknown, False. The relation among these values is that in is corresponding to True,
and out is corresponding to False or Unknown (see detail in [36]). TMS facilitates
the representation of dependency networks for derivations, to diagnose inconsistencies,
to conduct dependency-directed backtracking, and to support default reasoning. These
features make TMSs provide us useful technical approaches to represent KP models.
On the other hand, TMSs along do not work in KP, for the following reasons: first
of all, similar to any other formal systems, TMSs only check the truth of facts from
which a result is derived, but TMSs cannot check whether the used rules or models in
the derivation are appropriate or not. It is this higher level of validity regarding the
proper uses of models an important reason for judging the validity of information by
judging the trustworthiness of the information creators; secondly, KP needs to consider
that the validity of information dynamically change over time; finally, people may have
a degree of belief in a continuous sense from “believed” to “not believed” for the reason

of uncertainty in information validation.

2.5 Summary

In this chapter, we presented a review of the research related to knowledge provenance
including information characteristics based judgments, trust based judgments and prove-
nance based judgments. In addition, we also reviewed the technologies that support

KP.

Although the criteria to judge the quality of web information have been developed

CHAPTER 2. LITERATURE REVIEW 31

in library and information science [9][3], the information evaluation methods are human-
users oriented. In other words, the evaluation process needs people’s involvement to make
subjective judgments against those criteria. Therefore, in order to construct automatic
tools in knowledge provenance, based on the study of information quality evaluation,
information validity judgments (a kernel part of information quality evaluation) need
to be formalized. According to Wilson [186], “we can trust a text if it is the work
of an individual or group of individuals whom we can trust.” In this way, essentially,
the validity of a web information may be judged in the base of the trust placed in the
information sources.

A number of formalized trust models have been proposed. Most models focus on
how trust is build up among entities. However, a finite number of trust relationships
which each individual entity has cannot meet the needs of interactions with other unfa-
miliar or unknown entities on the web. As a promising remedy to this problem, social
networks-based trust is receiving considerable attention. A necessary condition for trust
propagation in social networks is that trust needs to be transitive. Nevertheless, is trust
transitive? What types of trust are transitive and why? There are neither theories nor
models found so far to answer these questions in a formal manner. Most models found
so far either directly assume trust transitive or do not give a formal discussion of why
trust is transitive. To answer these questions, further formalization of the semantics of
trust is necessary.

In the light of the semantic web and knowledge representation technologies, it is
possible to construct the logical models and web ontologies of knowledge provenance
and trust, and to use these web ontologies annotating web contents to create islands of

certainty in a morass of uncertain and incomplete information on the web.

Chapter 3

Static Knowledge Provenance

As stated in Chapter 1, the problem to be addressed in this thesis is how to determine
the validity of information /knowledge on the Web. Knowledge Provenance addresses this

problem by investigating how to model and maintain the origin and validity of knowledge.

We believe that people determine the validity of information in three basic ways: (1)
direct judgment by using information users own knowledge to analyze the content of the
given information; (2) indirect judgment by analyzing the characteristics of the given
information; (3) indirect judgment by trust and analyzing the provenance of the given
information. The first and the second approaches are domain and knowledge specific and
information content related, so that it is difficult to build general purpose models. This

thesis focuses on the third approach.

As given in Chapter 1, we identify four modules of KP. The focus of this chapter is
on Static Knowledge Provenance. Static KP is concerned with the provenance of the
knowledge that is both certain and does not change over time. Static KP provides the
basic concepts and the fundamental building blocks for determining validity, on which

dynamic and uncertain Knowledge Provenance are constructed.

Logically, the unit of web information to be considered in KP is a “proposition”. A

proposition, as defined in First Order Logic, is a declarative sentence that is either true

32

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 33

or false. In practice, a “proposition” in KP can refer to one or more xml elements, a
sentence, a phrase, or even a whole document. However, a “proposition” is the smallest
piece of text that may be annotated with provenance-related attributes. In other words,
once a piece of text is defined as a proposition in KP, no propositions can be further

defined within this piece of text.

Basically, any proposition has a truth value of True or False. When the truth value
of a proposition cannot be determined to be true or false, the truth value is set as

“Unknown”. The use of “Unknown” is a simple solution to handle uncertainty in static

KP.

Although the unit of web information to be considered in KP is a “proposition”,
which is called a KP_prop, this type of “propositions” are objects to be processed by
KP models, and they are not propositions in the logical model of KP; therefore, we can
use First Order Logic as the language to represent KP models. Those KP_props can be

regarded as “reified” propositions. We will discuss this later in this chapter.

In order to give a formal and explicit specification for Static KP and to make it
available on the web, a static KP ontology is defined in this chapter. Following the on-
tology development methodology of Gruninger and Fox [74], we specify static knowledge

provenance ontology in four steps:

(1) Provide a motivating scenario;

(2) Define informal competency questions for which the ontology must be able to

derive answers;

(3) Define the terminology (i.e. predicates);

(4) Define the axioms (i.e. semantics).

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 34

3.1 Motivating Scenarios

In the following, the underlying concepts of Static Knowledge Provenance are explored

in the context of two scenarios.

Case 1: Asserted Information

Consider the proposition found on a web page that “perennial sea ice in the Arctic is melt-
ing faster than previously thought at a rate of 9 percent per decade.” From a provenance
perspective, there are three questions that have to be answered: 1) What is the truth
value of this proposition? 2) Who asserted this proposition? 3) Should we believe the per-
son or organization that asserted it? In this example, a further examination of the text of
the web page provides the answers (www.gsfc.nasa.gov/topstory/2002/1122seaice.html):
It is a true proposition, asserted by NASA, who most people believe is an authority on
the subject. Question is, how can this provenance information be represented directly
without having to resort to Natural Language Processing of the page?

Other examples of asserted information include assertions made by persons or organi-
zations, statistical data and observation data such as stock quotes and weather readings
issued by organizations. In addition, commonly recognized knowledge, such as scientific
laws, should be treated as “asserted information”. This is for the following reason. Al-
though scientific laws are usually regarded as “derived information”, the derivation of

scientific laws have been validated in the past, and needn’t to be validated again.

Case 2: Dependent Information

Consider the following proposition found in another web page: “The accelerated rate of
reduction of perennial sea ice in the Arctic will lead to the extinction of polar bears within
100 years.” This is actually two propositions composed of a premise, “The accelerated

rate of reduction of perennial sea ice in the Arctic” and a conclusion, “the extinction of

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 35

polar bears within 100 years. Just as in the previous case, there are three questions that
need to be answered: 1) What is the truth value of these propositions? 2) Who assign
these truth values? 3) Should we believe the person or organization that asserted them?
What makes this case more interesting is that answering these question is dependent upon
propositions found in other web pages. There are two types of dependency occurring.
First the truth of the premise is dependent on the truth of the proposition found in
another web page. Secondly, the truth of the conclusion depends on the truth of the
premise and upon some hidden reasoning that led to the deduction. These types of

propositions are called “dependent propositions” in KP.

It is common to find information in one document reproduced in another. The repro-
duction of a proposition in a second document leads to an equivalence relation between
the two propositions, i.e., the truth value of the two propositions are equivalent. But the
relationship is also asymmetric; one proposition is a copy of the other. The copy of one

proposition is classified as “equivalent information.”

Furthermore, a proposition can be derived using logical deduction. Hence, the truth
value of the derived proposition depends on the truth values of its antecedent proposi-

tions. This type of derived proposition is classified as “derived information”.

Returning to the example, determining the provenance of the premise requires that
we link, in some way, the premise to the proposition in the other web page from which
it is copied. That link will also require some type of certification so that we know who
created it and whether it is to be trusted. The same is true of the conclusion. Minimally,
we should link it to its premise, maximally we should link it to the axioms that justify

its derivation. This link would also need to be certified in a similar manner.

In practice, a proposition may be derived by applying different axioms. For example,
according to the demerit point system of Ontario’s Ministry of Transportation, a person
may get 3 points for the following reasons: Failing to yield the right-of-way; Failing

to obey a stop sign, traffic light or railway crossing signal; Going the wrong way on a

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 36

one-way road. Each may be a possible reason for a loss of points.

Derived propositions may also be dependent upon disjunctions, conjunctions and/or
negations of other propositions.

From these two cases, a number of concepts required for reasoning about provenance

emerge:
- Text is divided into propositions.

- An asserted proposition must have a digital signature, to prove the authenticity of

the information creator(s).

- If the assertion is to be believed, then the person or organization that signed the

assertion must be acceptable to (i.e. trusted by) the user of the information.

- As propositions are reused across the web, a link between where it is used and

where it came from must be maintained.

- Dependencies can be simple copies, or can be the result of a reasoning process. If
the latter, then premises used in the reasoning should also be identified and signed

by an acceptable organization.

3.2 Informal Competency Questions

Competency questions define the scope of an ontology. In other words, assuming some
type of deductive reasoning system, an application built using the ontology must be
able to deduce answers to the competency questions. The following questions define the

competence of the Static KP ontology.

- What truth value can this proposition be believed to have?

- Who created this proposition? Is the information creator authentic?

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 37

- Can this information creator be trusted in a field the proposition belongs to?

- Does the truth of this proposition depend on any other propositions? can these

propositions be believed to be true?

3.3 Terminology

In this thesis, sorted First Order Logic [150] (pp.9) is employed to represent KP. In
a sorted logical language, the universe is partitioned into disjoint sub-universes, and
each sub-universe corresponds to a sort. Predicates are syntactically restricted to have
arguments of certain predefined sorts. Sorts are similar to the “types in a programming
language. To formalize KP, we introduce the following sorts.

P: the set of KP_props (KP_prop instances);

L: the set of classes for representing different KP _props;

E: the set of entities such as individuals and organizations;

F': the set of knowledge fields;

D: the set of domain objects such as proposition contents and digital signatures.

In the following, the predicates will be defined to represent KP propositions, the

properties of KP_propositions, as well as trust relationships.

3.3.1 Proposition Taxonomy

As stated in the begining of this chapter, the unit of web information to be considered in

KP is a “proposition”. KP_prop is the most general concept used to represent “proposi-

tions” in web documents. Based on the findings in our motivating scenarios, we define

different types of KP_props in table 1, in which predicate type(x,c) is defined as:
type(x,c) C Px L

where, z is an instance of class ¢ € L. L contains the names of 11 KP_prop types.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 38

KP_prop
P T,

Original_prop Atomic_prop Dependent_prop
W —
Asserted_prop Derived_prop Equivalent_prop Compound_prop
-
AND_—[:-)rop OR_prop NEG_prop

Figure 3.1: The taxonomy of KP propositions

The taxonomy of KP_props are shown in figure 3.2. In the figure, the six leaf nodes

are considered as basic types.

3.3.2 Properties about Information Source and Authentication

Although the unit of web information to be considered in KP is a “proposition”, which
is called a KP_prop, this type of “propositions” are objects to be processed by KP
models, and they are not propositions in the logical model of KP; in this way, we can
use First Order Logic as the language to represent the properties of those “propositions”

(KP_props).

Table 3.2 defines properties of KP _props related to information sources and authen-

tication.

For any original proposition, its creator can be defined. Along with it can be defined
a digital signature and the verification status of the signature. Assume that digital

signature validation software provides the result of signature verification.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 39

Table 3.1: Predicates - Proposition Types

Predicate

Definition

type(x, K P _prop)

x is a KP_prop.

type(z, Original _prop)

x is an original proposition created by its information cre-
ator(s). An original proposition is a piece of original work
of the information creator(s), and it can be an assertion or
the result of an inference process made by the information
creator(s). Therefore, Original_prop class is further divided

into two subclasses: Asserted_prop and Derived_prop.

type(x, Dependent prop))

x is a proposition whose truth value is dependent on other
propositions. Dependent_prop class has 3 subclasses: De-

rived_prop, Equivalent_prop and Compound_prop.

type(z, Asserted_prop))

x is an asserted proposition, which is its creators’ assertion

and not dependent upon any other propositions.

type(z, Derived_prop))

x is a derived proposition, which is the result of a reasoning

process, so its truth value depends on other KP_props.

type(z, Equivalent_prop))

x is a FEquivalent_prop. An Equivalent_prop is a copy of and

its truth value is the same as the proposition it depends on.

type(x, Compound_prop))

Compound_prop is defined to be the logical combination of
its constituent propositions. A Compound-prop is divided

into 3 subclasses: Neg_prop, And_prop, and Or_prop.

type(z, Neg_prop))

x is the logical negation of the proposition it depends on.

type(z, And_prop))

x is the logical and of the propositions it depends on.

type(x, Or_prop))

x is the logical or of the propositions it depends on.

type(x, Atomic_prop)

z is an atomic proposition (which has proposition content),
that is, it is not a compound proposition. An atomic propo-
sition is either Asserted_prop, or Derived_prop, or Equiva-

lent_prop.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 40

Table 3.2: Predicates - Information Sources and Authentication

Predicate

Definition

has_in foCreator(x,c)

CPxFE
KP_prop z has information creator c. An infoCreator may

be either an author or a publisher.

has_author(x, c)

has_publisher(x, c)

CPxFE

KP_prop z has author (or publisher) c.

has_signature(z, s)

CPxD

The proposition x has a digital signature s.

valid_sig(x, s, c,a)

CPxDxFExEFE

From the perspective of provenance requester a, x has valid
digital signature s signed by c¢. In other words, the digi-
tal signature of x has been validated by a. This predicate
corresponds to an external digital signature validation pro-
cess. This process returns “True” if the digital signature is

validated successfully; otherwise “False”.

valid_webPub(z,p, a)

CPxExXE

From the perspective of provenance requester a, KP_prop
x is a valid web publication of p, that is, + has a URL used
by p for web publication. This predicate corresponds to an
external process that checks the validity of web publication

and returns “True” if valid otherwise “False”.

has_authentic_source(z, s, a)

CPxFExEFE

From the perspective of provenance requester a, KP_prop z
has authenticated information source s. In other words, the
information creator of z has been authenticated by a, which
means either the digital signature of z has been validated

by a or z is a valid web publication of s.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 41

3.3.3 Truth Values and Other Properties

KP _props has two types of truth values: assigned truth value, which is the truth value
claimed by information creators; believed truth value, which is the truth value inferred
and believed by information users. Only Original props need assigned truth value; but
every KP _prop has believed truth value. For a KP_prop, different information users may
have different believed truth values. Basically, any proposition has a truth value of True
or False. When the believed truth value of a proposition cannot be determined to be
true or false, the believed truth value is set as “Unknown”. The use of “Unknown” is a
simple solution to handle uncertainty in static KP.

Table 3.3 defines the predicates for depicting the truth values and other properties of

a KP _prop.

3.3.4 Trust Relationships

From literature review, we know that the cognitive authority of a text can be determined
by the cognitive authority of the information creators [186] . According to this fact, KP
has a basic rule to determine the validity of a proposition as follows. If an information
creator is trusted in a field, then any proposition created by the creator in the field is
believed. We formally define the semantics of trust in chapter 5. Based on that formal
semantics, in this chapter, several trust related predicates are directly defined and used.

Trust related predicates are defined in table 3.4.

3.3.5 Other Predicates, Function and Symbols

Other predicates and function to be used in KP are defined in table 3.5. Symbols used
to represent logical systems in KP are given in table 3.6.
Regarding predicate equivalent_to(c, k), in implementation, for different form of propo-

sition content (such as xml or xhtml data), this predicate is implemented as a program in

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE

Table 3.3: Predicates: Properties of Propositions

Predicate

Definition

assigned_truth_value(x,v)

C P x {True, False}
Proposition z has a truth value v assigned by
proposition creator. v may be one of “True”

or “False”.

believed_truth_value(a, x,v)

C E x P x {True, False,Unknown}

Agent a (representing provenance requester)
believes that proposition z has a truth value
v. v may be one of “True”, “False”, or “Un-

known”.

prop_content(x, c)

CPxD

¢ is the content of a atomic_prop z. In html
files, the content of a proposition usually is a
string; in xml files, the content of a proposi-

tion can be one or more xml elements.

in_field(z, f)

CPxF

Proposition z is in knowledge field f.

is_dependent_on(x,vy))

CPxP

Proposition z is dependent on proposition y.
In other words, the truth value of proposition
x is dependent on the truth value of propo-
sition y. In this thesis, z is called dependent
proposition, and y is called support proposi-

tion.

has_ancestor(z,y))

Proposition z has ancestor y, iff x is depen-
dent on vy, or x is dependent on z, and z has

ancestor y.

42

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 43

Table 3.4: Predicates: Trust-related

Predicate Definition

trusted_in(a,c,f) | CEX Ex F

Provenance requester (or agent) a trusts information
creator ¢ on producing information in knowledge field
f- This predicate corresponds to an external process to
make trust judgment by giving trustor a, trustee ¢, and
field f. If the trust relationship holds, the process return

True; otherwise return False.

believed(x, a) CPxE
Proposition z is believed by agent a, that is, a believes
the truth of x which is given by the proposition’s cre-

ator(s).

different way. For example, if ¢ and k£ are xml data and they have the same DOM tree,
then they are equivalent to each other. The simplest but very limited implementation is
that ¢ is the same string as k.

A ground predicate is the predicate in which all variables are bound to individuals
(constants) in the domain of discussion.

These symbols will be defined in their contexts of discussion.

3.3.6 KP_props and Their Properties

In table 3.7, the first row lists the types of K P_prop such as “Asserted” for Asserted_prop,
and “Derived” for Derived_prop; the first column lists the properties a KP_prop may have;
and what properties each type of KP_props has are marked with “\/”. The properties

Wk

marked with are primary properties, called attributes hereafter, and other properties

can be derived from these attributes.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE

Table 3.5: Other Predicates and Function

Predicate/Function

Definition

subClassO f(z,y)

CLxL
This is a predicate to represent that class z is a sub-class

of class y.

equivalent_to(c, k)

CDxD

This is a predicate to represent that proposition content
¢ is equivalent to proposition content k. If content ¢
is equivalent to content k, this predicate returns true;

otherwise returns false.

neg(z)

{T'rue, False, Unknown} — {True, False, Unknown}

This is a function to mimic logical operator —. In other
words, neg(z) is a term. The function is defined as fol-
lows: neg(True) = False; neg(False) = True; and when
T is anything else rather than True and False (actually,
the only the possible legal value is Unknown), neg(z) =

Unknown.

44

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 45

Table 3.6: Symbols Representing Logical Systems

Trp1 denotes the set of axioms and theorems for static KP

ontology.

TkriKkB C Tkp1

denotes the set of axioms regarding the constraints

on the properties of different types of KP_props.

KBk pirues | C Tipi
denotes the set of axioms and theorems as rules for

provenance reasoning.

KBk pi,facts | denotes a set of ground predicates representing the

properties of KP_props related to answering a prove-

nance request.

3.4 Axioms

In this section, we use FOL (First Order Logic) to define and axiomatize static KP
ontology, which defines KP_props and inference rules for deriving the believed truth
value of a KP_prop.

In this thesis, we follow the convention that all unbound variables are universally
quantified in the largest scope, terms starting with uppercase are constants and terms
starting with lowercase are variables.

The contents of this section are organized as follows: first, the logic of static KP is
described in English; then, the axioms for proposition taxonomy are defined; the axioms
about information sources and how to determine the authenticity of KP _props are given;
since KP determines the believed truth value of a proposition based on the trust placed
in the proposition creator(s), we define axioms to specify the meaning of trust and belief;
then, based on these formal semantics, we give the rules to infer the believed truth values

of each type of propositions.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE

Table 3.7: KP_props and Their Properties

KP _prop:

Asserted

Derived

Equivalent

Compound

propositoin_content*

v

<

Vv

mn_field”

vV

1s_dependent_on*

has_author*

has_publisher*

has_in foCreator

has_sig*

valid_sig

valid_webPub

has_authentic_source

believed

assigned_truth_value*

believed_truth_value

NI A A A A AN AN A AN

2 S S NG S S NG U S SO NG S S

46

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 47

3.4.1 The Object Logic in Static KP

As stated earlier, the information unit considered in KP is “proposition”, called KP_prop;
the believed truth value of a KP_prop can be true, false, or unknown; furthermore, KP
needs to consider the logical relations among those KP_props. Therefore, a 3-valued
propositional logic comprising of KP_props needs to be represented in static KP ontology.

This object logic to be represented in KP is described as follows.

- An Asserted_prop is a KP_prop;
- a Derwed_prop is a KP_prop;
- an Fquivalent_prop is a KP_prop;

- if pis a KP_prop and ¢ is a KP_prop, pAq ! is a KP_prop, which is expressed with

a And_prop;

- if p is an KP_prop and q is a KP_prop, pVq is a KP_prop, which is expressed with

an Or_prop;

- if p is a KP_prop, —p is a KP_prop, which is expressed with a Neg_prop.

The above six types of KP_props are elementary, so called “basic types”. Further-
more, Asserted_prop, Derived_prop, and FEquivalent_prop are atomic KP_prop, so called
atomic_prop; And_prop, Or_prop, Neg_prop are compound, so called Compound_prop.

Each Asserted_prop or Derived_prop has an assigned truth value, assigned by informa-
tion creator; every KP_prop has a believed truth value, believed by a provenance requester.
An assigned truth value must be either True or False; a believed truth value can be True,
False or Unknown. “Unknown” is introduced for the situations in which the provenance

requester cannot determine the truth of a proposition being True or False.

'In the object logic, operator A denotes logical conjunction; similarly, V denotes logical disjunction;
- denotes logical negation.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 48

Table 3.8: Truth Table of Logical Operators
p | g |pAg|pvg|-p

i e I e I T A
S I e I I s I
S| | " S| =3
SIS "33
T e B > B B

The believed truth value of an Asserted_prop is determined by (1) the assigned truth
value of this proposition, and (2) whether this proposition is believed by the provenance
requester. A proposition is believed if its creator is trusted by the provenance requester

in a field covering that proposition.

The believed truth value of an Derived_prop is determined by (1) the assigned truth
value of this proposition, (2) whether this proposition is believed by the provenance re-
quester, and (3) the believed truth value of the support proposition which this proposition
is dependent on. Relation “is_dependent_on” means that if KP_prop p is dependent on
KP_prop q, the believed truth value of g needs to ba taken into account in determining

the believed truth value of p.

The believed truth value of an Equivalent_prop is equivalent to the believed truth value
of the support proposition which this proposition is dependent on, if the contents of these
two proposition are equivalent.

The believed truth value of a compound proposition is determined by the truth table
of Kleene’s 3-valued logic [103] as shown in table 7.

In the following, we use FOL as language to elaborate this 3-valued propositional
logic of KP_props. In our formalization, each KP_prop is handled as an object,

in other words, KP_props are individuals in FOL rather than propositions. In this way,

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 49

we can easily use FOL to represent the believed truth value and assigned truth value,
as well as other properties of KP_props. Those KP_props can be regarded as “reified”
propositions [164] (pp.37). However, there is a slight difference between “object” and
“reified proposition”. A “reified” proposition is a term, and the only concerned property
of it is truth value; an object representing a KP_prop has more concerned properties

related to the provenance of that proposition.

3.4.2 Domain Closure

As discussed in the terminology section, the universe or domain of discussion in KP
is divided into 5 sub-universes. Domain L, the set of classes for representing different

KP _props, comprises the following types.

L = {KP_prop, Atomic_prop, Original_prop,
Asserted_prop, Dependent_prop, Derived_prop,

Compound_prop, And_prop, Or_prop, Neg_prop}

For a specific provenance request, KP considers only the questioned KP_prop and
its ancestors (the propositions it directly or indirectly depends on). From a practical
perspective, we assume the length of any dependency path is finite. Thus, only a finite
number of KP _props are concerned for KP to answer a provenance requester. For this
reason, assume that domain P, the set of KP_props (KP_prop instances) considered,

comprises a finite number of propositions, i.e.
P={P,.. P}

Corresponding to these propositions, other 3 domains are determined and each of
them also has a finite number of individuals. Assume F, the set of entities appearing as

information creators and the provenance requester,

E={F, .. E.};

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 50

domain F', the set of knowledge fields which those propositions belong to,
F={F,..F}

and domain D, the set of proposition contents and digital signatures of those propositions,
D ={D,...,D}.

The following axiom schema states that the above individual s are all the constants
in KP’s knowledge base.
Domain Closure Axiom (DCA):

Vz)((x=P)V..V(x=P,)V(x=E)V..V(x=E,)
V(e=F)V..V(x=F,)V(r=D))V..V(x=D)
V (x = KP_prop) V (x = Atomic_prop) V (x = Original_prop)
V (z = Asserted_prop) V (x = Derived_prop)
V (z = Dependent _prop) V (x = Compound_prop)

V (z = And_prop) V (x = Or_prop) V (x = Neg_prop)) (3.1)

3.4.3 Proposition Taxonomy

First, two general (not specific to KP) axioms about the relationships between instance,

class and subclass are given as follows.

Axiom A-1:
type(x,y) A subClassO f(y, z) D type(z, z). (3.2)

Axiom A-2:
subClassO f(z,y) A subClassO f(y, z) D subClassO f(zx, z). (3.3)

We have identified 12 types of KP propositions as shown in 3.2. Each type of propo-
sitions is handled as a class. The taxonomy of these classes are defined by the following

axiom.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE

Axiom KP-0:

subClassO f(Atomic_prop, K P_prop).
subClassO f(Asserted_prop, Atomic_prop).
subClassO f(Derived_prop, Atomic_prop).
subClassO f(Equivalent_prop, Atomic_prop).
subClassO f(Original prop, K P_prop).
subClassO f(Asserted_prop, Original prop).

subClassO f(Derived_prop, Original _prop).

subClassO f(Dependant_prop, K P_prop).
subClassO f(Derived_prop, Dependant_prop).
subClassO f(Equivalent_prop, Dependant _prop).
subClassO f(Compound_prop, Dependant_prop).
subClassO f(And_prop, Compound_prop).
subClassO f(Or_prop, Compound_prop).

subClassO f(Neg_prop, Compound_prop).

3.4.4 Information Sources and Authentication

ol

(3.11)
(3.12)
(3.13)
(3.14)
(3.15)
(3.16)

(3.17)

In KP, any author or publisher of an Original prop is an information creator of the

proposition.

Axiom KP-1:

type(x, Original_prop) D

((has_author(z,c) V has_publisher(x, c)) D has_infoCreator(z, c)).

(3.18)

Strictly, the proof of the authenticity of a proposition’s authorship needs digital sig-

natures and certification. Consider that many organizations publish information in their

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE H2

web pages without digital signatures. This thesis relaxes the conditions of authentic-
ity to validate either the digital signature or the validity of the url of the questioned

proposition. However, in a real implementation, information users could turn this option

off.

The following axiom defines the semantics of that a KP_prop has authentic source. For
any KP_prop, it has an authenticated information creator, if: either (1) the signature of
this proposition signed by this information creator is validated; or (2)the proposition is a
valid web publication of this information creator. For example, the url of the proposition
shows that it is in the official web pages of the information creator.

Axiom KP-2:

type(z, Original prop) D
(has_infoCreator(x,c) A (has_signature(x, s) A valid_sig(z, s, ¢, a)
V valid_webPub(x, c,a))

D has_authentic_source(x,c,a)). (3.19)

The above axiom can be rewritten as two rules to infer whether a KP_prop has an
authenticated information creator.

Rule KP-2a:

type(z, Original _prop)
A has_signature(x, s) A has_in foCreator(z, c) A valid_sig(x, s, c, a)

D has_authentic_source(x,c,a). (3.20)

Rule KP-2b:

type(z, Original _prop) A has_in foCreator(x,c) A valid-webPub(zx, ¢, a)

D has_authentic_source(x,c,a). (3.21)

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 53

3.4.5 Semantics of Trust and Belief

In knowledge provenance, trust means that the provenance requester (an information
user, the trustor in the trust) believes the information created by the information creator
(trustee) to be true in a specific knowledge field (the context of trust), which is formally
described by the following axiom.

Axiom KP-3 (Formal semantics of trust in KP):

trusted_in(a,c, f) D

(type(z, Original _prop) A has_authentic_source(x, ¢, a)
Nin_field(z, f)

D believed(z,a)). (3.22)

Directly from the semantics of trust (axiom KP-3), we have the following theorem. In
KP, an original proposition is believed by an agent, if: the proposition has an authentic
information source which is trusted by this agent in a field which the proposition belongs

to.

Theorem KP-1:

type(x, Original_prop)
A has_authentic_source(z, c,a) Nin_field(x, f) A trusted_in(a, c, f)

D believed(x,a). (3.23)

The proof of this theorem is given in Appendix C.

This theorem can be used to infer that a KP_prop is believed by an agent when the
agent trusts one of the information sources of the proposition.

Different from epistemic logic, in which belief is represented as an operator applied
to a proposition and the the logics of belief are the theme of study, in this thesis, we

represent a KP_prop as an object rather then a proposition, and then we represent belief

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE H4

with predicate believed(x,a), which means proposition z is believed by agent a. Our
purpose to introduce belief is to determine the believed truth value of an KP_prop. For
this purpose, the meanings (or effects) of belief in KP is discussed in the following two

axioms. The general meaning of belief will be discussed in Chapter 5.

“Belief” in an asserted proposition means that the provenance requester believes the
truth of the proposition in question as its creator assigned. This semantics is formally

expressed as the following axiom:

Axiom KP-4 (Formal semantics of belief in an asserted proposition):

type(z, Asserted_prop) A believed(x,a) D
(assigned_truth_value(x,v) D believed_truth_value(a,x,v)).

(3.24)

Regarding the semantics of belief in a derived proposition, since a derived proposition
is the result of an inference process, similar to asserted proposition, what is believed
in a derived proposition is only the work of information creator(s), i.e. the inference
and the result; but the premise(s) used to infer this proposition is unnecessary to be
covered by this belief. In other words, belief in a derived proposition is conditional, or
a derived proposition is conditionally believed. The condition for this belief is that the

proposition(s) which this derived proposition depends on is true.

In summary, the semantics of belief in an derived proposition is that the provenance
requester believes the truth of the proposition in question as its creator assigned in
the condition of that the support proposition of this derived proposition is true. This

semantics is formally expressed as axiom KP-5.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 5%

Axiom KP-5 (Formal semantics of belief in a derived proposition):

type(x, Derived_prop) N is_-dependent_on(z,y) A believed(x,a) D
((believed_truth_value(a,y, True) D

(assigned_truth_value(z,v) D believed_truth_value(a, x,v))). (3.25)

3.4.6 Believed Truth Values

For a different agent a, the believed truth value of a KP_prop may be different, because
different agent usually has different trust relationships.
Different types of KP_props have different rules to infer the believed truth value. In

the following, we discuss how to infer the believed truth value of each type of KP_props.

Asserted Propositions

Directly from the semantics of belief (axiom KP-4), we have the following theorem. An
asserted-proposition has its truth value as assigned, if the asserted_prop is believed by
the agent making the provenance request.

Theorem KP-2:

type(x, Asserted_prop)
A believed(x, a) A assigned_truth_value(zx,v)

D believed_truth_value(a, z,v). (3.26)

The proof of this theorem is given in Appendix C.
This theorem provides the rule for inferring the believed truth value of Asserted_props.
Derived Propositions

A Derived_prop is the result of an inference process, so its truth value depends on the

support propositions, and the inference rules or the theories used in the reasoning, from

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 56

which this result is derived.

In this KP ontology, we treat all the propositions which a Derived_prop depends on
as one compound proposition (And_prop). In this way, a Derived_prop has one and only
one dependency-link pointing to that compound proposition, called this Derived_prop’s

support proposition.

Theoretically, a Derived_prop should have all the propositions from which it is derived
included in its support proposition, and the logical relation between them is “entail”. For
example, Derived_prop B has dependency-link pointing to KP_prop A, which means that
A entails B, i.e. AD B.

However, in real applications, it might be impractical to require to link to all knowl-
edge used to derive a proposition. For this reason, we suggest that only those critical
propositions which a Derived_prop depends on are included in this Derived_prop’s sup-
port proposition. By this way, the problem coming up is that the support proposition of
a Derived_prop is no longer sufficient for this Derived_prop. This problem is one of the

reasons for using trust in information creator(s) in KP.

Another reason for using trust is as follows. a Derived_prop is the result of an inference
process which could be a very complex process, even may be not formally provable, for
example, in humanity or art fields. Therefore, the judgment about the validity of such

inference needs to use trust placed in the information creator(s).

From axiom KP-5 regarding the semantics of the belief in a derived proposition, we
have the following theorem: the believed truth value of a derived proposition is “True”

or “False” as assigned by its author, if it is believed and its support KP _prop is “True”.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 57

Theorem KP-3:

type(z, Derived_prop)
A assigned_truth_value(z,v) A believed(z, a)
N is_dependent_on(x,y) A believed_truth_value(a,y, True)

D believed_truth_value(a, z,v). (3.27)

The proof of this theorem is given in Appendix C.

This theorem provides the rule for inferring the believed truth value of Derived_props.

Equivalent Propositions

The believed truth value of an equivalent-proposition is the same as the believed truth
value of the proposition it depends on. A valid equivalent proposition should have the
content that is equivalent to the content of the support proposition.

As discussed in terminology, for different forms of proposition content (such as xml
or xhtml data), the meaning of “equivalent” may be different. For example, two xml
elements are equivalent if they have the same DOM tree.

Axiom KP-6:

type(z, Equivalent _prop)
A is_dependent_on(x,y) A believed_truth_value(a,y, v)
A prop_content(z, c1) A prop_content(y, ca) A equivalent_to(cy, cz)

D believed_truth_value(a, z,v). (3.28)

Compound Propositions

The believed truth value of a negative-proposition is the negation of the believed truth

value of the KP_prop it is dependent on.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 58

Axiom KP-T7:

type(z, Neg-prop)
A is_dependent_on(z,y) A believed_truth_value(a,y,v)

D believed_truth_value(a, z,neg(v)). (3.29)

Here, neg(v) is a function as defined in terminology, which is a function to mimic

logical operator —.

The truth value of an And_prop is “True”, if and only if: all its support KP_props
are “True”; The truth value of an And_prop is “False”, if and only if: at least one of its

support KP _props is “False”.

Axiom KP-8a:

type(z, And_prop)
N is_dependent_on(x,y;) A is_dependent_on(x,ys) A y1 # Y2
A believed_truth_value(a, yi, True)) A believed_truth_value(a, ys, True))

D believed_truth_value(a, z, True). (3.30)

Axiom KP-8b:

type(x, And_prop)
N is_dependent_on(z,y) A believed_truth_value(a,y, False)

D believed_truth_value(a, z, False). (3.31)

The believed truth value of an or_prop is “True”, if and only if: at least one of its
dependency KP_props is “True”; the believed truth value of an or_proposition is “False”,

if and only if: all its support KP _props are “False”.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 59

Axiom KP-9a:

type(x, Or_prop)
N is_dependent_on(x,y) A believed_truth_value(a, yy, True)

D believed_truth_value(a, z, True). (3.32)

Axiom KP-9b:

type(x, Or_prop)
A is_dependent_on(x,y;) A is_dependent_on(z,ys) A y1 # Yo
A believed_truth_value(a, y,, False)) A believed_truth_value(a, yo, False))

D believed_truth_value(a, x, False). (3.33)

Default Believed Truth Values

The believed truth value of a KP_prop is “Unknown”, if either “True” or “False” cannot
be derived.
Axiom KP-10:

type(x, K P_prop)
A —believed_truth_value(a, x, True) A —believed_truth value(a, z, False)

D believed_truth value(a, z, Unknown). (3.34)

For this axiom, any web proposition that does not contain enough provenance infor-
mation for KP reasoning or even does not exist at all will have believed truth value of
“Unknown”.

We will discuss how to derive negative formulas later in section 4.5.

Symbol KBk pi ruies 1 introduced to denote all rules to be used for provenance rea-

soning in static KP.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 60

KBgp1ues = {DCA, axioms A_1, 2, axioms KP_0, 1, 2, theorems KP_1, 2, 3, axioms

KP.6, 7, 8, 9, 10}.

3.4.7 Property Constraints

Each KP_prop has certain properties; some properties need to be defined by information
creator; some others can be derived with KP axioms. In the earlier part of this section, we
have discussed the axioms and theorems used to derive the provenance related properties.
In this subsection, we discuss how to define the primary properties of KP_props and how

to represent KP_prop instances.

As discussed in subsection 3.3.6, a different type (class) of KP_props has a different
set of properties. This type of constraints can be described by cardinality, for example,
each Original _prop has one and only has one assigned truth value. The following axioms

describe cardinality constraints.

Axiom KP-11 states that any instance of KP_prop must be the instance of one and

exactly one of the six basic types of KP _props.

Axiom KP-11:

(type(zx, Asserted_prop) V type(z, Derived_prop) V type(x, equivalent_prop)
V type(x, Neg_prop) V type(x, And_prop) V type(z, Or_prop))
A (type(z, Asserted_prop) D —type(x, Derived_prop) A —type(z, Equivalent_prop)
A —type(x, Neg_prop) A —type(x, And_prop) A\ —type(x, Or_prop))
A (type(x, Derived_prop) D —type(x, Asserted_prop) A —type(z, Equivalent_prop)
A —type(x, Neg_prop) A =type(x, And_prop) A\ —type(x, Or_prop))
A (type(z, Equivalent_prop) D —type(z, Asserted_prop) A\ —type(x, Derived_prop)

A —type(x, Neg_prop) A —type(x, And_prop) A —type(x, Or_prop))

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 61

A (type(x, Neg_prop) D —type(x, Asserted_prop) A\ —type(z, Derived_prop)
A —type(x, Equivalent_prop) A\ —type(x, And_prop) A —type(x, Or_prop))
A (type(x, And_prop) D —type(x, Asserted_prop) A —type(x, Derived_prop)
A —type(x, Equivalent_prop) A —type(x, Neg_prop) A —type(x, Or_prop))
A (type(x, Or_prop) D —type(x, Asserted_prop) N\ —type(z, Derived_prop)

A —type(x, Equivalent_prop) N\ —type(x, And_prop) A —type(x, Neg_prop)) (3.35)

Axiom KP-12 defines property constraints on an Original_prop. An Original_prop’s
assigned truth value is either “True” or “False”; has at least one information creator;
belongs to at least one knowledge field.

Axiom KP-12:

type(z, Original prop) D
((assigned_truth_value(z, True) V assigned_truth_value(x, False))

A —(assigned_truth_value(x, True) A assigned_truth_value(zx, False))). (3.36)

type(x, Original _prop) D (3¢, has_in foCreator(z, c)) (3.37)
type(z, Original _prop) D (3f,in_field(z, f)) (3.38)

Note that in an implementation, the default assigned truth value is “True”. In other

words, if there is no assigned truth value is specified, then the assigned truth value is

“True”.

Axiom KP-13 states that each Atomic_prop has and only has one prop_content.
Axiom KP-13:

type(x, Atomic_prop) D
((Fe, prop_content(zx, c))

A (prop_content(x, c1) A prop_content(x,cy) D ¢1 = ¢3)). (3.39)

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 62

Axiom KP-14 defines property constraints on Dependent_prop (and its sub-classes).
Each Dependent_prop is dependent on at least one proposition that does not has this
Dependent_prop as an ancestor (Note that predicate has_ancestor is defined in axiom
KP-15); a Derived_prop, Equivalent_prop or Neg_prop is dependent on one and only one
KP_prop; an And_prop or Or_prop must be dependent on two support propositions.

Axiom KP-14:

type(x, Dependent_prop) D

(Jy, is_dependent_on(x,y) A =has_ancestor(y,z)) (3.40)

type(x, Derived_prop) D

(is_dependent_on(z,y1) A is_dependent_on(z,y2) D y1 = y2). (3.41)

type(x, Equivalent_prop) D

(1s_dependent_on(x,y,) A is_dependent_on(x,ys) D y1 = yo2). (3.42)

type(xz, Neg_prop) D

(is_dependent_on(z,y1) A is_dependent_on(x,y2) D 11 = y2). (3.43)

type(xz, And_prop) D
(Fy1, y2) (is_dependent_on(z,y;) A is-dependent_on(x,yz) A y1 # Y2

A (is_dependent_on(x,ys) O (ys = y1 V ys = y2)). (3.44)

type(z, Or_prop) D
(Fy1, y2) (is_dependent_on(z,y1) A is-dependent_on(x,y2) Ay # Y2

A (is_dependent_on(z,y3) D (y3 =11 Vys = y2)). (3.45)

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 63

A Derived_prop may be dependent on multiple support propositions. In such case,
logically equivalently, this Derived_prop is regarded as dependent on the conjunction of
all those multiple support propositions.

An And_prop or Or_prop must be dependent on two support propositions. The order
of those support proposition does not have any effect on the result of computing, because
operator A and V are associative.

The is_dependent_on relation represents the immediate dependency relation. The
following axiom defines predicate has_ancestor to include indirect dependency relations.

Axiom KP-15:

has_ancestor(z,z) =

(is_dependent_on(z, z) V (Jy)(is_dependent_on(z,y) A has_ancestor(y, z))). (3.46)

If a proposition has an ancestor, this proposition either directly or indirectly depends
on its ancestor.

Let Tk p1 xkp denote the set of axioms regarding property constraints or cardinality,
that is,

TKPI,KB = {AXiOIIlS KP,11,12,13, 14 & 15}

Now, we discuss the representation of the KP_prop instances. A symbol, KBk p1,facts,
is introduced to represent a finite set of grounded predicates that define all KP_prop
instances and their primary properties (defined properties).

For different provenance questions, the individuals in domains P, E, F, and D may
be different, and the given facts about related KP_prop instances, i.e. KBgp1, focts, are
also different. In other words, KBxpi facts is problem specific. However, KBgp1,facts
must satisfy Txp1 xp. This constraint leads to the following axiom.

Axiom KP-16:

KBxpi,facts O Tkp1,xB (3.47)

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 64

Let

I]VKPLKBJr == TKPI,KB U {A{L‘ZOT)’ZKP,lﬁ}

By this axiom, the axioms in 7xp; gp regarding cardinality define the structure of
the instance definition of each type of KP _props.

Since Asserted_prop is a subclass of Original_prop and a subclass of Atomic_prop
separately, by axioms KP-11 & 12, each Asserted_prop instance has the following form

of atomic formulas in KBgpi1, facts-

type(P, Asserted_prop) (3.48)
assigned_truth_value(P, True) (3.49)
has_author (P, Ay) (3.50)
(3.51)

has_author(P, Ay,,) (3.52)
has_publisher (P, B;) (3.53)
(3.54)

has_publisher(P, B,,,) (3.55)
has_signature(P, S) (3.56)
prop_content(P, C') (3.57)
in_field(P, Fy) (3.58)

(3.59)

in_field(P, Fy,) (3.60)

Note, if P has assigned truth value of False, the formula
assigned_truth_value(P, True)
should be replaced with

assigned_truth_value(P, False)

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 65

Similarly, each Derived_prop instance, which is also an instance of Original_prop,

Atomic_prop and Dependent_prop, has the following form of atomic formulas in KBg p1, facts-

type(P, Derived_prop) (3.61)
assigned_truth_value(P, True) (3.62)
has_author (P, Ay) (3.63)
(3.64)

has_author(P, A,,) (3.65)
has_publisher (P, B;) (3.66)
(3.67)

has_publisher(P, B,,,) (3.68)
has_signature(P, S) (3.69)
prop_content(P, C') (3.70)
in_field(P, Fy) (3.71)

(3.72)

in_field(P, Fy,) (3.73)
is-dependent_on(P, Q) (3.74)

Each Equivalent_prop, which is also an instance of Atomic_prop, has the following
form of atomic formulas.

type(P, Equivalent_prop) (3.75)

prop_content(P,C) (3.76)

Each Neg_prop instance, which is also an instance of Dependent_prop, has the follow-

ing form of atomic formulas.

type(P, Neg_prop) (3.77)

is_dependent_on(P, Q) (3.78)

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 66

Each And_prop (or Or_prop) instance, which is also an instance of Dependent_prop,

has the following form of atomic formulas.

type(P, And_prop) (3.79)

is_dependent_on(P, Q1)is_dependent_on(P, (Q)3) (3.80)

3.5 Reasoning with Negation

KB p1,facts, the facts of KP_props related to answer a specific provenance question, and
KBk p1,rutes, the rules used for provenance reasoning, form a knowledge base, which is

represented as symbol KBgp;.
,CBKPl = ICBKPl,rules) KBKPl,facts-

Knowledge base KBgp; can infer the believed truth value and other properties of a
questioned KP_prop. However, KBy p; is only able to infer positive formulas. In other
words, the knowledge base only be able to answer whether a property is true but cannot
answer whether a property is false. Moreover, the use of axiom KP-10 requires the system
be able to infer a predicate to be false; more importantly, the static KP ontology needs
be able to answer each competence question either true or false. For this reason, we need
a way to derive negative predicates.

A direct solution is to use the “Closed World Assumption” (CWA) [20]. By CWA,
if an atom p is not a logical consequence of a KB, then infer —p. However, due to the
undecidability of FOL, no algorithm exists to determine whether an arbitrary atom is
not a logical consequence of a KB in a finite number of steps.

For this problem, a weaker form of CWA — “Negation as Failure” (NF) rule[115], can
be applied to a KB containing a finite number of Horn clauses and “general program
clauses”, which is an extension of the form of Horn clauses to allow negative predicates

appear in the body part. By NF rule, if an atom p is failed to be proved to be true by

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 67

using every clause which can be unified to p in a KB in a finite number of steps?, then
infer —p.

In KP, the knowledge base, KBk p1, consists of only Horn clauses and one “general
program clause” (axiom KP-10). Note that axioms KP-11,12,13,14 & 15 in Txp1 k5
are not Horn clauses, but they are not directly used for provenance reasoning so that
they are not in the KBgp1, instead they are only applied for cardinality constraints in
KBxpi,facts- S0, NF-rule can be applied in KP.

This solution is based on the following knowledge completeness assumption.

Knowledge Completeness Assumption (KCA): KBgpi facts and KBk pi ruies
are all the knowledge used to infer the provenance properties of a KP_prop defined in
KBxp1, facts-

In KP, NF-rule is given in formal as follows.

Negation as Failure Rule (NF-rule): for any KB, a given knowledge base in the

form of general program clauses, for any atom p,
KBE=-p, iff: KBEfp

where ¥ ¢ denotes a finite failure of proof by using KB.
The set of axioms for static KP ontology using Negation as Failure can be represented

as

Trcr1 = KBxpirues U Tp1 gt U{KCA, NF rule}.

In using this ontology, first Bx p1, facts, the given facts about KP_prop instances must
be legal, that is, it must satisfy the axioms in 7xpi xp regarding cardinality; secondly,
in provenance reasoning, Negation as Failure is employed to infer negative literal.

Note that KB p; actually is stratified [116]. In particular, in axiom KP-10, we restrict
that the truth of believed_truth_value(a, z, Unknown) must be derived from the truth of

believed_truth_value(a, x, True) and believed_truth_value(a, x, False), but axiom KP-10

2More accurately, p is in the finite failure set of KB. The complete account refers to [115].

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 68

cannot be used to infer believed_truth_value(a, z, True) or believed_truth_value(a, x, False).
This stratification and Negation as Failure rule are out of FOL. Fortunately, there is an
equivalent pure FOL treatment by giving the completed definition for every predicate in
a KB [115](section 14). Actually, we have developed the equivalent pure FOL model in
[91]. In this thesis, in order to focus our theme of KP and to make the KP model easier
be able to be understood by a wider range of audience, we give our KP ontology in a

simpler form of 7k p; rather than complete definitions.

3.6 Consistency and Completeness

In order to justify the proposed static KP ontology, we discuss the consistency and

completeness of KP ontology.

3.6.1 Consistency

We briefly discuss the logical consistency of the static KP ontology and then mainly focus
on semantic consistency.

The logical consistency (satisfiability) of the static KP ontology 7xp1 (or Txp1™) can
be shown as follows.

First, any examples of KBk p1, facts in the form given in subsection 3.4.7 make 7Txp1 xp
satisfiable;

Secondly, Bk p1, facts and KBxp1 rues — {axiomK P — 10} contain only pure Horn
clauses, so they are satisfiable;

Finally, axiom KP-10 is the only rule to define the truth of predicate
believed_truth_value(a, x, Unknown),

so if the condition is true in the model determined by the above second step, assign
“True” to this predicate; otherwise assign “False”. Txp1 xp U KBkp1 rules; i-€. Trp1 is

satisfiable.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 69

In the following, we discuss consistency from the perspective of the semantics of the
proposed ontology. As stated earlier, static KP elaborates a 3-valued propositional logic.
If a KP_prop has two (or more) different truth values, the semantics becomes inconsistent;
on the other hand, if a KP_prop has one and only one truth value (either assigned or
derived), then the semantics of the ontology is consistent.

Axiom KP-12 (formula (3.36)) guarantees that each Original prop has one and only
one assigned truth value of either “True” or “False”.

The following theorem guarantees the semantic consistency of believed truth value.

Theorem KP-4: By system Txp1, given KBgpi facts that satisfies Tgpi kp, for any
provenance requester a, any KP_prop x has one and only one believed truth value of either

“True”, “False” or “Unknown”.

ICBKPI,Tules):

KBk pi,facts O
(type(x, KP_prop) D
((believed_truth value(a, z, True) V believed_truth_value(a, z, False)
V believed_truth_value(a, x, Unknown))
A =(believed_truthvalue(a, x, True) A believed_truth_value(a, x, False))
A —(believed_truth_value(a, x, True) A believed_truth value(a, z, Unknown))
A =(believed_truth_value(a, x, False) A believed_truth_value(a, x, Unknown))))

(3.81)

The proof of this theorem is given in Appendix C.

3.6.2 Completeness

We discuss the completeness of the ontology in the sense of that a knowledge base con-

structed with the ontology can answer every competency question.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 70

The competency questions presented earlier are discussed one by one as follows.

Q1. What truth value can this proposition be believed to have?

Given provenance requester R and questioned KP _prop X, this question can be formally

represented as follows.
type(X, K P_prop) D Ju, believed_truth_value(R, X, v). (3.82)

By theorem KP-4, we have

ICBKPl,rules):

ICBKPl,facts 0

(type(X, K P_prop) D (Jv, believed_truth_value(R, X,v))) (3.83)

where variable v is bound to one and only one of “True”, “False” or “Unknown”.
comp(KBkp1,facts) contains all KP_prop instances and their primary properties re-
lated to answer this question.

Therefore, T p1 answers this question.

Q2. Who created this proposition? Is the information creator authentic?

Given provenance requester R and questioned proposition X, this question can be formally

represented as:

type(X, Original _prop) D

(3c, has_in foCreator(X, c) A has_authentic_source(X,c, R)) (3.84)

Given

type(X, Original prop),

by axiom KP-12, we have
de, has_infoCreator(X, c);

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 71

furthermore, by axiom KP-2, if there is an information creator ¢ and a signature s, such
that

has_signature(X, s) Avalid_sig(X, s, c, R)

or

valid_webPub(X, ¢, R)

is true (authentication succeeds), then
has_authentic_source(X, c, R)

is true; otherwise, there is no ¢ to make
has_authentic_source(X, c, R)

true, so the answer to this question is false.

Thus, if authentication succeeds, we have

ICBKPl,rules):

ICBKPl,facts 0
(type(X, Original _prop) D

(Je, has_infoCreator(X, c) A has_authentic_source(X,c, R))); (3.85)

otherwise,

ICBKPI,Tules):

’CBKPl,facts o
—(type(X, Original _prop) D

(Je, has_in foCreator(X, ¢) A has_authentic_source(X, c, R))). (3.86)

Therefore, Ty p1 answers this question.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 72

Q3. Can an information creator of an Original prop be trusted in a field the

proposition belongs to?

Given provenance requester R and questioned proposition X, this question can be formally

represented as:

type(X, Original _prop) A\

(e, f, has_infoCreator(X,c) Nin_field(X,) A trusted_in(R, ¢, f)). (3.87)

If X is an Original_prop

type(X, Original_prop),

by axiom KP-12, we have

de, has_infoCreator(X, c)

and

af,in_field(X, f).

If there is a ¢ and f, such that external trust judgment process

trusted_in(R, c, f)

returns true, then the answer to this question is true; otherwise, false.

Thus, if X is an Original_prop and trust judgment process returns true,

ICBKPI,Tules):
’CBKPl,facts D
(type(X, Original _prop) A

(e, f, has_infoCreator(X,c) Ain_field(X, f) A trusted_in(R, ¢, f))); (3.88)

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 73

otherwise,

ICBKPl,rules):
ICBKPl,facts o
—(type(X, Original _prop) A

(e, f, has_infoCreator(X,c) Nin_field(X, f) A trusted_in(R,c, f))). (3.89)

Therefore, T p1 answers this question.

Q4. Does the truth of this proposition depend on any other propositions?

can these propositions be believed to be true?

Given provenance requester R and questioned proposition X, this question can be formally

represented as:

type(X, Dependent_prop)

A (Vy)(is_dependent_on(X,y) D believed_truth_value(R,y, True)) (3.90)

If X is a Dependent_prop

type(X, Dependent_prop),

by axiom KP-12, we have

Jy, is_dependent_on(X,y).

By theorem KP-4, for all such y, y has one and only one believed truth value of “True”,

“False” or “Unknown”, so

believed_truth_value(R,y, T'rue)

is either true or false.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 74

If all support propositions of X have believed truth value of “True”,

ICBKPl,rules):
ICBKPl,facts 2
(type(X, Dependent_prop) A

(Vy) (is-dependent_on(X,y) D believed_truthvalue(R,y, True))); (3.91)

otherwise,

’CBKPl,rules):
ICBKPl,facts 0
—(type(X, Dependent _prop) A\

(Vy) (is-dependent_on(X,y) D believed_truth_value(R,y, True))). (3.92)

Therefore, Ty p1 answers this question.

In summary, this static KP ontology can answer all predefined competency questions.

3.7 Web Implementation

To use KP, information creators need to annotate web documents with KP metadata to
describe the provenance-related attributes, such as who is proposition creator and what
is the premise proposition which this proposition depends on. A web browser “plugin”
is expected to assist information creators to annotate their web documents; information
users (provenance requesters) need to define their personalized trust relationships to tell
whom they trust in what fields; a knowledge provenance reasoner will trace KP tags
(KP metadata) in web documents across web pages, combining information sources and
dependencies, as well as trust relationships, to deduce the origin and validity of the

questioned proposition and the propositions it depends on.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE

3.7.1 Web Ontology of KP in OWL

From the formal KP ontology presented earlier in this chapter, we have defined Web

ontology of KP by Web Ontology Language OWL[180]. The Web ontology of KP is

given in Appendix A, which is also available online at www.eil.utoronto.ca/kp.

The classes and their associated properties are summarized as follows. In each box,

the first line is the defined class, and the other lines are the properties the class has. A

sub-class also has the properties of its super-class. Each property is designated as prim-

itive (i.e. given by information creator) or derived (i.e. derived by using KP axioms).

The cardinality of each property is also given.

kp: KPProp

kp:believed TruthValue (derived) cardinality = 1

kp:AtomicProp
rdfs:subClassOf kp:KPProp

kp:propContent (primitive) cardinality = 1

kp:Original Prop

rdfs:subClassOf kp:KPProp

kp:assignedTruth Value (primitive) cardinality = 1
kp:hasAuthor (primitive) cardinality > 0
kp:hasPublisher (primitive) cardinality > 0
kp:inField (primitive) cardinality > 1
kp:hasInfoCreator (derived) cardinality > 1

kp:hasAuthenticSource (derived) cardinality > 0

kp:believed (derived) cardinality = 1

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 76

kp:DependentProp
rdfs:subClassOf kp:KPProp

kp:isDependentOn (primitive) cardinality > 1

kp:Asserted Prop
rdfs:subClassOf kp:AtomicProp
rdfs:subClassOf kp:Original Prop

kp:Derived Prop
rdfs:subClassOf kp:AtomicProp
rdfs:subClassOf kp:Original Prop
rdfs:subClassOf kp:DependentProp

Note: By KP ontology in FOL, the cardinality of Derived_prop should be 1; in Web
ontology, we relax this constraint to allow multiple dependency. When cardinality is
greater than 1, KP reasoner assumes an implicit And_prop being the conjunction of all

support propositions.

kp:EquivalentProp
rdfs:subClassOf kp:AtomicProp
rdfs:subClassOf kp:DependentProp

(kp:isDependentOn (primitive) cardinality = 1)

Note: property isDependentOn has been defined in superclass kp:DependentProp, but

the cardinality constraint is specific in this class.
kp:CompoundProp

rdfs:subClassOf kp:DependentProp

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 77

kp:AndProp
rdfs:subClassOf kp:CompoundProp

kp:OrProp
rdfs:subClassOf kp:CompoundProp

kp:NegProp
rdfs:subClassOf kp:CompoundProp

kp:isDependentOn (primitive) cardinality = 1

Note: property isDependentOn has been defined in superclass kp:DependentProp, but
the cardinality constraint is specific in this class.

KP ontology can used as a markup language to annotate web documents. Since the
unit of web information to be processed by KP is proposition, a web document may be
annotated as one or more KP propositions. In the next subsection, we introduce how to
annotate web documents by an example.

A KP reasoner is implemented in Java to infer the validity and origin of a questioned

KP proposition. This reasoner and online demo are also available at www. eil.utoronto.ca/kp.

3.7.2 Application Example

In the following, we illustrate how to annotate web information with KP tags and how
the axioms are used to determine the provenance of propositions. Rather than maintain
provenance in separate metadata documents, KP metadata is embedded directly in web
document containing the propositions, making it easier to read and maintain.

An information creator may define a KP proposition as a whole web page, a paragraph,
a sentence, even a proper phrase. A KP proposition is annotated by a pair of tags

representing one of Asserted_prop, Derived_prop, Equivalent_prop, And_prop, Or_prop,

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 78

a CBC Hews:- Rate of ice melt endangers polar hears - Microzoft Internet Explorer

File Edt “iew Favortes Toolz Help |

- 5 D fa) aQ = & ‘ ?
Hlacl Ferard Stop Refresh Horne Search Favarites Media Hizkany
ﬂgdress| hittp: £ v, e cadskories 200301 09/ polar_bears030709 j @ Go |Links =
GUDglE"I j| f Searchweb ~ @ CSea Site | o | PageRank - | [FaOptiorn: [/ - ®

i WIRELESS 0 E-MAIL NEWS > FREE HEADLINES 0 LIVE RADIO D NEWSCASTS !

Rate of ice melt endangers polar bears
Last Updated Thu, 09 Jan 2003 19:39:51

EDMOMNTOMN - Melting sea ice threatens to drive polar bears : - "F

extinct within 100 wears, a Canadian biologist warns. i

Polar bears live on ice and need it to hunt seals, But climate
predictions suggest Arctic ice is melting faster than
scientists thought,

In 2002, a satellite-based survey found aArctic sea ice
coverage fell from around 6.5 million square kilometres to
around 5.5 million square kilometres in one year.

University of Alberta researcher Andrew Deracher studies
how polar bears adapt to changing conditions.

Kl
[€] I_I_I_ D Irtemet G

Figure 3.2: Example for Web document annotation

and Neg_prop. For example, <kp:DerivedProp> and </kp:DerivedProp> is used to
annotate a Derived_prop. Each KP proposition has certain properties. These properties

are given as metadata in the form of either xml attributes or xml elements.

We demonstrate how to make KP annotation by the following example. Assume the
web document to be annotated is a html file?, in which two pieces of text marked with

yellow background are two specified KP_props, as shown in the following figure.

Assume that sentence “Melting sea ice threatens to drive polar bears extinct within
100 years” is specified by the information creator as a Derived_prop. This proposition

has the following properties.

3This example is adapted from a CBC news report.
http://www.cbc.ca/news/story/2003/01/09/polar_bears030109.html

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 79

Prop ID: http://example.com/polar_bears030109. htmi#EndangeredPolarBears
prop_content: Melting sea ice threatens to drive polar bears extinct within 100 years
author: Andrew Derocher

publisher: CBC

is_dependent_on: http://example.com/polar_bears030109.html#MeltingArcticSealce

assigned_truth _value: True in_field: Polar Bears

in_field: Arctic Environment

Annotated with KP tags defined in KP Ontology, this proposition appears as follows:

<kp:DerivedProp rdf:about= “EndangeredPolarBears”
kp:assigned Truth Value = “True”

kp:isDependentOn = “#MeltingArcticSealce”

kp:hasAuthor = “Andrew Derocher”

kp:hasPublisher = “CBC”>

<kp:propContent rdf:about= “EndangeredPolarBears_content”>
Melting sea ice threatens to drive polar bears extinct within 100 years
< /kp:propContent>

<kp:inField kp:value = “Polar Bears” />

<kp:inField kp:value = “Arctic Environment” />

< /kp:Derived Prop>

This Derived_prop is dependent on another KP _prop in the same web document, with
text “Arctic sea ice coverage fell from around 6.5 million square kilometres to around 5.5
million square kilometres in 2002.” This proposition is an Equivalent_prop equivalent to
an Asserted_prop in another web document.

The following is the whole document annotated with KP tags, including the digital
signature (in XML-Signature syntax [178]) of the first proposition.

Documentl: http://www.example.com/polar_bears030109.html

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE

<html xmins= “http://www.ws.org/1999/chtml”

xmlins:dsig = “http://www.w3.orq/2000/09/xmldsig#”
amins:rdf = “http://www.wS.orq/1999/02/22-rdf-syntax-ns#”
xmlins:kp = “hitp://www.eil.utoronto.ca/kp#”

>

<body>

< hl >Rate of ice melt endangers polar bears< /hl >
<kp:DerivedProp rdf:about= “EndangeredPolarBears”
kp:assigned Truth Value = “True”

kp:isDependentOn = “#MeltingArcticSealce”

kp:author = “Andrew Derocher”

kp:publisher = “CBC”>

<kp:propContent rdf:about=“EndangeredPolarBears_content”>
Melting sea ice threatens to drive polar bears extinct within 100 years
< /kp:propContent>

<kp:inField kp:value = “Polar Bears” />

<kp:inField kp:value = “Arctic Environment” />

< /kp:Derived Prop>

, a Canadian biologist warns.

< Signature ID= “Derocher-polarBears” >

< SignedInfo >

< CanonicalizationMethod

Algorithm= “http://www.w3.org/TR /2001 /REC-xml-c14n-20010315" />
< SignatureMethod

Algorithm= “http://www.w3.org/2000/09/xmldsig#dsa-shal” />

< Reference URI="# FEndangeredPolarBears”>

80

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 81

< DigestMethod

Algorithm= “http://www.wS.org/2000/09/xmldsig#shal” />

< DigestValue>johm43k9j3u5903h47755183...=< /Digest Value>
</Reference>

<Reference URI=“#FEndangeredPolarBears_content”>

< DigestMethod

Algorithm= “http://www.wS3.org/2000/09/xmldsig#shal” />

< DigestValue> g79lk20rjf023rr032kr93kjr...=< /Digest Value>
< /Reference>

< /SignedInfo>

< Signature Value>M459ng9784t...< /Signature Value>
<Keylnfo>

<X509Data>

<X509SubjectName>...</X509Subject Name>

< X509Certificate>MIID5jCCAO0+gA...IVN< /X509Certificate>
</X509Data>

<KeylInfo>

</Signature>

< p >A satellite-based survey found

<kp:EquivalentProp rdf:id= “MeltingArcticSealce”

kp:isDependentOn =

“hitp://example.org/arcticseaice. html#MeltingArcticSealce”>

Arctic sea ice coverage fell from around 6.5 million square kilometres to around 5.5 million
square kilometres in 2002.

< /kp:EquivalentProp>

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 82

</p>
< /body>

</html>

Assume that the digital signature of the first proposition is verified successfully, and
Andrew Derocher is trusted in the field of Polar Bears by the person requesting knowl-
edge provenance. Therefore, according to theorem KP-1, this DerivedProp “Endan-
geredPolarBears” will be (conditionally) believed. But to determine whether its truth
value is to be believed, KP reasoner has to determine whether the proposition it de-
pends on has a believed_truth_value of true. The proposition “MeltingArcticSealce”
is an equivalent proposition, its truth depends on the truth of its support proposition
“http://example.org/arcticseaice.html#MeltingArcticSealce” in another web document.

The second document is annotated as follows.

Document?2: http://example.org/arcticseaice.html
<html xmins= “hitp://www.w3.org/1999 /xhtml”
xmlins:dsig = “http://www.w3.orq/2000/09/xmldsig#”
amins:kp = “http://www.eil.utoronto.ca/kp#”
>
<body>...
<kp:AssertedProp rdf:id= “MeltingArcticSealce”
kp:publisher = “NASA”
kp:inField = “Arctic Environment”
>
<kp:propContent rdf:about= “MeltingArcticSealce_content”>
Arctic sea ice coverage fell from around 6.5 million square kilometres to around 5.5 million
square kilometres in one year.

< /kp:propContent>

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 83

< /kp:asserted_prop>
<Signature ID= “nasa—meltingArctic”>

. similar to dcumentl, omitted ... </Signature>
< /body>

</html>

In document 2, “MeltingArcticSealce” is an AssertedProp. From axiom KP-10, by
default, it has assigned truth value of true. Its believed truth value depends on whether
its information creator is trusted. The publisher of the document is NASA. Assume the
digital signature is verified successfully, and the provenance requestor trusts NASA in the
field of “Arctic Environment”. Then, by theorem KP-1 and 2, “MeltingArcticSealce” has
a believed _truth_value of true. Consequently, the equivalent proposition “MeltingArctic-
Sealce” in document 1, which has the same content as the one in document 2, also
has a believed truth value of true (by axiom KP-6), and finally, the derived proposition

“EndangeredPolarBears” has a believed truth value of true.
This example has a online demo at http : //www.eil.utoronto.ca/kp/.

In our web implementation, a KP reasoner is developed in the form of Java APIs, so
that this reasoner can be integrated in various web applications. An online KP reasoned
can be used by end-users to get answers for their provenance requests. This KP reasoner
can process xml and xhtml types of web documents annotated with KP tags. KP tags are
defined in OWL, which follows xml syntax. Inside the KP reasoner, JDOM is employed
to extract from web documents the KP_props annotated with KP tags as xml elements.
When all provenance information about a KP_prop are extracted, the KP reasoner can
infer the believed truth value of this proposition. If a KP_prop is dependent on other
KP props in the same or other web documents, the KP reasoner will crawl the web
documents to collect provenance related attributes and infer the origin and believed

truth values of those support propositions. Because the focus of this thesis is the logic

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 84

of KP, we do not further discuss the technical details about implementation. The web
implementation of KP will appear in a paper [92].

The output from the KP reasoner for the example given above can be found in
Appendix C.

A bigger application case of KP can be found in Chapter 7.

3.8 Summary and Discussion

Knowledge provenance is an approach to determining origin and validity of knowledge
/ information on the Web by means of modeling and maintaining information sources,
information dependencies and trust relationships. In this chapter, we conceptualized and
axiomatized static Knowledge Provenance in the form of ontology. Static KP focuses
on static and certain information. Static KP provides the essential concepts of KP and
building blocks for dynamic and uncertain KP models.

The information unit considered in KP is a proposition, called KP_prop. A KP_prop
can be a sentence, a phrase, a paragraph, an xml element, or a whole web document.
Each KP_prop has provenance related properties such as information sources, information
dependencies, the assigned truth value given by information creator(s), and a believed
truth value evaluated by an information user. In KP, we use FOL to elaborate a 3-valued
propositional logic of KP _props.

The proposed static KP ontology can be justified from three aspects: consistency,
completeness, and usefulness.

Regarding consistency, the logical consistency (or satisfiability) is easy to be proved,
because a knowledge base constructed from the proposed ontology is a set of “general
program clauses”. Actually, the given application example itself is an interpretation
making the ontology satisfiable; the consistency of the ontology’s semantics is proved by

theorem KP-4.

CHAPTER 3. STATIC KNOWLEDGE PROVENANCE 85

Regarding completeness, we mean the proposed ontology can answer all competency
questions.
The usefulness of the proposed static KP ontology is supported by the application

example as well as the application case in Chapter 7.

Chapter 4

Dynamic Knowledge Provenance

This Chapter focuses on dynamic knowledge provenance. In the real world, the va-
lidity of information may change over time. Consider the supply chain, the prices of
products change over time, inventory changes over time, warehouse space changes over
time, etcetera. This chapter introduces Dynamic Knowledge Provenance to address the
problem of how to determine the validity of information that changes over time.

Similar to static KP, we build dynamic KP ontology in 4 steps: (1) motivating sce-

nario; (2) informal competency questions; (3) terminology; and (4) axioms.

4.1 Motivating Scenario

In the following, the underlying concepts of Dynamic Knowledge Provenance are explored
in the following two case studies.

Consider a story in an IT supply chain composed of a reseller (FS), a distributor
(DT) and a manufacturer (HP). The reseller (FS) keeps receiving requests from cus-
tomers about desktop computers configured with 3.06G Pentium 4 processor, so F'S sends
an asserted proposition, “There is a increasing market demand for desktops with 3.06G
Pentium 4 processor”, to its major supplier - distributor (DT). The sales department of

the distributor (DT) forwards the message to the product management department which

86

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 87

is responsible for product supply. That is, in the terms of KP, the sales department gen-
erates an equivalent proposition with the same proposition content as the assertion made
by FS. Then, the product management department requests the product information
from its major supplier - manufacturer HP. HP replies an asserted proposition, “10,000
desktop PCs configured with 3.06G Pentium 4 processor are available” (effective from
2003-05-26 to 2003-06-01). Based on the asserted proposition made by HP, the equiva-
lent proposition created by the sales department, and some other factors, for example,
the financial constraints of the distributor enables it to order 8000 before 2003-05-31,
the product management department recommends to head office a product order plan,
(actually a derived proposition,) “We should order 8,000 desktop PCs configured with
3.06G Pentium 4 processor from HP” (effective from 2003-05-26 to 2003-05-31).

Case 1: Proposition’s truth value is effective within a specified period

In this example, the truth value of the asserted proposition made by HP is effective
during period from 2003-05-26 to 2003-06-01. Assume the distributor trusts HP’s product
supply information, so the asserted proposition is trusted to be true at any time point
within the specified period. But after this period, the truth value of the proposition

becomes expired, so it will no longer be believed as “true”.

Furthermore, the truth value of the derived proposition made by the product man-
agement department of DT is effective only during period from 2003-05-26 to 2003-05-31,
due to some hidden facts in the derivation. After that period, the proposition become
expired and no longer has a truth value. Therefore, the derived proposition is trusted
to be true at a given time point, if the time point is within the specified period of the
derived proposition and all its dependency propositions are believed to be true at the
time point.

Case 2: Information creator is trusted only within a specified period

The information creator may be trusted only within a specified period also. In the

example above, assume there is a contract between the distributor (DT) and the reseller

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 88

(FS) effective from 2002-04-01 to 2003-12-31. During this period, the distributor trusts
the market demand information provided by the reseller to be true. However, if the
contract is expired, the distributor will no longer trust the information provided by the
reseller anymore. For example, if the contract is effective only from 2002-04-01 to 2003-
03-31, the assertion made by the reseller, “There is an increasing market demand for
desktops with 3.06G Pentium 4 processor”, will not be trusted on 2003-05-26.

These examples reveal some important points for building Dynamic Knowledge Prove-

nance.

e The truth value of an asserted/derived proposition may be effective (existing) only

in a specified period;

e Conjunctive propositional dependencies may give rise to a smaller, or null periods

of truth value validity;

e Disjunctive propositional dependencies may give rise to discontinuous periods of

truth value validity;

e A proposition creator may be trusted in a topic only within a specified period. So,

trust relations further constrain the periods of truth value validity.

4.2 Informal Competency Questions

Dynamic Knowledge Provenance needs to answer the following informal competency

questions:
e At a given time point, what is the believed truth value of this proposition?

e At a given time point, is this information creator trusted in a field which the

proposition belongs to?

e From what time point is this original proposition effective?

CHAPTER 4. DYNAMIC KNOWLEDGE PROVENANCE 89
e Until what time point is this original proposition effective?

e At a given time point, is this original proposition effective?

4.3 Methodology and Terminology

This section first introduces the time ontology on which dynamic KP is constructed, then
defines the terminology for our dynamic KP ontology.
Since many-sorted FOL is used for KP representation, in order to extend static KP

to dynamic KP, a new sort is introduced for representing time points.

T: the set of time points.

4.3.1 Time Ontology

In Computer Science and Philosophy, many temporal theories have been developed [5]
[164] [83], which provide logics of time for developing dynamic KP ontology. The time

ontology that we choose for dynamic KP is described as follows.

e Time is a physical dimension [83], which is represented as a continuous line (“having
the structure of the real numbers” [164] pp.36). “<” is a binary relation, denoting
temporal precedence, i.e. “x < y” means time point z is earlier than time point y;

“r=y” means z is the same time point as y; z < y means “z < y” or “z=y”.

e time point is the primitive temporal object [164], and time interval is defined with

time points;
e things that have a temporal extent must have a life-span [83];

e a property has temporal property of homogeneity [5], i.e. if the property holds over

an interval, then it holds over all subinterval and points in that interval;

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 90

e the logical form of the temporal propositions is “reified” proposition [164](pp.37).

More specifically in KP, every Origin_prop (i.e. Asserted_prop and Derived_prop) has
a life-span, called “effective period” in this thesis; believed truth value is homogeneous,
and belief is also homogeneous; same as in static KP, KP _props are represented as ob-
jects. These objects are manifestations of “reified” propositions. The difference is that
a ‘“reified” proposition is a term, and the only property of it concerned is truth value;
an object representing a proposition in KP has more concerned properties related to the
provenance of that proposition, e.g. assigned truth value, author, the time of creation,
and so forth.

Comparing to existing temporal logics, dynamic KP is simpler. Instead of inferring
the time interval(s) in which a proposition is true, dynamic KP only needs to answer

whether a proposition is believed to be true or false at a given time point.

4.3.2 Effective Periods

As shown in section 1, the truth value of a proposition takes effect in a specified period,
in other words, a proposition has a “life-span” as Hayes called [83] (pp.13) . We call this
period the proposition’s effective period, and the proposition is called effective in this
effective period. A proposition is called “effective” at a given time point, if this time
point is within the effective period or life-span of this proposition.

Also, a trust relationship must have a life-span. In this specific period, the trust rela-
tionship takes effect. This period is called the effective period of this trust relationship.
A trust relationship is called “effective” at a given time point, if the time point is within
the effective period of the trust relationship. In order to represent effective periods, we
define several predicates in table 4.1.

Several predicates defined in Static KP need to be extended with time, as shown in

table 4.2.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 91

Table 4.1: Predicates: time-related

Predicate Definition

made_at(z,t) CPxT
KP _prop z is created at time point t. This predicate is
only applied to Original _props, i.e. z could be Asserted

or Derived KP_prop.

ef fective_from(x,t) | CPx T
z is effective from time point ¢. Here, z could be As-

serted or Derived KP _prop.

ef fective_to(x,t) CPxT
z is effective till time point ¢. Here, z could be Asserted

or Derived KP _prop.

ef fective_at(x,t) | CPx T
KP _prop z is effective at time point ¢, or ¢ is within the

life-span of z.

Table 4.2: Predicates: temporal-extension

Predicate

Definition

trusted_in_during(a, c, f,t1,ts)

CEXExXFxTxT
Agent a trusts information creator ¢ in knowledge field
f from time point ¢; to time point t5. Here, [tq,s] is

called trust relation effective period.

trusted_in(a, c, f,t)

CExXExFxT
Agent a trusts information creator ¢ in knowledge field

f at time point t.

believed(x, a,t)

CPxExT

Proposition z is believed by agent a at time point t.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 92

Table 4.3: Symbols Representing Logical Systems

Txpo denotes the set of axioms and theorems for dynamic

KP ontology.

Tkpo.kB C Tkpo

denotes the set of axioms regarding the constraints
on the properties of different types of KP_props in

dynamic KP.

KBk p2rues | C Tk p2
denotes the set of axioms as rules for provenance rea-

soning in dynamic KP.

KBk p2,facts | denotes a set of ground predicates representing the
properties of KP_props related to answering a prove-

nance request in dynamic KP.

4.3.3 Other Symbols

The other symbols to be used in this chapter is listed in table 4.3.

4.4 Axioms

To define and axiomatize dynamic KP ontology, a set of new axioms related to time need
to be introduced; some axioms in static KP ontology need to be extended with time, and

some others can be directly inherited from static KP.

4.4.1 Axioms Inherited from Static KP

The following axioms are inherited from static KP.

- Axioms about proposition taxonomy, including: axioms A-1,2 and axiom KP-0.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE

93

- Axioms about information sources and authentication, including axioms KP-1,& 2.

- Axioms about property constraints, including axioms KP-11, 12, 13, 14 & 15.

- The Negation as Failure rule (NF-rule).

4.4.2 Relations among Time Points

Following the earlier discussion about time ontology, we represent a set of relations among

time points as the following axioms.

Axiom T-1:

(x<y)ANly<z)Dz<z

Axiom T-2:

Va,(=INF < x).

Vo, (r < +INF).

4.4.3 Effective Periods

This subsection introduces new axioms about proposition’s life-span to KP.

(4.1)

(4.2)

Every KP_prop has a life-span, called effective period in KP. The truth value of a

proposition exists, called effective, only within its effective period.

At a given time point, an asserted_prop is effective if the time point is within its

effective period (or life-span).

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 94

Axiom DKP-1:

type(z, Asserted_prop)
A ef fective_from(z,t1) A ef fective_to(x,ta) ANty <t At <ty
D ef fective_at(x,t). (4.6)
At a given time point, a Derived_prop is effective if: (1) the time point is within the
effective period of the Derived_prop; and (2) its support proposition is effective at the
time point.
Axiom DKP-2:
type(z, Derived_prop)
A ef fective_from(x,ty) A ef fective to(x,ta) Nty <t At <t
A is_dependent_on(x,y) A ef fective_at(y,t)
D ef fective_at(z,t). (4.7)
At a given time point, an Equivalent_prop is effective if its support proposition is

effective at the time point.

Axiom DKP-3:

type(z, Equivalent _prop)
Nis_dependent_on(x,y) A ef fective_at(y,t)
D ef fective_at(z,t). (4.8)
At a given time point, a Neg_prop is effective if its support proposition is effective at

the time point.

Axiom DKP-4:

type(z, Neg_prop)
A is_dependent_on(x,y) A ef fective_at(y,t)

D ef fective_at(z,t). (4.9)

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 95

At a given time point, an And_prop is effective, if all its support propositions are
effective at the time point.

Axiom DKP-5:

type(z, And_prop)
N is_dependent_on(x,y1) A is_dependent_on(z,y2) A (y1 # Ya)
A ef fective_at(yy,t)) A ef fective_at(ys,t))

D ef fective_at(z,t). (4.10)

At a given time point, an Or_prop is effective, if at least one of its support propositions
is effective at the time point.

Axiom DKP-6:

type(z, Or_prop)
N is_dependent_on(z,y) A ef fective_at(y,t))

D ef fective_at(x,t). (4.11)

Similarly, a trust relationship also has a life-span. Only within that life-span (or
effective period), the trustor (information user) trusts the information creator.

Axiom DKP-7:

trusted_in_during(a,c, f,t1,t2) ANty < t At < to D trusted.in(a,c, f,t). (4.12)

4.4.4 Belief at a Time Point

The following axiom extends theorem KP-1 with time.
An Original_proposition (Asserted_prop or Derived_prop) is believed at a given time
point, if: the proposition is effective at the given time point, and the information creator

of the proposition is trusted at the time point when the proposition is created.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 96

Axiom DKP-8:

type(z, Original _prop)
A has_authentic_creator(x,c) A made_at(z,ty) Ain_field(x, f)
A ef fective_at(x,t) A trusted_in(a,c, f,to)

D believed(z,a,t). (4.13)

4.4.5 Believed Truth Values

In the following, we extend axioms in static KP with time to derive the believed truth

value of a KP_prop.

At a given time point, an Asserted_prop has its believed truth value as assigned truth
value, if the Asserted_prop is believed by the provenance requester agent at the time

point, and the proposition is effective at the time point.

Axiom DKP-9:

type(x, Asserted_prop)
A believed(x, a,t) A assigned_truth_value(z,v)

D believed_truth_value(a,z,v,t). (4.14)

This axiom extends theorem KP-2 with time.

At a given time point, the believed truth value of a Derived_prop is “True” or “False”
as its assigned truth value, if the Derived_prop is effective, believed, and its support

proposition (premise) is “True”.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 97

Axiom DKP-10:

type(z, Derived_prop)
A assigned_truth_value(x,v) A believed(z, a,t)
N is_dependent_on(x,y) A believed_truth value(a,y, True,t)

D believed_truth_value(a, z,v,t). (4.15)

This axiom extends theorem KP-3 with time.
At a given time point, the believed truth value of an Equivalent_prop is the same as

the believed truth value of the proposition it depends on.

Axiom DKP-11:

type(z, Equivalent_prop)
N is_dependent_on(z,y)
A prop_content(z, c1) A prop_content(y, ca) A equivalent_to(cy, cz)
A believed_truth_value(a,y,v,t)

D believed_truth value(a, z,v,t). (4.16)

This axiom extends axiom KP-6 with time.
At a given time point, the believed truth value of a negative-proposition is the negation
of the believed truth value of the proposition it is dependent on.

Axiom DKP-12:

type(z, Neg_prop)
A is_dependent_on(x,y) A believed_truth value(a,y,v,t)

D believed_truth_value(a, z,neg(v),t). (4.17)

Where, neg(v) is a function to mimic logical negation operator —, as defined in the

previous Chapter. This axiom extends axiom KP-7 with time.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 98

At a given time point, the believed truth value of an And_prop is “True” if all its
support propositions are “True” at the time point; The believed truth value of an and-

prop is “False” if at least one of support propositions is “False”.

Axiom DKP-13a:

type(x, And_prop)
N is_dependent_on(x,yy) A is_dependent_on(x,y2) A (y1 # y2)
A believed_truth value(a, yy, True, t) A believed_truth_value(a, ys, True,t))

D believed_truth_value(a, z, True,t). (4.18)

Axiom DKP-13b:

type(z, And_prop)
A is_dependent_on(x,y) A believed_truth value(a,y, False,t)

D believed_truth_value(a, x, False,t). (4.19)

This axiom extends axiom KP-8 with time.

At a given time point, the believed truth value of an Or_prop is “True” if at least one
of its support propositions are “True” at the time point; the believed truth value of an

and-prop is “False” if all its support propositions are “False”.

Axiom DKP-14a:

type(z, Or_prop)
A is_dependent_on(x,y) A believed_truth value(a,y, True,t)

D believed_truth_value(a, z, True,t). (4.20)

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 99

Axiom DKP-14b:

type(z, Or_prop)
A is_dependent_on(x,y1) A is_dependent_on(x,ys) A (y1 # y2)
A believed_truth_value(a, yi, False, t) A believed_truth_value(a, yo, False, t))

D believed_truth_value(a, z, False,t). (4.21)

This axiom extends axiom KP-9 with time.
The believed truth value of a KP-proposition at a time point is “Unknown” if and
only if either “True” or “False” cannot derived.

Axiom DKP-15:

type(x, K P_prop)
A —believed_truthyalue(a, z, True,t) A —believed_truth_value(a, x, False,t)

D believed_truth_value(a, z, Unknown,t). (4.22)

This axiom extends axiom KP-11 with time.

Symbol KBk p2 ruies 15 introduced to denote all rules to be used for provenance rea-
soning in dynamic KP.

KBk p2ruies = {axioms A_1, 2, axioms KP_0, 1, 2, axioms T_1, 2, axioms DKP-1, ...,
15}.

4.4.6 Property Constraints

In dynamic KP, similar to static KP, each type of KP_props has property constraints.
This subsection discusses the cardinality of temporal properties.

For any Original _prop, the time on which this proposition is created must be uniquely
specified; this proposition has only one start time point and has only one end time point

of its effective period.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 100

Axiom DKP-16:

type(z, Original _prop) D

((3t, made_at(z,t)) A (made_at(x,t1) A made_at(x,ts) Dty =t9)). (4.23)

type(z, Original prop) D

(ef fective_from(x,t1) N ef fective_from(z,ty) Dty =t2). (4.24)

type(z, Original prop) D

(ef fective_to(x,ty) A ef fective_to(x,ty) Dty =t3). (4.25)

Note that in an implementation, the default effective period of an original proposition
is from the time of the creation of a proposition to the positive “infinite” of time-line.
In other words, if there is no effective_from is specified, the default start time point of
the effective period is the the time point of the creation of this proposition; if there is no
effective_to is specified, +INF, this proposition is supposed to be effective till the positive
infinite of the time-line.

Let Tk p2 kp denote the set of axioms regarding property constraints or cardinality in
dynamic KP, that is,

Txp2xkp = {Axioms KP_11, 12, 13, 14 & 15, Axiom DKP-16}.

In Dynamic KP, KBk ps2, fects denotes the set of grounded predicates that define all
KP _prop instances and their primary properties (defined properties). KBk p2 facts cOD-
tains a finite number of ground atomic formulas.

Similar to static KP, KB p2 facts must satisfy T ps xp. This constraint leads to the
following axiom.

Axiom DKP-17:

KBk p2 facts O Tkpo, kB (4.26)

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 101

Now, let

,]VKPQ’KBJr == TKP27KB U {A{L‘ZOWLDKP,T?}

By this axiom, the axioms in 7xps gp regarding cardinality define the structure of

the instance definition of each type of KP_props.

4.5 Reasoning with Negation

Similar to static KP, dynamic KP also use Negation as Failure rule to infer negative
literals.

Let KB p2 denote a knowledge base constructed from dynamic KP ontology, i.e.
KBrp2 = KBk p2rues Y KBrp2, facts-

KBk p2 uies, consists of only Horn clauses and one “general program clause” (axiom
DKP-11); KBgpa, facts contains only atoms, a specific form of Horn clauses. So, NF-rule
can be applied in KBk ps.

This solution is based on the following knowledge completeness assumption.

Knowledge Completeness Assumption for Dynamic KP (KCA-KP2):
KBk p2,facts and KBg pa ruies are all the knowledge used to infer the provenance properties
of a KP_prop defined in KBk p2, facts-

The Negation as Failure rule (NF-rule) remains the same as stated in static KP.

The set of axioms for dynamic KP ontology using Negation as Failure can be repre-
sented as

Tipo = KBrpoyuies U Tkpokp™ U{KCAkps, NF_rule}.

4.6 Consistency and Completeness

In order to justify the proposed dynamic KP ontology, similar to what we did in static

KP, we need to discuss the consistency and completeness of dynamic KP ontology.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 102

4.6.1 Consistency

Since KBy po is a set of general program clauses, it is easy to prove the logic consistency
of Txpo. In the following, we discuss the consistency of the semantics of the proposed
dynamic KP ontology.

Same as in static KP, if a KP_prop has two (or more) different (either assigned or
believed) truth values, the semantics becomes inconsistent; on the other hand, if one and
only one truth value of a KP_prop is assigned and can be derived, then the semantics of
the ontology is consistent.

Axiom KP-12 guarantees that each Original prop has one and only one assigned truth
value of either “True” or “False”.

Theorem KP-4 for static KP, regarding the unique believed truth value of a KP_prop,
needs to be extended with time as follows.

Theorem DKP-1: By system Txps, given KBgpa facts that satisfies Txpo xp, for
any provenance requester a, at any time point t, any KP_prop x has one and only one

believed truth value of either “True”, “False” or “Unknown”.

KBxpa,rutes =
KBk p2,facts O
(type(x, K P _prop) D
((believed_truth value(a, z, True,t) V believed_truth_value(a, x, False,t)
V believed_truth_value(a, x, Unknown,t))
A = (believed_truth_value(a, x, True,t) A believed_truth_value(a, z, False,t))
A —(believed_truth_value(a, x, True, t) A believed_truth_value(x, Unknown,t))

A =(believed_truthvalue(a, x, False,t) A believed_truth_value(a, x, Unknown,t))))

(4.27)

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 103

The proof of this theorem is very similar to the proof of theorem KP-4, except that
whether the given time point is within a life-span needs to be considered, in order to

derive a believed truth value (i.e. “True” and “False”). The detail of proof is omitted.

4.6.2 Completeness

We discuss the completeness of the ontology in the sense of that the ontology can answer
every competency question.

Given the provenance requester R, the concerned time point 7, and questioned
KP _prop X, the competency questions presented earlier is briefly discussed one by one
as follows.

Q1. At a given time point, what is the believed truth value of this proposition?

This is the major question that the dynamic KP ontology needs to answer. Given prove-
nance requester R, time point T, and questioned KP _prop X, this question can be formally

represented as follows.
type(X, K P_prop) D Jv, believed_truth_value(R, X,v,T). (4.28)

This question can be answered by theorem DKP-1.

Q2. At a given time point, is this information creator trusted in a field which

the proposition belongs to?

This question can be formally represented as follows.

type(X, Original _prop)A\

(e, f, has_infoCreator(X,c) Nin_field(X, f) A trusted_in(R,c, f,T)). (4.29)
By axiom KP-12,

de, f, has_infoCreator(X,c) Ain_field(X, f)

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 104

must be true. The answer to the question is either True or False, dependent on the type

of X and the return of external predicate

trusted_in(R,c, f,T).

Q3. From what time point is this original proposition effective?

This question can be formally represented as follows.
type(X, Original_prop) D (3t,ef fective_from(X,t)). (4.30)

By axiom DKP-12, the answer to this question must be True and returns a value of t.

Q4. Until what time point is this original proposition effective?

This question can be formally represented as follows.
type(X, Original_prop) D (3t, ef fective_to(X,t)). (4.31)

By axiom DKP-12, the answer to this question must be True and returns a value of t.

Q5. At a given time point, is this original proposition effective?
This question can be formally represented as follows.
type(X, Original_prop) A ef fective_at(X,T). (4.32)

By axiom DKP-1 & 2, the answer to this question is either True or False.
In summary, this dynamic KP ontology can answer all predefined competency ques-

tions.

4.7 Temporal Extension of Web Ontology

For dynamic KP, the web ontology described in the previous chapter needs to be ex-

tended with time. A small set of new properties related to time are listed as follows.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 105

kp:KPProp

kp:effective At (derived) cardinality = 1

kp:Original Prop
kp:madeAt (primitive) cardinality = 1
kp:effectiveFrom (primitive) cardinality = 1

kp:effectiveTo (primitive) cardinality = 1

In the web ontology, we use xml schema datatype xsd:dateTime ! to represent time.

4.8 Example

The following example from our motivating scenario illustrates KP annotation in web

documents and knowledge provenance reasoning.

Consider the example discussed in section 3 regarding an IT supply chain composed
of a reseller (FS), a distributor (DT) and a manufacturer (HP). As shown in figure 1, the
product management department of the distributor (DT) created a derived proposition,
“We should order 8,000 desktop PCs configured with 3.06G Pentium 4 processor from
HP” (effective from 2003-05-26 to 2003-05-31), which is dependent on two propositions:
(1) an equivalent proposition created by the sales department of the distributor stating
“There is an increasing market demand for desktops with 3.06G Pentium 4 processor”,
which is dependent on an asserted proposition with same proposition content created by
a contracted reseller called FS; and (2) an assertion created by manufacturer HP that
says that “10,000 desktop PCs configured with 3.06G Pentium 4 processor are available”

(effective from 2003-05-26 to 2003-06-01).

refer to: http://www.w3.org/TR/xmlschema-2/#dateTime

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 106

4.8.1 KP Annotation

The web document that contains the derived proposition and its dependency And_prop
created by the product management department can be embedded with KP metadata as

follows. The annotation to other web documents is in a similar way.

Document: http://www.pm.examp.com/docs

<HTML zmins= “http://www.w3.org/1999/chtml”
xmlins:dsig = “http://www.w3.orq/2000/09/xmldsig#”
xmlins:kp = “hitp://www.eil.utoronto.ca/kp#”

>

<body>

<kp:DerivedProp rdf:id= “order_PCP/”

kp:assigned Truth Value = “True”

kp:isDependentOn = “#demand_supply.PCP/”

kp:author = “Product Management Department”

kp:inField = “Supply”

kp:effectiveFrom = “2003-05-26"

kp:effectiveTo = “2003-05-31"

>

<kp:propContent>

We should order 8,000 desktops configured with 3.06G Pentium 4 processor from HP
</kp:propContent>

< /kp:Derived Prop>

<kp:AndProp rdf:id= “demand_supply_ PCP,”

kp:isDependentOn = “http://www.hp.examp.com/doc2#available_.PCP4_HP”

<kp:isDependentOn = “hitp://www.hp.examp.com/doc3#demands_ PCP4”

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 107

>

<Signature ID= “ProdMgmt-order-PCP}”>

< SignedInfo>

< CanonicalizationMethod Algorithm= “http://www.w3.org/TR/2001/REC-zml-c14n-20010315" />
< SignatureMethod
Algorithm=“http://www.w3.org/2000/09/xmldsig#dsa-shal” />
< Reference URI= “#order_PCP/”>

<DigestMethod Algorithm= “http://www.w3.0rq/2000/09/cmldsig#shal” />
< DigestValue>j6hm43k9j3u5903h47755i83... < /DigestValue>

< /Reference>

< /SignedInfo>

< Signature Value>M459ng9784t...< /Signature Value>
<Keylnfo>

<X509Data>

<X509SubjectName>...</X509Subject Name>

< X509Certificate>MIID5;CCAO0+gA...IVN

</X509Certificate>

</X509Data>

<Keylnfo>

</Signature>

< /body>

</html>

4.8.2 KP Reasoning

In this example, assume the trust relation effective periods (associated with contracts)
are as follows: HP is trusted by DT from 2002-01-01 to 2004-12-31; FS is trusted by DT
from 2002-04-01 to 2003-12-31; and in case (c) of figure 1, FS is trusted from 2002-04-

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 108

01 to 2003-03-31. In addition, assume the sales department and product management
department are trusted within the distributor (DT) on topic “Order”, “Demands” and
“Products”, “Supply” respectively. Finally, assume all atomic propositions are made at
the time points of “effective_from”.

As shown in figure 4.1, case (a) requests the believed truth value of the derived
proposition that “We should order 8,000 desktop PCs configured with 3.06G Pentium
4 processor from HP” at time point 2003-05-28. “True” is obtained by reasoning using
KP axioms; case (b) requests the believed truth value of the derived proposition at
2003-05-23. “Unknown” is obtained, for the reason that 2003-05-23 is not covered by
[2003-05-26, 2003-05-31], the effective period of HP’s asserted proposition, which causes
the asserted proposition and further the derived proposition are not effective; case (c)
requests the believed truth value of the derived proposition at 2003-05-28. “Unknown” is
reached because 2003-05-28 is not covered by [2002-04-01,2003-03-31], the effective period
of trust to reseller F'S; which causes that FS cannot be trusted and further its assertion
and all proposition dependent on it cannot be trusted also.

This example demonstrated how KP is embedded in information flow and how KP

reasoning is conducted.

4.9 Summary

In this chapter, we extend static KP ontology, the core formal model of KP constructed
in the previous chapter, into dynamic KP ontology, to address the provenance problem in
the world where the truth of propositions and the trust relationships change with time.

In building dynamic KP, time is regarded as a continuous line; time points are the
primary temporal objects, on which time intervals are constructed; KP_props (and trust
relationships) have their life-spans; the properties of KP_props have temporal property

of homogeneity.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE 109

Dynamic KP adopts a simple solution. First, effective periods are introduced for
KP _props and trust relationships, to represent their life-spans; then, to infer the believed
truth value of a proposition at a given time point, whether this proposition as well as its
support propositions is effective at this time point, needs to be considered.

This dynamic KP ontology can answer the questions that at a given time point, what
is the believed truth value of a KP_prop; but it cannot answer the questions that in
which time periods, the believed truth value of a KP_prop is true/false/unknown. How

to efficiently answer the later type of questions still remains an open issue.

CHAPTER 4. DyNAMIC KNOWLEDGE PROVENANCE

(a)

(b)

110

(c)

C'True" at 2003-05—28) @nknown" at 2003-05—29 @"R“OW"

" at 2003-05-2@

f

trusted_truth| value_at

Derived-prop:
"10,000 desktops with 3.06G Pentium 4
can be ordered from HP”
effective_from: 2003-05-26
effective_to: 2003-05-31
Info-creator: Product Management Department

is_dependent_on

¥
And-node

‘Adent_on

Equivalent-prop :

"There is a increasing market demand for
desktops with 3.06G Pentium 4 processor.”
effective_from: 2003-05-20
effective_to: 2003-06-30
Info-creator: sales department

Asserted-prop :

“is_dependent_on

Asserted-prop :

"There is a increasing market demand for
desktops with 3.06G Pentium 4 processor.”
effective_from: 2003-05-20

Info-creator: reseller-A

(Trust) effective_from:
(Trust) effective_to: 2003-12-31
(Trust) effective_to: 2003-03-31 (case (c})

2002-04-01

"10,000 desktop PCs configured with
3.06G Pentium 4 are available”

effective_from: 2003-05-26
effective_to: 2003-06-01

Info-creator: Manufacturer-HP
(Trust) effective_from: 2002-01-01

(Trust) effective_to: 2004-12-31

Figure 4.1: Application example of dynamic Knowledge Provenance

Chapter 5

A Logic Theory of Trust

Knowledge provenance (KP) is an approach used to determine the origin and validity of
web information, by means of modeling and maintaining information sources, information
dependencies, and trust structures. Basically, in KP, the validity of information is mainly
determined with the trust placed on the information sources. In Chapters 3 and 4, we
studied static KP and dynamic KP. These models assume that trust relationships between
information consumers and information creators have already been calculated, and these
models mainly focused on representing information sources and information dependencies
and deducing the provenance of information. This chapter and the next two chapters

focus on modeling trust structures.

In this chapter, we develop a logical theory of trust that formally presents the seman-
tics of trust, the transitivity of trust, and the conditions for trust propagation in social
networks; based upon this logical theory, in chapter 6, we will construct a distributed
trust reasoning model, in which personal trust relationships needn’t to be published, so

that privacy can be better protected in trust reasoning using Web-based social networks.

The contents of this chapter are organized as follows: section 1 introduces why trust
is important in computing, and identifies the problems to be solved in trust modeling;

section 2 explores the meanings and properties of trust, which provides a conceptual

111

CHAPTER 5. A Locic THEORY OF TRUST 112

foundation for formalizing trust; section 3 provides the motivating scenarios for our
trust modeling; section 4 gives the methodology and terminology to be used; then in
section 5, in the languages of the situation calculus and epistemic logic, we define the
formal semantics of trust and construct a model of trust in situation calculus; section
6 discusses sources of trust; in section 7 and 8, we study the transitivity of trust and
trust propagation in social networks; section 9 provides two examples to demonstrate the
application of the proposed logical theory of trust; finally, we give a summary on this

chapter.

5.1 Introduction

Our specific interest in trust comes from the need to determine the validity of information.
As presented in previous chapters, basically, we determine the validity (i.e. believed
truth value) of a proposition by considering whether the information user trusts in the
information source(s) in a knowledge field which the proposition belongs to.

In general, trust is a widely concerned problem. In the remainder of this section, from
a broader view, we discuss why trust is important and the problems exist in the research
of trust modeling.

As well known, the Web has become an open dynamic and decentralized informa-
tion/knowledge repository, a distributed computing platform and a global electronic
market. In such a cyberspace, people, organizations and software agents have to interact
with “strangers” and have to be confronted with various information with unfamiliar
sources. This makes trust arise as a crucial factor on the web.

In general, trust is “a basic fact of social life” [118]. For example, we trust the data
that we use for a decision to be reliable; when we cross an intersection of streets, we
trust the cars in other directions to follow the traffic signals. Trust exists so widely in

our social life that we may even not fully be aware of using it.

CHAPTER 5. A Locic THEORY OF TRUST 113

Trust is important to us because it is one of the foundations for people’s decisions.
Generally, rational decisions made in the real world are based on the mixture of bounded
rational calculation and trust. According to Simon[169], a decision making process in
the real world is limited by “bounded rationality” i.e. the “rational choice that takes
into account the cognitive limitations of the decision maker - limitations of both knowl-
edge and computational capacity” . In a real decision situation, since we only have
limited information/knowledge and computing capacity as well as limited time available
for decision analysis, a rational decision has to be partly based on bounded rational cal-
culation and partly based on trust. As Luhmann revealed, trust functions as “reduction

of complexity” in our social life [118].

Returning to the context of trust on the Web, the interest in addressing the issue of
trust on the web has appeared under the umbrella of the “Web of Trust”. An important
issue is how to transplant the trust mechanism in our real world into the cyberspace.
To this end, many researchers attempt to construct formal models of trust and to de-
velop tools that support people making trust judgments on the web. Basically trust is
established in interaction between two entities. Many models proposed focus on how
to calculate and revise trust degrees in interaction between two entities. However, each
entity only has a finite number of direct trust relationships, which cannot meet the needs
of various interaction with unknown or unfamiliar entities on the Web. As a promising
remedy to this problem, social network based trust, in which A trusts B, B trusts C,
thus A indirectly trusts C, is receiving considerable attention. A necessary condition of
trust propagation in social networks is that trust needs to be transitive. In other words,
without transitivity, trust cannot propagate in networks. However, is trust transitive?
What types of trust are transitive and why? Few theories and models found so far answer
these questions in a formal manner. A major problem in trust modeling is the lack of
a clearly defined formal semantics of trust. For this reason, most models mainly focus

on how to calculate trust degrees when trust propagates in social networks, and they

CHAPTER 5. A Locic THEORY OF TRUST 114

either directly assume trust transitive or do not give a formal discussion of why trust is
transitive.

To fill this gap, this chapter aims to construct a logical theory of trust. This theory
should provide a formal and explicit specification for the semantics of trust; from this
formal semantics, this theory should be able to identify the conditions for the transitivity

of trust and the conditions for trust propagation in social networks.

5.2 What is Trust?

5.2.1 Meaning of Trust

The Oxford Dictionary of Current English (4th edition, 2006) defines trust as “firm
belief in the reliability, truth, ability of someone or something.” The dictionary further
explains trust in information as: “acceptance of the truth of a statement without proof.”
These definitions reflect people’s common understanding of trust and the most important
characteristics of trust, but they are not sufficient for the purpose of trust formalization.

Synthesizing the concepts of trust discussed in Chapter 2, we have the following view
of trust.

Trust is the psychological state comprising (1) expectancy: the trustor expects a spe-
cific behavior of the trustee such as providing valid information or effectively performing
cooperative actions; (2) belief: the trustor believes that the expected thing is true, based
on evidence of the trustee’s competence and goodwill; (3) willingness to be vulnera-
ble: the trustor is willing to be vulnerable to that belief in a specific context, where the
specific behavior of the trustee is expected.

In trust, there are two roles involved: a trustor and a trustee. Furthermore, there are
three aspects in the implications of trust. First, when it is said that entity A trusts B,
people must ask a question “A trusts B on what?” This leads to the first implication

of trust: expectancy, i.e. the trustor expects that trustee behaves in a specific manner

CHAPTER 5. A Locic THEORY OF TRUST 115

within a specific context. The expected behavior can be: (1) valid information created
by the trustee; or (2) a successful cooperative action conducted by the trustee. Secondly,
when trusting, the trustor must believe that the trustee behaves as expected, according
to the competence and goodwill of the trustee. This is the most recognized aspect of
the meaning of “trust”. Thirdly, the trustor not only believes the trustee will behave as
expected but also is willing to be vulnerable for that belief in a specific context, i.e. the
trustor is willing to assume the risk that the trustee may not behave as expected.

As many researchers realized, trust is context-specific, for example, a person may
trust her or his financial advisor about investment analysis but doesn’t trust the advisor
in health-care. There are two types of contexts related to trust. The first is the context
where the expected valid information is created, and the second is the context in which
the trusted information (or action) will be applied by trustor or the situation where the
trustor is confronted with the trust judgment problem. These two contexts may not be
the same. For example, a financial expert (the trustee) created a piece of information
in a context of giving financial investment seminar, and in another context of buying
stocks, an investor (the trustor) attempts to use this information and needs to judge the
validity of it.

In summary, “trust” has three aspects of meaning: (1) expectancy: the trustor ex-
pects that trustee behaves in a specific manner in a specific context; (2) belief that the
expectancy is true; (3) willingness to be vulnerable for that belief in a specific context.

Finally, the meaning of trust we adopt can be expressed as follows:

Trust = Expectancy
+ Belief in expectancy

+ Willingness to be vulnerable for that belief.

5.2.2 Properties of trust

We discuss whether trust has the following properties.

CHAPTER 5. A Locic THEORY OF TRUST 116
Transitivity

Many researchers have the opinion that trust is generally intransitive. Perhaps for this
reason, there is few research regarding trust propagation in social networks in traditional
trust studies. However, it is a basic fact that some of trust is transitive, for example,
recommendation is a typical type of transitive trust. Transitivity of trust is dependent
on what is trusted in. “Trust in belief” (to be discussed later) is transitive. For ex-
ample, a patient trusts what his family doctor believes in health-care; the doctor trusts
the knowledge of heart disease produced by an expert in the area; then the patient indi-
rectly trusts the knowledge. Transitivity is an important foundation for studying social

networks-based trust.

Symmetry

Symmetry concerns whether individual A trusts individual B when B trusts A. Trust
is generally not symmetrical. For example, a patient trusts a physician on health-care
issue, but the physician may not trust the patient on the same issue. However, “trust in
goodwill” and “emotional trust” tend to be symmetrical after a relatively long term of
dynamic adjustments in the interaction between the trustor and the trustee.

Trust is not necessary to be asymmetrical or anti-symetrical.

Reflexivity

Some people may tend to think that trust is reflexivity, i.e. an individual always trust
himself/herself. From our point of view, the following types of trust are reflexive. (Note:
the categories are overlapped for they are classes in different views.)

(1) Trust in belief. People always trusts what they believe;

(2) Trust in performance in a context where the trustor has confidence on him-

self /herself, e.g. an seasoned investor highly trust himself/herself on investment;

CHAPTER 5. A Locic THEORY OF TRUST 117

(3) Trust in goodwill. In normal situations, people trust themselves to have goodwill
toward themselves;

(4) Emotional trust. In normal situations, people have high emotionality toward
themselves.

On the other hand, trust in performance in the context where the trustor has no con-
fidence is irreflexive, that is, an individual always does not trust himself/herself in the
contexts where he or she has no confidence. For example, a computer user without knowl-
edge of operating system (without trust in himself/herself) does not trust himself/herself

to change system parameters.

5.3 Motivating Scenarios

In order to construct a formal model of trust in social networks, we start from motivating
scenarios.

Consider the following use cases of the electronic business of a gift company, F. F
originally is a floral company. Now its online business includes both bouquets and other
gift products. The web services technology makes F able to extend its online store to
a virtual omni-gift store that sells not only the products in its catalogues but also any

other types of gift products available via web services.

Case 1: Trust in Business Partnerships

James, an old customer of F, wants to order from F’s online store a gift for a friend,
a special high quality fine china tea set made in Jingdezhen of China. Assume this
product is not found in F’s catalogues. In F’s online store, a sales agent, a software
robot representing F, first finds from web services registries (e.g. UDDI registries) a list
of service providers who sell the requested products; second, from this list, as a general

business rule, the agent needs to check out service providers whose products are trusted

CHAPTER 5. A Locic THEORY OF TRUST 118

by F to have high quality; then, the agent presents to James a selected list of products
provided by the trusted service providers; after James chooses a product, the agent orders
the product for him. Here, we ignore the detail of web service process and only focus on
how the agent makes trust judgments.

A service provider which F found in a web services registry is J, a porcelain company
in Jingdezhen city. In order to maintain F’s business reputation, before F recommends J’s
fine china tea sets to customers, F needs to make sure J’s products are of high quality. To
make this judgment, the sales agent searches J in F’s business relationship management
system. Unfortunately, J is not in the system, that is to say, F' does not know J at
the time. However, F' has a long term business partner P. P frequently provides for F
porcelain products such as vases. Therefore, F trusts P’s judgments on porcelain product
quality. Furthermore, P has a major trusted porcelain product supplier S in New York,
so similarly P trusts S’s judgment on porcelain product quality. Finally J is one of S’s
trusted suppliers. In this latter relationship, S trusts the product quality of J. From this

chain of trust, the sales agent of F infers that the porcelain tea sets of J have high quality.
In the following, we analyze the roles and relationships demonstrated in this case.

James, a customer of F' who trusts F’s services, wants to buy from F a special high
quality fine china tea set. This request activates web service discovery, trust judgments,
and trading.

F, a gift company, trusts P on P’s judgement on porcelain product quality because P
is a long term professional business partner of F. In the terms of trust, the expectancy of F
to P is that P’s judgement on porcelain product quality is correct, and F feel comfortable

to believe what P believes in porcelain product quality.

P, a porcelain product company, trusts S’s judgment on porcelain product quality
similarly as F does.

S, a porcelain product supplier, trusts J on the quality of the porcelain products J

produces. In the terms of trust, S expects that the porcelain products of J have high

CHAPTER 5. A Locic THEORY OF TRUST 119

quality; based on J’s performance in the past, S would like to believe this expectancy.
J, a porcelain manufacturer at Jingdezhen, is unknown to F.

The chain of trust can be summarized as follows: (1) F trusts P’s judgement on
porcelain product quality; (2) P trusts S’s judgement on porcelain product quality; (3)
S trusts that the porcelain products of J has high quality; (4) so by (2) and (3), P also
trusts that the porcelain products of J has high quality; (5) similarly, by (1) and (4) F

trusts that the porcelain products of J have high quality.

Case 2: Trust in System

Consider another situation in which F does not know J, and F also does not find any useful
relationship in its business relationship management system to connect to J. However, J
shows that it has ISO 9000 quality certification. Assume that F trusts ISO 9000 system
thus F trusts J’s products meeting ISO 9000 quality standards. This makes F to trust

that the porcelain products of J has high quality.

Case 3: Trust in Business Partnerships (2)

Consider the business relationships in case 1. Assume that S trusts P that P is able to
and will pay for all its purchases so allows P to pay quarterly rather than to pay in every
transaction, and P trusts F in the same way. Now, consider the following situation. For
the first time, F orders a considerable amount of porcelain vases directly from S. Does S
trusts F on later payment as trusts P? The common knowledge tell us that the answer
is “no”. This is because the facts that S trusts P to pay later and P trusts F to pay
later does not necessarily imply S trusts F to pay later. In other words, this trust is not

transitive.

CHAPTER 5. A Locic THEORY OF TRUST 120
Findings:

From these cases, a number of important facts and concepts can be revealed.

The Factor of Trust in Web Services Based B2B

In e-business based on web services technology, a web services user (here, F) accepts only
trusted service providers retrieved from web services registries. The trust issues may
arise in many aspects of e-business including service quality, business credibility, as well

as business information security and privacy.

Types of Trust

There are different types of trust.

In case 1, the trust which F places on P is the trust in what P believes. The trust
P places on S is the same type. This type of trust is called trust in belief. The trust
which P places on F in case 3 is the trust in F’s performance. This is another type of
trust: trust in performance. The other examples of this type of trust include the

trust which S places on P in case 3 and S places on J in case 1.

Transitivity of Trust

In case 1, S’s trust in J propagates to P and then to F because F trusts in P’s belief
and P trusts in S’s belief on product quality. This fact leads us to a hypothesis: trust in
belief is transitive. Because of this property, trust can propagate in business relationship
formed social networks.

However, trust is not transitive in general. Case 3 shows that trust in performance is

not transitive.

CHAPTER 5. A Locic THEORY OF TRUST 121
Sources of Trust

Basically, trust comes from the experience of interaction between two parties. For exam-
ple, F trusts in P’s belief on porcelain product quality because P is F’s long term business
partner and F gradually knows that P is very professional on porcelain business from the
business interaction between them. The experience of interaction is the essential source
of trust. The trust from interaction experience is called inter-individual trust, and
also called direct trust.

Interestingly, from case 1, we have observed the fact that trust may propagate in
social networks. Because of trust propagation, F trusts in J’s products. This leads to
a new type of trust, whose source is from trust propagation in social networks. In this
thesis, this type of trust is called relational trust or social networks based trust.

Finally, in case 2, F trusts in J’s products because F trusts in ISO 9000 quality
management system and J complies with the system. This is an example of system

trust.

5.4 Methodology, Terminology and Competency Ques-

tions

Following the ontology development methodology of Gruninger & Fox [74], we specify
trust ontology in 5 steps: (i) provide motivating scenarios, which has been given in the
last section; (ii) define informal competency questions for which the ontology must be
able to derive answers; (iii) define the terminology; (iv) formalize competency questions;
(v) develop the axioms (i.e. semantics) of the ontology to answer these questions.

In the following, we first introduce the specific methods in our formalization of trust
in the situation calculus; then we define informal competency questions, terminology,

and formal competency questions.

CHAPTER 5. A Locic THEORY OF TRUST 122

5.4.1 Methodology

This chapter aims to construct a logical theory of trust in the form of an ontology.
To this end, trust is formalized by using epistemic logic and situation calculus. We
choose epistemic logic and the situation calculus as the tools for formalizing trust for
the following reasons. First, epistemic logic has a formal representation of belief, and
belief is the kernel element of trust; secondly, situations in the situation calculus provide
a solution to formally represent the contexts of trust; finally, trust dynamically changes
with the growth of the knowledge related to trust.

In this thesis, we treat trust as relation between a trustor, a trustee, an expected
thing, and a context.

Different from epistemic logic, in which belief is represented as a modal operator, we
adopt a First Order Logic approach. Particularly, in our trust ontology, trust and belief
will be represented as fluents in situation calculus. We represent fluents in reified form
[147]. That is to say, the fact that a relational fluent is true in a situation is represented
by holds(f(z),s) rather than predicate f(z,s). In this way, a fluent is a term. So that a
fluent may have other fluents as parameters.

Following Pinto [147], we treat the “logical operators” between fluents as functions.
In other words, the “propositional logical expressions” of fluents are treated as functions
rather than logical expressions in the language of the situation calculus. A logical functor
used for fluents is denoted as the corresponding logical operator with a dot above.

Definition TR-1 (by Pinto [147]):

holds(fiAfa, s) = holds(f1,s) A holds(fz, s) (5.1)

holds(—f,s) = —holds(f, s) (5.2)

Based on the above definitions, other “logical operators” are also defined as functions

of fluents. For example,

holds(f1D f2, s) = holds(f1,s) D holds(fa, s). (5.3)

CHAPTER 5. A Locic THEORY OF TRUST 123

Regarding context representation, McCarthy [126] introduces operator ist(c,p), which
is true if proposition p is true in context c¢. This operator is analogous to ¢ D p. “A
context is modelled by a set of truth assignments.” [24] Following this, in our formaliza-
tion of trust, a context of trust is regarded as a condition of trust. In the language of
situation calculus, we will not introduce any new representation, instead we directly use
the existing “fluents” associated with “situations” to represent contexts. In this way, we
decide whether it is in a specific context by checking whether the fluent representing the
context holds.

The logical theory of trust mainly focuses on the logical relations among trust related
fluents. The relations among fluents are called “state constraints” in the language of
situation calculus, and several methods have been developed to solve the so called “rami-
fication problem” [147]. In this thesis, in order to focus on the logic of trust and to make
the theory easy to be understood, we keep the relation among fluents in the form of state
constraints.

In this chapter, we only consider the case of certainty, so believing will certainly lead
to willing to be vulnerable. For this reason, we will not explicitly include “willing to be
vulnerable” in our formalization. In the cases of uncertainty in which the degree of belief
is considered, willingness to be vulnerable for that belief is corresponding to a decision to

trust or not. This will be discussed in the next chapter.

5.4.2 Informal Competency Questions

In the context of making trust judgments in social networks, the trust ontology under
development needs to answer the following competency questions:

Q1: In a specific context, can an entity (trustor) trusts another entity (trustee)
regarding what the trustee performs, particularly, the validity of the information created
by trustee?

Q2: In a specific context, can an entity (trustor) trusts another entity (trustee)

CHAPTER 5. A Locic THEORY OF TRUST 124

regarding what the trustee believes?

Q3: When an entity has trust in another entity’s belief in a given context, and the
second entity has trust in a third entity’s performance (or belief) in another context, can
the first entity have trust in the third entity’s performance (or belief)? if so, in what
context?

Q4: When an entity has trust in another entity’s performance (or belief) in a specific
context, given the information created by the second entity within the context, can the
first entity believe this information?

After we define the terminology of the ontology under development, these informal
competency questions will be formally represented, then axioms will be developed to

answer these competency questions.

5.4.3 Terminology

The situation calculus is a many-sorted logic language. We will use the following sorts:

A the set of actions;

S: the set of situations;

F': the set of fluents;

E: the set of entities;

Y: the set of activities;

D: the set of domain objects.

In addition, we follow the convention that all unbound variables are universally quan-
tified in the largest scope.

We define the relational fluents and predicates to be used in our trust ontology in
Tables 5.1 and 5.2 respectively.

Detailed explanation about the terminology will be given in the context of discussion
later. Trust related actions will introduced in Chapter 6. In this chapter we focus on the

semantics of trust and its transitivity, which are described in the form of state constraints

CHAPTER 5. A Locic THEORY OF TRUST

Table 5.1: Relational Fluents

125

Fluent

Definition

believe(d, x)

CExF
Entity d believes that thing x is true. z is a fluent to represent

the expectancy in a trust.

trust_p(d, e, x, k)

CExXxExFxF

denotes trust in performance relationship. In context k,
trustor d trusts trustee e on thing x made by e. x is the
expectancy of the trust, i.e. the performance or information

made by trustee and expected by trustor.

trust_b(d, e, z, k)

CExExFxF
denotes trust in belief relationship. In context k, trustor d

trusts trustee e on thing = that e believes.

has_p_tr(d, e, z, k)

CExExFxF
Trustor d has trust in performance type of inter-individual
trust relationship with trustee e. k is the context of trust,

and z is the expectancy of trust.

has_b_tr(d, e, z, k)

CExXxExFxF
Trustor d has trust in belief type of inter-individual trust

relationship with trustee e.

made(x,d, k)

CFxExF

Information x is made by entity d in context k.

per form(e, a)

CExY

entity e successfully performs specified activity a. This fluent
is an sample fluent to describe trustee’s performance. In appli-
cations, this fluent can replaced with any fluent representing

trustee’s performance.

CHAPTER 5. A Locic THEORY OF TRUST 126

Table 5.2: Predicates

Predicate | Definition/Sematics

holds(p,s) | CF xS

as defined in situation calculus, fluent p holds in situation s.

Poss(a,s) | CA xS

It is possible to perform action a in situation s.

entail(q, k) | CF x F

Context ¢ entails context k.

in situation calculus.
In addition, predicate entail is formally defined as follows.

Definition TR-2:
entail(q, k) = Vs, (holds(q, s) D holds(k, s)) (5.4)

By this definition, we further have the following two propositions, which need to be
used later. The proofs of these propositions can be found in Appendix C.

Proposition TR-1: Given any fluents p and q,
entail(pAq, p). (5.5)
Proposition TR-2: Given any fluents p, q, and k,

entail(k,p) N entail(p, q) D entail(k, q). (5.6)

5.4.4 Formal Competency Questions

Given the terminology defined above, the informal competency questions can be formally

represented as follows:

Q1: In a specific context, can an entity (trustor) trusts another entity (trustee)

regarding what the trustee performs?

YV, trust_p(d, e, z, k)?

CHAPTER 5. A Locic THEORY OF TRUST 127

Q2: In a specific context, can an entity (trustor) trusts another entity (trustee)

regarding what the trustee believes?
Ve, trust_b(d, e, x, k)?

Q3: When an entity has trust in another entity’s belief in a given context, and the
second entity has trust in a third entity’s performance (or belief) in another context, can
the first entity have trust in the third entity’s performance (or belief)? if so, in what

context?

(Vx)(holds(trust_b(d, c,z, k), s))
A (Vz)(holds(trust_b(c, e, x,q),s))

D (Vz)(holds(trust_b(d, e, z,?r),s))? (5.7)

(Vz)(holds(trust-b(d, c, z, k), s))
A (Vz)(holds(trust_p(c, e, x,q), s))

D (Va)(holds(trust_p(d, e, z,7r),s))? (5.8)

Q4: When an entity has trust in another entity’s performance (or belief) in a specific
context, given the information created by the second entity within the context, can the

first entity believe this information?

V) (holds(trust_p(d, e, x, k), s))
A holds(made(y, e, q), s) A entail(q, k0)

D holds(believe(d, k0Dy), s)? (5.9)

(Vx)(holds(trust_b(d, e, z, k), s))
A holds(believe(e, qDy), s) A entail(q, k0)

D holds(believe(d, k0Dy), s)? (5.10)

CHAPTER 5. A Locic THEORY OF TRUST 128

5.5 Axioms

5.5.1 Formal Semantics of Belief

Trust has the semantics that the trustor believes in her/his expectation on the trustee.
Therefore, the representation of trust needs to be based on belief.

The logic of knowledge and belief has been studied in epistemic logic (refer to [124],
[45], [187]). The systems T, S4 and S5 are applied to knowledge, and systems K45
and KD45 are applied to belief. The major difference between knowledge and belief is
commonly recognized as axiom T is applied to knowledge, but not to belief. In other
words, knowledge must be true, but belief needs not. In terms of possible world semantics,
knowledge (in a specific possible world) is defined as propositions true in all accessible
possible worlds to this world. However, what is the semantics of belief in the possible
world semantics?

There are many notations of knowledge and belief [124]. One approach is to define
belief as the same as to define knowledge with the possible world semantics, but the
accessibility relation for belief is not reflexive. Corresponding to this, the axiom T
is not true for belief, but other axioms K, D, 4 and 5 may be applied to belief as
does to knowledge. This approach raises another problem, what is the semantics of the
accessibility relation for belief?

van der Hoek and Meyer [124] (pp.73) define belief as possibility, so that the semantics
of the accessibility relation for belief is the same as the one for knowledge. We adopt
a similar approach. Consider that belief is not necessarily true but possibly true; and
something possibly true is not necessarily believed. In this perspective, we tend to define
the necessary condition of belief as possibly true; and the sufficient conditions of belief is
trust. More strictly, the sufficient conditions of belief should be trust and being consistent
with this agent’s knowledge. The difference between our definition of belief and van der

Hoek&Meyer’s model is: in van der Hoek&Meyer’s model [124] (pp.73), possibly true is

CHAPTER 5. A Locic THEORY OF TRUST 129

both the necessary and sufficient conditions of belief; in our model, possibly true is only
the necessary condition of belief, and trust is the sufficient condition of belief. Trust will
be discussed later in this chapter. In the following, the logic system of belief used in this
thesis is defined.

In this thesis, we use First Order Logic rather than Modal Logic to represent the logic
of belief. First of all, instead of representing belief as a modal operator, we represent
belief as a relational fluent, believe(d,z), which means agent d believes z, and x is again
a relational fluent.

The necessary condition of belief is possibly true, which is formally defined as the
following axiom.

Axiom TR-1 (necessary condition of belief):
holds(believe(d, x),s) D (3s')((s,s") € Ry A holds(z, s")) (5.11)

where R, is the accessibility relation from the view of d,

This axiom states that if agent d believes fluent z in situation s, then z must be true
in some accessible (from the view of d) possible worlds. This is because when a thing
is believed, it is consistent with both what is known in current epistemic state (current
world) and what is assumed in a specific accessible possible world (from the current
world).

Secondly, we define the logic of belief in this thesis based on system K, which is the
most general system for representing knowledge and belief in epistemic logic. In our
formalization, axiom K and necessitation rule are represented as follows.

Axiom K:
holds(believe(d, pDq), s) D (holds(believe(d, p), s) D holds(believe(d, q),s)) (5.12)
Necessitation Rule:

(Vs, holds(p, s)) D (Vs', holds(believe(d, p), s')) (5.13)

CHAPTER 5. A Locic THEORY OF TRUST 130

In addition, we include the following axiom in our system.

Axiom TR-2:

holds(believe(d, pAq), s) = (holds(believe(d, p), s) A holds(believe(d, q),s)) (5.14)

In our context of trust formalization, belief is regarding believing an expected thing
in the context of trust, therefore belief often needs to be represented as a conditional

belief as follows,

holds(believe(d, cDx), s).

where fluent ¢ is the condition for that belief (the context of trust), and fluent z is the
information created by the trusted entity, or z is a fluent to represent that someone
successfully performs an activity, e.g. perform(e,a), representing e successfully performs
activity a.

The following proposition states that at any situation s, if an agent (d) believes a
thing (z) in a condition (¢) and this condition holds in that situation, then this agent
believes that thing.

Proposition TR-3

holds(believe(d, cDx), s) A holds(believe(d, ¢), s) D holds(believe(d,), s) (5.15)

This proposition is directly obtained by axiom K and modus ponens.

The following proposition states that at any situation s, if an agent (d) believes a
thing (z) in a condition (k) and there is another condition (¢) that entails the first
condition (k), then this agent also believes that thing in the second condition (gq).

Proposition TR-4

holds(believe(d, kDx), s) A entail(q, k) D holds(believe(d, ¢gDx), s) (5.16)

The proof of this proposition is presented in appendix 5.

CHAPTER 5. A Locic THEORY OF TRUST 131

5.5.2 Formal Semantics of Trust

As revealed in the motivating scenarios, in accordance with the types of expectancies, we
classify trust into two types: trust in performance, and trust in belief. In our definition,
there is no intersection between these two types. We formally define them one by one as

follows.

Trust in performance

Trust in performance is the trust in what trustee performs such as the activities performed
or the information created. That is to say, the expectancy (the expected thing) in trust
is the activities performed or the information created

More accurately, trust in performance means that the trustor believes that (1) a
specific action is successfully performed by the trustee as committed to, which meets a
certain quality standards; or (2) the information created by the trustee is true.

In this thesis, we will use a relational fluent to represent the expectancy in a trust,
no matter this expectancy is a successfully performed activity or the information created
being true. In this way, Trust in performance can be formally defined as follows.

Axiom TR-3 (formal semantics of trust in performance):

holds(trust_p(d,e,z, k), s) =
Vq, (holds(made(x, e, q), s) A entail(q, k)

D holds(believe(d, kDx),s)) (5.17)

In this axiom (5.17), the expected thing (called expectancy) is fluent z; believe(d, kD)
represents that d believes x to be true when context & is true. In other words, d believes
z in context k.

To express such a trust relationship in practice, variable d will be bound to a trustor;

variable e will be bound to a trustee; variable x will be bound to a fluent representing

CHAPTER 5. A Locic THEORY OF TRUST 132

the information created by trustee; variable k£ will be bound to a fluent representing the
context of trust.

There are two different contexts in trust. ¢ is the context for performing / making
z, called the context of performance; and k is the context for using z, called the context
of trust. When the expectancy (z) is a piece of information, the context to create
this information and the context to use it usually are different; when the expectancy is
performing an activity, these two contexts may overlap in the circumstance in which the
activity is performed. However, the trustor’s concerns such as goals and utilities may
be quite different from trustee’s concerns about the completion of this activity. For this
reason, these two contexts are also different in the latter case.

As addressed earlier, the expectancy of trust can be the activities performed or the
information created. When the expectancy is a piece of information created, the infor-
mation is directly represented as a fluent to replace variable z in the axiom; when the
expectancy is an activity successfully performed by the trustee!, this expectancy is also
represented as a fluent. We use fluent “perform(e,a)”, which represents that trustee e
successfully performs activity a, to represent that expectancy. In applications, it can be
replace as needed. After replace z in Axiom TR-3 with “perform(e,a)”, the axiom is in
the following form:

Axiom TR-3(b) (trust in performing activities):

holds(trust_p(d, e, per form(e,a), k), s) =
Vq, (holds(made(per form(e,a), e, q), s) A entail(q, k)

D holds(believe(d, kDper form(e,a)),s)) (5.18)

This form of axiom can be read as that at any situation s, trustor d trusts trustee

e on successfully performing activity a in context k is logically equivalent to that if e

!The activity performed by the trustee is not an “action” modeled in situation calculus, so that this
activity is represented as a term.

CHAPTER 5. A Locic THEORY OF TRUST 133

commits to doing a in context ¢, and context ¢ is within k, then d believes in that
e successfully performs a in context k. Here, the straightforward semantics of fluent
“made(per form(e,a),e,q)” is that fluent (information) “perform(e,a)” is made by e
in context ¢. So, the semantics of this fluent should be understood as in context ¢, e

commits to successfully perform activity a .
The following are two examples for this representation.

Example 1 trust in information created. Ben, a customer of Amazon, trusts
Amazon regarding the message that his order status is “Shipped” in the context that

Ben made his order at Amazon. This trust relationship can be represented as follows:

holds(trust_p(Ben, Amazon, order_status(#102579, Shipped),

order_at(#102579, Amazon)Dorder_of(#102579, Ben), Sp)

According to the axiom TR-3, this means that for any context ¢, if Amazon creates

information

order_status(#102579, Shipped)

in ¢, and ¢ entails context

order_at(#102579, Amazon)Aorder_of (#102579, Ben),

then Ben believes that information. The formal representation of this meaning is as

follows:

(Vq)(holds(made(order_status(#102579, Shipped), Amazon, q), Sp)
A entail(q, order_at(#102579, Amazon)Aorder_of (#102579, Ben))
D holds(believe(Ben, order_at(#102579, Amazon)Aorder_of(#102579, Ben)

Dorder_status(#102579, Shipped)), Sy))

CHAPTER 5. A Locic THEORY OF TRUST 134

g can be any context that entail the context of the trust, for example,

order_at(#102579, Amazon)Aorder_of (#102579, Ben)
Aorder.ontent(#102579, book(“KnowledgeinAction”, 1))

Ashipped_by(#102579, U PS)Aorder_status(#102579, Shipped).

Example 2. Ben trusts Amazon regarding getting refund for an order in the context
that he wants get refund for some reasons and the order meets Amazon’s returns policy.
This trust relationship can be represented as follows:

holds(trust_p(Ben, Amazon,
per form(Amazon, refund(#102579)),
refund_asked(#102579) Ameets_r_p(#102579)),
s)
Different from example 1, the expectancy in this trust relationship is that Amazon refunds

Ben'’s order.

per form(Amazon, re fund(#102579)).

Trust in belief

Trust in belief is the trust placed on what trustee believes.

The semantics of trust in belief is that the trustor believes a thing believed by the
trustee in a context within the trustor’s context of trust. This semantics can be formally
defined in the following axiom.

Axiom TR-4 (formal semantics of trust in belief):

holds(trust_b(d,e, x,k),s) =
Vg, holds(believe(e, ¢Dx), s) A entail(q, k)

D holds(believe(d, kDx),s) (5.19)

CHAPTER 5. A Locic THEORY OF TRUST 135

Example 4. In the context of our motivating example, F trusts what P believes
regarding the quality of a porcelain product, e.g. “TeaSet-J11060”. This trust can be

represented as follows.

holds(trust_b(F, P, qual _grade(TeaSet — J1106b, A),
in_topic(qual_grade(TeaSet — J1106b, A), (5.20)

Porc_Qual)), s),

where qual_grade((TeaSet — J1106b, A) represents the quality grade of product TeaSet-
J1106b is A.

5.5.3 Reasoning with Trust Relationships

The defined formal semantics of trust can be used to derive the belief in the information
created or an activity performed by a trusted entity. The following two theorems provide
rules for such type of inference.

Theorem TR-1 states that if a trustor (d) trusts a trustee (e) in every thing (z) made
by the trustee in a given context (k), and there is a thing (y) made by the trustee in a
context (q) covered by the given context of trust (), then the trustor believes this thing
(y) in the given context.

Theorem TR-1.

(Vx)(holds(trust_p(d, e, z, k), s))
A holds(made(y, e, q), s) A entail(q, k)

D holds(believe(d, kDy),s) (5.21)

The proof of this theorem is given in Appendix. This theorem needs to be used to
derive belief in performance from trust in performance.
Theorem TR-2 states that if a trustor (d) trusts a trustee (e) in every thing (z)

believed by the trustee in a given context (k), and there is a thing (y) that the trustee

CHAPTER 5. A Locic THEORY OF TRUST 136

believes in a context (¢q) covered by the given context of trust (k), then the trustor also
believes this thing (y) in the given context.

Theorem TR-2.

(Vz)(holds(trust_b(d, e, x, k), s))
A holds(believe(e, qDy), s) A entail(q, k)

D holds(believe(d, kDy),s) (5.22)

The proof of this theorem is given in Appendix 5
Theorem TR-3 reveals that if d trust e on thing z in context k, then d also trusts e
on z in a stricter context (that satisfies k).

Theorem TR-3.

holds(trust_p(d, e, x, k), s) A entail(q, k) D holds(trust_p(d,e,x,q), s) (5.23)

holds(trust_b(d, e, x, k), s) A entail(q, k) D holds(trust_b(d, e, z,q), s) (5.24)

The proof of this theorem is given in Appendix.

5.6 Transitivity of Trust

Trust propagation in social networks is based on the assumption that trust is transitive.
However, trust is not always transitive. For example, A trusts B to access A’s resources,
and B trusts C to access B’s resources, but these do not necessarily imply that A trusts C
to access A’s resources. The interesting question here is what type of trust is transitive.

The following theorem answers this question.

Theorem TR-4 (Transitivity of trust in belief).

(a) In any situation s, if entity d trusts entity ¢ on everything which ¢ believes in

context k, and c trusts entity e on everything which e believes in context ¢, then d trusts

CHAPTER 5. A Locic THEORY OF TRUST 137

e on everything which e believes in the conjunction of the contexts k£ and q¢.

(Vz)(holds(trust_b(d, c, z, k), s))
A (Vz)(holds(trust_b(c, e, x,q),s))

D (V) (holds(trust_b(d, e, z, kAq), s)) (5.25)

(b) In any situation s, if agent d trusts agent ¢ on everything which ¢ believes in context
k, and ¢ trusts agent e on everything which e performs in context ¢, then d trusts e on

everything which e performs in the conjunction of contexts k£ and gq.

(Vx)(holds(trust_b(d, c,z, k), s))
A (Yx)(holds(trust_p(c, e, x,q), s))

D (V) (holds(trust_p(d, e, z,kAq), s)) (5.26)

This theorem shows that trust in belief is transitive; trust in performance
can be derived by using trust in belief. However, trust in performance by
itself is not transitive, which can be justified by examples such as the access control
example in the beginning of this section, as well as case 3 of the motivating scenarios.

Trust in performance also can be derived by system trust. System trust makes trust in
performance able to be transferred from an organization or a group to its members. Case
2 in the motivating scenarios is an example of using system trust. For length limitation,
system trust is not covered in this thesis. A simple solution of system trust can be found
in [89].

Theorem TR-4 together with system trust also described three conditions and forms
of trust propagation: (1) Entity d has trust in belief relationship with entity ¢, ¢ has
trust in belief relationship with entity e, then we can derive that d has trust in belief
relationship with e; (2) d has trust in belief relationship with ¢, ¢ has trust in performance
relationship with e, then it can be derived that d has trust in performance relationship

with e; (3) d has trust in performance relationship with o, o is a system (organization

CHAPTER 5. A Locic THEORY OF TRUST 138

e ———
- ~
- ~
o ~
.

(a) trust in belief + trust in performance
=> trust in performance

(¢) trust in performance + membership

—— ~—
— ~
~,
s

4 P => trust in performance

b b
—» known relationship

---# derived new trust relationship
(b) trust in belief + trust in belief b trust in belief

=> trust in belief P trust in performance

Figure 5.1: Three forms and conditions of trust propagation in a social networks

or group) and has member e, then it can be derived that d has trust in performance
relationship with e. These are illustrated in figure 5.1. For simplicity, we assume the

context of trust is the same and omitted in the figure.

5.7 Sources of Trust

In the earlier sections, we discussed the semantics of trust or what trust means and the
transitivity of trust. This subsection discusses where trust comes from.

Trust comes from three types of sources: (1) the trust built up from the experience
of interaction between trustor and trustee, called inter-individual trust or direct trust?;
(2) trust derived through trust propagation in social networks, called relational trust or
“social networks based trust”; (3) trust via the trust placed on the stable or predictable
functions / behaviors of a system (e.g. an organization, a culture, or a group of individuals
with certain common features), called system trust, typically including institutional based

trust, professional membership based trust, as well as characteristics based trust. The

2 Inter-individual trust and direct trust have the same meaning and they are exchangeable in this
thesis.

CHAPTER 5. A Locic THEORY OF TRUST 139

above (2) and (3) are also called indirect trust. Direct trust is essential; indirect trust
needs to be derived from direct trust.

Previously, fluents trust_b and trust_p are used to represent trust relationships that
may be inter-individual (or direct) trust relationships and may be derived (or indirect)
trust relationships. At that time, we need not to discern the difference.

In order to discuss trust propagation in social networks, in which direct trust relation-
ships are represented with arcs, and indirect trust relationships are represented by the
paths comprising certain those arcs, we need to tell the difference of direct and indirect
trust right now.

Inter-individual trust relationships are represented with fluents:

- has_p_tr(d,e,x,k), which represents trustor d has trust in performance type of inter-

individual trust relationship with trustee e in context k;

- has_b_tr(d,e,x,k), which represents trustor d has trust in belief type of inter-individual

trust relationship with trustee e in context k.

Inter-individual trust has the same semantics as the general concept of trust. There-
fore, the general semantics of trust is the necessary condition of inter-individual trust
as described in the following axiom. The sufficient condition for inter-individual trust
depends on how trust is built up in the process of interaction among entities. Many
researchers have studied this problem (refer to chapter 2). In this thesis, we will not
discuss how inter-individual trust relationships are built up; instead we only assume that
entities in social networks have developed their inter-individual trust relationships, from
which the indirect trust relationships are derived.

Axiom TR-5.
holds(has_p_tr(d,e,x,k),s) D holds(trust_p(d, e, x, k), s) (5.27)

holds(has_b_tr(d,e,x,k),s) D holds(trust_b(d, e, x, k), s) (5.28)

CHAPTER 5. A Locic THEORY OF TRUST 140

The sufficient condition for inter-individual trust depends on how trust is built up
in the process of interaction among entities. In this thesis, we will not discuss how
inter-individual trust relationships are built up; instead we only assume that entities in
social networks have developed their inter-individual trust relationships, from which the

indirect trust relationships are derived.

5.8 Trust Propagation in Social Networks

This section discusses the graph representation of trust propagation in social networks
and its connection with the proposed trust ontology.

By graph representation, the problem to infer an indirect trust relationship by using
the proposed trust ontology can be equivalently transformed into a more straightforward

approach — the problem of searching for a trust path in a trust network.

5.8.1 Trust Networks

A trust network is a subgraph of a social network. A social network can be regarded
as a directed graph with labeled arcs where the vertices are entities such individuals and
organizations in society, and the arcs are various social relationships. In the context
of trust, we only concern a special type of subgraphs of social networks, called trust
networks, in which arcs represent inter-individual (or direct) trust relationships. An
arc from vertex d to vertex e represents that d directly trusts e.

A trust network can be defined as a directed graph as follows.

TN =GV, A (5.29)
A=TUT? (5.30)
TP CVxVxK (5.31)

TPCY XV XK (5.32)

CHAPTER 5. A Locic THEORY OF TRUST 141

where, V is the set of vertices (all entities in social networks, i.e. individuals or organi-
zations in consideration; V is equivalent to E as defined in Chapter 6); A is the set of
arcs; to define A, 7? is defined as a relation, called trust in belief relation; 7P is also a
relation, called trust in performance relation; K is the set of contexts; thus, each arc in
A, e.g. (d, et k), is from one vertex (d) to another (e) with a pair of labels (¢,k) in which
t is “b” representing trust in belief or “p” representing trust in performance, k is the
context of trust. In this way, each arc represents an inter-individual trust relationship:
entity d trusts entity e regarding e’s belief/performance in context k. In the following
discussion, 7% and TP are also used as predicates to represent a trust relationship, e.g.
T°(d, e, k), representing d trusts in e regarding belief in context .

The terminology used in this section is summarized in table 5-3.

In this representation, the representation of context remains open. It could be defined
in the way that accommodates the intended application. For example, a context could

be defined as a knowledge field as we did in KP.

Definition TR-3 (trust path): In a trust network, a path is called a trust path, if:
(1) all the arcs except the last one are b-arcs; (2) there are no circles in the path; (3) the
“conjunction” of all contexts in the path is consistent. Here, b-arcs are arcs with label

“b”; p-arcs are arcs with label “p”.

A trust path (with length greater than one) is a visual and straightforward represen-
tation of a derived trust relationship.

In social networks, if an entity knows another entity enough, the first entity has
inter-individual trust relationships with the second, that is, there are arcs from the first
to the second entity; otherwise, there is no inter-individual trust relationships between
these two entities; however, if there is a trust path between them, then a indirect trust

relationship can be derived.

Trust Inference Rule: In a trust network, if an entity (represented by a vertex)

has a trust path (refer to def. 1) to another entity (represented by another vertex), then

CHAPTER 5. A Locic THEORY OF TRUST

Table 5.3: Notation for trust networks

Notation | Definition
TN the defined trust network.
Y the set of vertices in TN
the set of arcs in TN. A=T°U7TP.
K the set of contexts of trust.
T CVYxVxK
a relation of trust in belief.
TP CYxVxK
a relation of trust in performance.
T(d,e,k) | CVYV XV xK
a predicate, representing that d trust in e regarding be-
lief in context k.
TP(d,e k) | CV XV XK
a predicate, representing that d trust in e regarding per-
formance in context k.
S a specific situation in situation calculus, at which all
held trust relationships forms the trust network.
TN(S) | the defined trust network at situation S.
A(S) the set of arcs in the deterministic trust network at sit-
uation S.
T°(S) |CVxVxK
a relation of trust in belief at situation S.
TP(9) CYxVxK

a relation of trust in performance at situation S.

142

CHAPTER 5. A Locic THEORY OF TRUST 143

this entity has a trust relationship with that entity in the context of the “conjunction” of
all contexts in the path. The trust type of this trust path depends on the trust type of the

last arc. In formal,

Tb(el, €9,]{51) A Tb(62, es, k'Q) A Tp(en_l, €n, kn—l) B Tp(el, €n, ki Nko... A kn—l) (533)

Tb(el, €9, k’l) A Tb(eg, es, k?g) A Tb(en_l, €n, kn—l) D) Tb(el, En, ki Nky... A kn—l) (534)

The above graph representation of trust networks can be used independently to the
proposed trust ontology. The only two requirements coming from the logical theory
are: (1) to discern trust in belief and trust in performance; (2)each trust relationship
is associated with a context. These requirements are also one of the major difference
between the trust networks defined above and most trust network models that have

appeared in the literature.

5.8.2 Formal Semantics of Trust Networks

Although the above graph representation can be used independently to the proposed
trust ontology, the latter provides formal semantics and theoretical foundation for the
former. In the remainder of this section, we discuss the connection between the presented

trust network model and the proposed trust ontology.

In real world, trust networks are dynamic rather than static. In the real world, trust
networks change over time, because there are always entities that are adjusting their trust
relationships with the increasing experience of interactions with others; from the view
of the logical theory of trust in situation calculus, trust networks dynamically change
with the changing of situations. To address this feature, we define a trust network as a

snapshot of all inter-individual trust relationships in a specific situation.

By the logical theory, the relations 7° and 7P, as well as trust network 7N at

CHAPTER 5. A Locic THEORY OF TRUST 144

situation S can be defined as follows.

T°(S) = {(d, e, k)|Vx, holds(has_b_tr(d, e, z, k), S) (5.35)
T?(8) = {(d, e, k)Y, holds(has p_tr(d, e, x, k), S) (5.36)
TN(S) =G(V, A9)) (5.37)
A(S) = T*(S) U T?(S) (5.38)

Predicates TP and T? have the following semantics:

T?(d, e, k) =V, holds(trust_p(d, e, x, k), S); (5.39)

T%(d, e, k) = VY, holds(trust_b(d, e, z, k), S); (5.40)

In this way, the transitivity of trust in belief relation, the soundness and completeness
of trust inference rule in trust networks can be guaranteed by the trust ontology.

Axiom TR-6 (Causal Completeness Assumption): axiom TR-5, theorems TR~
3 and TR-4 are all conditions under which a trust relationship can be derived.

Theorem TR-5: For every trust path in a trust network, the corresponding trust
relationship is valid by the trust ontology.

The proof of theorem can be found in Appendix C.

Theorem TR-6: For every valid trust relationship by the trust ontology, there
exists at least a trust path within the context of the trust and with finite length in a
trust network.

The proof of theorem can be found in Appendix C.

The above two theorems show that the graph model of trust networks and the pro-
posed trust ontology are equivalent regarding trust reasoning using social networks. From
theorem TR-5, the trust relationship derived from a trust path is valid by the trust on-
tology. This result shows the soundness of trust propagates along a trust path in social
networks. From theorem TR-6, every valid trust relationship that can be derived from
the trust ontology corresponds to at least one trust path in a trust network. This result

shows the completeness of trust networks.

CHAPTER 5. A Locic THEORY OF TRUST 145

Interestingly, based on these theorems, the problem of inferring a trust relationship
by using trust ontology can be equivalently transformed into the problem of searching a
trust path in a trust network. The developing techniques for search social networks can
be applied to find trust paths in trust networks.

The model proposed in this chapter is a deterministic model. Although this model
can be used in real trust judgments, it is important to extend the model to uncertain
model, because uncertainty widely exists in trust problems, especially in the cyberspace.

We extend our model to uncertain model in papers [94] [88].

5.9 Application Examples

In the following, to demonstrate the potential uses of the proposed trust ontology in
trust judgments using social networks on the web, we provide two examples: (1) “web of

trust” in PGP; (2) trust judgments in web services based e-business.

5.9.1 Example 1: Web of Trust in PGP

PGP [195] is a public key cryptosystem used for encryption and digital signatures. Web
of trust is a trust model used in PGP to validate public key. Let us consider the following
story.

John received a message with the public key certificate of the sender Bill. In order
to verify whether the message is authentic, John needs to validate this public key cer-
tificate first. However, John does not know Bill. John needs to validate Bill’s public key
certificate through his trusted friends.

First, let us look into Bill’s public key certificate. This certificate consists of (1) Bill’s
public Key:; (2) Bill’s ID information; (3) the digital signature signed by Bill himself, and
the digital signatures signed by a set of introducers who know Bill and have validated

Bill’s public key.

CHAPTER 5. A Locic THEORY OF TRUST 146

One of these introducers is David. That is to say, David has validated Bill’s public
key certificate, and he believes in this certificate.

John’s public keyring consists of a set of keys in which John trusts the owners of these
keys to validate other people’s public key certificates. One of the key owners is Alice, in
the term of our logic model, John trusts Alice on what Alice believes in the context of
public key certificate.

Assume Alice does not know Bill either, but Alice has David’s public key in her public
keyring, that is to say, Alice trusts David in what David believes in the context of public
key certification.

Now, John trusts Alice regarding what Alice believes in public key certification, Alice
trusts David regarding what David believes in the same issue, and David believes the
validity of Bill’s public key and signed Bill’s public key certificate as an introducer. In
this way, John could validate the authenticity of Bill’s public key.

In the following, we represent the facts stated above with our proposed logic model of
trust. (We only consider “complete trust”. The trust with uncertainty will be addressed
in the next chapter.) The following fluents need to be defined in this application.

pk(u): the public key of PGP user u;

id_info(u): the id information of user u;

owner_of(id_info(u), pk(u)): the owner of public key pk(u) is the individual described
by id_info(u). This is the major information described by public key certificate;

is-a(x, PK_Cert): x is a public key certificate.

Assume that at situation sy, John decides to validate information
owner_of(id_info(Bill), pk(Bill)) created by Bill.

We represent the facts stated earlier first. All free variable are universally quantified
in largest scope.

(Fact-1) John has Alice’s key in his public keyring.

(Vx)holds(trust_b(John, Alice, x,is_a(x, PK _Cert)), s1). (5.41)

CHAPTER 5. A Locic THEORY OF TRUST 147

(Fact-2) Alice has David’s key in her public keyring.
(Vz)holds(trust_b(Alice, David, z,is-a(x, PK _Cert)), s1). (5.42)

(Fact-3) David is a introducer of Bill’s public key certificate. That is to say, David
has validated Bill’s public key certificate and he believes the information

owner_of(id_info(Bill), pk(Bill) is true.
holds(believe(David, is_a(owner_of (id_in fo(Bill), pk(Bill)), PK _cert)
Downer_of (id_info(Bill), pk(Bill))), s1). (5.43)
(Fact-4) owner_of (id_info(Bill), pk(Bill)) is a PK_Cert.
holds(is_a(owner_of (id_in fo(Bill), pk(Bill)), PK _Cert), s1) (5.44)
By necessitation rule, everyone believes the above true proposition, so John does.
holds(believe(John, is_a(owner_of (id_info(Bill), pk(Bill)), PK _Cert)),s;) (5.45)

Now we illustrate the logical process of validating this public key. By the definition

of entail, we have entail(p, p), in particular here,

holds(entail(is-a(owner_of (id_info(Bill), pk(Bill)), PK _Cert)),

is_a(owner_of (id_info(Bill), pk(Bill)), PK Cert))) (5.46)

From this proposition, facts (3),(2), and Theorem TR-2, we have

holds(believe(Alice, is,(owner_of (id_info(Bill), pk(Bill)), PK _cert)

Downer_of (idinfo(Bill), pk(Bill))), s1). (5.47)
Applying Theorem TR-2 again to above two propositions and fact (1), we further
have
holds(believe(Alice, is,(owner_of (id_info(Bill), pk(Bill)), PK _cert)

Downer_of (id_info(Bill), pk(Bill))), s1). (5.48)

CHAPTER 5. A Locic THEORY OF TRUST 148

S

e
Do you have ‘ Web Service
tea set? Online .. reglstry
ift store 2 Porcelain

g

() / Manufacturer
81—) S w2 T
i

Trust in performance

Customer

Jrust in belief /fTrust in performance

5
Recommend

the tea set Trust in belief

Eh s
Online]
porcelain store (P) orcelain supplier (S)
(F's long term partner) (P's long term partner)

Figure 5.2: example: trust in a social network of web services and users

From this proposition and ((5.45)), applying proposition TR-3, we have

holds(believe(Alice, owner_of (id_in fo(Bill), pk(Bill))), s1)- (5.49)

This proposition shows that after validation process John reaches a conclusion that

Bill’s public key certificate is authentic.

5.9.2 Example 2: Trust in Web Services

We apply the trust ontology to the trust j udgment problem in web services base e-

business introduced in the motivating scenarios.

The trust relationships in case 1 of the motivating scenarios is formally represented

as follows.

(1) F trusts in P’s belief on porcelain product quality.

holds(trust_b(F, P, x,in_topic(x, Porc_Qual)),s) (5.50)

Here x is a free variable, so it universally quantified in the largest scope.

CHAPTER 5. A Locic THEORY OF TRUST 149

(2) P trusts in S’s belief on porcelain product quality.
holds(trust_b(P, S, z,in_topic(x, Porc_Qual)),s) (5.51)

Similar to (1), x is a free variable.

(3) S trusts in J’s performance on high quality porcelain product manufacture.

holds(trust_p(S, J, per form(J, make HQ Porcln(x)),
in_topic(per form(J, makeHQPorcln(x)),

Porcln_Qual)),s) (5.52)

Here, term makeHG Porcel(x) represents J’s performance on high quality porcelain prod-
uct manufacture.

Now, we use the above facts and the proposed trust ontology to answer whether F
trusts in J’s performance on high quality porcelain product manufacture.

From (5.50), (5.51) and Theorem TR-4a (5.25), we have,
holds(trust b(F, S, x,in_topic(xz, Porc_Qual)),s) (5.53)
From (5.53), (5.52) and Theorem TR-4b (5.8), we have,

holds(trust_p(F, J,makeHQPorcln(z),
in_topic(per form(J, makeHQPorcln(x)),

Porcln_Qual)),s) (5.54)

This formula gives the answer that F can trust in J’s performance that J’s porcelain
products have high quality. Because of this trust, F presents to its customers J’s products.
The examples show that the proposed trust ontology can be used in trust judgments
using social networks. This ontology can be used as a kernel logic part in specific trust
models for particular domains. In practice, a specific trust judgment model in a par-
ticular domain can be built by incorporating this trust ontology and domain-dependent

knowledge.

CHAPTER 5. A Locic THEORY OF TRUST 150
5.10 Summary and Discussion

Making trust judgments by using social networks is a promising approach for addressing
the trust problem on the Web. The necessary condition for trust propagation in social
networks is that trust is transitive. However, a formal study on this issue is missing.

Many formal trust models have been proposed (refer to Chapter 2), but the transi-
tivity of trust has not been studied in formal manner. Although [1] and [99] argued that
“recommendation trust” is transitive, but neither gives a formal description. In addition,
“recommendation trust” is a specific case of trust in belief; the latter is more general.

In this chapter, we created a logical theory of trust in the form of ontology that
gives a formal and explicit specification for the semantics of trust. From this formal
semantics, we identified two types of trust — trust in belief and trust in performance, and
we proved the transitivity of trust in belief and the conditions for trust propagation in
social networks. These results answered the questions of “is trust transitive, what types
of trust are transitive and why”, and provided a theoretical evidence for trust propagation
in social networks.

On the issue of knowledge representation, our model has three advantages: (1) we
represent trust based on belief, a well studied concept in AI, which makes our model
established on a concrete ground; (2) by using situation calculus as representation lan-
guage, we are able to represent the context of trust as fluents. In this way, we found
a solution to formally represent the context of trust; (3) the representation of trust in
situation calculus also contributes to situation calculus for the language to describe trust
among multiple agents. As we know, this is the first proposed model of trust in situation
calculus.

To facilitate trust reasoning in an easier way, from proposed trust ontology, we also
constructed a trust networks model, a straightforward representation for trust propa-
gation in social networks. The soundness and completeness of the trust networks were

proved.

CHAPTER 5. A Locic THEORY OF TRUST 151

As illustrated in examples, the proposed trust ontology can be used as a logical tool
to support trust judgements using social networks on the Web.
The proposed logic model of trust is general. There may be many different web

implementations, but the logic behind these implementations is the same.

Chapter 6

Distributed Trust Reasoning

Most proposed social networks based trust models assume that the entity making trust
judgment is able to access to all personal trust relationships of the visited entities in
social networks in a search. This assumption is not practical for the reason of privacy.
In other words, people or organizations usually do not feel like publishing on the Web

their private data like personal trust relationships.

To solve the problem, we propose a social network-based distributed trust reasoning
model and constructs this model in situation calculus. With the model, the questioning
entity requests its trusted friends to tell it whether they trust the questioned entity in
a specific context; the friends may ask their friends; if any trusted friend trusts, by the
transitivity of trust, the entity can trust either; each entity in social networks needn’t to
publish her /his/its private inter-individual trust relationships on the Web; instead each
entity only answers the queries from the entities, whom this entity feels like responding,
about whether this entity trusts a questioned entity in a given context. In this way,
privacy can be better protected in trust reasoning using social networks. In addition,
technically, the distributed trust reasoning searches a trust path in a parallel search

method, so that, it is more efficient.

In this chapter, we construct a social network-based distributed trust reasoning model

152

CHAPTER 6. DISTRIBUTED TRUST REASONING 153

in situation calculus. First, a small set of actions necessary for trust related communi-
cation in distributed trust systems are specified; secondly, the successor state axioms for
trust related primary fluents are given; then, an example is presented to illustrate how
the proposed distributed trust reasoning in situation calculus works; finally, a summary

is given.

6.1 Terminology

In the following discussion, we assume that each agent (or, entity, as addressed earlier)
works with a situation calculus system, and each agent has its own knowledge base.

We identify the following actions directly related to trust judgments:

request(e, query(e, €', q)),
check Answer (e, query(e, €', q), w),
acceptQ(e', query(e, €', q)),
replyQ(e’, query(e, €', q),w).
They are summarized in table 7.1. Actions “request” and “checkAnswer” are con-
ducted by the requesting agent; actions “accept@” and “reply@” are conducted by the
requested agent.

Except fluents defined earlier in table 6.1 and 6.2 of Chapter 6, we also need some

new fluents for distributed trust reasoning. They are summarized in the table 7.2.

6.2 Actions, Preconditions and Effect Axioms

In the following, we discuss each action and its precondition axiom and effect axiom. The
precondition of an action is the requirements that must be satisfied whenever the action
can be executed in the current situation [150]; the effect axioms describe how actions

affect the fluents, i.e. the properties of the world in modeling.

CHAPTER 6. DISTRIBUTED TRUST REASONING 154

Table 6.1: Actions

Action Definition /Sematics

request(e, query(e, e, q)) CExD
agent e, requests agent e’ whether fluent ¢ holds.

q = trust_p(e,e',x, k), or trust_b(e, e, x, k);

check Answer(e, query(e,e’,q),w) | CExD x D

agent e, gets the answer (w) for query

query(e, €', q).

acceptQ (€', query(e, €', q)) CExD

agent €/, accepts the query from agent e.

replyQ (€', query(e, €', q), w) CE x D x {Yes, No}

agent €', replies the query from agent e with w.

6.2.1 Action: request(e, query(e,€’,q))

As shown in figure 6.1, action request(e,query(e,e’,q)) represents that agent e makes a
query query(e,e’,q) to agent e’, to request whether fluent ¢ can be proved by e’. Generally,
the question to be asked may be any fluent the requester wants to know from the requested

agent, but we limit questions to only two types of fluents:
trust_b(e',es, x, k), trust_p(e’, es, z, k),

representing questions whether the recipient (€’) trusts another given agent (e3) regarding
what the given agent (e3) believes or performs in a given context (k).

query(e, €', q) is a functional fluent mapping to an object representing a query used
in communication between agents.

The action of request can be caused by the condition that the questioning agent has
a task to prove a fluent ¢, and ¢ does not hold in this agent’s KB in current situation.

However, this condition is not the necessary condition for an agent to request.

CHAPTER 6. DISTRIBUTED TRUST REASONING

Table 6.2: Fluents

155

has_query(query(e, €', q)) cDh

Relational fluent. Query from e’,
query(e,e’,q), has been made. In other words, the

query object query(e,e’,q) has been created.

has_answer(query(e,e’,q),w) | CD x D x D

Relational fluent. Query from

query(e,e’,q), has answer w.

has_task(e, €', q) CExXExF

Relational fluent. Entity e has task to answer
question ¢ from entity ¢’. More exactly, e has been

asked by entity ¢’ whether fluent ¢ can be proved.

query(e, €', q) EXExF—F

Functional fluent, represents a query object cre-
ated by requesting entity e, the requested entity is

¢/, and the questioned fluent is ¢.

CHAPTER 6. DISTRIBUTED TRUST REASONING 156

query object

requester:e | | ;

requestee;e’ | | action effect: .
query: q ‘create a query |

answer: __ object

\—/_\

action: request

e: requester e requestee

Figure 6.1: Action: request

An agent is always able to request another agent, in other words, no condition is
necessary for an agent to request others, so the precondition of this action is always true.

Axiom (precondition of action request):
Poss(request(e, query(e, €', q)), s). (6.1)

After action “request”, an object query(e, €, q) is created. This query object exists
(or is visible) in the worlds of both sides of communication.

Axiom (effect of action request):

a = request(e, query(e, €', q)) D holds(has_query(query(e, €', q)), do(a, s)). (6.2)

Relational fluent has_query(query(e,e’,q)) represents that query query(e,e’,q) has

been made, or the query object query(e,e’,q) has been created.

6.2.2 Action: acceptQ(€, query(e, e, q))

Action acceptQ(€e’, query(e, €', q)) represents action by which agent e’ checks and accepts

query query(e,e’,q). This action is illustrated in figure 6.2.

CHAPTER 6. DISTRIBUTED TRUST REASONING 157

query object ‘ precondition:
requester: e - no task to answer q
(a set of fluents requestee.e’ | | § in KB (a set of fluents)
query: q v
ANSWer: — e ~ action: acceptQ

\\)///'\\‘L\“i
- I -
]

: : f“\\ <
Q vy - O
effect:
R . add ataskto ﬂ
? % answer q
e: requester in KB e': requestee

Figure 6.2: Action: acceptQ

When an agent receives a query, to accept this query, the requested agent should not
be in a process to answer the same question.

Axiom (precondition of action acceptQ)):
Poss(acceptQ(agt, query(e, agt, q)), s) = —holds(has_task(agt, q), s). (6.3)

This precondition prevents circles in a trust path by checking whether the agent
already has a task to answer the same question.
After the recipient accepts a query, the recipient has a task to answer this question.

Axiom: (effects of action acceptQ):

a = acceptQ(agt, query(e, agt, q)) D holds(has_task(agt, e, q)),do(a, s)). (6.4)

6.2.3 Action: replyQ(e’, query(e, €', q))

The answer to a question may be either ” Yes” or “No”. “Yes” means that from the
perspective of the requested agent the queried fluent can be proved to hold, which means
that the fluent holds at the situation to reply; “No” means that from the perspective of

the requested agent the queried fluent does not hold. In particular, for a query about

CHAPTER 6. DISTRIBUTED TRUST REASONING

query object
precondition:
requester: e q holds in KB
(a set of fluents] requestee:e |
query: q i | ¥
answer:Yes | - action: reply@
w‘ ~~__. _. withYes
o T
= effect: i+ T
answer property is e
filled with Yes
e: requester E2: requestee
uery object
quety ob] precondition:
requester: e q do?'s; ;‘g hold
(a set of fluents] requestee:e 3
query: q i ‘ ¥
answer:No | | . action: reply@
f‘ ~~_. . withNo
< effect: * T~
answer property is o

filled with No:

e: requester

Figure 6.3: Action: replyQ

trust relationship, “No” means that there is no queried trust relationship, but it does

not mean a distrust relationship. Action replyQ is illustrated in figure 6.3.

To answer a question with “Yes”, the recipient must have a task to answer this
question, and the questioned fluent ¢ holds; to answer a question with “No”, the recipient

must have a task to answer this question; and fluent ¢ does not hold.

CHAPTER 6. DISTRIBUTED TRUST REASONING 159

Axiom (precondition of action replyQ):
Poss(replyQ(agt, query(e, agt, q), Yes),s) =

holds(has_task(agt, e, q), s) A holds(q, s). (6.5)

Poss(replyQ(agt, query(e, agt, q), No), s) =

holds(has_task(agt,e,q),s) N =holds(q, s). (6.6)

Action replyQ(agt, query(e, agt, q), w) sets the “answer” property of object “query(e,agt,q)’

as w, which is either “Yes” or “No”; after the requested agent replies the query, the re-
quested agent has finished the task to answer the query, so that fluent has_task(agt, q)
no longer holds.

After the requested agent executes action “reply” to a query, the query has an answer.
In a implementation, this action sets the “answer” property of object “query(e,agt,q)”
as “Yes” or “No” as replied; after the requested agent answers the query, the requested
agent has finished the task to answer the query, so that fluent has_task(agt,) no longer
holds.

Axiom (effects of action replyQ):

a = replyQ(agt, query(e, agt, q), w) O —holds(has_task(agt, e, q), do(a, s)). (6.7)

6.2.4 Action: checkAnswer(e,query(e, €', q),w)

Action checkAnswer is illustrated in figure 6.4. The requester can check the answer of
a query, if the query is there. In other words, the requester can check the answer at
any situation after the query has been made. So action “checkAnswer” has the following
precondition.

Axiom (precondition of action checkAnswer):

Poss(check Answer(e, query(e, €', q),w), s) = holds(has_query(query(e, €', q)),s). (6.8)

Y

CHAPTER 6. DISTRIBUTED TRUST REASONING 160

query object
precondition:
this query requester: e
was created requestee:e’
(a set of fluents | uerv:
query: q
Y ction: answer: __
checkAnswer k- "% "
e
- \
4

effect: ine's KB,
q holds if answer = Yes;

q doesn't hold, otherwise. | | ,
e: requester § e requestee

Figure 6.4: Action: checkAnswer

A query object has a property (a relational fluent) “has_answer(query(e, €', q),w)”,
where w is the answer to the query. The default value of the answer (w) is “Unknown”,
which means no answer obtained from the requested agent.

If the requester checked the answer to a query, then the query has the answer as

checked.

Axiom (effect of action checkAnswer):

a = check Answer (e, query(e, €', q),w) D holds(has_answer(query(e, €', q),w), do(a, s)).

(6.9)
If the answer to a query is “Yes”, then the queried fluent holds.
Axiom TR-8
holds(has_answer(query(e, €', q),Yes), s)) D holds(q, s)). (6.10)

When a query is made, queries among agents could quickly spread out in a social
network. A problem is when such queries should stop propagation. A simple solution
is that the questioning agent opens a web-accessible “signal” when making a query, and

all following queries are associated with this signal; the condition for an agent to make

CHAPTER 6. DISTRIBUTED TRUST REASONING 161

_cepencs on believe

O . ‘ .
trust_b trust P made

has_b_tr has_answer has_p_tr memberOf

has_query has_task

Figure 6.5: Dependency relation among trust related fluents

actions is that the signal is on; when the questioning agent receives an answer of “Yes”
from any of questioned friends, the agent turn off the signal, which makes all actions
associated with this signal stop. This type of signal also has a limited life length, that
is to say, after a period of time, any efforts to find a trust path will stop. Since this is
one of the technical issues regarding implementation, this paper will not include it in our

formalization.

6.3 Successor State Axioms

This section discusses the successor state axioms of trust related fluents. First, we look
at the dependency relation among the trust related fluents.

Figure 6.5 shows the dependency relation among the trust related fluents. The de-
pendency relation is determined by the axioms and theorems introduced in the previous
chapter. In the figure, the dependent fluents, which depend on other fluents, include:

believe, trust_b and trust_p. The primary fluents, which do not depend on other fluents,

CHAPTER 6. DISTRIBUTED TRUST REASONING 162

include has_b_tr, has_p_tr, memberOf, made, has_query, has_answer, and has_task.

In the figure, the fluents marked with * change with the actions discussed in previous
section. From the effect axioms of those actions, fluents has_query, has_answer, and
has_task will change with the actions. Furthermore, as stated in the previous section,
in a query from one agent to another, the questioned fluent can be one of trust_b and
trust_p; therefore, in addition to the dependency relation in figure 6.5, these two fluents
may also be changed by the actions discussed in previous section.

In the following, we construct the successor state axioms for the fluents that directly
change with actions. The changes of these fluents will cause the changes of other depen-
dent fluents, which are calculated in accordance with the axioms and theorems presented
in the previous chapter.

Fluent has_query(query(e,€’,q)) holds, if and only if: the agent just conducted the
action of request, or the query has been made before the current action.

Successor State Axiom of fluent has_query:

holds(has_query(query(e, €', q)),do(a, s)) =
a = request(e, €', query(e, €', q))
V has_query(query(e, e, q)),s). (6.11)
Fluent has_task(e’,q) holds, if and only if: the action just conducted is an action
of accepting a query about question ¢; or the fluent originally holds and the action

conducted is not to reply the question.

Successor State Axiom of fluent has_task:

holds(has_task(e', q),do(a, s)) =

0 = acceptQ(¢, query(e, ¢, q))

V holds(has_task(€',q), s) A a # replyQ(€’, query(e, e, q),w). (6.12)

Fluent has_answer(query(e,€’,q),w) has following successor state axiom. Fluent

CHAPTER 6. DISTRIBUTED TRUST REASONING 163

has_answer(query(e, €', q), w) holds, if and only if: the agent just conducted the action
of “checkAnswer”, and the answer is the same; or the fluent originally holds, and the
action just done is not the action of “checkAnswer” with a different answer.

Successor State Axiom of fluent has_answer:

holds(has_answer(query(e, €', q),w),do(a, s)) =
a = checkAnswer(e, query(e, €', q), w)
V holds(has_answer(query(e, €', q),w), s)

A a # checkAnswer(e, query(e, e, q),w') Nw' # w. (6.13)

As discussed earlier, if fluent has_answer(query(e, €', q), Y es) holds, the queried fluent
q holds. This further causes other dependent fluents change.

Fluets trust_b and trust_p have successor state axioms with the following same se-
mantic structure. Fluent f holds at situation do(a,s), if and only if: the action just done
(a) is to check the answer of the query regarding this fluent (f) and the answer is “Yes”,
or the fluent has already held in situation s.

Successor State Axiom of fluent trust_b:

holds(trust_b(e, e, x, k), do(a, s)) =
a = check Answer(agt, query(agt, e, trust_b(e, €', x, k)), w)
ANw = Yes

V holds(trust_b(e, €', x, k), s). (6.14)
Successor State Axiom of fluent trust_p:
holds(trust_p(e, €', x, k), do(a, s)) =
a = check Answer(agt, query(agt, e, trust_p(e, €', x, k)), w)

ANw = Yes

V holds(trust_p(e, €', x,k),s). (6.15)

CHAPTER 6. DISTRIBUTED TRUST REASONING 164
6.4 Distributed Trust Reasoning: Example

We explain how the distributed trust system works by giving an example. For simplicity,
this example only has a few of entities in social networks. In real applications, there
could be a large number of entities involved, and a trust path may be long, although
it is expected to be around 6 by the siz degree separation law [131][43]. In addition, in
order to focus on how agents interact each other to solve the trust judgment problem, we
assume that all contexts are the same. In real applications, the contexts can be different,
and they can be handled in trust reasoning as presented earlier.

The story is that entity F; needs to determine whether entity Eg can be trusted
regarding Fjg’s performance in context K, but E; does not know FEjg directly, so F;
requests his trusted friends Fy, F3 and E; (to whom F; has inter-individual trust in
belief relationships in context of K) whether they trust Eg. The friends may further ask
their friends about the same question. When FE; gets answers from his friends, the trust
relationship between E); and Fg may be derived. The overall process is shown in figure

6.6.

In the following, we simulate the actions and the changes of situations in each entity’s

world in the following figures.

6.4.1 Changes in F;’s World

In E;’s world, at initial situation Sél), E needs to determine whether the trust relation-

ship trust_p(FE1, Eg, x, K) holds, but E; does not know who is Fj.

Initial Situation S(()l) Assume, at initial situation S(()l), the following fluents hold.
holds(has_b_tr(Ey, By, z, K), SV). (6.16)
holds(has_b_tr(Ey, Es, x, K), SV). (6.17)

holds(has_b_tr(FEy, Ey,x, K), Sél)). (6.18)

CHAPTER 6. DISTRIBUTED TRUST REASONING 165

trust_p(E5,E6,x,K)?
77777777777 >
KR %

EZ2 ES

can | trust E6's

performance | P 5
" Yes rust p(E3,E6,x,K) 1
?

context K~ |

"4 trust p(E3E6XK)? bt
E6
E3

trust in performance

trust in belief
E4 -

Figure 6.6: Example: distributed trust reasoning in social networks

Some other domain related fluents may also hold, but we ignore them here because they

are irrelevant to the trust judgment.

Request Actions In order to infer whether trust_p(E;, Eg,z, K) holds, E; requests

his trusted friends F,, E3 and E, in context K.

S%l) = do(request(FE1, query(E1, By, trust_p(Ey, Eg, x, K))), S(()l)); (6.19)
Sél) = do(request(Ey, query(E1, E3, trust_p(FEs, Eg, x, K))), Sg)); (6.20)

S?()l) = do(request(FE1, query(E1, Ey, trust p(Ey, Eg, z, K))), Sél)). (6.21)

CHAPTER 6. DISTRIBUTED TRUST REASONING 166

After these actions, queries to Fy, F3 and E, are generated. By effect axiom of action

request, formula (6.2),

holds(has_query(query(Ey, B, trust_p(Ey, Fg, z, K))), Sél)); (6.22)
holds(has_query(query(E1, Es, trust_p(Es, Eg, z, K))), S?El)); (6.23)
holds(has_query(query(Ey, Ey, trust_p(Ey, Eg, z, K))), SS). (6.24)

Of course, F; can request his friends one by one until gets expected answer.
By successor state axiom of fluent has_b_tr (6.14), these request actions do not change

these fluents. So the following fluents held at situation S?El)

holds(has_b_tr(Ey, By, x, K), SV); (6.25)
holds(has_b_tr(Ey, Es, z, K), SV); (6.26)
holds(has_b_tr(Ey, Eq, z, K), S{): (6.27)
holds(has_query(query(Ey, Es, trust_p(Esy, Eg, x, K))), Sél)); (6.28)
holds(has_query(query(Ey, Es, trust_p(Es, Eg, x, K))), Sél)); (6.29)
holds(has_query(query(Ey, Ey, trust_p(Ey, Fg, z, K))), Sél)). (6.30)

Now we temporally turn to other entities” worlds and return F;’s world later.

6.4.2 Changes in F5’s World

In Ey’s world, Es accepts the query from E;; request his trusted friend E3 but receives

negative answer; so further request Fs.

Initial Situation S\ At initial situation S, the following fluents hold.

holds(has_b_tr(Es, Es, x, K), S&); (6.31)

holds(has_b_tr(FEsy, Es, x, K), S(SQ)). (6.32)

CHAPTER 6. DISTRIBUTED TRUST REASONING 167

Accept Query, to Situation SF) Since no one ask F, about the question yet, we

have

—holds(has_task(Es, _ ,trust_p(FEs, Fg, x, K)), 582)),
so, from the precondition axiom (6.3), Fy can accept the query. Then,
sz) = do(acceptQ(Es, query(E1, Ey, trust_p(Es, Eg, x, K))), SSQ)); (6.33)
by effect axiom of this action (6.4), or successor state axiom (6.12),
holds(has_task(Es, By, trust_p(Es, Eg, z, K)), S{z)); (6.34)

by successor state axiom of fluent has_b_tr, formula (6.14), these fluents do not change

with the action,
holds(has_b_tr(Es, E3, z, K), S%) (6.35)

holds(has_b_tr(Es, Es, x, K), S%). (6.36)

Request Fj3, to Situation S§2) Right now, E5 has a task to answer whether
trust_p(Es, Eg, z, K)
holds. Since E5 does not know FEjg either, Fy asks his trusted friend Ej5 first.
Sf) = do(request(FEs, query(E2, E3, trust_p(Es, Eg, x, K))), Sf)) (6.37)
(6.38)
By effect axiom of this action (6.2)
holds(has_query(query(Es, Es, trust_p(Es, Eg, x, K))), Séz)). (6.39)

By successor state axiom (6.14) and (6.12), previous fluents do not change with the

action. So,
holds(has_b_tr(Es, E3, z, K), S&); (6.40)
holds(has_b_tr(Es, Es, x, K), S&); (6.41)

holds(has_task(Es, Ey, trust_p(Fs, Eg, z, K)), S). (6.42)

CHAPTER 6. DISTRIBUTED TRUST REASONING 168

By the precondition of action checkAnswer and fact (6.39), Ey can check the answer

of his query at or after situation 552). Assume E5 checks the answer at 552).
S§2) = do(check Answer(Esy, query(Es, Es, trust_p(Es, Eg, z, K)), w), 552)). (6.43)
By successor state axiom of fluent has_answer (6.13),
holds(has_answer(query(E2, Es, trust_p(Es, Eg, z, K)),w), S?(,z)). (6.44)

Assume that for some reasons, the answer obtained is “Unknown”, i.e. w = Unknown.
By the state constraints, this answer does not change any dependent fluents.
By successor state axioms (6.14), (6.12), (6.11) and (6.13), previous fluents still hold.

So, the following fluents hold at situation S:gz):

holds(has_b_tr(Es, Es, x, K), S&); (6.45)
holds(has_b_tr(Es, Es, z, K), S&); (6.46)
holds(has_task(Es, E, trust_p(Es, Eg, z, K)), S2); (6.47)
holds(has_query(query(Es, Es, trust_p(Es, Eg, x, K))), S§2)); (6.48)
holds(has_answer(query(E2, Es, trust_p(Es, Eg, z, K)),w), S?(,z)). (6.49)

Request E5, to Situation Sf) Since the queried problem remains unsolved, i.e.

fluent

holds(has_task(Es, Ey, trust_p(Es, Eg, z, K)), S§2))

still holds at current situation, F, further requests his another trusted friend Ejs.
Sf) = do(request(Es, query(E2, Es, trust_p(Es, Eg, x, K))), SéQ)). (6.50)
By effect axiom of this action (6.2)

holds(has_query(query(FEs, Es, trust_p(Es, Eg, x, K))), Sf)). (6.51)

CHAPTER 6. DISTRIBUTED TRUST REASONING 169

By successor state axiom (6.14) and (6.12), all previous fluents do not change with

the action. So, the following fluents hold at situation Sf):

holds(has_b_tr(Es, Es, x, K), S$): (6.52)
holds(has_b_tr(FEsy, Es, x, K), Sf)); (6.53)
holds(has_task(Es, By, trust_p(Es, Eg, z, K)), Sf)); (6.54)
holds(has_query(query(FEs, Es, trust_p(Es, Fg, z, K))), Sf)); (6.55)
holds(has_answer(query(E2, Es, trust_p(Es, Eg, z, K)),w), Sf)) (6.56)
holds(has_query(query(Ey, Es, trust_p(Es, Eg, z, K))), S%)). (6.57)

Now we temporally turn to other entities’ worlds and return E5’s world later.

6.4.3 Changes in F3’s World

E3 accepts Ei’s query, but reject query from E5 for E5 being in busy status to answer

the same question; E3 solves the queried question and replies E;’s query with “Yes”.

Initial Situation Sé?’) In E3’s world, initially,
holds(has_p_tr(Es, Eg, z, K), 553)). (6.58)
Accept Query, to Situation ng) E5 receives a query from FE; at situation S(()?’). Since
no question is received yet,
—holds(has_task(Es, _ , trust_p(Es, Fg, z, K))), Sé?’)),

FE5 accepts the query, i.e.

Sf?’) = do(acceptQ(Es, query(E1, Es, trust_p(Es, Eg, x, K))), Ség)); (6.59)
then by effect axiom of this action (6.4),

holds(has_task(Es, Ey, trust_p(Es, Eg, z, K)), S™); (6.60)

CHAPTER 6. DISTRIBUTED TRUST REASONING 170

by successor axiom of fluent has_b_tr (6.14), this type of fluent remains unchanged; so

we have fluents held at ng),

holds(has_p_tr(Es, Eg, z, K), ng)); (6.61)

holds(has_task(Es, Ey, trust_p(Es, Eg, z, K)), st)). (6.62)

If at this situation, E3 receives query from Fy about the same question, because fact
(6.62), i.e. FEj3 has already had task to answer the same question, by the precondition
axiom of action accept@ (6.3), F3 is no longer be able to accept this query. So Ey’s query

query(E2, Es, trust_p(Es, Eg, z, K)) will keep having the default answer “Unknown”.

Solve Queried Problem FEj solves the queried problem by reasoning as follows. From

theorem TR-3 (C.19) and fact (6.61),

holds(trust_p(Es, Eg, z, K), Sf’)). (6.63)

Reply Query, to Situation Ség) Now, from the precondition of action replyQ, Fs

can reply the query with “Yes”, i.e.
Ség) = do(replyQ(FEs, query(E1, Es, trust_p(Es, Eg, x, K)),Yes), Sf’)). (6.64)
By successor state axioms of has_task, fluent
has_task(Es, trust_p(FEs, Fs, x, K))

no longer holds at situation Sé?’). So, if F3 receives query from Fs at this time, F3 will

accept the query.

6.4.4 Entity F,

Similar to entities Fy and FE3, F4 can accepts the query from F;. However, for some

reasons regarding privacy, security or other social factors, F,; does not feel like answering

CHAPTER 6. DISTRIBUTED TRUST REASONING 171

this question. Therefore, if F; checks the answer for this query, the answer is always
“Unknown”.

Consider another possibility. E4 does not know Eg and queried his friends, but failed
to receive an answer of “Yes” in a number of request actions, so he replies with ” No”.
The actions of accept() and reply@, and the changes of fluents are similar, so the details

are omitted.

6.4.5 Changes in F5’s World

E5 accepts the query from Ejs, solves the queried problem, then replies to the query.

Initial Situation S(()S) In E5’s world, assume E5 has inter-individual trust relationship

with Eg at the initial situation 565),

holds(has_p_tr(Es, Eg, z, K), S&). (6.65)

Accept Query First, E5 accepts the query from FEs,
S£5) = do(accept@Q(Es, query(E2, Es, trust_p(Es, Eg, x, K))), S((]S)); (6.66)
then by successor state axioms (6.12) and (6.14), at situation SF’),

holds(has_task(Es, Es, trust_p(Es, Eg, z, K)), S™), (6.67)

holds(has_p_tr(Es, Eg, z, K), 5. (6.68)

Solve Queried Problem Then, Ej5 solves the queried problem by reasoning as follows.

By fact (6.68) and theorem TR-3 (C.19),

holds(trust_p(Es, Eg, x, K), 555));

CHAPTER 6. DISTRIBUTED TRUST REASONING 172

Reply Query By precondition of action reply@, E5 can reply to Es’s query with “Yes”,
555) = do(replyQ(FEs, query(FEsy, Es, trust_p(Es, Eg, x, K)), Yes), SF’)); (6.69)
by successor state axioms (6.12), (6.14), after the reply@ action, fluent
has_task(Es, Ey, trust_p(Es, Eg, z, K))

no longer holds at situation 555).

6.4.6 Changes in F5y’s World (2)

Return to E5’s world. Now, entity F, checks the answer of his query, solve his queried

problem, and replies to the query from e;.

Check Answer By the precondition of action check Answer, Ey can check the answers

of his query made earlier.
SE()Q) = do(check Answer(FEs, query(E2, Es, trust_p(Fs, Fg, x, K)), w), SAEQ)). (6.70)
By effect axiom of this action (6.9),
holds(has_answer(query(Fsy, Es, trust_p(Es, Eg, , K)),w), Ség)). (6.71)

Since the reply by FEs is ” Yes”, the answer obtained is “Yes”, i.e. w = Yes. By axiom

TR-8 (6.10),
holds(trust_p(Es, Eg, z, K), S). (6.72)

By successor state axioms of primary fluents and state constraints for dependent

CHAPTER 6. DISTRIBUTED TRUST REASONING 173

fluents, at current situation,

holds(has_b_tr(Es, Es, x, K), S); (6.73)
holds(has_b_tr(Es, Es, z, K), S); (6.74)
holds(has_task(Es, B, trust_p(Es, Eg, , K)), S); (6.75)
holds(has_query(query(Es, Es, trust_p(Es, Eg, x, K))), SéQ)); (6.76)

holds(has_answer(query(E2, Es, trust_p(Es, Eg, z, K)), Unknown), SéZ)) (6.77)

holds(has_query(query(Es, Es, trust_p(Es, Eg, z, K))), Sé2)); (6.78)
holds(has_answer(query(Es, Es, trust p(Es, Es, x, K)),Yes), SéQ)); (6.79)
holds(trust_p(Es, Eg, x, K), SéZ)). (6.80)

Solve Queried Problem FE, solves the queried problem by reasoning as follows.

by theorem TR-3 and fact (6.89),
holds(trust_b(Esy, Es, x, K), SéQ)); (6.81)
by theorem TR-8(a)(5.8) as well as facts (6.89) and (6.80), Ey gets solution,

holds(trust_p(Es, Eg, x, K), SéQ)). (6.82)

Reply Query By precondition of action reply@, now E, can reply to E;’s query with
(L'Yesﬂ ,

Sy = do(replyQ(Ey, query(E1, By, trust p(Ez, Eg, v, K)), Yes), S7); (6.83)
by effect axiom of this action (6.7), after the reply@ action, fluent
has_task(Es, By, trust_p(Esy, Eg, x, K))

no longer holds at situation Sé-z).

CHAPTER 6. DISTRIBUTED TRUST REASONING 174

By successor state axiom (6.14) and trust reasoning, the following fluents hold,

holds(has_b_tr(Es, Es, x, K), S&); (6.84)
holds(has_b_tr(Es, Es, z, K), S&); (6.85)
holds(trust_p(Fs, Eg, x, K), S): (6.86)
holds(trust_p(Es, Eg, x, K), S&). (6.87)

After the reply@ action, applying successor state axioms and state constraints for

dependent fluents, the following fluents hold at current situation,

holds(has_b_tr(Es, Es, z, K), S&): (6.88)
holds(has_b_tr(Es, E5, z, K), SéQ)); (6.89)
holds(has_query(query(Es, Es, trust_p(Es, Eg, x, K))), SéQ)); (6.90)

holds(has_answer(query(E2, Es, trust_p(Es, Eg, z, K)), Unknown),g)) (6.91)

holds(has_query(query(Es, Es, trust_p(Es, Eg, x, K))), Sé2)); (6.92)
holds(has_answer(query(Es, Es, trust_p(Fs, Fs, x, K)),Yes), SéQ)); (6.93)
holds(trust_p(Es, Eg, x, K), Sé2)); (6.94)

holds(trust_p(Es, Eg, z, K), Sf(f)). (6.95)

6.4.7 Changes in F;’s World (2)

Return to Ei’s world. Now, entity F; checks the answers of his queries and solve his

problem.

Check Answer By the precondition of action checkAnswer, E; can check the answers

of his queries made earlier. Assume FE; checks the answer of the query sent to Fs first.

Sil) = do(checkAnswer(Ey, query(E1, By, trust_p(Fs, Eg, x, K)), w), S?()l)). (6.96)

CHAPTER 6. DISTRIBUTED TRUST REASONING 175

Since the reply by Es is ”Yes”, the answer obtained is “Yes”, i.e. w = Yes. By the effect

axiom of the action (6.9),
holds(has_answer(query(Ey, By, trust_p(Es, Eg, x, K)),Yes), SAEI)); (6.97)
by axiom TY-8 (6.10),
holds(trust_p(E», Eg, z, K), S\"). (6.98)

By successor state axioms and state constraints for dependent fluents, in the current

situation,

holds(has_b_tr(Ey, By, z, K), S{): (6.99)

holds(has_b_tr(Ey, Es, z, K), S\V); (6.100)

holds(has_b_tr(Ey, Ey, z, K), S\V); (6.101)
holds(has_query(query(Ey, By, trust_p(Es, Eg, x, K))), Sil)); (6.102)
holds(has_query(query(E1, Es, trust_p(Es, Fg, x, K))), Sil)); (6.103)
holds(has_query(query(Ey, Ey, trust_p(Ey, Eg, x, K))), SAEI)); (6.104)
holds(has_answer(query(Ey, By, trust_p(Es, Eg,x, K)), Yes), Sil)); (6.105)
holds(trust_p(Es, Eg, x, K), Sﬁl)). (6.106)

Solve Queried Problem F; solves his problem by reasoning as follows. By theorem

TR-3 and fact (6.99)
holds(trust_b(Ey, By, z, K), S\V): (6.107)
by theorem TR-8(a)(5.8) as well as facts (6.107) and (6.106), E; gets solution,
holds(trust p(E, Eg, z, K), Sﬁl)). (6.108)

In this way, E; solved his problem in a distributed computing manner.

CHAPTER 6. DISTRIBUTED TRUST REASONING 176
6.5 Summary

Most proposed social networks based trust models require to access to all personal trust
data of the visited entities in social networks in a search. However, for the reason of
privacy, people usually do not publish their private data to the public online. For this
problem, this paper proposed a social network-based distributed trust reasoning model
and constructed the model in situation calculus, which facilitates social network-based
trust judgment. In real applications, the model can be implemented with web services,
then each entity in social networks only answers whether to trust the questioned en-
tity, and the private trust data need not to be revealed to public. In addition, by this
distributed model, a search for a trust path is virtually carried out in parallel in a so-
cial network, so that the shortest trust path could be found in a short time with high

probability.

Chapter 7

KP Application in Finance

In this chapter, in order to demonstrate the potential uses of knowledge provenance, we
develop a KP application case in the field of financial investment.

Financial investment is a typical field where people need a great amount of information
to make decisions. Particularly, with the advent of the Web age, investors are flooded
with a great variety of web information. However, as discussed in Chapter 1, information
validity is always a problem in the area. Knowledge provenance can help to increase

financial information trustworthiness.

7.1 Financial Information and XBRL

Financial statements are essential information for the capital market. In the market,
companies are required to provide their financial statements to market regulators such
as U.S. Securities and Exchange Commission (SEC). Market regulators collect and dis-
seminate companies’ financial information to investors. Professional financial analysts
compile and interpret financial data and other relevant information and analyze the cur-
rent situation and future trends of the markets in various financial analysis reports, in
particular, investment newsletters. These reports help investors make their investment

decisions.

177

CHAPTER 7. KP APPLICATION IN FINANCE 178

However, a surprising fact about the validity of financial data is revealed by Christo-
pher Cox, Chairman of U.S. Securities and Exchange Commission, in a speech on 3
March 2006. Cox addressed that the error rate of the data used by financial analysts in
their valuation models is up to 28% or higher [32]. The direct reason for this problem
is that the financial data used in financial analysis come from neither the companies
nor SEC, instead the data is bought from intermediate companies that manually re-key
financial statements into the data of suitable formats. Another reason from a technical
view is that the financial data is mixed with text in financial statements, so that the
data cannot be extracted automatically by machines. This situation yields the needs
of “interactive data”[32] — machine-processable data that can be easily extracted from
financial statements and customized into the reports that meet the different needs of

financial information users.

To solve the problem, XBRL [189](eXtensible Business Reporting Language) has
been developed to facilitate electronic communication of business and financial data.
Many countries have initiated or suggested the use of XBRL. For examples, US SEC set
up an “interactive-data test group” in which companies are using XBRL to make their
SEC fillings [32]; UK Government proposes to make the use of XBRL mandatory for
company tax filing from March 2010 [25]. The use of XBRL will make the data used in

financial analysis more accurate and reliable.

Financial analysis reports, as well as financial news stories, usually contain many data
from companies’ financial statements. The use of XBRL makes it possible to validate
these data by machines. In section 7.2, under the framework of KP, we discuss the
approach to annotating and validating XBRL data in web based financial reports; in
section 7.3, we discuss how to use KP for finance information / knowledge provenance

reasoning.

Before finishing this section, we briefly introduce the structure of XBRL files as fol-

lows.

CHAPTER 7. KP APPLICATION IN FINANCE 179

7.1.1 XBRL Data Structure

Business information reported by XBRL is specified in two types of documents: instances
and taxonomies. An XBRL instance file is an XML file that contains the business data
being reported; an XBRL taxonomy file is an XML Schema file that defines the structure
of XBRL instances. Each item of business data is specified as an XML element, called
“item element”. The tag of an item element is the name of the data item; the content of
an item element is the value of the data item; and each item element also has some other
attributes such as the unit and the context. The context of an item refers to the entity

(company id) and the period (startdate and enddate) associated with the data item.
Example. In a Microsoft’s financial statement in XBRL, the revenue of the fourth

quart of 2005 is specified as the following item element.

< usfr — pte : Operating Revenue

contextRef = “P3MQ2FY 2006”
decimals = “ — 6"

unitRef = “USD" >
11837000000
< Jusfr — pte : Operating Revenue >
The context of this item is defined by the following context element.

< zbrli : context rdf :id = “P3MQ2FY 2006" >

< xbrli : entity >
< abrli : identifier
scheme = “http : | Jwww.sec.gov/CIK" >
0000789019
< Jxbrli : identifier >
< Jzbrli : entity >

< zbrli : period >

CHAPTER 7. KP APPLICATION IN FINANCE 180

< abrli : startDate > 2005 — 10 — 01 < /zbrli : startDate >

< zbrli : endDate > 2005 — 12 — 31 < /xbrli : endDate >

< Jxbrli : period >
< Jaxbrli : context >
The unit of this item is defined by the following unit element.
< zbrli : unitid = “USD" >
< zbrli : measure > is04217 : USD < /xbrli : measure >

< Jxbrli : unit >

7.2 Financial Data Annotation and Validation

From the view of KP, each data item used in financial analysis reports (including news
stories) is a proposition. In order to conduct provenance reasoning, each data item needs
to be annotated with KP tags. Corresponding to this, each data item in XBRL files
also needs to be annotated. However, annotating each data item in XBRL files is a very
inefficient solution.

In this section, we present a special solution for XBRL data annotation and validation.
Each item of data in XBRL files is not annotated, instead each data item is annotated
only in its use in financial reports; an XBRL data item has “believed truth value” of

“true” if it is contained in a valid XBRL instance file.

7.2.1 Annotation

Consider the following news story: “Microsoft Corp. (Nasdaq: MSFT - News) today
announced revenue of $11.84 billion (11837000000) for the quarter ended December 31,
2005, a 9% increase over the same period of the prior year, marking the highest quarterly

revenue in the company’s history.” In the news, 11837000000 is an item of data in

CHAPTER 7. KP APPLICATION IN FINANCE 181

Microsoft’s financial statement reported in XBRL. How should this item of XBRL data
be annotated with kp tags in this financial news report?

In order to annotate the data items, which come from XBRL files, in financial reports,
we define XBRL_Dataltem as a subclass of Asserted_prop.

Now, we illustrate how to annotate XBRL data in financial reports by giving an
example. In the above story, 11837000000 is an item of data from a XBRL file. This

string can be annotated with KP tags in the news report as follows.

<html>...
<body>...

Microsoft Corp. (Nasdaq: MSFT - News) today announced

<kp-br:XBRL_Dataltem rdf:id = “#MSFT-Q-revenue-20051231"
kp:inXBRLDoc= “http://www.sec.gov/Archives/edgar/data/
789019/000119312506050847/xmsft-20051231.2ml”

kp:inField = “financial statement”

kp-br:item = “usfr-pte:OperatingRevenue”

kp-br:value = “10818000000”

kp-br:unit = “USD”

kp-br:startDate = 2005-10-01

kp-br:endDate = 2005-12-31

kp-br:entity = “Microsoft”>

revenue of $11.84 billion for the quarter ended December 31,
2005,

</kp-br:XBRL_Dataltem>

a 9% increase over the same period of the prior year, marking the high-

est quarterly revenue in the company’s history.

< /body>

</html>

CHAPTER 7. KP APPLICATION IN FINANCE 182

7.2.2 Authenticity Validation of XBRL Data

From the discussion above, we have seen that a financial report may contain some data
items that come from companies’s financial statements in XBRL. In this subsection, we
discuss how KP reasoner validates the authenticity of those XBRL data items contained
in financial reports.

KP reasoner validates XBRL data items appeared in financial reports by making a
XQuery[190]. We present this method by continuing our the previous example, as shown
as follows:

(1) get the XBRL instance file containing the data in question. The url of the XBRL
file is specified in the inDoc attribute of XBRL_Item. In this example, the url is:
http://www.sec.gov/Archives/edgar/data/789019/000119312506050847
/xmsft-20051231.xml;

(2) make a XQuery from the XBRL instance file to get item elements with tag “usfr-
pte:OperatingRevenue”. The query is:

doc(zmsft-20051231.aml) /zbrl/usfr-pte: Operating Revenue.

doc() is the function that is used by XQuery to extract elements from an XML doc-
ument. XQuery will return all elements with the tag.

(3) check whether the questioned XBRL data item matches any XBRL element ex-
tracted by XQuery . The attributes need to be validated include: value, the unit and
the context (entity and the period of the item). Validating context requires to make
another XQuery to extract the context element by “contextRef” attribute. Validating
entity needs to check the entity’s identification number, typically, CIK issued by SEC.

Note that it is the information creator’s responsibility to make the annotated text have
the same semantics as the metadata of the XBRL_Dataltem has; it is the information
users’ responsibility to check the text and the metadata have the same context. KP
reasoner only validate whether the metadata match the item in the specified XBRL

instannce file.

CHAPTER 7. KP APPLICATION IN FINANCE 183

After a XBRL data item in question is successfully validated, predicate
has_authentic_source(z, c)

(defined in Chapter 3) becomes true, then, KP reasoner uses the axioms and theories

developed in KP to make provenance reasoning.

7.3 Financial Knowledge Provenance

The use of XBRL will make the financial data used in financial analysis reports more
accurate and reliable. However, XBRL alone cannot completely solve the validity problem
in financial analysis. In financial analysis reports, there may be not only companies’
financial data but also many other information from various information sources, many
personal interpretations about data, personal opinions, personal assumptions, assertions
and derived results. These features are beyond the problem XBRL targets.

To help investors judge the the quality of financial reports, tools have appeared to
evaluate the performance of investment newsletters and financial advisors. These tools
help investors judge the trustworthiness of financial analysis product brands and financial
analysts based on their overall performance history. From the perspective of KP, these
tools can help investors to evaluate their trust in these financial information sources.

In real financial investment situations, a specific financial proposition (such as an
investment advice or opinion) usually is based on a number of facts or opinions from
different information sources. The trustworthiness of this proposition depends not only
on the proposition creator but also the dependency on other information as well as other
information sources. Knowledge provenance can be used to evaluate the validity of this
type of information, based on the degrees of trust in information sources. In this section,
we introduce KP application in web based financial investment analysis.

The Web is a very convenient tool for both investors and financial companies. Many

websites provide financial information services. Marketwatch.com is one of the typical

CHAPTER 7. KP APPLICATION IN FINANCE 184

A MarketWatch.com - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Heln -4

Qe - © - x| B o J-) Search JeFavorites €9 (I~ ; - b 3

Address ‘@ hittp: ffwewew marketwiatch com ffools /quotesfouotes. asprsiteid=mk tw&symb =MSFT A | Bco Links 7
-

Microsoft Corporation (MASDAG G5) Delayed quote data | Disable MarketWatch live quotes
Prafile | Mews | Chart | Analyst | Insider | Financials | Msgs | SEC | Options | Hulber Interactive | Historical | Industry | Markel Advisers | Annual Repor

MSFT Last 29.21 Change: -0.02 0.06% “olume: 46,038,269 11”?}2;%’2 Choose your broker

Open; 2013 Vield: 137 Shares Oul: 9.83g MEFT ISflinute = 5:15 A
High: 2936 PJ/E Ratio: 2319 hdarket Cap: 207.258

Low: 29.11 EPS 1.26 52wk High: 11/13¢2008 29.46 MM
Eid: 2921 Ex Date: 114720086 52wk Low e/13/2008 21.46 I|

Agk: 29.22 Diidend: 010 Avg Wolume: 5850M 10 Loz L2 3@Eig(
Ed rdd to Alete B3 Add to My Portfoli Create MSFT Alert at: $23 526 $32 §35 .. Chart: 1dy 1mo 3roo Ter

i -
Introducing Live Search. e e . e
Web MNews Images Local Qna®™™
MarketWatch News for Miciosoft Corporation Alert me for news on MSFT SPONSORED LINKS et
F:07mm 1171506 Internet Daily: How to watch Al Jazeers English, free - Frank Bamnalio Hot Technology Stocks
1:03pm 1171506 Sony Playetations galore on EBay - Frank Semeko Fast moving technology stoc
12433om 11A506 Masdag most active stocks: INTC ChT WMSFT CEC0 SIRI - Marketideainh the ground flaor, Free report.

11:5%am 1141506 EU: Wicrosoft fails to provide complete tech documents - MarketWatch wrary toptechnologystocks. oo

10:21am 111506 % The Technical Indicator: S&F 500, Russell 3000 notch sis-yvear highs - Michas! Ashbaugh
More... | ncnine
< >

@_‘*1 B Internet

Forex.com — Free 50K Pra 3

Figure 7.1: A snapshot from Market Watch

examples.

MarketWatch provides tools for investors to study the market. Figure 7.1 shows a
snapshot of MarketWatch for Microsoft. This page can be reached at:
http://www.marketwatch.com/tools/quotes

/quotes.asp ?siteid=mktwésymb=MSFT

For a given company in the market, MarketWatch integrates instant market data
(automatically updated), news, analysis reports, investment newsletter rating, the com-
pany’s SEC fillings and annual reports. MarketWatch is a useful tool for investors.
However, similar to other websites of the same type, MarketWatch does not provide the

provenance of financial information. For example, in a piece of news, it reports that

CHAPTER 7. KP APPLICATION IN FINANCE 185

“Lockheed Martin upped to buy at Goldman Sachs”, but no any provenance about the
news is given. The use of KP could make the Web based financial information service
more trustworthy.

In the following, In order to demonstrate how to use knowledge provenance and XBRL
to solve financial information validity problem, we give a simplified example of investment

newsletter as follows !.

7.3.1 Example of Investment Newsletter

Issued by: W-finance.com

Issued Date: 15 November 2006

Company: Lockheed Martin Corporation (LMT-NYSE)

Recommendation : Buy

IThis sample is adapted from the following materials:
(1) Zacks Digest on Lockheed Martin Corp., October 26, 2006.
(2) Lockheed Locks In Q3: Fool by Numbers
http://www.fool.com/News/mft /2006 /mf{t06102549.htm (visited on 15 Nov. 2006).
(3) MarketWatch: Most Recent Analyst Recommendations on LMT
http://www.marketwatch.com/tools/quotes/snapshot.asp?symb=LMT (visited on 15 Nov. 2006).
(4) Lockheed Martin’s profit jumps 47%
http://www.marketwatch.com /news/story /lockheed-martin-profit-climbs-47/
story.aspx?guid=%7BE010EEFE%2DAB64%2D4379%2DBD41%2DB5ACIC58FD65%7D (visited on
15 Nov. 2006).
(5) Lockheed to spearhead next push into space
http://www.marketwatch.com/News/Story /Story.aspx?guid={31F2F468-3705-4273-879E-
94D9351924FD} (visited on 15 Nov. 2006).
(6) Rumsfeld’s exit clouds defense policy
http://www.marketwatch.com /news/story /rumsfeld-departure-clouds-defense-policy /
story.aspx?guid=%7B205C5294%2DA6BE%2D44A2%2D9B32%2DECEIAI303AFC% 7D (visited on 15
Nov. 2006)
(7) Lockheed Martin’s Financial Statement on Third Quarter of 2006 (XBRL files)
http://www.sec.gov/Archives/edgar/data/936468,/000119312506219311 /1mt-20060930.xml
http://www.sec.gov/Archives/edgar/data,/936468/000119312506219311/lmt-20060930.xsd (visited on
15 Nov. 2006)

CHAPTER 7. KP APPLICATION IN FINANCE 186

Target Price: $94.13

Current Price (2006-11-15): 88.54

52wk High (2006-10-24): 89.89

52wk Low (2005-11-15): 59.55

Key Positive Arguments

Expansion of margins;

Strong free cash flow and improving balance sheet;

Big increase of profits and reduced tax rate;

- Won major contracts, for example, Orion project;

Key Negative Arguments

- Uncertainty in defense policy.

Recent Events

- On November 8, 2006, Defense Secretary Donald H. Rumsfeld stepped down, which

clouds defense policy.
- Democrats wins 2006 Elections.
- On October 24, 2006, LMT released Q3 earnings.

- On August 31, 2006, NASA selected Thursday Lockheed Martin Corp. as the
prime contractor to design, develop, and build Orion, America’s spacecraft for a

new generation of explorers. The estimated value for the project is $3.9 billion.

CHAPTER 7. KP APPLICATION IN FINANCE 187

Revenue Highlights
Third-quarter net income rose 47% to $629 million, or $1.46 a share, from $427
million, or 96 cents a share, in the year-earlier period. Its tax rate dropped to 22.8% in

the quarter from 30.3% a year ago.

Margins Highlights

2

Gross margin ° was up 1.67 point to 8.36% from 6.69% in the year-earlier period;

operating margin 3 was up 1.71 to 9.42% from 7.67%.

Cash Flows Highlight

Cash from operations (year to date) rose 9.9% to $3,450 million from $3,138 million.

Balance Sheet Highlights

The major items of LMT balance sheet.

Balance Sheet (in millions | Q3 2006 | Q4 2005 | Change
Total assets $29,093 | $27,744 4.86%

Total current liabilities $10,383 $9,428 10.13%
Stockholders equity $8,083 $7,867 2.75%

7.3.2 Annotation

Assume the above investment newsletter is published in HTML. Appendix D demon-
strates how to annotate financial reports with KP metadata by giving the KP annotation
for this investment newsletter. In order to focus on KP, we neglect most xhtml tags and

only give KP metadata.

Zoross margin = (net sale - cost of sale) / net sale.
3operating margin = operating income / net sale.

CHAPTER 7. KP APPLICATION IN FINANCE 188

7.3.3 Provenance Reasoning

This subsection demonstrates how to make provenance reasoning for the propositions in
the sample investment newsletter.

When an investor, “John”, reads the newsletter, he is interested in the message about
Lockheed Martin, so he makes provenance request regarding the proposition “Recomm-
ToBuy” by using a KP reasoner; then KP reasoner makes provenance reasoning and
answers John to what an extent this proposition can be believed to be true.

First, we assume John has the following trust relationships, which is inferred from

John and his trusted friends’ inter-individual trust relationships 4.
trusted_in(John, W, “investment advice”).
trusted_in(John, W, “ finance analysis”).
trusted_in(John, W, “news &comments”).
trusted_in(John, SEC, “finance statement”).
trusted_in(John, NASA, “news in NASA").
trusted_in(John, CNN, “news in US Politics").

The information dependencies among the propositions in the newsletter is illustrated
in figure 7.2.

In provenance reasoning, KP reasoner handles a derived proposition with several
supporting propositions as the derived proposition has one implicit support proposition
and this implicit proposition is the conjunction of those support propositions.

The provenance reasoning process is given as the following steps, which are illustrated

in figure 7.3.

(1) Provenance reasoning on derived proposition “RecommToBuy”. This de-

rived proposition is authored by W whom provenance requester (John) trusts in the

4In order to foucs on knowledge provenance, we omit how these trust relationships are derived from
a social network.

CHAPTER 7. KP APPLICATION IN FINANCE 189

field “investment advices”; assume that authentication is successful, by theorem kp-1,
this proposition is believed. Since this proposition is dependent on several other proposi-
tions, by theorem KP-3, to determine the believed truth value of this derived proposition,

KP reasoner needs to infer the believed truth values of those support propositions first.

(2) Provenance reasoning on derived proposition “Argument-Posi-1”. As
shown in figure 7.3, this derived proposition is authored by W whom provenance re-
quester (John) trusts in the field “financial analysis”; assume that the authentication of
this proposition is successful, by theorem kp-1, this proposition is believed; Since this
proposition is further dependent on six items of data in LMT’s financial statement in
an XBRL instance file, to infer the believed truth value of this proposition, the believed

truth values of those six XBRL items need to be inferred first.

First, as discussed in the previous section, each XBRL item is validated by check-
ing whether this item is an item element in the specified XBRL instance file (lmt-
20060930.xml); then, since this XBRL file is published in SEC’s official website, the
XBRL file is believed, so each XBRL item is also believed; by default assigned truth
value, each item in the XBRL is claimed by the information creator to have assigned
truth value of true; since an XBRL item is an asserted proposition, by the theorem
KP-2, the believed truth value of each XBRL item is derived as true.

Given that the believed truth value of each support proposition is true, and this
derived proposition is believed, by theorem kp-3, the believed truth value of the derived

proposition “Argument-Posi-1” is true.

(3) Provenance reasoning on derived proposition “Argument-Posi-2”, “Argument-
Posi-3”7, “Argument-Posi-4”, “Argument-Neg-1". By similar reasoning processes
to “Argument-Posi-17, the believed truth values of these propositions can be derived as

true.

CHAPTER 7. KP APPLICATION IN FINANCE 190

(4) Provenance reasoning on derived proposition “RecommToBuy” (Contin-
ued). After the believed truth values of five support propositions are inferred as true,

the believed truth value of this proposition can be derived as true.

7.4 Discussion

KP can be applied not only financial reports but also any other information service in
finance such as news, financial digests, messages (electronic bulletin board) and blogs.

By using KP in financial information, investors can learn where the information comes
from and determine whether this information can be believed. Reconsider the story of
fraudulent corporation information in BBS, introduced in Chapter 1. If KP had been
applied, people would have found that message comes from an untrusted information
source, and that cheating event would not happen.

In this application case, the KP model used is static KP. Consider uncertainty in
trust and truth values, we have applied uncertain KP model to this application case.
Interested readers could refer to [90].

KP can help to make financial information more trustworthy and also help investors

to judge the validity of these information.

CHAPTER 7. KP APPLICATION IN FINANCE 191

s_dependent_on LMTO06Q3_XBRL_F ”f' LMT-NetSale06Q3 |
LMT-OpProfit06Q3 |
LMT-CostOfSale06Q3 |
LMT-Cashflow06Q3 \
Derived pro: i
A tP-1 — :
rgurmen 5 LMT-TotalAssets |

expan._margins

LMT-CrntLiabilities |

Derived _prop: ;
Argument-P-2 — o LMT-Equity |
strong_balance ;

| LMT-Netincome06Q3 |

Derived prop:

RecommToBuy Derived_pro: ‘\‘ 5 LMT-EarnPerSI1areDEC}3|
Argument-P-3 — _...“\
leaping_profits % R LMT-TaxRate06Q3 |
Derived_prop: LMT-NetSale0503 |

Argument-P-4 —
major_contracts

LMT-OpProfit05Q3 |

Derived._prop: LMT-CostOfSale05Q3 |
Argument-M-1 --

def_policy_uncert | LMT-Cashflow05Q3 |

LMT-Netincome05Q3 |

LMT-EarnPerShare05Q3 |

Derived prop: i
Event-Rumsfeld ; |

: LMT-TaxRate05Q3 5
MT05Q3_XBRL_File

Derived_prop: :
Py Derived _prop: MASA news:
Event-Dems-midElec — - —
Event-LMT-Orion Orion-LMT
¥ CHMN newsDemsWinHouse |
CMHNMN news:
RumsfeldOff '1 CNN newsDemsCnriSenate |

Figure 7.2: Dependency relations in the sample investment newsletter

(#) ---- the order of calculation

btv: believed truth value
atv: assigned truth value

Derived_prop:
Argument-P-1
author:W

is_dependent_on

CHAPTER 7. KP APPLICATION IN FINANCE

Y

192

Authentication:
item in XBRL file

Authentication

»
(1) author is trusted x

by requester's

fhgorem KP-1

XBRL_Item:
LMT-NetSale06Q3

h j
believedyi
atvyi= True

XBRL_ltem:
LMT-OpProfito6Q3

XBRL_Item:
LMT-CostOfSale06Q3

XBRL_Item:
LMT-NetSale05Q3

Y Theorem KP-2
(3) btv y1= True

(4) btvy2 = True
(5) btvy: = True

(6) btvys = True

trust relationships “a §

XBRL_ltem:

(2) prop is believed
LMT-OpProfitd5Q3

(7) btvys = True

XBRL_Item:
LMT-CostOfSale05Q3

» Theorem KP-3
(10) btv =True —— (9)btvy = True -

/ Axiom KP-8a
Fo (8) btvys = True

Figure 7.3: Provenance reasoning on proposition “Argument-posi-1”

Chapter 8

Summary and Future Work

Finally, in this chapter, we discuss the contribution, limitation, and future work.

8.1 Summary of Contributions

We have listed the major contributions of this thesis in Chapter 1. Here, we summarize
the contribution again as follows. This thesis has two major contributions: (1) knowledge

provenance; and (2) trust formalization.

8.1.1 Knowledge Provenance

The Web has become an open decentralized global information / knowledge repository.
However, in this cyberspace, anyone can produce and disseminate information, so that
the information may be true or false, current or outdated. How to discern the difference
becomes a crucial problem on the Web.

This thesis first proposed knowledge provenance (KP) to address this problem, defined
and axiomatized knowledge provenance ontology, to determine the origin and validity of
information / knowledge on the Web, by means of modeling and maintaining information

sources, information dependencies, and trust structures.

193

CHAPTER 8. SUMMARY AND FUTURE WORK 194

Knowledge provenance ontology is comprised of: (1) static KP, which formally spec-
ifies web information taxonomy, information sources, information dependencies, trust
relationships, and provides a logical system to infer the origin and validity of web infor-
mation. Static KP focuses on static and certain information, which lays a foundation for
general knowledge provenance; (2)dynamic KP, which infers the validity of information
that changes over time; (3) uncertainty-oriented KP, which infer the validity of informa-
tion in a world with uncertain truth values and uncertain trust relationships. For length
limitation, this thesis only covers static KP and dynamic KP. Uncertain KP can be found
in [93] [87].

We also developed a web ontology of KP in OWL (the web ontology language for the
Semantic Web), which can be used to annotate Web documents, then KP reasoners can
crawl the web documents to collect provenance related attributes and infer the origin
and validity of web information.

The use of KP will make Web information resources can be annotated with informa-
tion sources and information dependencies, and will provide information users a tool to

trace the origin and to determine the validity of Web information.

8.1.2 Formalizing Trust in Social Networks

Since the Web is widely used as a global information repository, a distributed computing
platform, and global electronic markets, people and software agents need to interact with
“strangers” on the Web. Can an entity trust another entity who is unknown before?
Basically trust is established in the interaction between two entities. But, one entity
only has a finite number of direct trust relationships, which cannot meet the needs of
various interactions with unknown entities on the Web. As a promising remedy to this
problem, social network based trust, in which A trusts B, B trusts C, thus A indirectly
trusts C, is receiving considerable attention. A necessary condition for trust propagation

in social networks is that trust need to be transitive. However, is trust transitive? What

CHAPTER 8. SUMMARY AND FUTURE WORK 195

types of trust are transitive and why? Few theories and models found so far answer these

questions in a formal manner.

To fill the gap, this thesis constructed a logical theory of trust with situation calculus,
in which the formal semantics of trust is defined; from the formal semantics, two types of
trust — trust in belief and trust in performance were identified; the transitivity of trust in
belief was revealed and proven; the conditions for trust propagation were derived. These
results provide theoretical evidences to support trust propagation in social networks. In
particular, this work reveals that trust in belief is transitive; trust in performance is not,

but by trust in belief, trust in performance can propagate in social networks.

To facilitate trust reasoning using social networks in an easier straightforward form,
based upon our proposed trust ontology, we also constructed a trust networks model, a
graph representation for trust propagation in social networks, by which indirect trust rea-
soning in logic is transformed to simpler problem of trust path searching. The soundness

and completeness of the trust networks model were proved.

Uncertainty widely exists in trust problems, especially in the cyberspace. To address
this problem, we have extended our trust networks model to uncertain model, and revised
theoretical condition for trust decision. They can be found in papers [88] [94]. For length

limitation, this part of work is not included in this thesis.

Regarding social networks-based trust reasoning, most proposed models require to
access to all personal trust data of the visited entities in social networks. However, for
the reason of privacy, people usually do not publish their private data to the public. This
thesis proposed a social network-based distributed trust reasoning model and constructed
the model in situation calculus. This model can be implemented with web services, then
each entity in social networks only answers a specific question of whether to trust a
questioned entity, and the private trust data need not to be published online. In addition,

this distributed model also makes trust path search in parallel.

On the issue of knowledge representation, our model has three advantages: (1) we

CHAPTER 8. SUMMARY AND FUTURE WORK 196

represent trust based on belief, a well studied concept in Al, which makes our model
established on a concrete ground; (2) by using situation calculus as representation lan-
guage, we are able to represent the context of trust as reified fluents. In this way, we
found a solution to formally represent the context of trust; (3) the representation of trust
in situation calculus also contributes to situation calculus for the language to describe
trust among multiple agents. As we know, this is the first proposed model of trust in

situation calculus.

8.2 Discussion

Same as other research, some limitations exist in this thesis, which are discussed as
follows.

As stated in the beginning of Chapter 3, this thesis adopts the approach to deter-
mining the validity of information by provenance and trust. Therefore, KP does not
analyze the content of information. For example, in the context of detecting email spam,
instead of scanning the content of an email, KP makes judgment by considering who is
the sender.

In KP, provenance reasoning is based on KP tags. KP models do not directly handle
the validity of KP tags produced by information creators. In application, if an information
creator intends to produce unreliable KP tags, the creator will get bad reputation, and
information users will not trust this creator anymore.

Regarding trust, by the proposed formal trust model in this thesis, there is no limita-
tion on the length of a trust path. However, in the real world, except the case of a chain
of “absolute trust”, trust will decay with the length of trust path. This problem can be
solved in uncertain trust model, which is not covered by this thesis. In an application, a

restriction may be applied to the length of trust path.

In addition, regarding the context of trust, on one hand, in order to prevent mistrust,

CHAPTER 8. SUMMARY AND FUTURE WORK 197

the context of a trust relationship should be very strict; on the other hand, if all the
context of trust is specified very strictly, it may makes the length of a trust path very long,
or makes the degree of the connectivity in a trust network largely decrease. Therefore, in
general, people have to trade off the strictness and connectivity. For specific applications

such as e-commerce, some standardized context for some typical cases could be a remedy.

8.3 Future Work

The research in this thesis can be extended in many directions. In future, we would like

to continue our research in the following aspects.

Human-user Centered Knowledge Provenance

This thesis is aimed at developing a formal model of knowledge provenance for automatic
judgment of the origin and validity of web information, which can be used by both human
user and software agents. One of the directions for further development is human-user
centered knowledge provenance, which could include human information users as decision
analyzers. In this way, KP could consider a wider domain of provenance information
such as the context of the original proposition. This type of information is difficult to
be analyzed by machines, but it could be processed by human users, and this type of
information could be important for people to judge the validity and the value of the

questioned information.

Knowledge Provenance for Semantic Web

In our current models of KP, proposition is the most basic information unit. A KP
proposition could be a piece of text or an XML element. Consider that the data in

the semantic web, which are typically defined by RDF, RDFS and OWL, are also XML

data. Therefore, the current models can be directly applied in the semantic web. On

CHAPTER 8. SUMMARY AND FUTURE WORK 198

the Semantic Web, some important information could be discovered by integrating the
data spread over the Web; the trustworthiness of the discovery depends on the the prove-
nance and the corresponding trustworthiness of each piece of information used for that
derivation. Ding et al [42] depicts a picture to use knowledge provenance for information

search, information integration and analysis on the Semantic Web.

From another view, with the semantic web, the knowledge representation model of
RDF graph, which is a set of RDF triples of < Object, Attribute, Value >, makes knowl-
edge provenance be able to look into to the construction of a KP proposition. This
feature enables semantics analysis in KP. Some examples of such analysis are given as
follows. It is possible to handle Fquivalent_prop by semantics analysis; the requester may
want to find whether the questioned proposition can be derived from a certain trusted
knowledge sources; the requester may want to check whether the questioned proposition
is consistent with the requester’s knowledge base; the memberships of a proposition to
knowledge fields can be determined automatically by analyzing the nodes in RDF graph.
Semantics based approach of KP is much more sophisticated than current dependency

and trust based approach.

How should revision type of dependency be handled?

In our current model of KP, we considered information dependencies in three types:
derived propositions, equivalent propositions and compound propositions; however, how
to handle revision type of dependency has not been addressed. Revision is a common and
important type of dependency. For example, in wiki systems, a piece of information may
evolves from many old versions. How to determine the validity of this type of information

is still unclear. In future, we will explore the solutions for it.

CHAPTER 8. SUMMARY AND FUTURE WORK 199
System trust

As discussed in Chapter 2, system trust is the trust placed on the stable or predictable
functions or behaviors of a system. System trust may appear as professional membership-
based trust, characteristics-based trust, institution-based trust or regulation-based trust.
This thesis does not cover system trust. In future, we would like to further develop the
theory of trust to include system trust, particularly, characteristics-based trust. System
trust is especially useful in the cases where a user has to interact with strangers and there

are no trust pathes to them in social networks.

Trust evolution and personal trust management

Trust evolves in the interaction between two parties. Each individual in social networks
adjusts the degree of trust in another individual according to whether the expectation
in the trust is fulfilled. In future, we would like to model trust evolution and to develop
personal trust management model to manage personal trust relationships and trust poli-

cies.

Trust management for distributed systems

As discussed in Chapter 5, the web has been becoming the platform for distributed
computing, in which people and software agents need to interact with “strangers”. For
this reason, trust management is a crucial factor for distributed computing. Current
trust management, such as KeyNote [16] or Web Services Language [173], only focuses
on security, so it cannot meet the needs of trust judgment on the Web as we do in our real
society. To fill the gap, we would like to apply the trust theory developed in this thesis
into distributed systems. In particular, we are interested in developing a real e-business

or e-services that integrates trust management in the semantic web services.

CHAPTER 8. SUMMARY AND FUTURE WORK 200

Healthcare Knowledge Provenance

Healthcare is a typical area where people are seriously concerned about the origin and
validity of the information they get. Nowadays, there is a lot of healthcare related
information on the web such as diet and nutrition, disease prevention, new treatments,
and so forth. There are various information sources of different quality for different
purposes. Some of them are professional and with high quality, but some others may
be just for business purposes. The use of KP will help people to identify trustworthy
information sources.

On the other hand, in the era of the information economy and globalization, enter-
prise integration is a strong trend for organizations to meet the era’s demands of being
able to promptly and seamlessly collaborate at low costs with a dynamic set of supply
chain partners. Compared with manufacturing sector and many other business sectors,
healthcare has fallen far behind on this issue. As the largest industrial sector in North
America, there is a strong demand for healthcare to catch up, in order to improve the
quality and efficiency of healthcare services and to handle the crises of pandemic dis-
eases such as the avian flu. In enterprise integration, knowledge provenance can help to
determine the validity of the shared information distributed along supply chains.

We will apply knowledge provenance in the healthcare field to develop healthcare
knowledge provenance tools, and to develop best practices of healthcare knowledge prove-

nance.

Appendix A

Knowledge Provenance Ontology in

OWL

< ?xml version="“1.0"?>

<!DOCTYPE rdf-RDF [<!ENTITY rdf “http://www.w3.0rq/1999/02/22-rdf-syntaz-
ns#” >

<IENTITY rdfs “hitp://www.w3.org/2000/01/rdf-schema#” >

<IENTITY zsd “http://www.w3.org/2001 /XMLSchema#" >

<IENTITY owl “http://www.w3.org/2002/07/owl#" >

<IENTITY foaf “http://xmlns.com/foaf/0.1/” >

<IENTITY kp “http://eil.utoronto.ca/2006/06/kp#" >

>

<rdf:RDF zmlins = “6kp;” xmlins:kp = “Ekp;” xml:base = “hitp://eil.utoronto.ca/2006/06/kp”
zmins:owl = “6owl;” xmins:rdf = “Erdf;” xmins:rdfs= “€Irdfs;” xmins:foaf= “€Ifoaf;”

xmins:xsd = “Exsd;” >

< Ontology rdf:about=“">

<rdfs:comment>

201

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 202

Static Knowledge Provenance Ontology, Last Revised: 4 June 2007 < /rdfs:comment>
<wersionInfo> 2.0 < /versionInfo>

< /Ontology>

<owl:Class rdf:1D =“KPProp”>

<rdfs:label>

KPProp< /rdfs:label>

<rdfs:comment> The following property is a derived property which is derived by

a KP reasoner </rdfs:comment>

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “believed TruthValue” />

<owl:cardinality rdf:datatype = “Ersd;nonNegativelnteger”> 1 < /owl:cardinality>
<rdfs:comment> The truth value that the provenance requester believes this propo-
sition having. Refers to KP axioms and theorems < /rdfs:comment>

< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “believedCertaintyDegree” />

<owl:mazxCardinality rdf:datatype = “€xsd;nonNegativelnteger”> 1 < /owl:mazxCardinality>
<rdfs:comment> Derived by uncertain KP reasoner. </rdfs:comment>

< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 203

<owl:onProperty rdf:resource = “effectiveAt” />

<owl:mazxCardinality rdf:datatype = “€xsd;nonNegativelnteger”> 1 < /owl:mazxCardinality>
<rdfs:comment> A questioned time point; Derived by dynamic KP reasoner. </rdfs:comment>
< /owl:Restriction>

< /rdfs:subClassOf >

< /owl:Class>

<owl:Class rdf:1D = “OriginalProp”>
<rdfs:label>
OriginalProp< /rdfs:label>

<rdfs:subClassOf rdf:resource = “€kp; KPProp” />

<rdfs:comment> The following properties are defined-properties, which must be

given in annotation of a web document. </rdfs:comment>

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource =“propContent” />

<owl:cardinality rdf:datatype = “€rsd;nonNegativelnteger”> 0 < /owl:cardinality>
<rdfs:comment> This property may be given in the form of the content of this
OriginalProp< /rdfs:comment>

< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “hasAuthor” />
< /owl:Restriction>

</rdfs:subClassOf >

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 204

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource =“hasPublisher” />
< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “inField” />

<owl:minCardinality rdf:datatype = “€Sxsd;nonNegativelnteger”> 1 < /owl:minCardinality>
< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “assigned Truth Value” />

<owl:mazCardinality rdf:datatype = “Exsd;nonNegativelnteger”> 1 < /owl:mazxCardinality>
<rdfs:comment> This property is optional. If it is not given, the default value is

True </rdfs:comment>

< /owl:Restriction>

</rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “assignedCertaintyDegree” />

<owl:mazxCardinality rdf:datatype = “Exsd;nonNegativelnteger”> 1 < /owl:maxCardinality>
<rdfs:comment> This property is optional. If it is not given, the default value is

1.0. </rdfs:comment>

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 205

< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource =“madeAt” />

<owl:mazCardinality rdf:datatype = “€dxsd;nonNegativelnteger”> 1 < /owl:mazCardinality>
<rdfs:comment> The time of creation of the information < /rdfs:comment>

< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “effectiveFrom” />

<owl:mazCardinality rdf:datatype = “€dxsd;nonNegativelnteger”’> 1 < /owl:mazCardinality>
<rdfs:comment> This property is optional. If it is not given, the default value is

-inf. < /rdfs:comment>

< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “effectiveTo” />

<owl:mazxCardinality rdf:datatype = “€zsd;nonNegativelnteger”> 1 < /owl:maxCardinality>
<rdfs:comment> This property is optional. If it is not given, the default value is

+inf. </rdfs:comment>

< /owl:Restriction>

< /rdfs:subClassOf >

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 206

<rdfs:comment> The following properties are derived properties, which are derived

by a KP reasoner </rdfs:comment>

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:-resource = “hasAuthenticSource” />

<owl:minCardinality rdf:datatype = “6xsd;nonNegativelnteger”> 0 < /owl:minCardinality>
<rdfs:comment> An authentic source is an authentic author or publisher whose dig-

ital signature is validated successcefully< /rdfs:comment>

< /owl:Restriction>

</rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “believed” />

<owl:cardinality rdf:datatype = “€xsd;nonNegativelnteger”> 1 < /owl:cardinality>
<rdfs:comment> An original proposition is believed, if one of its authentic source
1s trusted by the provenance requester in a field which this proposition belongs to
</rdfs:comment>

< /owl:Restriction>

< /rdfs:subClassOf >

</owl:Class>

<owl:Class rdf:1D = “DependentProp”>
<rdfs:label>
DependentProp< /rdfs:label>

<rdfs:subClassOf rdf:resource = “€kp; KPProp” />

<rdfs:subClassOf >

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 207

<owl:Restriction>

<owl:onProperty rdf:resource = “isDependentOn” />

<owl:minCardinality rdf:datatype = “€xsd;nonNegativelnteger”> 1 < /owl:minCardinality>
< /owl:Restriction>

< /rdfs:subClassOf >

</owl:Class>

<owl:Class rdf:ID = “AssertedProp”>
<rdfs:label> AssertedProp < /rdfs:label>
<rdfs:subClassOf rdf:resource = “Ekp;OriginalProp” />

</owl:Class>

<owl:Class rdf:1D = “DerivedProp”>

<rdfs:label>

DerivedProp< /rdfs:label>

<rdfs:subClassOf rdf:resource = “€kp;Original Prop” />
<rdfs:subClassOf rdf:resource = “€kp;DependentProp” />

</owl:Class>

<owl:Class rdf:1D = “EquivalentProp”>
<rdfs:label>
EquivalentProp< /rdfs:label>

<rdfs:subClassOf rdf:resource = “€kp;DependentProp” />

<rdfs:comment> The following properties are defined-properties, which must be

given in annotation of a web document. < /rdfs:comment>

<rdfs:subClassOf >

<owl:Restriction>

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 208

<owl:onProperty rdf:resource =“propContent” />

<owl:cardinality rdf:datatype = “€xsd;nonNegativelnteger”> 1 < /owl:cardinality>
< /owl:Restriction>

< /rdfs:subClassOf >

< /owl:Class>

<owl:Class rdf:ID = “CompoundProp”>
<rdfs:label> CompoundProp < /rdfs:label>
<rdfs:subClassOf rdf:resource = “€kp;DependentProp” />

< /owl:Class>

<owl:Class rdf:ID =“AndProp”>
<rdfs:label> AndProp < /rdfs:label>
<rdfs:subClassOf rdf:resource = “€kp; CompoundProp” />

</owl:Class>

<owl:Class rdf:1D = “OrProp”>
<rdfs:label> OrProp < /rdfs:label>
<rdfs:subClassOf rdf:resource = “€kp; CompoundProp” />

< /owl:Class>

<owl:Class rdf:1D =“NegProp”>

<rdfs:label> NegProp < /rdfs:label>

<rdfs:subClassOf rdf:resource = “€kp; CompoundProp” />

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “isDependentOn” />

<owl:cardinality rdf:datatype = “€Jxsd;nonNegativelnteger”> 1 < /owl:cardinality>

</owl:Restriction>

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 209

< /rdfs:subClassOf >

< /owl:Class>

<owl:ObjectProperty rdf:ID = “prop Content”>
<rdfs:label> propContent< /rdfs:label>
<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType= “Collection”>
<owl:Class rdf:about= “€kp; OriginalProp” />
<owl:Class rdf:about= “Ekp; EquivalentProp” />
< /owl:unionOf>

</owl:Class>

< /rdfs:domain>

< /owl:ObjectProperty>

<owl:ObjectProperty rdf:1D = “inField”>
<rdfs:label> inField < /rdfs:label>
<rdfs:domain rdf:resource =“€kp;OriginalProp” />

< /owl:ObjectProperty>

<owl:ObjectProperty rdf:ID = “hasAuthor”>
<rdfs:label> hasAuthor < /rdfs:label>
<rdfs:subPropertyOf rdf:resource = “hasInfoCreator” />
<rdfs:domain rdf:resource =“€kp;OriginalProp” />
<rdfs:range rdf:resource =“Efoaf;Agent” />

< /owl:ObjectProperty>

<owl:ObjectProperty rdf: 1D = “hasPublisher”>

<rdfs:label> hasPublisher < /rdfs:label>

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 210

<rdfs:subPropertyOf rdf:resource = “hasInfoCreator” />
<rdfs:domain rdf:resource =“€kp;OriginalProp” />
<rdfs:range rdf:resource = “€foaf; Agent” />

< /owl:ObjectProperty>

<owl:ObjectProperty rdf:ID = “hasAuthenticSource”>
<rdfs:label> hasAuthenticSource < /rdfs:label>
<rdfs:domain rdf:resource =“€kp;OriginalProp” />
<rdfs:range rdf:resource = “Efoaf;Agent” />

< /owl:Object Property>

<owl:ObjectProperty rdf:ID = “isDependentOn”>
<rdfs:label> isDependentOn< /rdfs:label>
<rdfs:domain rdf:resource =“€kp; DependentProp” />
<rdfs:range rdf:resource =“€kp; KPProp” />

< /owl:ObjectProperty>

<owl:DatatypeProperty rdf:1D = “assigned Truth Value”>
<rdfs:label> assigned TruthValue < /rdfs:label>
<rdfs:domain rdf:resource = “€kp;OriginalProp” />
<rdfs:range rdf:resource =“€xsd;boolean” />

< /owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID = “believed”>
<rdfs:label> believed < /rdfs:label>

<rdfs:domain rdf:resource =“€kp;OriginalProp” />
<rdfs:range rdf:resource = “€xsd;boolean” />

< /owl:Datatype Property>

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 211

<owl:ObjectProperty rdf:ID = “believed Truth Value”>
<rdfs:label> Trusted Truth Value < /rdfs:label>
<rdfs:domain rdf:resource =“€kp; KPProp” />

< /owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID = “assignedCertaintyDegree”>

<rdfs:label> assignedCertaintyDegree < /rdfs:label>

<rdfs:comment>

Degree of belief, assigned by information creator; used for uncertain KP < /rdfs:comment>
<rdfs:domain rdf:resource =“€kp;OriginalProp” />

<rdfs:range rdf:resource =“€zsd;float” />

<rdfs:comment>

The range changes from 0 to 1.0</rdfs:comment>

< /owl:DatatypeProperty>

<owl:DatatypeProperty rdf:1D = “believedCertaintyDegree”>

<rdfs:label> believedCertaintyDegree < /rdfs:label>

<rdfs:comment>

Degree of belief, derived by KP reasoner representing the information user; used
for uncertain KP < /rdfs:comment>

<rdfs:domain rdf:resource =“€kp; KPProp” />

<rdfs:range rdf:resource =“€zsd;float” />

<rdfs:comment>

The range changes from 0 to 1.0</rdfs:comment>

< /owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID = “madeAt”>
<rdfs:label> madeAt < /rdfs:label>

<rdfs:domain rdf:resource = “€kp;OriginalProp” />

APPENDIX A. KNOWLEDGE PROVENANCE ONTOLOGY IN OWL 212

<rdfs:range rdf:resource =“€Jzsd;date Time” />

< /owl:Datatype Property>

<owl:DatatypeProperty rdf:ID = “effectiveFrom”>
<rdfs:label> effectiveFrom < /rdfs:label>
<rdfs:domain rdf:resource = “€kp;OriginalProp” />
<rdfs:range rdf-resource =“€zsd;date Time” />

< /owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID = “effectiveTo”>
<rdfs:label> effectiveTo < /rdfs:label>

<rdfs:domain rdf:resource = “€kp;OriginalProp” />
<rdfs:range rdf:resource = “€xsd;dateTime” />

< /owl:DatatypeProperty>

<owl:DatatypeProperty rdf:1D = “effective At”>
<rdfs:label> effectiveAt < /rdfs:label>

<rdfs:domain rdf:resource =“€kp; KPProp” />
<rdfs:range rdf:resource =“€Jzsd;date Time” />

< /owl:DatatypeProperty>

</rdf:RDF>

Appendix B

Trust Ontology in OWL

< Zxml version="“1.0"?>

<IDOCTYPE rdf:RDF [<!ENTITY rdf "http://www.w3.orq/1999/02/22-rdf-syntax-
ns#” >

<IENTITY rdfs "http://www.w8.org/2000/01 /rdf-schema#” >

<IENTITY zsd "http://www.w3.org/2001 /XMLSchema#” >

<IENTITY owl "http://www.w3.org/2002/07/owl#” >

<IENTITY tr "hitp://eil.utoronto.ca/kp/2006/06/tr#” >

<IENTITY foaf "hittp://xmlns.com/foaf/0.1/” >
>

<rdf:RDF xmins = “6tr;” xmins:tr = “6tr;” xml:base = “€ftr;” xmins:rdf = “€9rdf;”

xmins:rdfs = “Erdfs;” xmins:owl = “Eowl;” xmins:xsd = “Exsd;” >

< Ontology rdf:about=“">
<rdfs:comment>

Trust ontology< /rdfs:comment>
<wersionInfo>

06 July 2006 Revised< /versionInfo>

213

APPENDIX B. TRUST ONTOLOGY IN OWL 214

< /Ontology>

<owl:Class rdf:about = “Trustor”>

<rdfs:subClassOf rdf:resource = “Efoaf;Agent” />

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “hasTrustRelationship” />

<owl:minCardinality rdf:datatype = “€xsd;nonNegativelnteger”> 1 < /owl:minCardinality>
< /owl:Restriction>

< /rdfs:subClassOf >

</owl:Class>

<owl:ObjectProperty rdf:about = “hasTrustRelationship”>
<rdfs:label> Has Trust Relationship < /rdfs:label>
<rdfs:domain rdf:resource = “Etr; Trustor” />
<rdfs:range rdf:resource =“TrustRelationship” />

< /owl:Object Property>

<owl:Class rdf:1ID= “TrustRelationship”>
<owl:unionOf rdf:parseType = “collection”>
<owl:Class rdf:about = “TrustInBelief” />
<owl:Class rdf:about = “TrustInPerformance” />
< /owl:unionOf >

< /owl:Class>

<owl:Class rdf:rdf:ID= “TrustInBelief”>
<rdfs:subClassOf rdf:resource = “TrustRelationship” />
<rdfs:subClassOf >

<owl:Restriction>

APPENDIX B. TRUST ONTOLOGY IN OWL 215

<owl:onProperty rdf:resource = “trustee” />

<owl:allValueFrom rdf:resource = “Efoaf; Agent” />

<owl:cardinality rdf:datatype = “€rsd;nonNegativelnteger”> 1 < /owl:cardinality>
< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “inContext” />

<owl:minCardinality rdf:datatype = “€dxsd;nonNegativelnteger”> 1 < /owl:minCardinality>
< /owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:rdf:ID= “TrustInPerformance”>

<rdfs:subClassOf rdf:resource = “TrustRelationship” />

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “trustee” />

<owl:allValueFrom rdf:resource = “Efoaf;Agent” />

<owl:cardinality rdf:datatype = “€rsd;nonNegativelnteger”> 1 < /owl:cardinality>
< /owl:Restriction>

< /rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource = “inContext” />

<owl:minCardinality rdf:datatype = “€xsd;nonNegativelnteger”> 1 < /owl:minCardinality>
< /owl:Restriction>

< /rdfs:subClassOf>

</owl:Class>

APPENDIX B. TRUST ONTOLOGY IN OWL 216

<owl:ObjectProperty rdf:1D = “trustee”>
<rdfs:domain rdf:resource = “TrustRelationship” />
<rdfs:range rdf:resource =“Efoaf;Agent” />

< /owl:ObjectProperty>
<owl:ObjectProperty rdf:ID = “inContext”>
<rdfs:domain rdf:resource = “TrustRelationship” />

< /owl:ObjectProperty>

</rdf:RDF>

Appendix C

Proof of Theorems

C.1 Chapter 3 Static KP

Theorem KP-1:

type(z, Original _prop)
A has_authentic_source(z, c, a) A trusted_in(a, c, f)
Nin_field(z, f))

D believed(z,a). (C.1)

Proof: In the following, all variables are universally quantified in the largest scope.

Axiom KP-3 (3.22) is logically equivalent to

—trusted_in(a, c, f)V
(= (type(z, Original_prop) A has_authentic_source(x,c,a) A in_field(x, f))

V believed(x,a)), (C.2)

217

APPENDIX C. PROOF OF THEOREMS 218

which is logically equivalent to

—(trusted_in(a,c, f)
A type(x, Original _prop) A has_authentic_source(z, c,a) Nin_field(z, f))

V believed(x,a)). (C.3)

This is logically equivalent to Theorem KP-1.
OJ

Theorem KP-2:

type(z, Asserted_prop)
A believed(x, a) A assigned_truth_value(z, v)

D believed_truth value(a, z,v). (C.4)

Proof: Axiom KP-4 is logically equivalent to

—(type(x, Asserted_prop) A believed(z,a))V

(massigned_truth_value(z,v) V believed_truth_value(a, x,v)),

(C.5)
which is further logically equivalent to
—(type(x, Asserted_prop) A believed(x, a)
A assigned_truth_value(x,v)) V believed_truth_value(a, z,v)).
(C.6)

This is logically equivalent to Theorem KP-2. All variables are universally quantified in
the largest scope.

O

APPENDIX C. PROOF OF THEOREMS 219
Theorem KP-3:

type(z, Derived_prop)
A assigned_truth_value(x,v) A believed(z, a)
A is_dependent_on(z,y) A believed_truth_value(a,y, True)

D believed_truth_value(a, z,v). (C.7)

Proof: In the following, all variables are universally quantified in the largest scope.

Axiom KP-5 is logically equivalent to

—(type(z, Derived_prop) A is_dependent_on(x,y) A believed(z, a))V
((mbelieved_truth_value(a,y, True)V

(massigned_truth_value(z,v) V believed_truth_value(a, z,v))); (C.8)
this is logically equivalent to
—(type(x, Derived_prop) A is_dependent_on(z,y) A believed(x, a))V

(—(believed_truth-value(a,y, True) A assigned_truth_value(x,v))

V believed_truth_value(a, z,v)); (C.9)
further logically equivalent to
—(type(x, Derived_prop) A is_dependent_on(z,y) A believed(z, a)

A believed_truth_value(a,y, True) A assigned_truth_value(z,v))

V believed_truth-value(a, x,v). (C.10)

This is logically equivalent to the theorem.

0

Theorem KP-4: By system Txp1, given KBgpi facts that satisfies Txp1 kg, for any

provenance requester a, any KP_prop x has one and only one believed truth value of either

APPENDIX C. PROOF OF THEOREMS 220

“True”, “False” or “Unknown”.

KBxp1,rutes =
KBk pi1 facts O
(type(x, K P _prop) D
((believed_truth_value(a, z, True) V believed_truth_value(a, x, False)
V believed_truth_value(a, x, Unknown))
A = (believed_truth value(x, True) A believed_truth value(z, False))
A —(believed_truth_value(x, True) A believed_truth_value(x, Unknown))
A =(believed_truthvalue(x, False) A believed_truth_value(xz, Unknown))))

(C.11)

Proof: We need to prove one and only one of the following three formulas to be true.

believed_truth_value(a, x, True)
believed_truth_value(a, x, False)

believed_truth_value(a, z, Unknown)

By Axiom KP-11, a KP_prop instance is of exactly one of the six basic types: As-
serted_prop, Derived_prop, Equivalent_prop, Neg_prop, And_prop and Or_prop. There-
fore, these six basic types form a partition of all possible cases. We can prove the theorem
in these six cases one by one.

By the KP_prop taxonomy, among six basic types, except Asserted_prop, all others
are Dependent_prop. In 7xp;, the conditions to define the believed truth value of a
Dependent_prop contain the believed truth value of the proposition that that Depen-

dent_prop depends on. Because of this recursion, we need apply strong mathematical

APPENDIX C. PROOF OF THEOREMS 221

induction to the dependency length!, to prove the theorem.

In the following, we first prove the theorem in the case of Asserted_props, and then
prove the cases of Dependent_props.

(1) When z is an Asserted_prop, theorem KP-2 and axiom KP-10 are the only two
rules used to infer ’s believed truth value. By theorem KP-2, the condition to determine

a deterministic believed truth value for z is

believed(x, a) A assigned_truth_value(z,v).

By axiom KP-12,

assigned_truth_value(x,v)

must be true, and v is bound to either “True” or “False”.
So, if

believed(z, a)

is true, v = T'rue will make

believed_truth_value(a, x, True)

true. By KCA and NF-rule, both

—believed_truth_value(a, x, False)

and

—believed_truth_value(a, x, Unknown)

are derived; and v = False will make

believed_truth_value(a, x, False)

!Dependency length refers to the number of dependency levels to link to Asserted_prop(s). For
example, A is an Asserted_prop, if B is dependent on A, then the dependency length of B is 1; if C is
further dependent on B, then the dependency length of C is 2, and so forth.

APPENDIX C. PROOF OF THEOREMS 222

true, and both

—believed_truth_value(a, x, True)

and

—believed_truth_value(a, x, Unknown)

are derived; otherwise, i.e.

believed(x, a)
is false, by KCA and NF-rule, both

—believed_truth_value(a, x, True)

and

—believed_truth_value(a, x, False)

are derived. By axiom KP-10,
believed_truth_value(a, x, Unknown)

is derived.

Therefore, when x is an Asserted_prop, it has one and only one believed truth value
of “True”, “False”, or “Unknown”.

(2) When z is a Dependent_prop, we apply strong mathematical induction to the
dependency length.

(2.1) Consider the base case, the dependency length is 1, that is, a Dependent_prop
is directly dependent on Asserted_prop(s). Now, we consider the 5 cases of basic types
of Dependent_props.

(2.1.1) when z is a Derived_prop, theorem KP-3 and axiom KP-10 are all the rules
to infer the believed truth value of . By theorem KP-3, the condition to determine a

deterministic believed truth value for z is

believed(z, a) A is_dependent_on(x,y) A believed_truth_value(a,y, True)

A assigned_truth value(x,v)

APPENDIX C. PROOF OF THEOREMS 223

By axiom KP-14, x must have one and only one support proposition y, i.e.
is_dependent_on(x,y)

must be true and this support proposition y is unique.

By the base assumption (given in 2.1) that y is an Asserted_prop, and the conclusion
of case (1), we know y must have one and only one believed truth value of either “True”,
“False”, or “Unknown”.

By axiom KP-12,

assigned_truth_value(x,v)

must be true, and v is bound to either “True” or “False”.
So, if

believed(x,a) A believed_truth_value(a,y, True)

is true, v = True will make
believed_truth_value(a, x, True)
true, and by KCA and NF-rule, both
—believed_truth_value(a, x, False)

and

—believed_truth_value(a, x, Unknown)

are derived; and v = False will make
believed_truth_value(a, x, False)

true, and both

—believed_truth_value(a, x, True)

and

—believed_truth_value(a, x, Unknown)

APPENDIX C. PROOF OF THEOREMS 224

are derived; otherwise, by KCA and NF-rule, both
—believed_truth_value(a, x, True)

and

—believed_truth_value(a, x, False)

are derived. By axiom KP-10,
believed_truth_value(a, x, Unknown)

is derived.

Thus, in the base case, when x is a Derived_prop, the theorem is true.

(2.1.2) when z is an Equivalent_prop, axiom KP-6 and axiom KP-10 are all the rules
to infer the believed truth value of x. By axiom KP-6, the condition to determine the

believed truth value of z is

is_dependent_on(z,y) A believed_truth_value(a,y, v)

A prop_content(z, c1) A prop_content(y, ca) A equivalent_to(cy, cz))

Similar to (2.1.1), by axiom KP-14, x must have one and only one support proposition

vy, l.e.

is_dependent_on(x,y)

must be true and this support proposition y is unique.
By the base assumption (given in 2.1) that y is an Asserted_prop, and the conclusion
of case (1), we know

believed_truth_value(a,y,v)

must be true, and v is bound to either “True”, “False”, or “Unknown”.
By axiom KP-13, x must have unique content c;, and y must have a unique content
Co, that is,

prop_content(x, c1) A prop_content(y, cs)

APPENDIX C. PROOF OF THEOREMS 225

must be true, and ¢; and ¢y are bound to a proposition content separately.
So, if

equivalent_to(cy, ca)

is true, then

believed_truth_value(a, x,v)

is derived, v is the same value as y’s believed truth value. This means
believed_truth_value(a, x,v)
is true, and by KCA and NF-rule, for all v' # v & v" € {True, False, Unknown}
—believed_truth value(a, x,v")
is derived; otherwise, by KCA and NF-rule, both
—believed_truth_value(a, x, True)

and

—believed_truth_value(a, x, False)

are derived. By axiom KP-10,
believed_truth_value(a, x, Unknown)

is derived.

Thus, in the base case, when x is an Equivalent_prop, the theorem is true.

(2.1.3) when z is an Neg_prop, axiom KP-7 and axiom KP-10 are all the rules to infer
the believed truth value of x. By axiom KP-7, the condition to determine the believed

truth value of z is

is-dependent_on(x,y) A believed_truth_value(a,y,v)

APPENDIX C. PROOF OF THEOREMS 226

Similar to (2.1.2), by axiom KP-14, x must have one and only one support proposition
Y, l.e.

is_dependent_on(x,y)

must be true and this support proposition y is unique; by the base assumption (given in

2.1) that y is an Asserted_prop, and the conclusion of case (1), we know

believed_truth_value(a,y,v)

must be true, and v is bound to either “True”, “False”, or “Unknown”.

If v €{True,False},

believed_truth_value(a, x,neg(v))

is derived to be true, and by KCA and NF-rule, for all v' # neg(v) & v" € {True, False,

Unknown }

—believed_truth value(a, x,v")

is derived; otherwise, by KCA and NF-rule, both

—believed_truth_value(a, x, True)

and

—believed_truth_value(a, x, False)

are derived. By axiom KP-10,

believed_truth_value(a, x, Unknown)

is derived.
Thus, in the base case, when x is an Neg_prop, the theorem is true.
(2.1.4) when z is an And_prop, axiom KP-8 and axiom KP-10 are all the rules to

infer the believed truth value of z. By axiom KP-8a, the condition to derive the believed

APPENDIX C. PROOF OF THEOREMS 227
truth value of “True” is

is_dependent_on(x,y;) A is_dependent_on(z,ys) A y1 # Yo

A believed truth value(a, yi, True) A believed_truth_value(a, ys, True);
and the condition to derive the believed truth value of “False” is
is-dependent_on(x,y) A believed_truth_value(a,y, False)
By axiom KP-14, x must have exactly two different support propositions y; and s, i.e.
is_dependent_on(x,y;) A is_dependent_on(x,ys) A y1 7 Yo

must be true.

By the base assumption (given in 2.1) that y is an Asserted_prop, and the conclusion
of case (1), we know 7; and y, must have one and only one believed truth value of either
“True”, “False”, or “Unknown”.

If

believed_truth_value(a, yy, True) A believed_truth_value(a, ya, True)

is true, then

believed_truth_value(a, x, True)

is derived to be true, and by KCA and NF-rule, both
—believed_truth_value(a, x, False)

and

—believed_truth_value(a, x, Unknown)

are derived; otherwise if one of y; and s, say y;, has believed truth value of “False”, i.e.
believed_truth_value(a,y;, False)

is true, then

believed_truth_value(a, x, False)

APPENDIX C. PROOF OF THEOREMS 228

is derived to be true, and by KCA and NF-rule, both
—believed_truth_value(a, x, True)

and

—believed_truth_value(a, x, Unknown)

are derived; otherwise, by KCA and NF-rule, both
—believed_truth_value(a, x, True)

and

—believed_truth_value(a, x, False)

are derived. By axiom KP-10,
believed_truth_value(a, x, Unknown)

is derived.

Thus, in the base case, when x is an And_prop, the theorem is true.

(2.1.5) when z is an Or_prop, the theorem can also be proved to be true in the base
case. The proof is very similar to the case of And_prop and is omitted.

(2.2) Assume that for dependency length < n, a Dependent_prop has one and only
one believed truth value of either “True”, “False” or “Unknown”.

(2.3) Now, we prove for dependency length = n 4+ 1, a Dependent_prop also has one
and only one believed truth value of either “True”, “False” or “Unknown”.

By axiom KP-14, there is no dependency loop. Since this Dependent_prop has de-
pendency length of n+ 1, the dependency length of all its support proposition(s) must be
less than or equivalent to n. By assumption in (2.2), all its support proposition(s) must
have one and only one believed truth value of either “True”, “False” or “Unknown”.

Similar to the proof in the base case (given in 2.1), when all its support proposition(s)
have one and only one believed truth value of either “True”, “False” or “Unknown”, this

Dependent_prop also does.

APPENDIX C. PROOF OF THEOREMS 229

By the strong mathematical induction, this theorem is proved.

C.2 Chapter 5 Trust

Some of theorems in this chapter are proved in a formal form. The notation used for a
formal proof is as follows.

Each step of proof comprises 5 parts: (1) line number; (2) proof; (3) reasons; (4)
premises used; (5) free variables in premises used; P denotes rule for premises.

T denotes of rule for tautologies; CP denotes rule of conditional proof; US denotes
rule of universal specification; UG denotes rule of universal generalization; and so forth.

Proposition TR-1: Given any fluents p and q,
entail(pAg, p). (C.12)

Proof: by the definition of predicate entail, the proposition to be proved is logically
equivalent to

(Vs)(holds(pAq, s) D holds(p, s)); (C.13)

by the definitions of “propositional functions” of fluents (refer to (5.1)), the above formula

is logically equivalent to
(Vs)(holds(p, s) A holds(q, s) D holds(p, s)); (C.14)

This formula is a tautology. Therefore, this proposition is valid.

O
Proposition TR-2: Given any fluents p, q, and k,

entail(k,p) A entail(p, q) D entail(k, q). (C.15)

APPENDIX C. PROOF OF THEOREMS 230
Proof: By the definition of entail, we need to prove

(Vs)(holds(k, s) D holds(q, s)),

from

entail(k, p) A entail(p, q).

We prove this proposition by indirect proof. Assume

—(Vs)(holds(k, s) D holds(q, s)),

that is,

(3s)=(holds(k, s) D holds(q, s)).

Let situation z is such a situation, at which

—(holds(k, z) D holds(q, 2)),

that is,

holds(k, z) A =holds(q, z)).

Since holds(k, z), by entail(k,p),, we have

holds(p, z);

furthermore, by entail(p, q), we have

holds(q, z).

This is a contradiction to the earlier assumption. Therefore, we proved

(Vs)(holds(k, s) D holds(q, s)),

i.e.

entail(k, q),

APPENDIX C. PROOF OF THEOREMS 231

from

entail(k, p) A entail(p, q).

Proposition TR-4
holds(believe(d, kDx), s) A entail(q, k) D holds(believe(d, gDx), s) (C.16)
Proof: we prove this proposition by deriving
holds(believe(d, gDx), s)

from

holds(believe(d, kDx), s) A entail(q, k).

First, by definition TR-2,

entail(q, k)

is logically equivalent to
(Vz)(holds(q, z) D holds(k, z));
by definition TR-1, this is logically equivalent to
Vz, holds(¢Dk, 2);
by necessitation rule, we have
holds(believe(d, qDk), s);
now, from this formula and another premise

holds(believe(d, kDx), s),

APPENDIX C. PROOF OF THEOREMS 232

by axiom TR-2, we have
holds(believe(d, (¢Dk) A (kDx)), s),
by the definition of “propositional functions” of fluents (definition TR-1), we obtain

holds(believe(d, kD), s).

Theorem TR-1.

(Vx)(holds(trust_p(d, e, xz, k), s))
A holds(made(y, e, q), s) A entail(q, k)

D holds(believe(d, kDy),s). (C.17)

Proof: We need to prove:

TRE (Vd,e, k,s,y,q)((Vz)(holds(trust_p(d, e, z, k), s))
A holds(made(y, e, q), s) A entail(q, k)

D holds(believe(d, kDy), s)),

where T'R denotes the set of axioms and propositions defined for Trust ontology. We give

a formal proof as follows.

(1)
(Vz)(holds(trust_p(d, e, z, k), s)) A holds(made(y, e, q), s) A entail(q, k);

by rule P (for CP); used premises: {(1)}; free variables in used premises: {d,e,k,s,y,q}.

(2)
(Vz)(holds(trust_p(d, e, x, k), s));

APPENDIX C. PROOF OF THEOREMS 233

by (1) and rule T'; used premises: {(1)}; free variables in used premises: {d,e,k,s}.

(3)
holds(made(y, e, q), s);

by (1) and rule T'; used premises: {(1)}; free variables in the used premises: {y,e,q,s}.

(4)

entail(q, k);

by (1) and rule T'; used premises: {(1)}; free variables in the used premises: {¢,k}.

(5)

(vd' e, o' K s (holds(trust p(d' e, 2’ k'), s") =

V¢, (holds(made(z',€',q'), s") A entail(q', k") D holds(believe(d', k'Dx'), s')));

9

by rule P (introducing Axiom TR-3); used premise: {(5)}; no free variable.

(6)

(V') (holds(trust_p(d,e,x’, k), s) =

(Vq')(holds(made(z', e,q'), s) A entail(q', k) D holds(believe(d, kDz'), s)));

by (5) and rule US; used premise: {(5)}.

(7)

(V") (holds(trust_p(d, e, x', k), s)) =

(V") (Vq") (holds(made(x',e,q'), s) A entail(q', k) D holds(believe(d, kDx'), s)));

APPENDIX C. PROOF OF THEOREMS 234

by (6) and rule T; used premise: {(5)}.

(8)
(V") (V¢) (holds(made(x', e,q'), s) A entail(q', k) D holds(believe(d, kDz'), s));

by (2),(7) and rule T; used premise: {(1),(5)}; free variables in used premises: {d,e,k,s}.

(9)
holds(made(y, e, q), s) A entail(q, k) D holds(believe(d, kDy), s);

by (8) and rule US, {y/x}; used premise: {(1),(5)}; free variables in used premises:

{d767k787y7q}'

(10)
holds(believe(d, kDy), s);

by (9), (3), (4) and rule T'; used premise: {(1),(5)}; free variables in used premises:
{d.k,y,s}.
(11)

(Vx)(holds(trust_p(d, e, z, k), s))

A holds(made(y, e, q), s) A entail(q, k) D holds(believe(d, k0Dy), s)

by (1), (11) and rule CP; used premise: {(5)}.

(12)

A holds(made(y, e, q), s) A entail(q, k) D holds(believe(d, k6Dy), s)),

APPENDIX C. PROOF OF THEOREMS 235

by (11) and rule UG; used premise: {(5)}.
Since (5) Axiom TR-3 is one of the axiom defined in Trust ontology, this theorem is

proved.

Theorem TR-2.

(Vx)(holds(trust_b(d, e, z, k), s))
A holds(believe(e, qDy), s) A entail(q, k)

D holds(believe(d, kDy),s) (C.18)

Proof: We need to prove:

TRE (Vd,e, k,s,y,q)((Yx)(holds(trust_b(d, e, x, k), s))
A holds(believe(e, qDy), s) A entail(q, k)

D holds(believe(d, kDy), s)),

where T'R denotes the set of axioms and propositions defined for Trust ontology. We give

a formal proof as follows.

(1)
(Vz)(holds(trust-b(d, e, x, k), s)) A holds(believe(e, ¢Dy), s) A entail(q, k);
by rule P (for CP); used premises: {(1)}; free variables in used premises: {d,e,k,s,y,q}.

(2)
(Vz)(holds(trust_b(d, e, x, k), s));

by (1) and rule T'; used premises: {(1)}; free variables in used premises: {d,e,k,s}.

APPENDIX C. PROOF OF THEOREMS 236

(3)
holds(believe(e, qDy), s);

by (1) and rule T'; used premises: {(1)}; free variables in the used premises: {y,e,q,s}.

(4)

entail(q, k);

by (1) and rule T'; used premises: {(1)}; free variables in the used premises: {¢,k}.

(5)

(vd', e, 2’ K, s (holds(trust_b(d', e,z k'), s') =

V', (holds(believe(e', ¢' Da'), s") A entail(q', k") D holds(believe(d', k' D), s')));

by rule P (introducing Axiom TR-4); used premise: {(5)}; no free variable.

(6)

(V') (holds(trust_b(d,e, ', k), s) =

(Vq") (holds(believe(e, ¢ Dx'), s) A entail(q', k) D holds(believe(d, kDz'), s)));

by (5) and rule US; used premise: {(5)}.

(7)

(V') (holds(trust_b(d,e, 2’ k), s)) =

(V2")(Vq") (holds(believe(e, ¢ Dx'), s) A entail(q', k) D holds(believe(d, kDz'), s)));

by (6) and rule T’; used premise: {(5)}.

APPENDIX C. PROOF OF THEOREMS 237

(8)

(V") (Vq") (holds(believe(e, ¢ Dx'), s) A entail(¢', k) D holds(believe(d, kDx'), s));

by (2),(7) and rule T; used premise: {(1),(5)}; free variables in used premises: {d,e,k,s}.

(9)

holds(believe(e, ¢Dy), s) A entail(q, k) D holds(believe(d, kDy), s);

by (8) and rule US, {y/x}; used premise: {(1),(5)}; free variables in used premises:

{d767k187y7Q}'

(10)

holds(believe(d, kDy), s);

by (9), (3), (4) and rule T; used premise: {(1),(5)}; free variables in used premises:

{d,k,y,s}.

(11)

(V) (holds(trust_b(d, e, x, k), s))

A holds(believe(e, qDy), s) A entail(q, k) D holds(believe(d, k0Dy), s)

by (1), (11) and rule CP; used premise: {(5)}.

(12)

(Vd, e, k,s,y,q)((Yz)(holds(trust_b(d, e, x, k), s))

A holds(believe(e, qDy), s) A entail(q, k) D holds(believe(d, k0Dy), s)),

by (11) and rule UG} used premise: {(5)}.

APPENDIX C. PROOF OF THEOREMS 238

Since (5) Axiom TR-4 is one of the axiom defined in Trust ontology, this theorem is

proved.
Theorem TR-3.
holds(trust_p(d, e, x, k), s) A entail(q, k) D holds(trust_p(d, e, x,q), s) (C.19)

holds(trust_b(d, e, z, k), s) A entail(q, k) D holds(trust_b(d, e, z,q), s) (C.20)

Proof: In the following, we prove the first formula; the proof of the second formula has

the same proof structure as the first has, so omitted.

(1)
holds(trust_p(d, e, z, k), s) A entail(q, k);

by rule P (for CP); used premises: {(1)}; free variables in used premises: {d,e,z,k,q,s}.

(2)

holds(trust_p(d, e, z, k), s);

by rule T'; used premises: {(1)}; free variables in used premises: {d,e,zk,s}.

(3)

entail(q, k);

by rule T'; used premises: {(1)}; free variables in used premises: {k,q}.

(4)
(Vq')(holds(made(x,e,q'), s) A entail(q', k) D holds(believe(d, kDx), s));

by (2), Axiom TR-3 and rule T’; used premises: {(1), Axiom TR-3}; free variables in

used premises: {d,e,z,k,s}.

APPENDIX C. PROOF OF THEOREMS 239

holds(made(z, e, c), s) A entail(c, q);

by rule P (for CP); used premises: {(5)}; free variables in used premises: {c}.

(6)

holds(made(z, e, c), s) A entail(c, k);

by (5), (3), proposition TR-2, and rule T’; used premises: {(1), (5), Prop. TR-2}; free

variables in used premises: {e,z,k,s,c}.

(7)
holds(believe(d, kDx), s);

by (4), (6), and rule T’; used premises: {(1), (5), Prop. TR-2}; free variables in used

premises: {d,k,z,s}.

(8)
holds(believe(d, gDx), s);

by (7), (3), proposition TR-4, and rule T'; used premises: {(1), (5), Prop. TR-2, Prop.

TR-4}; free variables in used premises: {d,q,z,s}.

(9)

holds(made(z, e, c), s) A entail(c,q) D holds(believe(d, ¢Dx), s);

by (5), (8), and rule CP; used premises: {(1), Prop. TR-2, Prop. TR-4}; free variables

in used premises: {d,e,z,q,s}.

APPENDIX C. PROOF OF THEOREMS 240

(10)

holds(trust_p(d,e, x,q), s);

by (9), Axiom TR-3, and rule T'; used premises: {(1), Prop. TR-2, Prop. TR-4, Axiom

TR-3}; free variables in used premises: {d,e,z,q,s}.

(11)

holds(trust_p(d, e, z, k), s) A entail(q, k) D holds(trust_p(d, e, x,q), s);

by (1), (10), Axiom TR-3, and rule CP; used premises: { Prop. TR-2, Prop. TR-4,

Axiom TR-3}; free variables in used premises: {}.

(12)

(Vd, e, x, k,q,s)(holds(trust_p(d, e, x, k), s) A\ entail(q, k) D holds(trust_p(d, e, z,q),s));

by (11) and rule UG; used premises: {Prop. TR-2, Prop. TR-4, Axiom TR-3}; free

variables in used premises: {}.

Since all used premises are in defined trust ontology, we have

TRE (Vd,e,x, k,q,s)(holds(trust_p(d, e, x, k), s)Nentail(q, k) D holds(trust_p(d, e, x,q),s)).

The proof of the second part of t

Theorem TR-4 (Transitivity of trust in belief).

(a) In any situation s, if entity d trusts entity ¢ on everything which ¢ believes in

context k, and c trusts entity e on everything which e believes in context ¢, then d trusts

APPENDIX C. PROOF OF THEOREMS 241

e on everything which e believes in the conjunction of the contexts k£ and q¢.

(Vz)(holds(trust-b(d, c, z, k), s))
A (Vz)(holds(trust_b(c, e, x,q),s))

D (V) (holds(trust_b(d, e, z,kAq),s)) (C.21)

(b) In any situation s, if agent d trusts agent ¢ on everything which ¢ believes in context
k, and c trusts agent e on everything which e performs in context ¢, then d trusts e on

everything which e performs in the conjunction of contexts k£ and gq.

(Vz)(holds(trust-b(d, c, z, k), s))
A (Vx)(holds(trust_p(c, e, x,q),s))

D (Vx)(holds(trust_p(d, e, z,kAq),s)) (C.22)

Proof of (a): In formal, we need to prove

TR| = (Vd,c,e, k,q,s)((Vz)(holds(trust_b(d, c, x, k), s))
A (Vzx)(holds(trust b(c, e, z,q), s))

D (V) (holds(trust_b(d, e, z, kAq), s))),

where T'R denotes the set of all axioms and definitions about trust given in Chapter 5.

Now we give the formal proof of this theorem as follows.

(1)
(Vx)(holds(trust_b(d, c,z, k), s)) A (Vz)(holds(trust_b(c,e, x,q), s));

by rule P (for CP); used premise: {(1)}; free variables in the used premise: {d, ¢, e, k,

q, S}

APPENDIX C. PROOF OF THEOREMS 242
(2)
(Vz)(holds(trust_b(d, c,z, k), s));

by (1) and rule T'; used premise: {(1)}; free variables in the used premise: {d, ¢, k, s}.

(3)
(Vx)(holds(trust_b(c, e, x,q), s));

by (1) and rule T'; used premise: {(1)}; free variables in the used premise: {c, e, ¢, s}.

(4)

holds(believe(e, pDy), s) A entail(p, kAq)

by rule P (for CP); used premise: {(4)}; free variables in the used premise: {p,y}.

(5)
holds(trust_b(d, c,x', k), s));

by (2) and rule US; used premise: {(1)}; free variables in the used premise: {d, ¢, k, s}.

(6)

holds(trust_b(c,e, 2, q), s);

by (3) and rule US; used premise: {(1)}; free variables in the used premise: {c, e, ¢, s}.

(7)

holds(trust_b(d, c,x’, kAq), s);

by (5), Proposition TR-1, theorem TR-3, and rule T'; used premises: {(1), prop. TR-1,

theorem TR-3}; free variables in used premises: {d, ¢, k, ¢, s}.

(8)

holds(trust_b(c, e, ', kAq), s);

APPENDIX C. PROOF OF THEOREMS 243

by (6), Proposition TR-1, theorem TR-3, and rule T'; used premises: {(1), prop. TR-1,

theorem TR-3}; free variables in used premises: {c, e, k, ¢, s}.

(9)
(Va)holds(trust b(d, ¢, x, kAq), s);

by (7), and rule UG; used premises: {(1), prop. TR-1, theorem TR-3}; free variables in

used premises: {d, ¢, k, ¢, s}.

(10)
(Va)holds(trust_b(c, e, z, kAq), s);

by (8), and rule UG; used premises: {(1), prop. TR-1, theorem TR-3}; free variables in

used premises: {c, e, k, ¢, s}.

(11)
holds(believe(c, kAgDy), s);

by (4), (10), Theorem TR-2, and rule 7' ; used premises: {(1), (4), prop. TR-1, theorem

TR-3, theorem TR-2}; free variables in the used premise: {c, k, ¢, y, s}.

(12)

entail (kAq, kAq)

by definition of entail (def. TR-2) and rule T’; used premises: {def. TR-2}.

(13)
holds(believe(d, kAqDy), s);

by (9), (11), (12), Theorem TR-2, and rule 7' ; used premises: {(1), (4), prop. TR-1, the-

orem TR-3, theorem TR-2, def. TR-2}; free variables in the used premises: {d, k, ¢, y, s}.

APPENDIX C. PROOF OF THEOREMS 244

holds(believe(e, pDy), s) A entail(p, kAq) D holds(believe(d, kAqDy), s);

by (4), (13), and rule CP; used premises: {(1), prop. TR-1, theorem TR-3, theorem

TR-2, def. TR-2}; free variables in the used premises: {d, e, k, ¢, s}.

(15)
(Vp) (holds(believe(e, pDy), s) A entail(p, kAq) D holds(believe(d, kAqDy), s));

by (14) and rule UG; used premises: {(1), prop. TR-1, theorem TR-3, theorem TR-2,

def. TR-2}; free variables in the used premises: {d, e, k, ¢, s}.

(16)
holds(trust_b(d,e,y, kAq), s));

by (15), axiom TR-4 and rule T’; used premises: {(1), prop. TR-1, theorem TR-3, theo-

rem TR-2, def. TR-2, axiom TR-4}; free variables in the used premises: {d, e, k, ¢, s}.

(17)
(Vz)(holds(trust_b(d, e, x, kAq), s));

by (16) and rule UG; used premises: {(1), prop. TR-1, theorem TR-3, theorem TR-2,

def. TR-2, axiom TR-4}; free variables in the used premises: {d, e, k, ¢, s}.

(18)

(V) (holds(trust_b(d, c,z, k), s))
A (Vx)(holds(trust_b(c, e, x,q), s))

D (V) (holds(trust_b(d, e, z, kAq), s));

APPENDIX C. PROOF OF THEOREMS 245

by (1), (17) and rule UG; used premises: {prop. TR-1, theorem TR-3, theorem TR-2,

def. TR-2, axiom TR-4}; free variables in the used premises: {}.

(19)

(Vd,c,e, k,q,s)((Vz)(holds(trust_b(d, c, x, k), s))
A (Yx)(holds(trust_b(c,e, x,q), s))
D (V) (holds(trust_b(d, e, z, kAq), s)));
by (18) and rule UG} used premises: {prop. TR-1, theorem TR-3, theorem TR-2, def.

TR-2, axiom TR-4}; free variables in the used premises: {}.

Since all premises used are in the defined Trust ontology, Theorem TR~4 (a) is proved.

Proof of (b): we need to prove

TR| = (VYd,c,e, k,q,s)((Vz)(holds(trust_b(d, c, x, k), s))
A (Yx)(holds(trust_p(c, e, x,q), s))

D (Vz)(holds(trust_p(d, e, z, kAq), s))),

(1)
(Vx)(holds(trust_b(d, c,x, k), s)) A (Vx)(holds(trust_p(c, e, z,q), s));

by rule P (for CP); used premise: {(1)}; free variables in the used premise: {d, ¢, e, &,

q, S}

(2)
(Vx)(holds(trust _b(d, c,x, k), s));

by (1) and rule T'; used premise: {(1)}; free variables in the used premise: {d, ¢, k, s}.

APPENDIX C. PROOF OF THEOREMS 246
(3)
(V) (holds(trust_p(c, e, z,q), s));

by (1) and rule T'; used premise: {(1)}; free variables in the used premise: {c, e, ¢, s}.

(4)

holds(made(y, e,p), s) A entail(p, kAq)

by rule P (for CP); used premise: {(4)}; free variables in the used premise: {p,y}.
(5)
holds(trust_b(d, c,x', k), s));

by (2) and rule US; used premise: {(1)}; free variables in the used premise: {d, ¢, k, s}.

(6)

holds(trust_p(c,e,x’,q), s);

by (3) and rule US; used premise: {(1)}; free variables in the used premise: {c, e, ¢, s}.

(7)
holds(trust_b(d, c,x', kAq), s);

by (5), Proposition TR-1, theorem TR-3, and rule T'; used premises: {(1), prop. TR-1,

theorem TR-3}; free variables in used premises: {d, ¢, k, ¢, s}.

(8)

holds(trust_p(c,e, ', kAq), s);

by (6), Proposition TR-1, theorem TR-3, and rule 7T'; used premises: {(1), prop. TR-1,

theorem TR-3}; free variables in used premises: {c, e, k, ¢, s}.

APPENDIX C. PROOF OF THEOREMS 247
(9)
(Vz)holds(trust_b(d, c, z, kAq), s);

by (7), and rule UG} used premises: {(1), prop. TR-1, theorem TR-3}; free variables in

used premises: {d, ¢, k, q, s}.

(10)

(Va)holds(trust_p(c, e, x,kAq), s);

by (8), and rule UG} used premises: {(1), prop. TR-1, theorem TR-3}; free variables in

used premises: {c, e, k, ¢, s}.

(11)

holds(believe(c, kAgDy), s);

by (4), (10), Theorem TR-1, and rule 7' ; used premises: {(1), (4), prop. TR-1, theorem

TR-3, theorem TR-1}; free variables in the used premise: {¢, k, ¢, y, s}.

(12)

entail(kAq, kAq)

by definition of entail (def. TR-2) and rule T'; used premises: {def. TR-2}.

(13)
holds(believe(d, kAqDy), s);
by (9), (11), (12), Theorem TR-2, and rule 7' ; used premises: {(1), (4), prop. TR-1,

theorem TR-3, theorem TR-1, def. TR-2, theorem TR-2}; free variables in the used

premises: {d, k, q, y, s}.

APPENDIX C. PROOF OF THEOREMS 248
(14)
holds(made(y, e, p), s) A entail(p, kAq) D holds(belicve(d, kAgDy), s);

by (4), (13), and rule CP; used premises: {(1), prop. TR-1, theorem TR-3, theorem

TR-1, def. TR-2, theorem TR-2}; free variables in the used premises: {d, e, k, ¢, s}.

(15)
(Vp)(holds(made(y, e, p), s) A entail(p, kAq) D holds(believe(d, kAgDy), s));

by (14) and rule UG} used premise: {(1), prop. TR-1, theorem TR-3, def. TR-2, theorem

TR-1}; free variables in the used premises: {d, e, k, ¢, s}.

(16)
holds(trust_p(d, e, y, kAq), s));

by (15), axiom TR-3 and rule T’; used premises: {(1), prop. TR-1, theorem TR-3, theo-

rem TR-1, def. TR-2, theorem TR-2, axiom TR-3}; free variables in the used premises:

{d, e, k, q, s}.

(17)
(V) (holds(trust_p(d, e, z, kAq), s));

by (16) and rule UG; used premises: {(1), prop. TR-1, theorem TR-3, theorem TR-1,

def. TR-2, theorem TR-2, axiom TR-3}; free variables in the used premises: {d, e, k, ¢,
s}.
(18)

(Vz)(holds(trust_b(d, c, z, k), s)) A (Vz)(holds(trust_p(c, e, z,q), s))

D (V) (holds(trust_p(d, e, z,kAq), s));

APPENDIX C. PROOF OF THEOREMS 249

by (1), (17) and rule UG; used premises: {prop. TR-1, theorem TR-3, theorem TR-1,

def. TR-2, theorem TR-2, axiom TR-3}; free variables in the used premises: {}.

(19)

(Vd, c,e, k,q,s)((Vz)(holds(trust_b(d, c, x, k), s)) A (Vx)(holds(trust_p(c, e, x,q),s))

D (V) (holds(trust_p(d, e, z,kAq), s)));

by (18) and rule UG; used premises: {prop. TR-1, theorem TR-3, theorem TR-1, def.

TR-2, theorem TR-2, axiom TR-3}; free variables in the used premises: {}.

Since all premises used are in the defined Trust ontology, Theorem TR~4 (b) is proved.

Theorem TR-5: For every trust path in a trust network, the corresponding trust
relationship is valid by the trust ontology.

Proof. Assume a trust path is

(€0, €1, €2y ey En_1,€n),

and the labels on the arcs in order are:

(b, ko), (b, k1), ..., (b, kn—2), (t, kn_1),

where ¢ may be b or p. Assume t is p. The proof for t=b is similar. This trust path
represents the following trust relationship that holds in any situation after the trust path

is obtained,

Va, holds(trust_p(eg, en, x, ko N k1 A .. Nkp_1),5). (C.23)

Now, we prove this trust relationship is valid. From the above assumption and the

APPENDIX C. PROOF OF THEOREMS 250

definition of trust networks, we have the following inter-individual trust relationships:

YV, holds(has_b_tr(eg, e, x, ko), s),

YV, holds(has_b_tr(ey, ez, x, k1), s),

YV, holds(has_b_tr(en—a, €n—1, 2, kn_2),),
Va, holds(has_p_tr(en_1,€n, T, kn_1),S).
Consider
entail (koAkyA...Aky_1, ko),
entail (koAki A Akp_1, kn_1).
Apply axiom TR-5 and theorem TR-3 to all above sentences, we have,
Va, holds(trust_b(eg, e1, x, koAkiA...Ak,_1), 5),

Va, holds(trust_b(ey, ea, z, koAkiA...Ak,_1), 8),

YV, holds(trust_b(e, o, €,_1, %, koAk1A...Ak,_1), 5),
Va, holds(trust_p(e,_1, en, x, koAkiA...Ak, 1), 8).
Repeat applying Theorem TR-4(a) to the above sentences from the last pair till the first,

then we have (C.23). Therefore, this trust relationship is valid.
0

Theorem TR-6: For every valid trust relationship by the trust ontology, there
exists at least a trust path within the context of the trust and with finite length in a
trust network.

Proof. Assume a trust relationship holds at situation S, i.e. it is valid.

Y, holds(trust_p(Trustor, Trustee, x, K), S) (C.24)

APPENDIX C. PROOF OF THEOREMS 251

where Trustor # Trustee.

From the causal completeness assumption, this trust relationship must be derived
from axiom TR-5, theorems TR-3 and TR-4 with a finite number of steps. Consider
Theorem TR-3 actually just apply the same trust to a stricter context. This trust rela-
tionship must be derived either from an direct inter-individual trust relationship or by
Theorem TR-4 via a sequence of intermediate entities.

Now, we prove this theorem by applying strong mathematical induction to the mini-
mum number (denoted as i) of intermediate entities through which Trustor trusts Trustee.

First, prove that the theorem is true in the basic cases i = 0 and i = 1.

(i) i = 0, i.e. there is no intermediate entities. From causal completeness assumption,
the assumed trust relationship must be derived from direct trust by using axiom TR-5

and possibly Theorem TR-3 from an inter-individual relationship like
YV, holds(has_p_tr(Trustor, Trustee, z,Q), S),

and

entail(Q, K).

In this case, according to the definition of trust networks, arc (Trustor, Trustee,p, Q) €
A. This single arc is the trust path within context K.

(ii) i = 1, this is the case of derived trust relationship via one intermediate entity.
Assume that there is an entity e, such that the assumed trust relationship (C.24) is

derived by applying theorems 8 (5.8) and 7 (C.19)from

Va, holds(trust_b(Trustor, e, z,Q), S),
entail(Q, K),
Vx, holds(trust_p(e, Trustee, z, R), S),

entail(R, K)

Here, e # Trustor and e # Trustee

APPENDIX C. PROOF OF THEOREMS 252

Since we assume i=1, the trust relationship between Trustor and e, and trust rela-
tionship between e and Trustee must be direct trust. In this case, according to case (i),
arcs (Trustor,e) and (e, Trustee) must be in the trust network, thus we have a trust
path within context K without circle and with length 2: (Trustor, e, Trustee).

(iii) secondly, assume that this theorem is true when ¢ < n, n is any positive integer.
Now we prove that the theorem is true when ¢ = n + 1, i.e. Trustor trusts Trustee via
n+1 intermediate entities. We only need to consider i > 1 (case of ¢ = 1 has been proved
in (ii) above).

In this case, the assumed trust relationship (C.24) must be derived by applying theo-
rems 4 (5.26) and/or 3(C.19) via more than one entity. Assume e is the last intermediate
entity used to derive (C.24). This means the assumed trust relationship (C.24) is derived

from

Va, holds(trust_b(Trustor, e, z,Q), S),
entail (Q, K),
Vx, holds(trust_p(e, Trustee, z, R), S),

entail(R, K),

Because e is one of the n+ 1 intermediate entities, the minimum numbers of intermediate
entities between Trustor and e and between e and Trustee must be less than or equal to
n. According to our assumption, there is a trust path within context K without circle
and with limited length from Trustor to e: (Trustor,...,e). Similarly, there is also a
trust path within context K without circle and with limited length from e to Trustee, (e,
..., Trustee). Therefore, there is a trust path within context K without circle and with
finite length from Trustor to Trustee, (Trustor,..., e,..., Trustee).

Therefore, for any finite number, the theorem is true.

Appendix D

Example: Output from KP Reasoner

The following is the output from KP reasoner for the application example given in Chap-

ter 3.

Load proposition

http://www.eil.utoronto.ca/kp/ex/arctic/polarbears. html#Endangered Polar Bears

Solve: Derived Proposition

http://www.eil.utoronto.ca/kp/ex/arctic/polarbears. html#Endangered PolarBears
=> Author: Andrew Derocher

=> Publisher: CBC

Information creator: Andrew Derocher is trusted.

This proposition is believed.

..Load support proposition

http://www.eil.utoronto.ca/kp/ex/arctic/polarbears. html# MeltingArcticSealce

Pause solving, to solve support proposition(s) first.

Solve: Equivalent Proposition

253

APPENDIX D. EXAMPLE: OUTPUT FROM KP REASONER

http://www.eil.utoronto.ca/kp/ex/arctic/polarbears. html#MeltingArcticSealce
..Load support proposition
http://www.eil.utoronto.ca/kp/ex/arctic/arcticseaice. html#MeltingArcticSealce

Pause solving, to solve the support proposition first.

Solve: Asserted Proposition
http://www.eil.utoronto.ca/kp/ex/arctic/arcticseaice. html#Melting ArcticSealce
=> Publisher: NASA

Information creator: NASA is trusted.

This proposition is believed.

=> Believed truth value: True

Solve: Equivalent Proposition
http://www.eil.utoronto.ca/kp/ex/arctic/polarbears. html#MeltingArcticSealce
Dependent on:

http://www.eil.utoronto.ca/kp/ex/arctic/arcticseaice. html#MeltingArcticSealce
Whose believed truth value: True

Two propositions have the same content.

=> Believed truth value: True

Solve: Derived Proposition

http://www.eil.utoronto.ca/kp/ex/arctic/polarbears. html#EndangeredPolarBears
This proposition is believed.

Dependent on:

http://www.eil.utoronto.ca/kp/ex/arctic/polarbears. html#MeltingArcticSealce
Whose believed truth value: True

=> Believed truth value: True

254

Appendix E

Example: KP Annotation in Finance

This appendix demonstrates KP annotation for the sample investment newsletter given

in section 9.2.1 of Chapter 9.

Recommendation: Buy
The first kp-proposition is the recommendation to buy. This is a derived proposition,

which depends on several arguments. The proposition is annotated as follows.

<kp:DerivedProp rdf:id=“#RecommToBuy”
kp:author = “http://w-finance.com/ w/”
kp:isDependentOn = “#Argument-pos-1”
kp:isDependentOn = “#Argument-pos-2”
kp:isDependentOn = “#Argument-pos-3”
kp:isDependentOn = “#Argument-pos-4”
kp:isDependentOn = “#Argument-neg-1”
kp:inField = “investment advices”

>

Recommendation: Buy

< /kp:Derived Prop>
We will give the supporting propositions for the above derived proposition later.

255

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 256

Target Price: $94.13
The second proposition is an assertion about the target price of the recommended

company.

<kp:AssertedProp rdf:id= “#TargetPrice”
kp:author = “http://w-finance.com/ w/”
kp:nField = “investment advices”

>

Target Price: $94.13

< /kp:AssertedProp>

Three equivalent propositions about the current price, 52 week high and 52 week low

prices of LMT are cited from NYSE on 15 November 2006

Current Price (2006-11-15): 88.54

<kp:EquivalentProp rdf:id= “# CurrentPrice”

kp:isDependentOn = “hitp://www.nyse.com/about/listed/lcddata.html?ticker=LMT# CurPr”
>

Current Price (2006-11-10): 85.75

< /kp:EquivalentProp>

52wk High (2006-10-24): 89.89

<kp:EquivalentProp rdf:id= “#52wkHigh”

kp:isDependentOn = “hitp: //www.nyse.com/about/listed/lcddata. html?ticker=LMT#52wkHigh”
>

52wk High (2006-10-24): 89.89

< /kp:EquivalentProp>

52wk Low (2005-11-15): 59.55

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 257

<kp:EquivalentProp rdf:id= “#52wkLow”

kp:isDependentOn = “http://www.nyse.com/about/listed /lcddata.html?ticker=LMT#52wkHigh”
>

52wk Low (2005-11-10): 59.17

< /kp:EquivalentProp>

Key Positive Arguments

Four positive arguments are annotated as follows.

<kp:DerivedProp rdf:id= “#Argument-pos-1”

kp:author = “http://w-finance.com/ w/”

kp:isDependentOn = “#LMT-NetSale06Q3”

kp:isDependentOn = “#LMT-NetSale05Q3”

kp:isDependentOn = “#LMT-OperatingProfit06Q3”

kp:isDependentOn = “#LMT-OperatingProfit05Q3”

kp:isDependentOn = “#LMT-CostOfSale06Q3”

kp:isDependentOn = “#LMT-CostOfSale05Q3”

kp:inField = “financial analysis”

>

Expansion of margins: Gross margin ' was up 1.67 point to 8.36% from 6.69% in
the year-earlier period; operating marginoperating margin = operating income / net
sale was up 1.71 to 9.42% from 7.67%.

< /kp:Derived Prop>

<kp:DerivedProp rdf:id= “#Argument-pos-2”
kp:author = “http://w-finance.com/ w/”
kp:isDependentOn = “#LMT-TotalAssets06Q3”

kp:isDependentOn = “#LMT-TotalRecentLiabilities06Q3”

Loross margin = (net sale - cost of sale) / net sale

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 258

kp:isDependentOn = “#LMT-FEuity06Q)3”
kp:isDependentOn = “#LMT-TotalAssets05”
kp:isDependentOn = “#LMT-TotalRecentLiabilities05”
kp:isDependentOn = “#LMT-Euity05”
kp:isDependentOn = “#LMT-CashFlows06”
kp:isDependentOn = “#4LMT-CashFlows05”

kp:inField = “financial analysis”

>

Strong free cash flow and improving balance sheet;

< /kp:Derived Prop>

<kp:DerivedProp rdf:id= “#Argument-pos-3”

kp:author = “http://w-finance.com/ w/”

kp:isDependentOn = “#LMT-NetIncome06Q)3”

kp:isDependentOn = “#LMT-NetIncome05Q3”

kp:isDependentOn = “#LMT-EarningsPerShare06Q3”

kp:isDependentOn = “#LMT-EarningsPerShare05Q38”

kp:isDependentOn = “#LMT-Effective TaxRate06Q3”

kp:isDependentOn = “#LMT-Effective TaxRate050Q3”

kp:inField = “financial analysis”

>

Big increase of profit: Third-quarter net income rose 47% to $629 million, or $1.46
a share, from $427 million, or 96 cents a share, in the year-earlier period. Its tax
rate dropped to 22.8% in the quarter from 30.8% a year ago.

< /kp:Derived Prop>

<kp:DerivedProp rdf:id= “#Argument-pos-4”

kp:author = “http://w-finance.com/ w/”

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 259

kp:isDependentOn = “#Fvent-LMT-Orion”
kp:inField = “financial analysis”

>

Won major contracts, for example Orion project.

< /kp:DerivedProp>

Key Negative Arguments

<kp:DerivedProp rdf:id= “#Argument-neg-1”
kp:author = “http://w-finance.com/ w/”
kp:isDependentOn = “#FEvent-Dems-06FElection”
kp:isDependentOn = “#Fvent-Rumsfeld”
kp:inField = “financial analysis”

>

Uncertainty in defense policy.

< /kp:Derived Prop>

Recent Events

The presented recent events are annotated as follows.

<kp:DerivedProp rdf:id= “#FEvent-Dems”

kp:author = “http://w-finance.com/ w/”

kp:isDependentOn = “http://www.cnn.com/2006/POLITICS
/11/08/election.house/index.html#DemsWinHouse”
kp:isDependentOn = “http://www.cnn.com/2006/POLITICS
/11/08/election.house/index.html#DemsCnriSenate”
kp:isDependentOn = “http://www.cnn.com/2006/POLITICS
/11/08/election.house/index.html#DemsMajorGov”
kp:isDependentOn = “http://www.marketwatch.com/News/Story
/Story.aspx?quid=%7BB139EIDE%2D99IF1%2D4 75D %2D9B5B
%2DTBEBB9525587% 1D# TradHiber”

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 260

kp:inField = “news & comments”
>
Democrats wins 2006 midterm FElections.

< /kp:Derived Prop>

<kp:DerivedProp rdf-id= “#FEvent- Rumsfeld”

kp:author = “http://w-finance.com/ w/”

kp:isDependentOn = “http://www.cnn.com/2006/POLITICS
/11/08/rumsfeld.ap/index.html#Rumsfeld”

kp:inField = “news & comments”

>

On November 8, 2006, Defense Secretary Donald H. Rumsfeld stepped down, which
clouds defense policy. Defense Secretary Donald Rumsfeld’s swift exit Wednesday
from the Pentagon in the wake of the Republican Party’s midterm election rout
removes a lightning rod for criticism plaguing the Bush administration. But it also
raises questions about the direction of the nation’s defense spending.

< /kp:Derived Prop>

<kp:DerivedProp rdf:id= “#FEvent-LMT-Orion”

kp:author = “http://w-finance.com/ w/”

kp:isDependentOn = “http://www.nasa.gov/home/hqnews

/2006 /aug/HQ-06305_Orion_contract.html#Orion-LMT”

kp:inField = “news € comments”

>

LMT won contract on Orion space program. On August 31, 2006, NASA selected
Thursday Lockheed Martin Corp. as the prime contractor to design, develop, and

build Orion, America’s spacecraft for a new generation of explorers. The estimated

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 261

value for the project is $3.9 billion.

< /kp:DerivedProp>

Revenue Highlights

In this part, several XBRL items are specified to support the earlier arguments.

<kp-br:XBRL_Item rdf:id = “#LMT-NetIncome06Q3”
kp:inDoc= “http://www.sec.gov/Archives/edgar/data
/936468/000119312506219311 /Imt-20060930.2ml”
kp:inField = “financial statement”

kp-br:item = “usfr-pte:NetIncome”

kp-br:value = “629000000”

kp-br:unit = “USD”

kp-br:startDate = 2006-07-01

kp-br:endDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation”>

$629 million < /kp-br:XBRL_Item>

<kp-br:XBRL_Item rdf:id = “#LMT-EarningsPerShare06Q3”
kp:inDoc= “http://www.sec.gov/Archives/edgar/data
/936468/000119312506219311 /Imt-20060930.2ml”
kp:inField = “financial statement”

kp-br:item = “usfr-pte:Diluted EarningsPerShareNetIncome”
kp-br:value = “1.46”

kp-br:unit = “decimal”

kp-br:startDate = 2006-07-01

kp-br:endDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation”>

$1.46 </kp-br:XBRL_Item>

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 262

<kp-br:XBRL_Item rdf:id = “#LMT-NetIncome05Q3”
kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data
/936468/000119312506219511 /Imt-20060930.xml”
kp:inField = “financial statement”

kp-br:item = “usfr-pte:NetIncome”

kp-br:value = “427000000”

kp-br:unit = “USD”

kp-br:startDate = 2005-07-01

kp-br:endDate = 2005-09-30

kp-br:entity = “Lockheed Martin Corporation” />

<kp-br:XBRL_Item rdf:id = “#LMT-FEarningsPerShare05Q3”
kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data
/936468/000119312506219311 /Imt-20060930.2ml”
kp:inField = “financial statement”

kp-br:item = “usfr-pte:DilutedFEarningsPerShareNetIncome”
kp-br:value = “0.96”

kp-br:unit = “decimal”

kp-br:startDate = 2005-07-01

kp-br:endDate = 2005-09-30

kp-br:entity = “Lockheed Martin Corporation”>

$0.96 < /kp-br:XBRL_Item>

Margins Highlights
The concepts of margins are defined as follows:
net margin = net income / net sale

gross margin = (net sale - cost of sale) / net sale

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 263

operating margin = operating income / net sale

<kp-br:XBRL_Item rdf:id = “#LMT-NetSale06Q3”
kp:inDoc= “http://www.sec.gov/Archives/edgar/data
/936468/000119312506219311 /Imt-20060930.2ml”
kp:inField = “financial statement”

kp-br:item = “usfr-pte:OperatingRevenue”
kp-br:value = “9605000000”

kp-br:unit = “USD”

kp-br:startDate = 2006-07-01

kp-br:endDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation” />

<kp-br:XBRL_Item rdf:id = “#LMT-NetSale05Q3”
kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data
/936468/000119312506219311 /Imt-20060930.2ml”
kp:inField = “financial statement”

kp-br:item = “usfr-pte:OperatingRevenue”
kp-br:value = “9201000000”

kp-br:unit = “USD”

kp-br:startDate = 2006-07-01

kp-br:endDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation” />

<kp-br:XBRL_Item rdf:id = “#LMT-OperatingProfit06Q3”
kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data

/936468/000119312506219311 /Imt-20060930.2ml”

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 264

kp:inField = “financial statement”
kp-br:item = “usfr-pte:OperatingProfit”
kp-br:value = “905000000”

kp-br:unit = “USD”

kp-br:startDate = 2006-07-01
kp-br:endDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation” />

<kp-br:XBRL_Item rdf:id = “#LMT-OperatingProfit05Q3”
kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data
/936468/000119312506219311/Imt-20060930.xml”
kp:inField = “financial statement”

kp-br:item = “usfr-pte:OperatingProfit”

kp-br:value = “706000000”

kp-br:unit = “USD”

kp-br:startDate = 2005-07-01

kp-br:endDate = 2005-09-30

kp-br:entity = “Lockheed Martin Corporation” />

<kp-br:XBRL_Item rdf:id = “#LMT-CostOfSale06Q3”
kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data/936468
/000119312506219311 /Imt-20060930.2ml”

kp:inField = “financial statement”

kp-br:item = “usfr-pte:CostGoodsServicesSold”

kp-br:value = “8802000000”

kp-br:unit = “USD”

kp-br:startDate = 2006-07-01

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE

kp-br:endDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation” />

<kp-br:XBRL_Item rdf:id = “#LMT-CostofSale05Q3”
kp:inDoc= “http://www.sec.gov/Archives/edgar/data/936468
/000119312506219311 /Imt-20060930.xml”

kp:inField = “financial statement”

kp-br:item = “usfr-pte:CostGoodsServicesSold”

kp-br:value = “8585000000”

kp-br:unit = “USD”

kp-br:startDate = 2006-07-01

kp-br:endDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation” />

Cash Flows Highlight

265

Cash from operations (year to date) rose 9.9% to $3,450 million from $3,138 mil-

lion.

<kp-br:XBRL_Item rdf:id = “#LMT-CashFlows06”

kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data/936468
/000119312506219311 /Imt-20060930.xml”

kp:inField = “financial statement”

kp-br:item = “usfr-pte:NetCashFlowsProvided UsedOperatingActivities”
kp-br:value = “8450000000”

kp-br:unit = “USD”

kp-br:startDate = 2006-01-01

kp-br:endDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation”>

$3,450 million

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 266

</kp-br:XBRL_Dataltem>

<kp-br:XBRL_Item rdf:id = “#LMT-CashFlows05”
kp:inDoc= “http://www.sec.gov/Archives/edgar/data/936468
/000119312506219311 /Imt-20060930.xml”

kp:inField = “financial statement”

kp-br:item= “usfr-pte:NetCashFlowsProvided Used Operating Activities”
kp-br:value = “81380000000”

kp-br:unit = “USD”

kp-br:startDate = “2005-01-01”

kp-br:endDate = “2005-09-30"

kp-br:entity = “Lockheed Martin Corporation”>

$3,138 million

</kp-br:XBRL_Dataltem>

Balance Sheet Highlights

<kp-br:XBRL_Item rdf:id = “#LMT-TotalAssets”
kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data/936468
/000119812506219311 /Imt-20060930.xml”

kp:inField = “financial statement”

kp-br:item = “usfr-pte:Assets”

kp-br:value = “29093000000”

kp-br:unit = “USD”

kp-br:atDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation”> $29,093

</kp-br:XBRL_Dataltem>

APPENDIX E. EXAMPLE: KP ANNOTATION IN FINANCE 267

<kp-br:XBRL_Item rdf:id = “#LMT-TotalRecentLiabilities”
kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data/936468
/000119312506219311 /Imt-20060930.xml”

kp:inField = “financial statement”

kp-br:item = “usfr-pte:CurrentLiabilities”

kp-br:value = “10383000000”

kp-br:unit = “USD”

kp-br:atDate = “2006-09-30”

kp-br:entity = “Lockheed Martin Corporation”>

$10,383

</kp-br:XBRL_Dataltem>

<kp-br:XBRL_Item rdf:id = “#LMT-Equity”
kp:inDoc= “hitp://www.sec.gov/Archives/edgar/data/936468
/000119312506219311 /Imt-20060930.xml”
kp:inField = “financial statement”

kp-br:item = “usfr-pte:StockholdersEquity”
kp-br:value = “8085000000”

kp-br:unit = “USD”

kp-br:atDate = 2006-09-30

kp-br:entity = “Lockheed Martin Corporation”>
$8,083

</kp-br:XBRL_Dataltem>

Bibliography

1]

A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In

Proceedings of 33rd Hawair International Conference on System Sciences, 2000.

E. Adams. A Primer of Probability Logic. CSLI, Stanford University, 1998.

J. Alexander and M. Tate. Web Wisdom: how to evaluate and create information

quality on the web. Lawrence Erlbaum Associates Publishers, 1999.

J. Allen and G. Ferguson. Actions and events in interval temporal logic. J. Logic

and Computation, 4(5):531-579, 1994.

J. F. Allen. Time and time again: The many ways to represent time. International

Journal of Intelligent Systems, 6(4), 1991.

A.S.Rao and M.P.Georgeff. Modeling rational agents within a bdi-architecture.
In Proceedings of the Second International Conference on Principles of Knowledge

Representation and Reasoning (KR’91), pages 473-484. Morgan Kaufmann, 1991.

B. Barber. The logic and limits of trust. Rutgers University Press, New Brunswick,

N.J., 1983.

C. L. Barry. User-defined relevance criteria: An exporatory study. Journal Of the

American Society for Information Science, 45(3):149-159, 1994.

268

BIBLIOGRAPHY 269

[9]

[10]

[11]

[14]

[15]

[16]

C. L. Barry and L. Schamber. Users’ criteria for relevance evaluation: A cross-
situational comparison. Information Processing & Management, 34(2/3):219-236,
1998.

T. Berners-Lee. Semantic web road map. 1998.

T. Berners-Lee. Semantic web status and direction. In 2003 International Semantic

Web Conference, October 2003.

T. Berners-Lee. Putting the web back into semantic web. In 2005 International

Semantic Web Conference, November 2005.

T. Berners-Lee, W. Hall, J. A. Hendler, K. O’hara, N. Shadbolt, and D. J. Weitzner.
A framework for web science. Foundations and Trends in Web Science, 1(1):1-130,

2006.

T. Berners-Lee, J. A. Hendler, and O. Lassila. The semantic web. Scientific Amer-

ican, 284(5):35-43, May 2001.

R. Bhatnager and L. Kanal. Handling uncertain information: A review of numeric

and non-numeric methods. 1986.

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The keynote trust-
management system (version 2). In hitp://www.crypto.com/papers/rfc2704.tzt,
1999.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Pro-

ceedings of the 1996 IEEE Symposium on Security and Privacy, 1996.

M. Blaze, J. Feigenbaum, and M. Strauss. Compliance-checking in the policymaker
trust-management system. In Proc. 2nd Conference on Financial Cryptography,

Anguilla, LNCS 1465, pages 251-265. Springer-Verlag, 1998.

BIBLIOGRAPHY 270

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

28]

[29]

[30]

K. Blomqvist. The many faces of trust. Scandinavian Journal of Management,

13(3):271-286, 1997.

R. Brachman and H. J. Levesque. Knowledge Representation and Reasoning. Mor-

gan Kaufmann, 2003.

M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press,

Cambridge, MA, 1987.

P. Buneman, S. Khanna, and W. Tan. Data provenance: Some basic issues. In

Foundations of Software Technology and Theoretical Computer Science, 2000.

P. Buneman, S. Khanna, and W. Tan. Why and where: A characterization of
data provenance. In Proceedings of International Conference on Database Theory

(ICDT), 2001.

S. Buvac and I. Mason. Propositional logic of context. In Proceedings of AAAI’'1993,
1993.

P. Calvert. Uk government says xbrl will be mandatory for company tax filings

from 2010. 3 2006.
P. Charter. Public-key infrastructure (x.509)(pkix).

B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cam-

bridge, 1980.

Y.-H. Chu. Trust Management for the World Wide Web. Master Thesis, MIT,
1997.

J. Coleman. Foundations of Social Theory. Harvard University Press, 1990.

C. H. Coombs, R. M. Dawes, and A. Tversky. Mathematical Psychology. Prentical-
Hall, Inc., 1970.

BIBLIOGRAPHY 271

[31]

[32]

[33]

[34]

[35]

[38]

[39]

[40]

[41]

Cornell-University-Library. Evaluating web sites: Criteria and tools. In

http://www.library. cornell. edu/olinuris /ref/research /webeval. html, 2002.

C. Cox. Speech by sec chairman: Opening remarks to the practising law institute’s

sec speaks series. 3 2006.
M. Creswell. Modal logic. 2001.

J. de Kleer. An assumption-based truth maintenance system. Artificial Intelligence,

28(2):127-162, 1986.

J. de Kleer, K. Forbus, and D. McAllester. Truth maintenance systems (tutorial
sab). In IJCAI-89, SA5, page 182 225, 1989.

J. de Kleer, K. Forbus, and D. McAllester. Truth maintenance systems (tutorial
sab). In IJCAI-89, SA5, page 227 279, 1989.

R. Demolombe. To trust information sources: a proposal for a modal logical frame-
work. In C. Castelfranchi and Y.-H. Tan, editors, Trust and deception in virtual

societies, pages 111-124. Kluwer Academic Publishers, 2001.

M. Deutsch. Cooperation and trust: Some theoretical notes. In M. Jones, editor,

Nebraska Symposium on Motivation, volume X, pages 275-318, 1962.

M. Deutsch. The Resolution of Conflict. Yale University Press, New Haven and

London, 1973.

M. Deutsch. Trust and suspicion: Theoretical notes. In The Resolution of Conflict,

pages 143-176, New Haven and London, 1973. Yale University Press.

L. Ding, P. Kolari, S. G. Finin, A. Joshi, Y. Peng, and Y. Yesha. Modeling and
evaluating trust network inference. In The Seventh International Workshop on

Trust in Agent Societies, at AAMAS 2004, 2005.

BIBLIOGRAPHY 272

[42]

[43]

[44]

[45]

[48]

[49]

[50]

[51]

L. Ding, P. Kolari, T. Finin, and A. Joshi. On homeland security and the semantic
web: A provenance and trust aware inference framework. In Proceedings of the

AAAI Spring Symposium on Al Technologies for Homeland Security, 2005.

R. M. D. W. Dodds, P.S. An experimental study of search in global social networks.
Science, 301(8):827-829, 2003.

J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231-272, 1979.

R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. The
MIT Press, 1995.

R. Falcone and C. Castelfranchi. Trust dynamics: How trust is influenced by direct

experiences and by trust itself. In AAMAS’04, July 2004.

R. Fikes, M. Cutkosky, T. R. Gruber, and J. V. Baalen. Knowledge sharing tech-
nology project overview. In Knowledge Systems Laboratory, Stanford University,

1991.

I. Foster and C. Kesselman. The grid : blueprint for a new computing infrastructure.

Elsevier, 2004.
M. S. Fox. Enterprise modeling. Al Magazine, pages 109-121, 1998.

M. S. Fox, M. Barbuceanu, M. Gruninger, and J. Lin. An organisation ontology for
enterprise modeling. In M. Prietula, K. Carley, and L. Gasser, editors, Simulating
Organizations: Computational Models of Institutions and Groups, pages 131-152.
AAAI/MIT Press, 1998.

M. S. Fox and J. Huang. Knowledge provenance: An approach
to modeling and maintaining the evolution and validity of knowledge.

http://www. eil.utoronto.ca/km/papers/fox-kp1.pdf, 2003.

BIBLIOGRAPHY 273

[52]

[54]

[55]

[56]

[58]

[59]

[60]

[61]

[62]

M. S. Fox and J. Huang. Knowledge provenance in enterprise information. Inter-

national Journal of Production Research, 43(20):4471-4492, 2005.

M. S. Fox and J. Huang. An ontology for static knowledge provenance. In P. Bernus
and M. S. Fox, editors, Knowledge Sharing in the Integrated Enterprise - Interop-

erability Strategies for the Enterprise Architect, pages 203-213, 2005.

T. H. Fran Berman, Geoffrey Fox, editor. Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons, Ltd, 2003.

N. Friedman and J. Halpern. Belief revision: A critique. Journal of Logic, Language,

and Information, 8:401-420, 1999.

F. Fukuyama. Trust: The Social Virtues and the Creation of Prosperity. Free
Press, 1995.

D. Gambetta. Can we trust trust? In D. Gambetta, editor, Trust : making and

breaking cooperative relations, pages 213-237. Blackwell, 1988.

D. Gambetta. Trust : making and breaking cooperative relations. Blackwell, 1988.

G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Modeling the impact of trust
and distrust in agent networks. In AOIS-01 at CAiSE-01, 2001.

G. Gans, M. Jarke, S. Kethers, G. Lakemeyer, L. Ellrich, C. Funken, and M. Meis-
ter. Requirements modeling for organization networks: A (dis-)trust-based ap-

proach. In RE-01, 2001.

P. Gardenfors. Belief Revision. Cambridge University Press, 1992.

M. R. Genesereth and R. E. Fikes. Knowledge interchange format 3.0 reference

manual. In http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps, 1992.

BIBLIOGRAPHY 274

[63]

[64]

[65]
[66]
[67]

[68]

[70]

[71]

[72]

[73]

[74]

Y. Gil and V. Ratnakar. Trusting information sources one citizen at a time. In

Proceedings of International Semantic Web Conference, 2002.

L. Goble. PThe tipping point : how little things can make a big difference. Boston
. Little, Brown, 2000.

L. Goble. Philosophical Logic. Blackwell Publish, 2001.

J. Golbeck, J. Hendler, and B. Parsia. Trust networks on the semantic web. 2002.

A. Gomez-Perez. Tutorial on ontological engineering. In IJCAI’99, 1999.

T. W. A. Grandison. Trust Management for Internet Applications. Ph.D. Thesis,

Imperial College, London, 2003.

E. Gray, J. Seigneur, Y. Chen, and C. Jensen. Trust propagation in small worlds.

In Proceedings of the First International Conference on Trust Management, 2003.

P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and L. Moreau. An

architecture for provenance systems. November 2006.

T. R. Gruber. The role of common ontology in achieving sharable, reusable knowl-

edge base. Morgan Kaufmann, San Mateo, CA, 1991.

T. R. Gruber. Toward principles for the design of ontologies used for knowledge
sharing. In Formal Ontology in Conceptual Analysis and Knnowledge Representa-

tion. Kluwer, 1993.

T. R. Gruber. A translation approach to portable ontology specifications. In KSL-

92-71, Knowledge Systems Laboratory, Stanford University, 1993.

M. Gruninger and M. Fox. Methodology for the design and evaluation of ontologies.
In Workshop on Basic Ontological Issues in Knowledge Sharing, IJCAI-1995, 1995.

BIBLIOGRAPHY 275

[75]

[78]

[79]

[80]

[85]

[36]

[87]

M. Gruninger and C. Menzel. The process specification language (psl) theory and
applications. Al Magazine, 24(3):63-74, 2003.

N. Guarino. Formal ontology and information systems. In Proceddings FOIS’98,

Italy, 1998.

N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards a termino-
logical clarification. In Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing, pages 25—32. I0S Press, Amsterdam, 1995.

R. Guha. Contexts: A Formalization and Some Applications. Ph.D. Thesis, Stand-

ford University, 1995.
R. Guha and R. Kumar. Propagation of trust and distrust. In WWW2004, 2004.

R. H. Guttman, A. G. Moukas, and P. Maes. Agent-mediated electronic commerce:

a survey. Knowledge Engineering Review, 1998.

A. Hajek. Probability, logic, and probability logic. 2001.

J. Y. Halpern. Reasoning about uncertainty. MIT Press, 2003.
P. J. Hayes. A catalog of temporal theories. 1995.

D. Heckerman. Probabilistic interpretations for macin’s certainty factors. pages

167-196, 1986.
J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

J. Huang and M. S. Fox. Dynamic knowledge provenance. In Proceedings of Busi-

ness Agents and Semantic Web Workshop, pages 11-20, 2004.

J. Huang and M. S. Fox. Uncertainty in knowledge provenance. In C. Bussler,
J. Davies, D. Fensel, and R. Studer, editors, The Semantic Web: Research and

Applications, Lecture Notes in Computer Science, 3053, pages 372-387, 2004.

BIBLIOGRAPHY 276

3]

[39]

[90]

[91]

[92]

[93]

[95]

[96]

[97]

J. Huang and M. S. Fox. Trust judgment in knowledge provenance. dexa, 00:524—
528, 2005.

J. Huang and M. S. Fox. An ontology of trust — formal semantics and transitivity.
In Proceedings of The Eighth International Conference on Electronic Commerce,

pages 259-270. ACM, 2006.

J. Huang and M. S. Fox. Knowledge provenance in financial information. In EIL

Technical Report, Uniwversity of Toronto, 2007.

J. Huang and M. S. Fox. Knowledge provenance ontology in a complete logic

program. In EIL Research Report, University of Toronto, 2007.

J. Huang and M. S. Fox. Knowledge provenance: Web ontology and reasoner. In

EIL Research Report, University of Toronto, 2007.

J. Huang and M. S. Fox. Uncertain model of knowledge provenance. In FEIL

Research Report, University of Toronto, 2007.

J. Huang and M. S. Fox. Uncertain model of trust propagation in social networks.

In EIL Technical Report, University of Toronto, 2007.

N. R. Jennings, P. Faratin, T. J. Norman, P. O’Brien, and B. Odgers. Autonomous
agents for business process management. Int. Journal of Applied Artificial Intelli-

gence, 14, 2000.

F. V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.

A. Josang. Trust management for e-commerce. 2000.

A. Josang. A logic for uncertain probabilities. International Journal of Uncertainty,

Fuzziness, and Knowledge-Based Systems, 9(3):279-311, 2001.

BIBLIOGRAPHY 277

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

109

A. Josang, L. Gray, and M. Kinateder. A model for analysing transitive trust.
2005.

A. Josang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for

online service provision. Decision Support Systems, 43(2):618-644, 2007.

R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and
Value Tradeoffs. John Wiley & Sons, Inc., 1976.

R. Khare and A. Rifkin. Weaving a web of trust. World Wide Web Journal,
2(3):77-112, 1997.

S. C. Kleene. Introduction to metamathematics. Princeton, N.J. D. Van Nostrand,

1952.

S. C. Kleene. Mathematical Logic. John Wiley & Sons, Inc., 1967.

J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proc. 9th

ACM-SIAM Symposium on Discrete Algorithms, 1998.

J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In Pro-

ceedings of 32nd ACM Symposium on Theory of Computing, 2000.

P. R. Kleindorfer, H. C. Kunreuther, and P. Schoemaker. Decision Sciences: An

Integrative Perspective. Cambridge University Press, 1993.

S. X. Komiak and I. Benbasat. Understanding customer trust in agent-mediated
electronic commerce, web-mediated electronic commerce, and traditional com-

merce. Information Technology and Mangement, 5:181-207, 2004.

S. Kripke. Semantic analysis of modal logic. Zeitschrift fir Mathematische Logik
und Grundlagen der Mathematik, 9:67-96, 1962.

BIBLIOGRAPHY 278

[110]

[111]

[112]

[113]

114]

[115]
[116]

[117]

[118]

[119]

[120]

[121]

A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief
survey of web data extraction tools. SIGMOD Rec., 31(2):84-93, 2002.

Y. W. Lee, D. M. Strong, B. K. Kahn, and R. Y. Wang. Aimq: a methodology
for information quality assessment. Information and Management, 40(2):133-146,

2002.

H. J. Levesque and G. Lakemeyer. The Logic of Knowledge Bases. MIT Press,
2001.

J. Lewis and A. Weigert. Trust as a social reality. Social Forces, 63(4):967-985,
1985.

J. Li, H. Boley, V. Bhavsar, and J. Mei. Expert finding for ecollaboration using

foaf with ruleml rules. In Montreal Conference on eTechnologies, 2006, 2006.
J. Lloyd. Foundations of Logical Programming. Springer-Verlag, 1984.
J. Lloyd. Foundations of Logical Programming, 2nd Ed. Springer-Verlag, 1987.

M. F. Lopez. Overview of methodologies for building ontologies. In [JCAI-99
Workshop on Ontologies and Problem-Solving Methods: Lessons Learned and Fu-
ture Trends, 1999.

N. Luhmann. Trust and Power. John Wiley & Sons Ltd, 1979.

D. MacKay. Information Theory, Inference, and Learning Algorithm. Cambridge

University Press, 2003.

P. Maes, R. Guttman, and A. Moukas. Agents that buy and sell: Transforming

commerce as we know it. Communications of the ACM, 1999.

G. Malinowski. Many-valued logics. 2001.

BIBLIOGRAPHY 279

[122]

[123]

124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

S. P. Marsh. Formalising Trust as a Computational Concept. Ph.D. Thesis, Uni-

versity of Stirling, 1994.

S. P. Marsh and M. R. Debben. Trust, untrust, distrust and mistrust - an explo-
ration of the dark(er) side. In Proceedings of iTrust2005, LNCS 3477, pages 1733,
2005.

R. Mayer, J. Davis, and F. Schoorman. An integrative model of organizational

trust. Academic of Management Review, 20(3):709-734, 1995.

A, Mayorkas. hitp:/ /web.archive.org/web/20021209030248/
hitp://www.usdoj.gov/usao/cac/pr/pr2000/003.htm, 2000.

J. McCarthy. Notes on formalizing context. In Proceedings of IJCAI1993, 1993.

D. McGuinness and P. da Silva. Infrastructure for web explations. In Proceedings

of 2nd International Semantic Web Conference, pages 113-129, 2003.

D. McKnight and C. N.L. Conceptualizing trust: A typology and e-commerce
customer relationships model. In Proceedings of 34th Hawaii Int. Conf. on System

Sciences, 2001.

J.-J. C. Meyer. Epistemic logic. 2001.

J.-J. C. Meyer and W. der Hoek. Epistemic Logic for AI and Computer Science.

Cambridge University Press, 1995.

S. Milgram. The small world problem. Psychology Today, 61(1), 1967.

D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagarajal, J. Pruyne, B. Richard,

S. Rollins, and Z. Xu. Peer-to-peer computing. 2002.

BIBLIOGRAPHY 280

[133] N. Minsky. Regularity-based trust in cyberspace. In PProceedings of 1st Inter-
national Conference on Trust Management, Lecture Notes in Computer Science,

2692, pages 17-32. Springer, 2003.
[134] MIT-SDSI-project. A simple distributed security infrastructure.

[135] L. Moreau. Provenance: an open approach to experiment validation in e-science.

August 2006.

[136] L. Moreau and J. Ibbotson. The eu provenance project: Enabling and supporting

provenance in grids for complex problems (final report). December 2006.

[137] L. Mui and A. Halberstadt. A computational model of trust and reputation. In

Proceedings of the 35th Hawaii International Conference on System Sciences, 2002.

[138] F. Naumann and C. Rolker. A computational model of trust and reputation. In

Assessment Methods for Information Quality Criteria, October 2000.

[139] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. R. Swartout.

Enabling technology for knowledge sharing. Al Magazine, 12, 1991.

[140] N. Noy and D. L. McGuinness. Ontology development 101: A guide to creating

your first ontology. In Knowledge Systems Laboratory, Stanford University, 1993.
[141] K. Oliver. Evaluating the quality of internet information. 1997.

[142] Oxford. Ozford Dictionary of Current English, 4th Edition. Oxford University

Press, 2006.

[143] M. Paolucci and K. Sycara. Autonomous semantic web services. IEEE Internet

Computing, 7(5):34-41, 2003.

[144] J. Pearl. Probabilistic reasoning in intelligent systems : networks of plausible in-

ference. Morgan Kaufmann Publishers, 1988.

BIBLIOGRAPHY 281

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

A. G. Perez and V. Benjamins. Overview of knowledge sharing and reuse compo-
nents: Ontologies and problem-solving methods. In IJCAI-99 Workshop on On-
tologies and Problem-Solving Methods: Lessons Learned and Future Trends, pages

25-32. I0S Press, Amsterdam, 1995.
PGP. Pgp home page.

J. Pinto. Temporal Reasoning in the Situation Calculus. Ph.D. Thesis, University
of Toronto, 1994.

L. Pipino, Y. Lee, and R. Wang. Data quality assessment. Communications of

ACM, 45(4):211-218, 2002.

S. Ramchurn, H. Dong, and N.R.Jennings. Trust in multi-agent systems. The

Knowledge Engineering Review, 19(1):1-25, 2004.
R. Reiter. Knowledge In Action. The MIT Press, 2001.

P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara. Reputation systems.

Communications of the ACM, 43(12):45-48, 2000.
R. R.Guha and R.Fikes. Contexts for the semantic web. 2005.

M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic
web. In Proceedings of International Semantic Web Conference, pages 351-368,

2003.

S. Y. Rieh and N. J. Belkin. Understanding judgment of information quality and
cognitive authority in the www. In Proceedings of the 61st Annual Meeting of the

American Society for Information Science, pages 279-289, 1998.

J. Rotter. A new scale for the measurement of interpersonal trust. J. Personality,

35:651-665, 1967.

BIBLIOGRAPHY 282

[156]

[157]

158

[159]

[160]

[161]

[162]

163

[164]

[165]

D. M. Roussea, S. B. Sitkin, R. S. Burt, and C. Camerer. Not so different after all:
A cross-discipline view of trust. Academic of Management Review, 23(3):393-404,
1998.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 2nd Edi-

tion. Prentice Hall, 2003.

L. Schamber. Users’ Criteria for FEvaluation in Multimedia Information Seeking

and Use Situations. Ph.D. Thesis, Syracuse University, 1991.

R. Scherl and H. Levesque. The frame problem and knowledge-producing actions.
In Proceedings of the Eleventh National Conference on Artificial Intelligence, pages
689-695, 1993.

V. Shankar, F. Sultan, and G. Urban. Online trust and e-business strategy: Con-

cepts, implications, and future directions. 2002.

C. Shannon. A mathematical theory of communication. The Bell System Technical

Journal, 27:379-423, 623-656, 1948.

Y. Shaoham. Temporal logics in ai: Semantical and ontological considerations.

Artificial Intelligence, 33:89-104, 1987.
Y. Shaoham. Reasoning About Change. The MIT Press, 1988.

S. Shapiro, Y. Lespérance, and H. J. Levesque. Specifying communicative multi-
agent systems with congolog. In In Working Notes of the AAAI Fall 1997 Sympo-
sium on Communicative Action in Humans and Machines, pages 72-82, Cambridge,

MA, Novemeber 1997. AAAI Press.

BIBLIOGRAPHY 283

[166]

[167]

[168]

169

[170]

[171]

[172]

[173]

[174]

[175]

[176]

S. Shapiro, M. Pagnucco, Y. Lespénce, and H. J. Levesque. Iterated belief change
in the situation calculus. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors,

Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh

International Conference, (KR2000), San Francisco, CA, 2000. Morgan Kaufmann.

E. Simon, P. Madsen, and C. Adams. An introduction to xml digital signatures.

2001.

E. Simon, P. Madsen, and C. Adams. Building your appropriate certificate-based

trust mechanism for secure communications. 2002.

H. A. Simon. Models of Bounded Rationality, volume 3. The MIT Press, 1997.

H. A. Simon. Models of Bounded Rationality, volume 2. The MIT Press, 1997.

A. Smith. Testing the surf: Criteria for evaluating internet information resources.

The Public-Access Computer Systems Review, 8(3), 1997.

M. Stanojevic, S. Vranes, and D. Velasevic. Using truth maintenance systems: A

tutorial. IEEE Intelligent Systems, 9(6):46-56, 1994.

W. trust group. Web services trust language. February 2005.

UC-Berkeley-Library. Critical evaluation of resources. In

http: //www.lib.berkeley. edu/TeachingLib/Guides/Evaluation.html, 2002.

M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications.

Knowledge Engineering Review, 11, 1996.

M. Uschold and R. Jasper. A framework for understanding and classifying ontology
applications. In IJCAI-99 Workshop on Ontologies and Problem-Solving Methods:

Lessons Learned and Future Trends, 1999.

BIBLIOGRAPHY 284

[177] W3C. Resource description framework (rdf) model and syntax specification. Febru-
ary 1999.

[178] W3C. Xml-signature syntax and processing. February 2002.

[179] W3C. Owl web ontology lauguange guide. February 2004.

[180] W3C. Owl web ontology lauguange reference. February 2004.

[181] W3C. Rdf vocabulary description language 1.0: Rdf schema. February 2004.
[182] N. Walsh. A technical introduction to xml. October 1998.

[183] R. Wang, H. Kon, and S. Madnick. Data quality requirements analysis and mod-
eling. In Proceedings of the Ninth International Conference of Data Engineering,

pages 670-677, April 1993.
[184] R. Wang, M. Ziad, and Y. Lee. Data Quality. Kluwer Academic Publishers, 2001.
[185] Wikipedia. Social network. 2005.
[186] P. Wilson. Second-Hand Knowledge. Greenwoods Press, 1983.

[187] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons Ltd.,
1997.

[188] M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice. The

Knowledge Engineering Review, 10:115-152.
[189] XBRL-International. Extensible business reporting language (xbrl) 2.1. 2005.
[190] XML.Query.WG. Xquery 1.0: An xml query language. 2006.

[191] R. Yahalom, B. Klein, and T. Beth. Trust relationships in secure systems - a
distributed authentication perspective. In Proceedings of IEEE Symposium on Re-

search in Security and Privacy, 1993.

BIBLIOGRAPHY 285

[192]

193]

[194]

[195]

[196]

B. Yu and M. Singh. A social mechanism of reputation management in electronic
communities. In Proceedings of Fourth International Workshop on Cooperative

Information Agents, pages 154-165, 2000.

E. Yu and L. Liu. Modelling trust for system design using the i* strategic actors
framework. In R. Falcone, M. Singh, and Y. Tan, editors, Trust in Cyber-Societies
- Integrating the Human and Artificial Perspectives, LNAI-2246, pages 175-194.

Springer Verlag, 2001.

J. Zhang and R. Cohen. Trusting advice from other buyers in e-marketplaces: the
problem of unfair ratings. In Proceedings of The Eighth International Conference

on Electronic Commerce, pages 225-234. ACM, 2006.
P. Zimmermann. The official PGP user’s guide. MIT Press, 1995.

L. Zucker. Production of trust: Institutional sources of economic structure, 1840-

1920. Research in Organizational Behavior, 8:53-111, 1986.

