The Role of Architecture in Computer-Assisted Design Systems

Scott A. Safier and Mark S. Fox*

January 30, 1990

Abstract

Knowledge-based systems and expert-systems technologies provide software architectures which
can assist the mechanical designer. The role of the architecture is to integrate the algorithmic and
heuristic processes used during design. Through integration, methods employed by designers can
communicate via a common representation of the design.

In this paper, we explore issues of coordination and representation for systems that support me-
chanical designers. First, we discuss design as a problem-solving activity and the architectural re-
quirements for this type of system. Next, we focus of the components of the architecture, and explore
issues of representation and coodination. Lastly, we present the Design Fusion system as an example
architecture that utilizes these components to fulfill the requirements.

1 Introduction

Recent research in design has incorporated Artificial Intelligence (AI) problem solving architectures in
the construction of systems-that aid designers. For many people outside of the field of Al, the role of
a problem solving architecture is unclear. It is our intent, in this paper, to both motivate the need for
architectures in design and demonstrate their application.

The design process is complex; designers bring to bear a variety of methods and techniques through-
out. They have many tasks to perform and numerous sources of design data. There are algorithmic
solutions to several problems, but each of these solves only part of the problem. None is an entire so-
lution in itself, and very few are integrated. It is human expertise that integrates these design resources,
provides the missing pieces, and guides the process known as design.

The role of an architecture is to integrate design methods and algorithms around a shared represen-
tation. In particular, an architecture provides a means for dynamically coordinating their application as
required by the problem and the desi gner. For example, integration permits communication between tasks
without designers having to execute multiple routines. A shared representation gives the various modules
a common vocabulary, releasing designers from the task of data transformation (e.g. transforming be-
tween coordinate systems). Integration and a shared representation facilitate the solving of large portions
of the design problem. Designers are freed to concentrate on the design, not the process.

In the following sections, we will discuss architectures to assist designers. First, we present require-
ments for these architectures. Next, we discuss the techniques used to realize these requirements. Lastly,
we discuss the design fusion system[12] as an example of such a system. We will draw our examples
from the mechanical design domain, specifically turbine blade design.

*This work has been sponsored by Defense Advanced Research Projects Agency (DARPA), under contract number MDA972-
88-C-0047 for DARPA Initiative in Concurrent Engineering (DICE).

Presented at: Feb 90 CERC

2 Requirements

Design systems are created to facilitate the design task and the process used by designers to create an arti-
fact from a specification. The behavior exhibited by designers during this process has been characterized
as problem-solving [1, 16]. To support designers, the architecture of the system should also be a general
model of problem-solving.

The components of a problem-solving system are a database and a a control strategy for manipulating
the database. The database contains a representation of the design and its specifications. The control
strategy coordinates a set of operations that manipulate the database as the design changes. The choice
of these operations depends upon the control strategy and the representation of the data. In this section,
we will examine requirements for coordination and representation in a computer-assisted design system.

2.1 Coordination

Design is a search process that explores the elaboration of portions of a design resulting in a top-down
decomposition of the design problem into smaller, more manageable subproblems. Subproblems are fur-
ther decomposed until solvable problems are found. At any particular time during the design process,
the solving of a subproblem is the goal of the designer, with the ultimate goal being the creation of an
artifact or description of an artifact. To satisfy goals, designers make changes to the design. The design
progresses through multiple levels of abstraction and refinement until all goals are satisfied. The archi-
tecture should support the process of goal form ulation and decomposition, and the selection of subtasks
upon which to focus design attention.

Early works of Alexander [2] and Simon [32] assume this model of design — that design is a nearly-
decomposable problem with little or no interaction between design subproblems. Alexander [3] later
concludes that such problems tend to be artificial — natural problems contain interactions. During problem-
solving, designers must cope with interactions between design constraints: the specifications, the goals of
the designer, and the design decisions made during the design process. The archifecture should provide
support for the management of these interactions. It should identify which subtasks interact and what
impact decisions will have.

2.1.1 Constraint-Directed Problem-Solving

Interactions occur between design constraints that are closely related [25]. Cooperation occurs when
there is a dependence between interacting constraints, or onc constraint is a generalization of others.
Competition arises when one or several constraints precludes the satisfaction of others.

For example, consider the turbine blade in Figure 1. Its design has both functional requirements,
e.g., lift weight and efficiency, and physical requirements, ¢.g., expected life of the blade. In the latter
case, there is a relationship between fatigue and life, and between stresses (steady-state and vibratory)
and fatigue. Designers understand these relationships and have techniques to resolve the interactions.
A designer may perform a steady-state stress analysis, estimate life, evaluate the design based upon the
results, and modify the physical characteristics of the artifact until the life requirement is approximated.
Only at this point does the designer begin to consider vibratory stress, and repeats the process.

Designers must make trade-offs when design decisions conflict with other decisions or specifications
and the designer’s understanding of current trade-offs affects the overall design process. The design sys-
tem should provide support enabling options (o be evaluated, preferences to be specified, and constraints
to be relaxed[14]. For example, Rinderle and Watton [30] discuss one technique to evaluate critical design
relationships. They propose transformations between variable systems as a means of understanding these
critical relationships. Alternative variable systems are chosen for physical and functional characteristics.
Transformations give the designer with alternate view points of the design, providing insight.

Figure 1: Sample Turbine Blade

2.1.2 Opportunistic Problem-Solving

Opportunistic problem-solving [15] focuses attention on tightly constrained portions of the (design) prob-
lem. Resolving these portions of the design problem creates islands of certainty which can be exploited
in other areas of the design. Consider our example of a turbine blade design. It has very specific aero-
dynamic characteristics that tightly constrain the shape of the airfoil. Once the airfoil has been designed,
design decisions which constrain other areas of the design can propagate. These further constrain those
areas. For example, the length of the blade affects its fatigue life. When designing to meet a fatigue life
specification, focusing the problem solving process on blade length is reasonable.

Opportunities can be exploited in three ways. First, there is opportunism in elaboration. Ullman et al.
[6] suggest that designers add detail to one area of the design while leaving other areas at various incom-
plete levels. Opportunism permits movement between areas that have the greatest degree of certainty. An
architecture should support the identification and focusing on the portions of design that are most certain.

Second, past designs can be opportunistically exploited during design. Finger et al. [12] identify four
types of design: selection, routine design (e.g., configuration, parameterized), extrapolation, and novel.
When there is a direct mapping between the specification and an exisiting part, the design task is selection.
A design is routine when similar artifacts have been constructed, providing appropriate problem-solving
methodologies. Extrapolation is using the process of a past design to guide the creation of a new but sim-
ilar artifact. Extrapolation indexes directly into past designs, exploiting them during the design process.
Routine design too can be viewed as combination of selection, constraint analysis and indexing into prior
designs or generalizations of prior designs. An architecture should support opportunistic selection from
past designs, choosing between components of past designs fo create new but similar components in the
current design.

Lastly, the architecture should support the opportunisitic viewing of the design from multiple per-
spectives. Each perspective is a model of some life-cycle activity, such as manufacturing or service,
providing databases and computational routines to support that perspective’s design effort. Movement
between these perspectives should be opportunistic, allowing any one to actively participate in the design
while the others evaluate and critique the design effort. This movement permits application of algorithms
and heuristics at appropriate portions of the design process.

2.2 Representation

The architecture of a design system coordinates the group problem-solving activity of these perspec-
tives, including coordinating negotiations between competing perspectives, and providing a vehicle for
the perspectives to view and modify the design. A shared representation also supported by the architec-
ture provides the perspectives with the vocabulary to evaluale the design and conduct negotiations. It
should be consistent over these multiple view points and interpretable by them, allowing answers to a set
of questions at a level of complexity appropriate to the design task.

The representation should be precise and complete, capable of representing all interesting aspects of
the artifact at various levels of abstraction. Included in a design representation must be:

function Artifacts are designed to meet some desired behavior. A representation of function would permit
reasoning about an artifacts behavior and its role in a complex system;

geometry and topology Behaviors are realized through geometries, which must be represented by the
system;

design constraints An explicit representation of design constraints enables opportunism when evaluat-
ing design decisions;

goals and specifications The representation must track the current goals of the design process, and eval-
uate design decisions against desired specifications;

design evolution The representation must be capable of managing an evolving design, and permitting
the designer to back-up to prior instantiations of the design.

The archifecture must also provide support for an evolving design. As a design evolves, multiple
versions are created over time. Katz [21] defines a configuration as a collection of versions of partial
designs. The architecture should manage the changing design, and allow the designer to view any portion
of the design history, and revert to a prior designif necessary. Also, inconsistencies in the design inevitably
arise during the design process. These inconsistencies should be tolerated by the system, but also tracked.
The designer should be notified of inconsistencies when appropriate.

2.3 Designer Interaction

The architecture of a computer-assisted design system should also represent the current focus of attention
of the designer, and coordinate the activities of the system toward this focus. The designer’s focus of
attention affects the manner in which the design is evaluated. The system should share this focus, and use
it to select the subset of its data that is relevant to the designer’s current activity.

Grosz [17] identifies three requirements for representing focus:

1. The ability to distinguish between data relevant to a particular task and that which is superfluous.

2. Recognize objects of implicit focus. When the designer is focused on a portion of the design, its
subcomponents and components which it interacts with are implicitly under focus.

3. Provide amechanism for shifting focus. As the design changes, the focus of attention of the designer
will shift. These shifts should be recognized by the system and be reflected in the system’s behavior.

The architecture should provide mechanisms for each of these requirements.

Once again consider a designer of a turbine blade. A designer focusing on structural properties will
see different design features than when the focus is on aerodynamic properties. If the designeris analyzing
stress concentrations in the shank, the system should not point out problems with the manufacturability of
the airfoil. The system may however, comment on stress concentrations in the fir-tree portion of the shank
or between the shank and the platform, which are both implicitly under the designer’s focus of attention.

2.4 Summary

In summary, the role of the architecture is to integrate partial solutions to design problems around a shared
representation. It should support problem-solving by managing interactions between design constraints,
providing the designer with data to facilitate making trade-offs. The system should also exploit tightly-
constrained areas of the design, opportunistically elaborating areas at various levels of abstraction, using
past-designs to guide the current process, and moving between multiple perspectives that affect the design.
A common representation enables these perspectives to view and comment about the design. Lastly,
the system should share a common focus of attention with the designer, enabling the system to bring
appropriate information and techniques to the design problem.

3 Architectual Components

As a general model of problem-solving, representation and coordination are the components of an archi-
tecture. Representation is the encoding of facts and assertions about an artifact’s evolving design in a
manner that permits answering questions that arise during the design process. Coordination defines when
and how information is used by the system. In this section, we will explore how these components can
be used to fulfill the requirements described in the previous section.

3.1 Representation

The role of a representation is to allow answers to a set of questions at a level of complexity appropriate
to the design task. Rinderle [29] argues that designers’ not only reason about the form and function of an
artifact, but also its fabrication and other down-stream activities. Any representation of the design must
answer questions about not only its form, but also its function and the influences of downstream activities.

3.1.1 Geometric Modelling

The geometry of the artifact is a neutral representation of the evolving design, and much research has been
done into representations for solid models [28]. Wire-frame representations are easy to compute, but are
inherently ambiguous because they lack topological information. Representations based upon compu-
tation solid geometry provide topological information, but rely on a finite set of primitives to construct
solids. Solids not realizable from the provided primitives cannot be constructed. Also, the operations
used to combine primitives can be computationally prohibitive.

Two-manifold boundary representations and non-manifold representations [18] also provide topolog-
ical information. Although boundary representations permit easy computation of free-form solids, they
can be memory intensive. Non-manifold representations recognize valid realizable solids, and can also
depict non-realizable solids.

3.1.2 Life-cycle Problem Solving

All these representations provide geometric or topological information, but provide no information about
the artifact’s function and no method of reasoning about the life-cycle effects on the artifact. These
representations of solids must be augmented to permit such reasoning. Al research into representation
has focused on two primary methods: semantic networks and rule-based systems. Semantic networks are
a graph-based scheme for encoding information as relationships between nodes in a graph. Brachman [4]
identifies five levels for describing semantic networks. Each level is distinguished by the characteristics
of the links between nodes. The implementation level characterizes a semantic network simply as a graph.
Pointers join nodes, but no specific meaning is assigned to the structure. This level of abstraction provides
a dynamic, persistent memory scheme. The logical level interprets semantic networks as predicates in a

o}

IF r,,,: = SHARP THEN
structural-comment sharp root radii increase stresses

IF 7.0t = SHARP and

a perspective other than aerodynamics has commented on the root THEN
aerodynamic-comment sharp root radii increase performance

Figure 2: Augmented turbine blade

predicate calculus. Nodes in this abstraction represent logical relationships such as AND, OR, or SUBSET-
OF between atoms or elementary data structures. The conceptual level depicts links between conceptual
objects as domain-independent relationships, such as spatial, temporal or causal. The epistemological
level extends the notions of conceptual objects and the properties and structure that define them. At this
level, conceptual objects can be related taxonomicaily to allow inheritance of description from a super-
class to a sub-class.

Brachman’s fifth level is the linguistic level. It is distinct from the other levels because the primitives
of the network are language dependent. Also, unlike the other levels, the meaning of these primitives is
expected to change over time. Context-free grammars are an cxample of linguistic level network.

Rule-based systems provide a method of heuristic search [26] based upon a recognize-act cycle. Each
rule (or production) encodes a pattern/action pair that reads and modifies a database environment. When
the pattern matches the data in the environment, the associated action is performed. If multiple rules are
satisfied simultaneously, a conflict-resolution strategy chooses among them for one to execute. The cycle
of matching pattemns and executing actions usually continues until no more rules can be applied.

Semantic networks and production systems can augment solid models fo provide qualitative and quan-
titative abstractions of the design. For example, consider the turbine blade in Figure 2. From this model,
a quantity for the radius of curvature at the root can be derived. This number can be applicd to formula to
determine stresses in the blade, manufacturability, acrodynamic properties, etc. However, these computa-
tions can be expensive and may not provide the desired feedback to the designer. A qualitative abstraction
of the root radius can be used to gernierate common-sense suggestions equally uscful to the designer, but
without extensive computation. If the root radius is determined to be sharp, the system can inform the

designer that sharp root radii increase stresses orsharp root radii increase
aerodynamic performance. While this feedback lacks detail, it provides useful information which
the designer can act upon.

There has been much recent research on defining a qualitative physics — a qualitative causal calculus
for reasoning about physical systems [8, 22, 20]. In these models, the behavior of a physical system is
defined by a set of simultaneous equations of functional relations augmented by an asymmetric compu-
tational mechanism to model causality. For example, de Kleer and Brown [9] impose a heuristic mecha-
nism based upon the dynamics of the systems to derive causality while Iwasaki and Simon [20] determine
causality algebraicly using a model of what variables directly affect other variables. These models have
been used 1o simulate mechanical [23] and molecular-genetic [34] systems, to diagnosis faulty circuits
[10], and in the design of alluminum alloys [24].

The Iatter system, Aladin, is particularly interesting because it demonstrates how qualitative reasoning
can augment quantitative models in a design activity. To design a new alloy, qualitative and quantitative
reasoning occurs as appropriate for each of the microstructure of the material, the properties of the alloys,
the alloy composition, and the thermo-mechanical manufacturing process. The two levels are coupled by
first designing a material at a qualitative level, then at the quantitative level. For example, the determina-
tion of which alloying elements to add occurs at the qualitative level; the determination of how much of
each element to add occurs at the quantitative level.

Qualitative knowledge is equally useful for conceptual design systems. Qualitative simulation can
be used to determine the manufacturability of an artifact, its structural properties, and other facets of the
artifact of interest to the designer. Detection of problems areas by such simulations can then be used to
direct the designer’s attention to those arcas for more detailed, quantitative analysis.

3.2 Organization

The role of the architecture is to coordinate design activities to minimize the effort of the designer. Design
reasoning is not monolithic; there does not exist a single algorithm that given the right inputs, outputs a
complete, optimized design. As described earlier, itis a search process that requires the reasoned applica-
tion of many methods and representations. Any problem solving organization must be able to encapsulate
these methods and apply them where appropriate.

3.2.1 Encapsulation

Opportunism in problem-solving can be viewed as pattern-directed application of heuristics and proce-
dures. Changes in the design give rise to many cooperating and conflicting opportunities. In order to
prevent opportunities from degenerating into chaos, the architecture must organize the exploration of
alternatives posed by them.

The first step towards organizing is to encapsulate this knowledge of opportunities so that the ar-
chitecture can intelligently select which to apply. Perspectives give rise to the need to modularize the
procedures and heuristics applicable to one particular view. The specification of a perspective, includ-
ing the designer’s perspective, must include its function, its desired input and expected outputs, and the
validity and certainty of its results. For example, the function of the manufacturing perspective would
be to determine whether an artifact could be fabricated. Its input would be the geometry of the artifact,
and its output would be confirmation of its manufacturablity or a list of problems with the current design
associated with a degree of confidence in this assertion.

3.2.2 Coordination

The computer-assisted design system is required to coordinate these multiple encapsulation’s (which we
call agents) to produce an artifact from a specification. The competing goals of the designer and the life-

cycle perspectives, the interactions between specifications and geometry of the artifact, etc provide many
sources of complexity in this system. Complexity yields chaos. The architecture constrains this chaos by
applying a structure to the system [13]. Hierarchical structures provide one or many levels of authority;
heterarchical structures permits competition between agents that are cooperating toward a common goal.

Hierarchical structures vest decision-making authority in one or more agents. Simple hierarchies have
a single decision maker, either one agent or a group of cooperating agents. Uniform hierarchies apply
multiple levels of decision-making to filter competing information. Information moves up a uniform
hierarchy, while decision-making control propagates down from higher-levels.

Brown and Chandrasekaran [5] use a hierarchy to manage complexity in a system to perform routine
design. Specialists that design specific components of an artifact are organized in a uniform hierarchy.
More specific specialist occur at lower levels in this hierarchy which are invoked from higher, more
general levels in the hierarchy.

Heterarchical systems have numerous disjoint agents available for particular tasks. Coordination in
this type of system is by negotiation and contract based upon the marginal cost of the task [7, 33, 31].
Entities compete for tasks with all other forms of control eliminated between units. Each entity in the
heterarchy pursues its own goals in correspondence to the needs of another.

Heterarchical systems provide a stucture for problem-solving in design systems with multiple perp-
spectives. Negotiations between multiple competing perspectives decide particular strategies to pursue
in the design process. A shared representation of the design supports inter-perspective communication.
The Design Fusion system described in the next section applies heterarchical coordination to the desi gn
problem. _

Design agents can be organized in either hierarchical or heterarchical structures that determine the
decision making process, but the problem of coordinating these agents remains. Systems that plan coodi-
nate the activities of the agents by exploring and evaluating alternate design processes before committing
to an acceptable one [16]. Systems must also schedule the activities of the agents, selecting appropriate
agents to evaluate and participate in the design process at appropriate times [19, 5]. The architecture must
provide either planning, scheduling or a combination of both to coordinate the activities of desi £n agents.

3.3 Summary

The role of an architecture is to integrate partial solutions around a central representation. Problem-
solving architectures are composed of a database and a method of coordinating operations on the database.
Semantic networks provide a representation for encoding qualitative and quantitative design data in a
shared database. Hierarchical and heterarchical structures can be used to coordinate the access of multiple
design agents to the database.

4 Design Fusion

Design Fusion [12] uses a blackboard architecture to provide a heterarchical organization for multiple
life-cycle perspectives to view and comment on a shared representation of the desi gn. It is based on three
underlying concepts:

1. Integrating life-cycle concerns through the use of views from multiple perspectives, where each
perspective represents a different life-cycle concern such as manufacturing, structures, materials,
erc;

2. Representing the design at various levels of abstraction and granularity through the use of features,
where features are the attributes that characterize a design from the viewpoint of any perspective;

3. Generating and pruning the design space through the use of constraints.

BLACKBOARD : =SHARP ?

root

Designer Geometry
Constraint Structures
Manager
Feature
Extraction

XD

7
Qualitative data Y \/ l

AN

/
Q Quantitative data
/

=SHARP ?

root

Hcomment(r) #
Toot

Manufacturing

aero-comment

Aerodynamics

Figure 3: Flow of control in Design Fusion

Figure 3 depicts the organization of the system. The designer and three life-cycle perspectives are rep-
resented: manufacturing, structures and aerodynamics. Each of these perspectives encapsulates expertise
for the relevant specialty. They act as proxies, providing feedback to the designer based upon qualitative
and quantitative models. The perspectives monitor the design through the blackboard, which represents
the design in terms of geometry (and topology), constraints, and a database of qualitative design features
and quantitative parameter values derivable from the geometry.

A non-manifold representation scheme [18] for geometry provides a neutral representation of the
design. The perspectives extract features from the geometry, and calculate parameter values from the
features. Pinilla et al. [11] describe a formal method to describe shapes and features that relate closely to
very low-level models of objects. This provides an interlingua for the perspectives to communicate about
an artifacts form.

Parameters extracted from the design are recorded in the database. A truth-maintenance system (TMS)
tracks the dependency between the data in the database and the geometry from which it was derived. It is
used to detect when assertions in the database are no longer supported by the current geometry. Revisions
are also explicitly represented in the database as relations between assertions.

Perspectives monitor database changes, and are invoked to comment on the design at appropriate
times. For example, in Figure 3 the structural perspective is monitoring the design for sharp root radii.
Likewise, the aerodynamic perspective is monitoring that no other perspective comments on sharp root
radii.

When a monitoring condition is satisfied, the life-cycle perspective is invoked. It may express prefer-
ences about the design by commenting to the designer or imposing constraints on the design. For example,
when the structural perspective recognizes a blending surface in the design, it can impose a constraint on
the sharpness of the surface. When this constraint is violated, it can comment to the designer its concern
about radii sharpness. Likewise, when the acrodynamic perspective detects an airfoil in the design, it
can express its preferences on the radii of blending surfaces by imposing constraints on the design. It is
important to note that acrodynamics notion of sharpness and structures notion of sharpness need not be
the same. Each perspective defines its own sharpness-feature through the feature extraction language.

These perspective-specific features are extracted from the neutral geometric representation.

A constraint manager coordinates constraints imposed by the designer and perspectives. It has three
functions. First, it detects violated constraints. When a constraint violation occurs, the perspective that
imposed the constraint is invoked to process the violation. Second, it can propagate known values to
determine consistent assignments for other design variables. Lastly, the constraint manager facilitates
opportunistic reasoning. There are times during the design process when the designer desires to perform
some analysis, but all the inputs arc not known or have not been specified. Through constraints, these
inputs can be identified, and plans generated to acquire the necessary design parameters.

Together, these components form a problem-solving architecture that meets the requirements enu-
merated in Section 2. It permits opportunism through a shared representation of design assertions and
constraints. Multiple perspectives encapsulate qualitative and quantitative models to provide the designer
feedback from life-cycle proxies. The system remains focused by observing changes to a database of facts
about a design coordinated by the designer.

5 Conclusion

We have shown how artificial intelligence techniques can provide an architecture for computer-assisted
design. The role of this architecture is to integrate around a common representation partial solutions to
portions of the design problem. This architecture is a general model of problem-solving to free designers
from the process of design and permit them to concentrate on the design. ,

The architecture must meet a set of requirements to fulfill this role. As a general model of problem-
solving, the architecture must support the problem-solving process. The architecture must support man-
agement for design constraints and multiple design view-points, or perspectives. It must support commu-
nication and negotiation for these perspectives by providing a common representation of the design. A
representation for the focus of the designer must also be supported. Databases represented as semantic
networks and control from pattern-directed inference and architectural structure are the components of an
architecture which are brought together to satisfy these requircments.

The Design Fusion system is an example of a system that uses these components. It combines multiple
life-cycle perspectives which view a common design through perspective-specific features. The goal
of this effort is to create the underlying theories and methodologies for a computer-based system that
will assist in creating mechanical designs that meet their function, cost and quality requirements while
simultaneously meeting the constraints imposed by life-cycle activities such as manufacturin g and service.

6 Acknowledgments

We wish to thank Susan Finger for all her help in the preparation of this paper. We also wish to thank
Caroline Hayes, Gilad Amiri, Monica Cellio, Mark Perlin, Chris Young and all the members of Camegie
Mellon’s Design Fusion project for all their pertinent comments on the paper.

References
[1] O. Akin. Psychology of Architectural Design. Pion Limited, London, United Kingdom, 1986.
(2] C. Alcxander. Notes on the Synthesis of Form. Harvard University Press, Cambridge MA, 1965.
[3] C. Alexander. A city is not a tree. Ekistics, 139:344-348, 1968.

[4] R.J. Brachman. On the Epistemological Status of Semantic Networks, pages 191-216. Morgan
Kaufmann, Palo Alto CA, 1985.

1N

(5]

(6]

(9]

[10]

{11}

[12]

(16]

(17}

(19]

(20]

D. C. Brown and B. Chandrasekaran. Knowledge and control for a mechanical design expert system.
IEEE Computer, 19(7):92-100, July 1986.

L. A. Stauffer D. G. Ullman and T. G. Dietterich. Preliminary results of an experimental study of
the mechanical design process. In M. B. Waldron, editor, Proceedings from the NSF Workshop on
the Design Process, pages 145-188, Oakland, CA, February 8-10 1987. Ohio State University.

R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem solving. Artificial
Intelligence, 20:63-109, 1983.

J. deKleer and J. S. Brown. The origin, form and logic of qualitative physical laws. In Proceedings
of the Eighth International Joint Conference on Artificila Intelligence, pages 1158-1169, 1983.

J. de Kleerand J. S. Brown. Theories of causal ordering. Journal of Artificial Intelligence, 29(1):33—
62, 1986.

J. de Kleer and B. C. Williams. Diagnosing multiple faults. Journal of Artificial Intelligence,
32(1):97-130, 1987.

J. M. Pinilla et al. Augmented topology grammar for feature recognition. In 7989 NSF Engineering
Design Conference, June 1989.

S. Finger et al. The design fusion project: A product life-cycle view for engineering design. In
H. Yoshikawa and T. Holden, editors, IFIP WG 5.2 Workshop on Intelligent CAD, pages 165-172,
September 1988.

M. S. Fox. Organization structuring: Designing large complex software. Technical Report CMU-
CS-79-155, Camegie Mellon University, Pittsburgh PA, December 1979.

M. S. Fox. Constraint Directed Search: A Case Study of Job-Shop Scheduling. PhD thesis, Carnegie
Mellon University, 1983,

M. S. Fox. Observations on the role of constraints in problems-solving. In Proceedings of the Sixth
Canadian Conference on Artificial Intelligence, pages 172187, May 1986.

J.S. Gero and R. D. Coyne. Knowledge-Based Planning as a Design Paradigm, pages 289-323.
Elsivar Publishing, 1987.

B. J. Grosz. The Representation and Use of Focus in a System for Understanding Dialogs, pages
353-362. Morgan Kaufmann, Palo Alto CA, 1986.

E. L. Gursoz and F. B. Prinz. Corner-based representation of non-manifold surface boundaries in
geometric modeling. Dfm-edrc, Carnegie Mellon University, Pittsburgh, PA, 1988.

F.Hayes-Rothand V.R. Lesser. Focus of attention in a distributed logic specch understanding system.
In Proceedings of the International Joint Conference on Artificilal ntelligence, pages 27-35, 1977.

Y. Iwasaki and H. A. Simon. Causality in device behavior, Journal of Artificial Intelligence, 29(1):3—
32, 1986.

R. H. Katz. Information Management for Engineering Design. Springer-Verlag, New York NY,
1985.

B. Kuipers. Commonsense reasoning about causality: Deriving behaviour from structure. Journal
of Artificial Intelligence, 24:169-203, 1984.

11

(23]
[24]

[25]
[26]
(27]

(28]

{31]

[32]

(33]

[34]

B. Kuipers. Qualitative simulation. Journal of Artificial Intelligence, 29(3):289-337, 1986.

1. Hulthage M. D. Rychener, M. L. Farinacci and M. S. Fox. Integration of multiple knowledge
sources in aladin, an alloy design system. In Proceedings of the Fifth National Conference on
Artificila Intelligence, pages 878-882, 1985.

J. Mostow. Toward better models of the design process. AI Magazine, 6(1):44-57, Spring 1985.
A. Newell and H. Simon. Human Problem Solving. Prentice-Hall, Englewood, New Jersey, 1972.

B. Ostrofsky. Design, Planning, and Development Methodology. Prentice-Hall, Inc, Englewood
Cliffs NJ, 1977.

A. A. G. Requicha and H. B. Voelcker. Solid modeling: A historical summary and contemporary
assessment. IEEE Computer Graphics and Applications, 2(2):9-23, 1982.

J. R. Rinderle. Implications of function-form-fabrication relations in design decomposition strate-
gies. Computers in Engineering, 1, 1986.

J. R. Rinderle and J. D. Watton. Automatic identification of critical design relationships. In Pro-
ceedings of International Conference on Engineering Design ICED 87, August 1987.

A. Sathi and M. S. Fox. Constraint Directed Negotiation of Resource Reallocations. Morgan Kauf-
mann, Los Altos, CA, 1989.

H. A. Simon. The Architecture of Complexity, chapter 7, pages 192-229. MIT Press, Cambridge
MA, 1968.

K. Sycara. Resolving Adversarial Conflicts: An Approach Integrating Case-Based and Analytic
Methods. PhD thesis, School of Information and Computer Science Georgia Institute of Technology,
Atlanta, GA, 1987.

D. S. Weld. The use of aggregation in causal simulation. Journal of Artificial Intelligence, 30(1):1—
34, 1986.

12

