To appear in: Concurrent Engineering
Edited by P. Gu and A. Kusiak

Constraint Management in Design Fusion
D. Navin chandra?, Mark S. Fox?, Eric S. Gardner?

aCenter for Integrated Manufacturing Decision Systems
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213
USA

bDepartment of Industrial Engineering, University of Toronto
4 Taddle Creek Road, Toronto, Ontario M5S 1A4, Canada

Abstract

We describe the Constraint Management System (CMS) of Design Fusion.
Design Fusion supports the preliminary design process by providing criticism
and guidance from the many perspectives that span the product life cycle.
Central to Design Fusion is the representation and management of design
requirements and decisions in the form of a constraint graph. CMS provides for
the representation of a variety of constraint types, the propagation and checking
of design decisions and the management of sets of constraints within and across
design perspectives.

1. Introduction

As today’s marketplace becomes more competitive, engineers are being forced
to focus on the life-cycle implications of their decisions. An artifact should not
only function properly, but it should also be manufacturable, reliable, easy to
service, and should be recyclable. In order to design a product that satisfies
these criteria, engineers have to concurrently manipulate, solve, and manage a
wide variety of constraints. These constraints are in the form of goals,
requirements, resource-limitations, and models that arise from a variety of
sources spread across the organization. In practice, however, engineering design
is often performed in a sequential manner. For example, in the design of a jet
engine turbine disk, the aerodynamic shape of the blade might be determined
first, and then be modified to satisfy structural constraints. It might be further
modified to satisfy manufacturability and maintenance considerations. The
problem with sequential design is that it shields engineers from knowing and
considering other life cycle constraints. As a result, the design may require
many time-consuming iterations to adequately address all the life-cycle
considerations.

It is not surprising that such a situation exists, since there are few individuals
capable of bringing a full range of life-cycle concerns to bear during design.
Nevertheless, the fact that considerations such as manufacturing and
maintenance are introduced only on an ad-hoc basis during preliminary design
gives rise to fundamental design deficiencies. It is the aim of concurrent
engineering design to include a broad range of functional and life-cycle concerns
during preliminary design phases. While it is possible to obtain an appearance
of concurrence by rapidly iterating through the basic sequential design process,
we seek a greater degree of concurrency by attempting to identify critical life
cycle concerns early, and to use those concerns to direct design decisions.

Life-cycle concerns impose required relationships among features of the design
that affect functionality, manufacturability, reliability, and serviceability. In
the context of engineering design, these required relationships can be thought of
as constraints among design features. Constraints may embody a design
objective (e.g. weight), a physical law (e.g. F = ma), geometric compatibility (e.g.
mating of parts), production requirements (e.g. no blind holes), or any other
design requirement. We can express constraints as algebraic and symbolic
relations among feature parameters (e.g. hole diameter, wall thickness, stress
level). Collectively, the constraints define what will be an acceptable design.
Constraint based representations provide a uniform representation for a variety
of design considerations including function, geometry, production, servicing and
disposal. Because there is a single, uniform representation for all constraints
there is no differentiation between functional, geometric, manufacturing, and
other, so called, life-cycle constraints. Methods used to refine the design by
processing constraints are applied uniformly to all the constraints, regardless of
their origin. The computer does not distinguish between constraints that are
functional and those that have traditionally been considered downstream of the
design phase. All constraints, up-stream or down-stream are considered equal.
At any stage in the design process, the computer will focus its attention on the
constraints that have been violated, regardless of their origins. It is for this
reason that our approach achieves concurrency. For example, while a designer
is working on the intricacies of the electrical connections in a large power
transformer, the designer might be alerted to a problem with maximum
allowable size for transportation.

This chapter describes the Constraint Management System (CMS) developed
for the Design Fusion system. Design Fusion supports the preliminary design
process by providing criticism and guidance from the many perspectives that
span the product life cycle. We began by briefly describing Design Fusion
followed by a description of the Constraint Management System’s (CMS)
capabilities with respect to the issues presented above. We start with a look at
the constraint representation. We then describe how constraints emanating
from multiple agents are managed. Followed by a description of how constraints
are used to coordinate the decisions of multiple agents through conflict detection
and subsequent resolution.

2. Design Fusion

In this section we will briefly examine the structure of a concurrent design
system called Design Fusion. Our Constraint Management System (CMS) is
part of Design Fusion. The proceeding discussion is intended to illustrate the
context in which a constraint management facility can be used. The CMS is an
independent software package that can be part of any concurrent, multi-agent
design environment, not just Design Fusion.

The goal of Design Fusion is to create a computer-based design system that
will enable a designer to concurrently consider the interactions and trade-offs
among different (and even conflicting) requirements, arising from one or more
life cycle perspectives. It surrounds the designer with experts and advisors that
provide continuous feedback based on incremental analysis of the design as it
evolves. These experts and advisors, called perspectives, can generate comments
on the design (e.g. comments on its manufacturability), information that
becomes part of the design (e.g. stresses), and portions of the geometry (e.g. the
shape of an airfoil). However, the perspectives are not just a sophisticated
toolbox for the designer; rather they are a group of advisors who interact with
one another and with the designer.

Design Fusion is based on three underlying concepts:

¢ Integrating life-cycle concerns through the use of views from
multiple perspectives, where each perspective represents a different
life-cycle concern such as manufacturing, distribution, maintenance,
elc

* Representing the design space at different levels of abstraction and
granularity through the use of features, where features are the
attributes that characterize a design from the viewpoint of a
perspective

* Generating and pruning the design space through the use of
constraints

Using the concepts of perspectives, features, and constraints, the Design
Fusion system generates, prunes, and tests design alternatives. A key element
of the Design Fusion architecture is the concept of degree of fusion, that is, the
degree to which design decisions are simultaneously generated and evaluated by
the interacting perspectives. In Design Fusion, all perspectives may generate
and test design alternatives at all levels of abstraction and at every stage in the
evolution of the design. Thus, Design Fusion is quite distinct from systems that
use after-the-fact design critics to evaluate completed designs.

The design space can be viewed as a multi-dimensional space in which each
dimension is a different life-cycle objective such as fabrication, testing,
serviceability, reliability, etc. These dimensions are called perspectives because
each dimension can be thought of as a different way of looking at the design. As

a design evolves, a designer moves from one viewpoint in the design space to
another and moves from one level of abstraction to another both within a
perspective and across different perspectives. By continuously viewing,
commenting on, and intervening in, the evolution of a design from each of the
perspectives, the constraints of the product’s life-cycle will be accounted for in
the completed design. Design Fusion allows implicit functional requirements
such as manufacture, assembly, test, etc. to be integrated into the design at the
appropriate time and at the appropriate level of detail.

The Design Fusion architecture [Fox et al. 92] is based on the blackboard
model of problem solving [Erman et al. 80, Nii 86a, Nii 86b] illustrated in Figure
2-1. The architecture has four major components: the blackboard, knowledge
sources, search manager, and user interface.

Design
Manager

4

/

Potential Tasks I +—b¢ Fabrication
Constraints
Goals

Control Panel
e Assembly

Constraint
D Manager
S Design Record

Constraints

I Features
G T DI Feature Pane!) + Distribution
N

Feature .

i > Field

E Mapping
R

¢

Geometric Model |
/ {=—"\Reclamation

Geometry Panel

Figure 2-1: Design Fusion system architecture

The blackboard is a composed of a hierarchy of three panels. The geometry
panel is the lowest level representation of the design. It provides a geometric-
based representation using the NOODLES modeller.

The feature panel is a symbol level representation of the design. It provides

symbolic representations of features, constraints, specifications and the design
record. Features are defined in terms of geometric features and are extracted
automatically from the geometry panel. Constraints of various types link
features. A design record tracks the design decisions that led to the creation of a
constraint or feature. Design records are defined by the perspective which
generated the decision, the type of processing that led to the decision, and the
information upon which it was based. This information can be used to maintain
design consistency when underlying assumptions of the design change or to
track constraint violations back to the sources.

The control panel contains the information necessary to control the operation
of the system. It uses knowledge of design goals and constraints to decide where
attention should be focused and which knowledge source to apply next.

There exist two types of knowledge sources: perspectivies and methods.
Perspectives represent knowledge of different stages in the product life cycle.
Each perspective may criticize or generate design decisions. Using perspectives
that communicate through a blackboard architecture enables us to partition the
design knowledge. Each perspective can define its own internal set of features,
constraints, and variables. Inconsistent requirements, names, and definitions
are contained within the perspectives because the communication is through the
shared representation. Methods provide standard analysis capabilities to the
system. Three methods are currently being used: feature extraction, constraint
management and mathematical programming.

The search manager provides a means for dynamically coordinating the
application of knowledge sources as required by the problem and the designer.
The system cycles through four stages of control: knowledge source
identification, knowledge source selection, knowledge source execution, and
constraint management. At the beginning of each cycle perspectives indicate
their interest in contributing to the design. The search manager must decide
which perspective then is to execute. Inconsistencies and conflicts in goals
inevitably arise during the design process. These inconsistencies are tolerated
by the system but are also tracked. The designer is notified of inconsistencies
when appropriate.

The purpose fo the user interface is to provide the designer with a complete
interactive environment for doing design. It provides the user with the ability
to: define specifications and constraints, select from a library of existing designs,
and modify designs. The user also has the capability to override the systems
decisions at each stage in the search manager’s decision cycle.

CMS is a critical component of the Design Fusion system. Design decision-
making centers on features, parameters and constraints. It is CMS that
maintains the constraint model, propagates decisions and detects inconsistencies
as the design process proceeds. Our research has focused on several issues

relating to the use and management of constraints in a concurrent engineering
design environment. The foremost issue is that of representation. A uniform
representation mechanism for capturing a wide variety of constraint and
parameter types 1s needed. The representation should allow multiple
perspectives to dynamically add and retract constraints from an evolving design.
While there is a need to handle all the constraints simultaneously, there is also
the need to keep track of the origins of constraints, their importance, and
information about who created them and for what reason. These constraints can
be used for inter-perspective communication via a protocol that allows for the
posting, checking, retraction and general manipulation of the constraint based
information. When many agents post their constraints, it is important to keep
track of relationships among constraints as they are added to the constraint
pool. Perspectives should not be allowed to modify parameters owned by other
perspectives, unless the appropriate permissions are provided. Mechanisms to
handle inter-perspective referencing of parameters are needed. In this context,
constraints can also be used to "bridge" related parameters in two different
perspectives. For example, two perspectives might use different terms to mean
the same thing, a constraint equating the two parameters could address this
mismatch. In addition, two perspectives might use the same term to mean
different things, in this case contextual information has to be maintained. For
example, when aerodynamics says "length", it should not be confused with the
manufacturing perspective’s "length”.

As several perspectives post their own constraints, conflicts may be detected.
We need methods by which constraints can be checked. This checking should
include chaining, that is, the implications of a design decision should be
propagated to other parts of the design. This approach makes it possible to
detect violations among the decisions made by the perspectives. Finally, the
detected conflicts have to be resolved. We need a conflict resolution protocol that
will allow the various perspectives to arrive at a settlement. In distributed
problem solving situations the passing of constraints among agents can be
viewed as a means of negotiation. A protocol for conflict detection, blame
assignment and resolution is needed.

Although constraints are a general mechanism for representing design
considerations, it is not possible to identify all design constraints at the time the
design problem is first proposed. This is because the set of relevant constraints
depends on the design context. If the geometry of the designed artifact is such
that casting is an appropriate manufacturing method, then casting constraints
are required. Alternatively, a set of machining constraints is necessary if the
part is to be machined. Similarly, there are constraints that are dependent on
material, assembly methods, and a host of other considerations. The relevant
constraints depend on the current design features. The features themselves may
be completely defined aspects of a detailed design or they may be partially
specified characteristics of a general configuration. Because constraints are
required relationships among feature parameters they may be retracted,

augmented or refined as the design evolves. The design can be thought of as
being complete when the set of constraints stabilize and when all the constraints
have been satisfied. If we assume for the remainder of this paper that
constraints can be expressed as relationships among feature parameters, then
we can say that a design is complete when all parameters have been assigned
values and when all the constraints have been satisfied simultaneously.

3. Constraint Representation
The constraint representation has three parts: parameters, constraints, and
constraint sets.

3.1. Parameters

A constraint defines a relationship among design parameters. Parameters are
associated with features of the design. For example, a "hole" feature will have
(at least) "radius” and "depth" parameters. Parameters are typed, with the
following types available in CMS:

1. continuous-variable. Examples: 10.3, 4.343

2. discrete. Examples: 3, 10

3. symbolic. Examples: green, table

4. logical. == {.true. .false. .unknown. .dontcare.}

5. qualitative-quanitity. {0 + -}

The frame representation of a parameter is as follows:

{{ PARAMETER

full-name full print name

value current value of parameter, starts
as UNKNOWN

constrained-by constraints that constrain the
parameter

current design context
current level

context
abstraction-level
time-stamp

owner

protection
relaxation-function

e N me we we owe o~

perspective name

visibility to other perspectives
function which will return
relaxations

name of originating entity

How generated, by input or by a
; constraint
generation-justification ; reason for creation

}}

related-feature
generated-by

¢ Ne N N we N w

3.2. Constraints
Parameters may be linked together by one or more constraints that define a
graph. CMS supports the following constraint types:

1. A Restriction: A limitation on some parameter. For example:
The largest motor that can be wound on the automatic winding
machine is 25 cm. dia.

2. Equations: Equalities and in-equality equations are used for
engineering constraints. For example: F = m.a, or F <=m.a

3. A Requirement: An inequality or set membership. For example:
Safety rating should be at least 2.3, or Color should be one of {Green
Opal Bluej.

4. A predicate: Simple logical relations among logical parameters
can be checked. For example: a ANDbORc = .true.. Predicate
constraints, however, cannot be propagated. This is done with
rules.

5. Inference Rules. These are symbolic constraints that can be used
for propagation. For example a ANDb —> .

6. Qualitative-constraint. Qualitative constraints can be imposed
on qualitative quantities. For example, in a hydromechanical
domain to require that some water flow (Q) does not increase with
some signal (X), we write the constraint as follows: [not(Q X +)
AND not(Q X-)]

7. A Goal: A max or min goal requirement. For example: Maximize
pressure difference across stage-one. This has not been implemented
yet.

8. A Range: Intervals capture the notion of ranges. For example:
Design Velocity should be between 100 to 200 m.p.h. Ranges may be
exclusive: Vibration harmonics should be outside the interval [33,
44].

9. Implicit-constraint. Black box constraints. These are usually in
the form of subroutines that take certain inputs and produce
outputs. In these cases, the system does not have access to the
inner workings of the constraint.

10. Compatibility Relations: For Example: Snap fits are not
compatible with high temperature applications. This aspect is
implemented as look-up tables.

The set of constraints form a dynamic constraint graph. It is possible to post
constraints to the graph from a variety of different perspectives. For example,
one might load the design constraints together with the manufacturing
constraints to find possible conflicts. Such conflicts may be found well before
values are selected for all the variables in the design. It is for this reason that
the constraint graph representation is useful in coordinating the perspectives.

The constraint graph is represented as a tri-partite graph of constraints,
parameters, and features. Each constraint points to the parameters it
constrains and each parameter points to the feature it is part of (Figure 3-1).

Parameter

Constraint

Parameter

Constraint

Feature
Entity

Parameter

Feature
Entity

Parameter

Figure 3-1: Tri-partite graph of features, variables and constraints

A constraint is represented as a frame with attributes that relate it to its

surroundings in the constraint graph:

{{ CONSTRAINT
form ;
context ;
active? ;
time-stamp :
satisfaction-level ;
abstraction-level :
in-set :
has-relaxations ;
owner ;

constrains ;

protection
exported ;
abstraction-of ;

importance ;
generated-by ;
generation- justlflcatlon

}3

the equation/logical relation
the design context

is it on or off

when was it posted

how violated is it (error wvalue)
name of abstraction level

which constraint set is it in
simpler forms of the constraint
name of perspective

list of feature parameters that
are constrained

read, write protection

is it visible to outsiders?

list of constraints that this

is an abstraction of constraint
on a scale of 1 to 10

who created it? Another constraint?
; reason for creation

3.3. Constraint Sets

Each perspective has its own set of features that it is interested in.
Consequently, each perspective also has its own set of constraints that relate its
parameters. For example, a manufacturing perspective is interested in
parameters relating to tolerances, surface finishes and the process plan. These
parameters are owned by the perspective. Ownership relations are handled in
CMS by partitioning the constraint graph into constraint sets (CS). Each
constraint set is owned-by a perspective or any other client on the network.
This arrangement is indicated in Figure 3-2.

Constraint sets are collections of parameters and constraints and are created
by perspectives. We also allow constraint sets to contain constraint sets. This
information is held in the parent and children slots of each constraint set. A
constraint set can have many parent constraint sets. The highest parent
constraint set is "root” and the leaf constraint sets point to the NULL child.
Each perspective owns one or more constraint sets. The parameters in a
constraint set may be internal to a constraint set or may be exported. By
exporting a parameter, a particular perspective makes the parameter "visible" to
other perspectives.

{{ CONSTRAINT_SET

name name of the cs
perspective name of perspective that created this cs
owned-by name of client who owns the perspective

list of ¢s that refer to vars in
this ¢s including this cs
list of the cs that contain this cs

interested-parties

parent

children
contains_constraints
owns_constraints
contains_parameters
owns_parameters
contains_constraints
owns_constraints
contains_parameters
owns_parameters
locks_parameters
imports_parameters

list of constraints contained in the cs
list of constraints owned by the cs
list of parameters contained in the cs
list of parameters owned by the cs

list of constraints contained in the cs
list of constraints owned by the cs
list of parameters contained in the cs
list of parameters owned by the cs

list of parameters locked by the cs
parameters imported from other cs

list of the cs that are contained in this cs

public_export
private_export

Ne Ma M e Ne Ne Ne Na ML NG S Ne NE Ne N S NE Se Ne S

13

parameters that can be referenced by any cs
parameters that may be referenced by any cs
that has the same perspective as the this cs

As the Figure 3-2 shows, there are some constraints that refer to parameters
in other constraint sets. It is this capability that makes CMS’s representation
Any perspective can post its own
constraints that relate to parameters in other constraint sets. This is how
parameters belonging to different disciplines can be made to relate to one

useful in multi-perspective coordination.

another.

As is shown in the figure, we are required to distinguish between parameters

Constraint World —

Client3
’ ow DO

3 -

)Y\ owns \

Client2 Inter-constraint set
> | 4— relations

=< —

C O

gwns
Client1

Child Constraint Set

Constraint Set

Figure 3-2: Constraint World consisting of inter-connected constraint sets

that are internally and externally referenced. Parameters that are allowed to be
referenced in constraints outside the current constraint set are said to be
"exported”. Parameters may either be exported to other constraint sets
belonging to the same perspective or to constraint sets belonging to other
perspectives. To capture this information, the exported parameters are
distributed in two lists: public_export (those exported to all constraint sets)
and private_export (those exported to constraint sets belonging to the same
perspective). Those parameters that exist in the list owns_parameters and not
in the two exported parameter lists are the current constraint set’s internal
parameters.

If the parameters that a constraint references are in other constraint sets, one
would have to check if the parameters have indeed been "exported” by those
constraint sets. If the perspective of the two constraint sets is the same, then
the parameter should at least be privately exported (present in
private_export list). If the perspectives differ, the parameter should have
been publically exported.

3.4. Constraint Set Maintenance

As the constraint graph is dynamic in nature, i.e., throughout the design
process new constraints are added and modified by developers, logical
consistency has to be maintained at all times. Following are consistency
maintenance methods provided by CMS. The consistency algorithms were
designed and implemented by Kerrin Smith [Smith 91].

Whenever one constraint set is contained by another, the values in the
contains-parameters and contains-constraints slot of a child, are
appended to the contains-parameters and contains-constraints slots in
the parent CS. Duplicate values are not appended. The child CS is appended to
the children slot in the parent CS. The parent CS is appended to the parents
slot in the child CS. These actions are carried out automatically within the CMS
and so the user is relieved of the burden of maintaining this consistency.

To allow for the deletion of constraint sets, each constraint set carries
information about other constraint sets that refer to it. This is done with a slot
in the constraint_set data structure called interested_parties. This slot
carries the names of constraint sets with constraints that refer to parameters in
the current constraint set. The list includes the name of the current constraint
set (it is interested in itself). When a perspective attempts to delete a constraint
set, it may not be possible because other constraint sets may refer to parameters
inside the current constraint set. In other words, although a constraint set is
not "interested” in itself, there may be other parties that are still interested in it.

Consistency of the network is maintained through a high degree of redundancy
in the data structures. For example a constraint that constrains some
parameters X, Y, and Z, maintains this information locally. In addition,
parameters X, Y, and Z maintain the information that they are constrained by
the constraint. It would be possible to determine the contains-parameters
slot in a CS by traversing every constraint within the CS or (recursively) within
a child CS. However, if this data is needed often (e.g., to determine the
criticality of a particular parameter) then retrieving it by a recursive scanning of
constraint sets would be time consuming. Hence, this information is maintained
in two places. The tradeoff is one of data independence (or orthogonality) vs.
quick and efficient traversal of the data.

While there is redundancy of information, the data itself is not redundant.
The actual parameters, constraints, etc., are stored in only one place and
therefore there is no risk of data inconsistency. The data redundancy is
achieved by storing pointers rather than storing values or structures and
therefore, we can obtain this useful redundancy with a minimum of additional
memory use. The only real price one pays for this redundancy is ensuring that
the constraint network remains consistent. This requires, for example, that if a
constraint is deleted and with it the last occurrence of a parameter, then all
pointers to the parameter must be automatically deleted.

4. Constraint Networks: Manipulation and Propagation
The CMS provides a variety of constraint manipulation and reasoning
capabilities, including:

1. Posting. Perspectives are able to send constraints to the system’s
constraint graph anytime during a product’s development cycle.
Whenever a constraint is received, it is automatically linked into
the constraint graph, and hence becomes part of the design’s
environment.

2. Checking and Evaluation. Constraints and algebraic
expressions may be evaluated at any time.

3. Consistency. When a perspective makes a change to a feature, it
may request a consistency check. This provides an assessment of
whether the current state of the design satisfies all the constraints.
Conflicts between different parts of the design are also shown.

4. Propagation. Provides information about the implications of a
design decision on other parts of the design. This kind of feedback
can be generated even before all the parameters are assigned
values.

One of the important functions of the CMS is its ability to propagate design
decisions. Whenever a parameter is assigned a value, the CMS propagates the
value through the constraint network, checking constraints along the way.
Constraint propagation is done by solving constraints one after the other. As
there is no notion of directionality in a constraint network, a plan is needed in
order to carry out such a propagation. In this section we will examine the
propagation planning algorithms in the CMS. The algorithms are based on the
approach originally proposed by Serrano [Serrano 87a].

4.1. Serial Decomposition

The simplest type of constraints are those which do not need any simultaneous
solution of constraints. Such constraint sets are said to be Serially
Decomposable. The constraints can be solved serially, yielding the value of one
new variable for each constraint evaluation. When a set of constraints is not
serially decomposable, the constraints have to be solved simultaneously. This
poses serious problems when the constraint set is very large (> 100 non-linear
equations). We approach this problem by identifying and isolating subsets of the
entire constraint set that necessarily have to be solved simultaneously.

Let us begin by examining an algorithm for planning the solution of a serially
decomposable constraint set. The constraints can be ordered using a very simple
row and column elimination algorithm:

Step 0. Express the constraint set as an adjacency matrix, with
rows corresponding to the constraints and with the columns
corresponding to variables. A "X"is placed in each column of
a row to indicate which variable appears in which constraint.

Initialize a stack called ORDER

Step 1. If there are no rows or columns in the matrix,
return: ORDER

Step 2. Find all the rows with only one X in it.
If there are no such rows, return "The Matrix is
not Serially Decomposable”

Step 3. For all the rows with only one "X" in it:
a. read off the corresponding column (variable name)
and push it on the stack ORDER
b. remove the row from the matrix
c. remove the column with the "X" in it.

Step 4. Go to Step 1.

4.2. Simultaneous Constraints

When a constraint set is not serially decomposable, the constraints have to be
solved simultaneously. Instead of trying to solve the entire constraint set
simultaneously, we would like to isolate and identify subsets of the entire
constraint set which necessarily have to be solved simultaneously. The
algorithm consists of two stages: Matching and Component Finding [Serrano
87a]. The first stage matches variables to constraints. This is done because we
know that each equation can be used to solve for only one variable. Every
variable will be calculated from one constraint. It is for this reason that we start
by matching variables to constraints. It is important to try and find as many
matchings as possible. For example, in the three constraints F1 (x,y), F2(x) and
F3(x,y,z), there are three variables x, y and z which have to be matched. The
matching problem is shown in Figure 4-1. The variables are listed on the left
and the constraints are listed on the right. The lines indicate which variable is
involved in which constraint. This representation is called a bipartite (two
parts) graph. We have to now decide which variable is going to be solved using
which constraint. In the example, if we decided to solve for x from F1 (matched
the two) then, we have to match y to F3 and there is nothing left to match z to.
The Figure 4-1 shows a maximal matching shown in darker lines. The matching
shows that x will be solved from F2, y from F2 and finally z from F3. The

matching is converted into a dependency graph (also shown in Figure). In order
to calculate for z from F3, one needs values for x and y, hence, z is said to depend
on x and y. This is indicated by the arcs in the dependency graph. In the same
way, y depends on x while x does not depend on anything. A simple dependency-
based sorting of the nodes in the graph yields a solution plan. For example, for
the graph in the figure, we start by selecting the node that does not depend on
any unknown. x is the first such node. After x is solved for, y will be the next
such node, and finally z. This yields the solution order.

X F1(xy) X F1(xvy)

y F2 (x) y F2 (x)

z F3(xyz) z F3(xy z)
Bipartite Graph Bipartite Matching

y
A*’//\——’—‘ Z Dependency Graph

Figure 4-1: Finding a Maximal Match

X

Simple sorting works only when the constraints are serially decomposable. If
there are cycles in the dependency graph, then some simultaneous solution is
required. These cycles are identified using a standard graph theoretic algorithm
called the Strong Component Algorithm. A strong component of a is a maximal
set of nodes in which there is a path from any node (variable) in the set to any
other node in the set. A depth-first search based technique is used to determine
strong components efficiently [Aho.Hopcroft.Ullman.84]. The strong component
algorithm consists of the following steps:

1. Perform a depth-first search of the digraph (G) starting at any node
N. Make a note of all the nodes visited in a list L1. The depth first
search procedure is as shown below:

DFS(G, Current-Node)
1. Add Current-Node to globally defined list: VISITED
2. Get the dependents (D) of the Current-Node that are not
in VISITED
3. IF there are no such dependents return NULL
ELSE each dependent (d) do DFS(G, d)

2. Construct a new directed graph G, by reversing the direction of
every arcin G

3. Perform a depth-first search on G, starting the search node N.
Make a note of all the nodes visited in the list L2

4. The intersection of L1 and L2 will be a cycle. Collapse the cycle
into one big node. This generates a new version of G, call the new
graph G’

5. Repeat the above procedure on G’ until no cycles are found when
performing a depth-first search from any node

The above algorithm is used to develop a propagation plan as shown below1:

Serrano’s Constraint Solution Planning Algorithm:

Step 1. As the evaluation of a constraint yields the value of only one variable
at a time, we have to first decide which variables will be calculated from which
constraint. As we would like to evaluate as many variables as possible, the
matching of variables to constraints is done using a bi-partite graph matching
technique.

Step 2. A directed graph of dependencies among variables is generated. For
example, if one is going to calculate for variable a4 from the constraint fla, b, c),
then a is said to depend on b and c.

Step 3. Cycles in the above di-graph indicate simultaneity among variables.
Using an algorithm to find strongly connected components in the di-graph, the
smallest cycles are found and isolated.

Step 4. After all cycles are isolated, the rest of the di-graph becomes a tree. A
reverse topological sort yields the steps which can be taken to find the values
of the variables. The algorithm (RTS) is as follows:

RTS(Tree)
Step A. Initialize a stack called ORDER

Step B. If there are no nodes in the Tree, return ORDER

Step C. Find all nodes that have no children (depend on no other variable)
If there are no such nodes, then the input graph is not a tree.

Step D. For each node found in Step C , do the following:
i. push the node onto the stack ORDER
ii. remove the node from the digraph

Step E. Go to Step B.

The result is returned in the list called ORDER. For example, ORDER might
look like this: [x y z (p g r) a b (c d)). The list is interpreted as follows: solve for

IThe algorithm is based on three standard graph theoretic algorithms: Bipartite-matching,
Strong Components and Reverse Topological Sort [Aho, Hopcroft & Ullman 83].

x, then y, then z, then solve for p, q and r simultaneously, after which it will be
possible to solve for a, then b and finally one can solve for ¢ and d
simultaneously. After the solution plan is generated by the CMS it is used to
calculate parameters.

4.2.1. Breaking the Strong Components

Sometimes the strong components are too large to solve simultaneously. We
have developed special heuristics to break these components into smaller
manageable parts [Krishnan et.al. 90]. Strong components can sometimes be
broken or simplified by picking the value of one of the variables in the strong
component. The process is analogous to untying knots in a string. Untying a
large knot might either reveal smaller knots or might eliminate the knot
altogether. The idea behind breaking a strong component is to perform a single-
degree-of-freedom search on one variable instead of solving all the variables
simultaneously. Consider, for example, a coupled constraint set with n variables
and n constraints. Assume that all simultenaety is eliminated if one variable x is
guessed. After guessing x the values of all the remaining n — 1 unknowns can be
easily determined from rn — 1 constraints. The remaining n'* constraint can be
used to calculate a new value for x. The new value is compared to the guessed
value. If there is some error, a new value for x is guessed and the process is
repeated. Iterations are carried out until the error is within acceptable limits.

4.3. Handling Uni-Directional Constraints

One of the assumptions made in the above ordering algorithm is that all
constraints are invertible. That is, for any function F(X), one can find the value
of any variable x; in X if the values of all the other variables are known. Not all
constraints are explicit and not all constraints are invertible. For example, a
Finite Element Method (FEM) based tool takes some inputs and produces
outputs. The constraint is a Black-Box; one cannot determine the inputs from
the output. Algebraic constraints can also be implicit. For example, it may not
be possible to calculate for all the variables in a very complex transcendental
function. For such constraints only a subset of the involved variables can be
solved for, thereby making the rest of the variables serve merely as inputs.

The algorithm used to order mixed implicit and explicit constraint problems is
our extension of the basic explicit constraint ordering algorithm by Serrano. As
soon as uni-directional constraints are introduced, the bi-partite graph becomes
a partially directed bi-partite graph. Algorithms for such graphs are rare and
inefficient. Our solution consists of using two graphs, one for inputs and the
other for outputs. The basic algorithm is modified to use the second graph when
it matches variables to constraints and to use the first graph when it needs
dependency information.

The combined algorithm is as shown below. The actual graph theoretic
algorithms being used need no modification. We just change the inputs to these

algorithms.

Step 1. Start by developing the bipartite graph. As some of the constraints
are uni-directional, some of the links between parameters and constraints will
be directed. Call this directed bipartite graph B.

Step 2. Develop a new graph (B, ;) by removing all uni-directional arcs
pointing from variables to constraints.

Step 3. Develop a new graph (Bdependents) by removing all uni-directional arcs
pointing from constraints to variables .

Step 4. Find a maximal match on B, -

Step 5. Develop a directed graph of dependencies using the matching found in
Step 4, but using Bependents t0 find dependents.

Step 6. Find Strong components in the above digraph as usual.
Step 4. After all strong components are found, the digraph becomes a tree. A

reverse topological sort yields the steps which can be taken to find the values
of the variables.

4.4. Other Solution Ordering Research

The notion of using bipartite matching and the strong components algorithm
together was originally suggested by Wang (Wang 73). The algorithms were
originally used to solve Gaussian matrices for solving sets of equations using
Newton-Raphson like methods. Serrano applied a similar algorithm for finding
strong components in sets of constraints (Serrano 87). The aim of this work was
to concentrate solution on components and to avoid having to solve the entire
constraint set simultaneously. Both these efforts are aimed at bi-directional
constraints [Navin Chandra & Rinderle 89a]. We have extended the algorithms
to uni-directional constraints. We have also developed the notion of breaking
strong components using heuristic approaches.

Recently, Eppinger & Whitney have described a coordination problem in
complex design projects [Eppinger & Whitney ’89]. A design project is viewed as
being composed of several tasks, each of which needs some input data and
produces (as output) some data for other tasks. The dependencies among the
tasks can be expressed in an adjacency matrix.

5. The Role of Constraints in Coordinating Perspectives

In this chapter, we have seen how constraint networks are represented and
constructed in the CMS. We have also seen how constraint propagation can be
used to assess the implications of design decisions. By propagating constraints

across disciplinary boundaries, the system can find downstream violations that
are caused by a given design decision. These capabilities serve the basis of a
constraint based coordination function.

Design Fusion supports a group-problem solving style of design; each
perspective contributes concurrently to an evolving, shared vision of the artifact.
Without adequate coordination, the design process can quickly become chaotic,
reducing the possibility of convergence. We believe that the development of an
effective theory of coordination requires an understanding of the problem solving
methods of individual perspectives. In a situation where no single perspective’s
knowledge dominates the design process, more sophisticated coordination
mechanisms are required. We need to understand how perspectives make
decisions so that means for influencing their decisions can be devised. Different
assumptions on how perspectives solve problems may lead to different styles of
coordination. We refer to this as the "culture” of the organization.

The "cultural” assumption we make is that a perspective’s primary form of
communication is in the form of constraints. In this case, constraints are more
than simple predicates, but have rich set of additional information such as
importance, acceptable relaxations, utility of relaxation, situational relevance,
etc. The adequacy of this perspective has been demonstrated in the domain of
scheduling [Sycara et al. 91] and concurrent engineering [Navin Chandra &
Rinderle 89b, Krishnan et.al. 90].

The rest of this section details the various roles constraints play in
coordinating perspectives.

5.1. Communication of Intent

The intended reason for a decision can be expressed as a constraint which may
be checked when the decision of one perspective impacts another. If one
perspective is considering changing some decision, it can check if the original
justifactions for the decision are still satisfied.

For example, the fabrication perspective might find that a bracket, of the size
specified in the design, does not exit. The perspective might consider
substituting it with a larger bracket from stock. If the original intent is
expressed as a constraint, then the fabrication perspective could check if the new
bracket violates the intent.

The reason cited for a design decision can be any one of the following (this
information is stored in the generation-justification slot of the
corresponding parameter or constraint):

1. Satisfaction of a requirement or code. For example one might
choose a particular color, because it is specified by the customer.

2. Satisfaction of an engineering requirement. A value of a parameter

may be selected in order to satisfy some constraint. The
generation-justification slot will point to a constraint. For
example, a bracket may be re-sized to reduce stresses at a joint.
The parameter corresponding to the bracket’s size will point to a
stress constraint as justification.

3. Satisfaction of a goal. Design decisions are also driven by
constraints that can be minimized. This includes aspects such as
cost, weight, manufacturability, and environmental compatibility.

The above representations of intent may be easily evaluated whenever a
change is considered. If a perspective wants to propose changing a parameter
owned by another perspective, then it can experiment with many alternatives
before it actually proposes the change. By checking the justification slot, the
first perspective can check if its proposed change is compatible with the original
intent of the second perspective.

5.2. Constraints as Monitors

Constraints may be set up to detect discrepancies whenever they occur. For
example, a transportation perspective may set up constraints that monitor size
parameters. The constraint, in this context, looks for sizes that exceed the
standard shipping sizes. This concept is implemented in the system through a
Rete-Network. Each perspective specifies a list of parameters that it is
interested in monitoring. If a change is detected on the blackboard, then
associated perspective is invoked.

5.3. Coordinatinating Perspectives

Decisions made by one perspective often impact other perspectives. The
sooner the implications of a decision are detected, the fewer the number of
design alternatives and revisions will be explored.

Figure 5-1 shows how constraints can inter-relate different perspectives. The
figure shows the following coordination functions:

1. Bridge Constraints: A variable may have the same name, but
different meanings in different disciplines. For example, for the
aerodynamics perspective, the length of the turbine blade is the
length of the aerofoil only. For the manufacturing perspective, the
length includes the height of the root.

2. Cross references: A constraint in one perspective can refer to a a
parameter in another perspective. For example, the Marketing
constraint set has a cost function that uses the manufacturing cost
as input.

3. Protection: Some parameters are strictly owned by a perspective.
Such parameters are locked and are not exported. Other
perspectives can change these parameters only in their local

Constraint

Manufacturing Agent
ng Ag / Set \ Aerodynamics

Bridge Constraint

Manuf length = K
Aero length +
Aero root height

Max allowable

Length Efficiency
Equations
pressure
Cost Function drop
ggs"tu" efficiency
[A
/N V4
N
Marketing

CAD (Design & Drafting)

Cost Function

_—1 Efficiency
constraint

&=L, EXPORTED ENTITEES

i LOCKED ENTITIES

Figure 5-1: Constraints help in Coordinating disparate disciplines

workspaces while operating in a "what-if' mode. Actual changes
have to be explicitly requested of the owning perspective.

5.4. Concurrency

True concurrency can be achieved when constraints are evaluated on
incomplete designs. A design that is not yet complete may have some
parameters that have not been assigned exact values, and there may be some
uncertainty about the final design characteristics. Intervals are used to express

upper and lower bounds on parameter values, making it possible to assess some
properties of the artifact before exact values are assigned. For example, in a
motor design problem one might not know the exact shaft size, but might be able
to estimate the general range of values based on prior experience. This
information can sometimes be used to guide the designer early in the design
process. This is similar to how engineers might sometimes resort to back of the
envelope calculations, using inexact values and rough calculations.

There are several levels of in-exactness which may be used to represent a
parameter value:

1. Exact Assignment: A numerical value. For example: X = 55.53

2. Interval: A range of possible values. For example: X is between
50.0 and 80.0

3. Default Value: One might choose some default even before
starting the design. Default values are not taken literally when
making calculations. For example: X = 65.0.

4. Order of Magnitude: For example: X = +103

5. Sign: Whether it is a positive or negative value. X = +ve.

At any point during a designing process one may have values for parameters
at any of the above levels of specificity. The challenge is to be be able to evaluate
the constraints on the design and provide the designer valuable feedback about
violations and possible violations due to parameters which have yet to be fixed.
The constraint management system (CMS) uses interval mathematics to
propagate inexact parameter values [Navin Chandra & Rinderle 89b]. The
notion of interval arithmetic was developed by Moore [Moore 66, Moore 79]. The
value of interval based methods for design has also been recognized by Ward
[Ward 89]. By adopting this approach we are, in essence, treating equalities as
inequalities. Instead of equating a variable to a number we assign a range of
values (an interval) to the variable. This generalizes the notion of equality
assignment and adds flexibility to the representation of parameters, making it
possible to capture incompleteness and uncertainty in a design.

6. Recovering from Conflicts

The Design Fusion architecture provides a set of protocols for the posting and
refinement of decisions on the blackboard. All decisions are represented as
constraints on the evolving design. During the process of design it is common for
perspectives to generate conflicting decisions. Conflicts are manifested in the
form of constraint violations. Conflicts can be resolved by either relaxing the
constraint, replacing it, or by changing the decisions that led up to the conflict.
This process may require negotiation among the interested perspectives. The
following define a subset of the protocols provided in Design Fusion to manage
constraint violations.

6.1. Retraction

The simplest strategy for recovering from a conflict is to retract the violated
constraint. Only redundant, wrong, or unimportant constraints should be
removed from consideration. In some cases a constraint may be replaced by
another constraint.

6.2. Posting

When new features are added to the design, an interested perspective can post
constraints that are relevant to the feature. For example, if we add a rib to a
molded part, constraints relating to ribs will be posted by the manufacturing
feature. These constraints are posted with pointers to the reason for which they
were posted. If, at a later time, the rib feature is deleted, the underlying Truth
Maintenance Facility (RMS) retracts the corresponding constraints.

6.3. Revelation

It is not possible to put all the relevant constraints about a design in one large
constraint network, each perspective uses its own private workspace for storing
and managing constraints. The perspective makes public, only those constraints
that are relevant to the evolving design. These public constraints are often
simplified, abstract forms of more complex constraints that are maintained
within the perspective. When a constraint is violated, the perspective that
posted the constraint might reveal the underlying, more complex constraint.
Revelation helps identify the real causes of a problem.

Consider the following example. The manufacturing perspective posts a
constraint that limits the length of a part to be fabricated by centrifugal casting.
This constraint is simple to interpret. As long as the design lies within the limit,
the constraint is satisfied. Assume that the structural perspective wants to
make the part larger, thus violating the manufacturing perspective’s constraint.
On the surface, this problem appears to be a disagreement about the size of the
part. If the manufacturing perspective is now asked to reveal his real reasons
for posting the constraint it might help focus the conflict resolution process. In
this example, lets assume that the real reason for the constraint is
manufacturing cost. As the manufacturing facility cannot handle large
centrifugal castings, large castings would have to be contracted out. After the
constraint is revealed, it becomes clear that there are three possible ways to
solve the problem: (a) increase the cost by going to a subcontractor, or (b) change
the manufacturing process so that larger parts can be handled in-house, (c)
reduce the size of the part.

6.4. Relaxation

Relaxation is the process of substituting a weaker constraint (B) for one that is
in conflict (A). Weak is defined as "if A is found to be true, then so will B, but
not vice versa". For example, a tolerance constraint may be weakened to accept
a greater tolerance. In order to perform such actions, a perspective requires
knowledge of how to relax a constraint. Such expertise is embedded within each
perspective.

In addition to relaxing numerical constraints we need techniques for relaxing
non-numeric relationships. For example, a constraint on colors may be relaxed
by attaching utilities to the various color combinations. Having done this, the
constraint can be relaxed by just lowering the expected utility [Fox 87, Navin
Chandra 91a].

The relaxation command alters the constraint network. For example, the
"relax” command will replace a constraint by its relaxation (stored in a slot of
the constraint’s data structure). If the user wants a special relaxation, then the
form of the relaxation is provided. The same idea applies to revelation. If a
constraint is explicitly stored as being an abstraction-of some other constraint,
then the abstracted constraint is replaced by the constraint is is an abstraction
of. In some cases, a constraint is the abstraction of many constraints, in this
situation all the abstracted constraints are added to the constraint network.

6.5. Postponement

If a constraint is not very important, but cannot be retracted, it could be
disregarded till later. If a perspective postpones a constraint, then the
constraints active slot is set to off. The truth maintenance system then
identifies decisions based on this constraint and has them retracted.

6.6. Ignore

When an important constraint is violated, it may sometimes be ignored till
later. This happens when one is confident of being able to satisfy the constraint
at a later time. This kind of behavior has been observed in a protocol study
[Navin Chandra 91b].

7. Relationship to Other Research

Research in the general area of "constraints" has been carried out since the
early work of Sutherland [Sutherland 63]. The basic idea is to treat constraints,
not as procedures, but as relationships among features of a domain. This
extension of the classical operations research approach to constrained problem
solving has been researched in Artificial Intelligence, and more recently in
Design Theory.

Much of the early work [Sussman 80, Borning 79] has concentrated on using

constraints to control a problem solving process, by tracking dependencies and
by reducing backtracking [Stefik 80, Fox 83]. These ideas led up the a
formalized view of constraints in the Al world. Two areas of research emerged:
Constraint Logic Programming (CLP) and Constraint Satisfaction Problems
(CSP). The CLP efforts are aimed at including numeric and predicate
constraints in a Logic Programming environment such as Prolog.

The CSP work, is more relevant to the CMS effort. Early CSP work [Waltz
75, Haralick & Shapiro 79, Haralick & Shapiro 80, Mackworth & Freuder
85, Nadel 85] developed on the notion of constraint networks and the
management of consistencies in such networks. This research, however, has
concentrated primarily on unary and binary constraints [Dechter & Pearl 87].
Efforts to extend this to engineering domains have concentrated on: (a)
combining numeric and logical constraints [Serrano 87b, Gross 86, Borning 79],
(b) abstraction and simplification of complex networks [Navin Chandra &
Rinderle 89al, (¢) constraint relaxation [Fox 83, Navin chandra 87], (d) Conflict
detection and coordination of constraints [Sriram 87, Karnandikar et.al. 91], and
(e) Texture Measures of constraint activity [Fox et al. 89].

There are several other systems such as Decision Support Systems and Project
Management Systems that take into account, a variety of resource and
precedent constraints. These systems, however, have the relevant constraints
compiled into their algorithms. There is no notion of treating constraints as both
data and procedures as we do in CMS. This is true of our own previous work in
project management [Navin chandra & Logcher 85].

Since the time work began on Design Fusion in 1987, viewing design as a
constraint-directed process has gained wide acceptance in design community.
Serrano and Gossard were one of the first to explore constraint-directed design
in detail [Serrano 87a]. Bowen and his colleagues at North Carolina have
developed a series of constraint solving languages [Bowen & Bahler 91].
Rinderle and his colleagues have explored an number of issues in constraint
propagation and abstraction.

8. Conclusion

The successful design of products requires that goals and constraints from
across the product life cycle be satisfied. Consequently we believe that the
ability to represent and reason about constraints is central to the design process.

Constraints are more than simple predicates, but span the continuum from
quantitative to qualitative relationships. In addition, their importance varies,
they may be relaxed, and they must be sensitive to the context in which they are
to be applied. Therefore, the representation of constraint knowledge has to
equally rich. Secondly, the ability to reason about constraints must be equally
rich. As a design evolves from incomplete to complete, from abstract to detail,

the constraint reasoning process must be able to evaluate relevant constraints to
the extent possible. Lastly, the process by which constraints are revealed,
revised, and retracted is critical to the concurrent design process. Having the
appropriate protocols for coordinating the revelation and revision of constraints
during the design process will enable more rapid convergence.

The Constraint Management System of Design Fusion provides an approach to
representing, reasoning and managing constraints. By means of a frame-based
representation, a variety of propagation techniques including interval arithmetic
and CSP techniques, and a protocol by which perspectives coordinate the
actions, the CMS is able to participate directly in the design process by quickly
identifying inconsistencies and proposing which variables to focus on next.

The success of the CMS is not only limited to Design Fusion, but has also been
adopted by the DICEZ program and by a large power equipment manufacturer.

9. Acknowledgements

This research was supported in part by the Defense Advanced Research
Projects Agency under contract No. MDA972-88-C-0047 for the DARPA
Initiative on Concurrent Engineering (DICE), the National Science Foundation
under the Engineering Research Centers Program, Grant CDR-8522616, Asea
Brown Boveri, the Natural Sciences and Engineering Research -Council of
Canada, Digital Equipment Coporation, the Micro Electronics and Computer
Research Corp., SPAR Aerospace, Carnegie Group Inc., and Quintus Corp.

10. References

[Aho, Hoperoft & Ullman 83]
Aho, A.V., J.E. Hopcroft, J.D. Ullman.
Data structures and algorithms.
Addison-Wesley, 1983.

[Borning 79] Borning, A.
ThingLab- A Constraint Oriented Simulation Laboratory.
Technical Report, Xerox Palo Alto Research Center, 1979.

[Bowen & Bahler 91]
Bowen, J., and Bahler, D.
Supporting Cooperation Between Multiple Perspectives in a
Constrainted-Based Approach to Concurrent Engineering.
Journal of Design and Manufacturing :89-105, 1991.

2DARPA Initiative in Concurrent Engineering.

[Dechter & Pearl 87]

[Erman et al. 80]

[Fox 83]

[Fox 87]

[Fox et al. 89]

[Fox et al. 92]

[Gross 86]

Dechter, R. and Pearl, J.

Network-based Heuristics for Constraint-Satisfaction
Problems.

Artificial Intelligence 34(1):1-38, 1987.

Erman, L.D., Hayes-Roth, F., Lesser, V.R., and Reddy, D.R.

The Hearsay-II Speech Understanding System: Integrating
Knowledge to Resolve Uncertainty.

ACM Computing Surveys 12(2):213-253, 1980.

Fox, M.S.
Constraint Directed Search: A case of Job Shop Scheduling.
PhD thesis, Carnegie-Mellon University, 1983.

Fox, M.S.

Constraint-Directed Search: A Case Study of Job-Shop
Scheduling .

Morgan Kaufmann Publishers, Inc., 1987.

Fox, M.S., Sadeh, N., and Baykan, C.

Constrained Heuristic Search.

In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 309-316. Morgan Kaufmann
Pub. Inc., 1989.

Fox, M.S., Finger, S., Gardner, E., Navin chandra, D., Safier,
S.A., and Shaw, M.

Design Fusion: An Architecture for Concurrent Design.
Knowledge-aided Design.

In Green, M.,

Academic Press Ltd., 1992, pages 157-195.

Gross, M.D.
Design as Exploring Constraints.
PhD thesis, M.1.T., 1986.

[Haralick & Shapiro 79]

Haralick, R.M., L.G. Shapiro.
The Consistent Labeling Problem: Part I.
Trans. Pattern Anal. Machine Intelligence 1(2):173-184, 1979.

[Haralick & Shapiro 80]

Haralick, R.M., L.G. Shapiro.
The Consistent Labeling Problem: Part II.
Trans. Pattern Anal. Machine Intelligence 2(3):193-203, 1980.

