
Knowledge Network: An Information Repository with Services for Managing
Concurrent Engineering Design

Jinxin Lin, Mark S. Fox, Lokesh Gupta, and William Leizerowicz

Enterprise Integration Laboratory, Dept. of Industrial Engineering, Univ. of Toronto, Toronto, Canada, M5S 1A4

Email: {jlin, msf, gupta, leizero}@ie.utoronto.ca

Abstract

Our effort is to construct a Knowledge Aided Design
(KAD) system, which aims at supporting concurrent engi-
neering design and improving cooperation and coordina-
tion among design engineers. The KAD system centers on
a knowledge network that stores design knowledge and
provides services for the management of shared design,
and a WWW user interface for knowledge access and
acquisition. The knowledge network consists of a core
enterprise object model with basic representations to vari-
ous design knowledge, and several layers built around the
object model providing constraint management, version
management, query management, design management,
and access management services.

1 Introduction

In many industries, the artifacts are becoming so com-
plex that their designs require the efforts of many engi-
neers with various expertise from different disciplines. For
example, the design of the Space Remote Manipulator
System (SRMS, popularly known as the Canadarm) at
Spar Aerospace Inc. Toronto required experts on electrical
engineering, mechanical engineering, system analysis and
test, CAD, product manufacturing, quality and so on. This
suggests that the artifact must be functionally and/or phys-
ically decomposed, and the pieces divided amongst groups
of engineers. Then, the big issue faced is how to achieve
high levels of collaboration among engineers. That is, how
each engineer’s design task can be managed so that it inte-
grates well with the results of others.

At University of Toronto’s Enterprise Integration Lab-
oratory, we are constructing a Knowledge Aided Design
(KAD) system for supporting concurrent engineering
design and enhancing the degree of awareness, coopera-
tion, and coordination among engineering team members.
More specifically, some main objectives of the KAD sys-
tem are to:

• Provide a representation that stores, integrates and
manages the various types of design knowledge. It is
important that engineers work in a common language
and representation so that their designs can be inte-
grated without conflicts in the underlying semantics.
The representation should be able to model and repre-
sent information such as requirements, versions,
design rationale, etc. and have the ability of reasoning
about them.

• Ease the access to and acquisition of information and
knowledge from the representation. Acquiring design
information/decisions is difficult due to the barriers
existing between engineers and computers. In a study
we conducted in Spar and reported in [2], it is found
that engineers spend a large portion of their valuable
time in searching relevant information, and in most of
the cases the engineers cannot get the information that
they need to do their jobs. If information technology is
to be a design process participant, we must address the
barriers to the adoption of technology by engineers.

• Provide a shared environment in which engineers can
explore space of alternative designs and communicate
their design in a uniform manner into the shared
design. The environment should provide each engineer
with a private working space where the engineer can
explore his design in his own will while the work of
different engineers can be integrated into the shared
design through a common protocol.

• Manage the systems engineering process by providing
adequate communication and coordination capabilities,
in order to improve the productivity and quality of
design process.

Other objectives of the KAD system are to re-use past
design knowledge and the integration of existing tools
such as PDM system.

The architecture of the KAD system (Figure 1) centers
on a knowledge network for storing design knowledge and
providing services for the management of shared design,

and a WWW user interface for knowledge access and
acquisition.

The KAD architecture also consists of an Electronic
Engineering Notebook (EEN) as a knowledge acquisition
tool, a case-based retrieval module for engineers to
retrieve and re-use past design experience, and a systems
management agent that monitors the systems engineering
process for increasing productivity and quality. Case-
based retrieval, systems management agent and electronic
engineering notebook are reported elsewhere. In this paper
we concentrate on the Knowledge Network serving as an
information repository for the KAD system.

Figure 1 KAD Architecture

2 Knowledge Network Layers

WWW interface of the KAD system eases the barriers
between engineers and the information technologies. It is
found that engineers are quite comfortable with the
browse and click techniques embedded in the web inter-
face. The interface utilizes a Netscape client connected to
a KAD server running on a Sun workstation. The client
side can run in any platform of computing systems as long
as it is supported by Netscape technology. All of the infor-
mation appeared in the web interface is dynamically gen-
erated from the knowledge network through the KAD
server. Access to the knowledge network can be made by
many clients simultaneously from across the enterprise
through an enterprise-wide network or the Internet.

The knowledge network is an information system stor-
ing engineering design knowledge. In addition to tools for
accessing and updating this knowledge, it provides ser-
vices that support collaborative and concurrent design.
The knowledge network includes six layers (Figure 2);
from inner to outer layers, they are: Enterprise Object
Model, Constraint Management, Version Management,

WWW
interface

Electronic
Engineering
Notebook

Knowledge Access and Acquisition

Case-Based
Retrieval

Systems
Management

Agent

KNOWLEDGE NETWORK

Query Management, Design Management, and Access
Management.

Figure 2 Knowledge Network Layers

The enterprise object model contains basic representa-
tions (ontologies) of various knowledge in engineering
design such as requirements, component structure, con-
straints, parameters, versions etc. Constraint management
handles propagation of engineering changes through a
constraint network. Changes occur frequently in the
design process. Constraint propagation plays an important
role in understanding the impact of changes. Version man-
agement controls the evolution of design and provides
traceability of the transformation of objects being
designed. Query management answers those common-
sense and design relevant questions using information
explicitly represented in the object model, and what can be
deduced from it. Design management provides an environ-
ment for engineers in which space of alternative designs
and their impact can be explored. Access management
defines who can access to the information in the shared
design and what can be accessed. It controls the security
checks of the WWW client connecting to the knowledge
network. Each layer is implemented in ECLiPSe, a logic
programming language obtained from ECRC. In the next
few sections we will describe each layer of the knowledge
network in detail.

3 Enterprise Object Model

The core of Knowledge Network is an enterprise
object model developed within the context of TOVE (TOr-
onto Virtual Enterprise) project [3], which aims at con-
structing generic and re-usable ontologies for modeling
the business operation of enterprises. An ontology is an
object class library where objects, attributes and relations
are precisely defined whenever possible using First-Order
Logic. The object model provides a representation of data/

Enterprise Object Model

Constraint Management

Version Management

Design Management

Query Management

Access Management

knowledge spanning product, process and organization. In
addition, it includes rich representations of various enter-
prise knowledge such as activity, time, causality,
resources, cost, quality and more. Object class library for
engineering design provided by the enterprise object
model includes:

• Component structure, parts, features, parameters,

• Requirements, constraints, dependency, source,

• Versions,

• Decisions, rationale, alternatives.

Component structure is represented by parts connected
with the relationship “has_component”, as illustrated in
Figure 3.

Figure 3 Component Structure

Features are used to describe geometrical and func-
tional characteristics associated with a part. Both part and
feature can have parameters that define their properties
such as weight, color, diameter, material, surface finish,
etc. Requirements specify the properties (functional, struc-
tural, physical, etc.) of the artifact being designed. Con-
straints form the leaves of the requirement decomposition
tree, and embody physical laws, equations etc.

Parts, features, parameters, requirements and con-
straints are related to each other with corresponding rela-
tionships, as depicted in Figure 4.

Figure 4 Representing Design Knowledge

The knowledge stored in the object model is organized
in an object-oriented fashion similar to ROCK knowledge
base system from Carnegie Group. The basic units of rep-
resentation are frame and slot. Frames are used for repre-

P1

P2 P3

P4 P5

.....

.....

has_component

has_component

parameter constraint

requirementpart

feature
expression_of

has_expression

constrained_by

constrains

satisfies_req

satisfied_by

has_parameter

parameter_of
has_parameter

feature_of has_feature

senting objects, and slots representing the attribute,
relationship, and procedural information of the objects.
There are two types of frames: class and instance, where a
class frame is used for representing a generalized type or
category of object, and instance frame used for represent-
ing a specific member of a class. Part, requirement, con-
straint, parameter, etc. are all class frames organized as
subclasses under a generic class called pro_object.

subclassOf (part, pro_object).
subclassOf (requirement, pro_object).
....
A particular part (or requirement, constraint, ...) is an

instance of part frame (or requirement frame, constraint
frame, ..., respectively). For example,

instanceOf (PRT131, part).
There are three types of slots: attribute, relation, and

message. Attribute slots are used to store values. Relation
slots are used to store user-defined links between frames.
Message slots are used to store methods which are exe-
cuted in response to messages sent to the frame by some
application program. For example,

attribute(PRT131, name, DeskSpotLamp).
relation(PRT131, has_parameter, PAR23).
message(PRT131, weight, getWeight).
Many predicates for accessing and updating the infor-

mation stored in the frame and slot structure have been
written. To get a flavor, we list some of them in the follow-
ing:

kb_CreateClass(-Class): Create a class that is indepen-
dent of any other class.

kb_GetValues(+Frame,+Slot,-Value): Get the values
of the frame Frame of slot Slot through inheritance.

kb_GetRelatives(+Frame,+Path,-List): Get the list of
all frames that are linked (multi-level) to the frame Frame
by relation Path.

The enterprise object model also includes the follow-
ing representation (ontology) about project/organization:

• Teams, resources,

• Responsibilities, authority,

• Interactions, dependencies,

• Activities, goals, milestones.

The activity ontology in the enterprise object model
includes a state, which is a description of what is true and
not true of the world at a particular time point or interval,
and an activity, which is a transformational action primi-
tive with which processes and operations can be repre-
sented. Through reasoning about activity and states, the
object model allows us to formalize the process of
resource management, scheduling, product manufacturing
and many other tasks within design and the operation of an
enterprise. The activity and other ontologies have been
reported elsewhere, e.g. [4].

4 Constraint Management

Constraints play an important role in design. It has
been widely accepted that design is constraint oriented. To
design means, to find a set of values for the attributes that
do not violate any of the constraints. The design process
involves the recognition, formulation, and satisfaction of
constraints. Constraints are continuously being added,
modified, and deleted throughout the development of a
new product [6].

In case of a concurrent engineering environment the
design is being simultaneously considered from various
life-cycle aspects (or perspectives). Each one of these per-
spectives puts forward some criteria (or constraints) that
the design must satisfy. Not only these perspectives
impose constraints on the design, they also try to push for-
ward their concerns ahead of that of the others [1]. The
constraints imposed by one perspective may interfere with
that imposed by another perspective. When this happens,
conflicts arise. Design can therefore, be looked as an
active network of constraints and parameters.

Most of the previous work in the area of constraints
has been in the area of design “solving”. It is only recently
that researchers have started to look into the area of man-
aging the design using constraints. The focus of the con-
straint management layer is to support communication and
coordination in concurrent engineering. This layer along
with the systems engineering management agent (SMA)1

defines a tool which is used by the systems engineers to
manage the design project.

4.1 Functions of constraint management layer

Given a list of parameters that have been changed, the
constraint management layer performs the following func-
tions:

• Compilation of constraint network: Extract the net-
work of all the parameters and constraints that could be
affected by the change. We call this the “parameter
span”, and “constraint span” of the change respec-
tively.

• Impact analysis: Do constraint propagation on the
above constraint network to find out the impact of the
change on these affected parameters and constraints.

• Based on the impact of the change look for “symp-
toms” that may have occurred and which need the
attention of SMA.

1. As a part of this paper we have not described the
SMA in detail. SMA can be considered as an indepen-
dent, rule-based process which manages the systems
engineering process.

• Inform SMA of the symptoms. The SMA in turn, takes
necessary steps to “take care” of those symptoms.

4.2 Modes of operation

The constraint manager is available to the user in vari-
ous kinds of flavors. The user may just like to have the
constraints as “consultants”, in which case the constraints
do an impact analysis and produce a report for the user. Or,
the user may like to use the constraint manager act as a
decision maker, in which case it implements the effects of
the change and reflects it in the new state of the design. In
the current version, the user sets a global flag to “analysis”
or “implement” to switch between these two phases.

In addition, the user can analyze one change at a time,
or the user can build a stack of changes over a period of
time and analyze them all together. We also store previous
design states, i.e., the states of design before a change was
actually made. The user is always allowed to return back
to a previous state if he so desires.

The user can decide to study the effect of change start-
ing at three levels:

• Parameter Level: Start from an actual parameter that
has been changed and do constraint propagation. In
this case, the constraint manager calculates the
“parameter span” and “constraint span”, and then does
the constraint propagation

• Design Set Level: Start from a design set. (A design set
is a private working space for a designer; the concept
of design set will be described in detail in a later sec-
tion). In this case, the constraint manager considers all
the parameters and constraints in that design set and
does constraint propagation.

• Design Level: Take the whole design into consider-
ation. In this case, the constraint manager studies the
whole design to find out what constraints are being vio-
lated and how will the simultaneous consideration of
all the constraints affect the parameter values.

There are various advantages of providing the con-
straint manager at three levels.

• The parameter level is provided because an engineer
working on a piece of work, and thinking of making a
change may like to study the effect of that specific
change which he/she will make to the parameter.

• The design set level is provided because an engineer
may like to study the consistency of his design within
the design set, before submitting the design set and
making it available to other designers.

• The design level is provided to make sure that all the
designs within the KAD system coexist in harmony. It
may happen that a mechanical design is consistent

within itself, but in conflict with the electrical design.
These inconsistencies can be revealed by running the
constraint manager at the design level.

5 Version Management

Because of the evolutionary nature of design, changes
occur frequently during the design process. Each object
(parts, features, parameters, requirements, or constraints)
may be undergoing many transformations before reaching
its maturity. As a result of changes, versions of objects are
created and kept in the system. The goals of version man-
agement are to:

• Control the evolution of design objects,

• Allow traceability of previous design and ability to
reverse design from one state to another,

• Provide design history and rationale.

The representation we developed for version has the
following characteristics:

• Duplicate is minimized in the system. When a new ver-
sion of a composite object (an object consisting of sev-
eral (sub-)objects) is created, the system does not make
copies of all of the sub-objects. Instead, only those
involved in the changes are copied.

• Links between versions are automatically maintained,
and users are allowed to specify a particular version as
the current working version.

• System management agent (SMA) is automatically
informed when new versions of significant objects are
created. As a result, a system management process
may be initiated and certain actions taken such as noti-
fying appropriate persons of the new versions.

Version management is invoked when a designer sub-
mits a portion of design from his working space (design
set) to the Knowledge Network as a formal design. There
are two kinds of submissions:

• Submit an object as a new version of another object
already in the knowledge base. The first object essen-
tially replaces the second one (which becomes an old
version).

• Submit an object to the knowledge base that will then
be linked to some other objects already in the Knowl-
edge Network with some specified relations. For exam-
ple, Figure 5 illustrates the submission of a new part
hpa.syj (Handling and Positioning Aid shoulder yaw
joint) as a component of hpa.sh (HPA shoulder). As a
result of this submission, new versions of (the higher
level components) hpa.sh, hpa.maa, hpa.ma are created
(which is version 5). Note that only those that are
involved in the changes are versioned.

Figure 5 Version Example

6 Query Management

Query management provides services for querying and
updating the Knowledge Network.

For querying, we identify questions commonly asked
by the designers. These are queries regarding product
structure, versions, requirements, rationale, etc. Some que-
ries are simple and typical in a day to day concern of an
engineer or designer, e.g. “Who is the owner of part X?”
or “What are the requirements on part X?”. These queries
often require simple database look-ups and their process-
ing is efficient. Definitions of objects, attributes and rela-
tions (axiomatic semantics) is used to deduce answers to
the queries. Other queries may be more complex and
require powerful reasoning ability from the query proces-
sor. For this purpose, the query management provides a
first-order theorem prover which is used to deduce new
knowledge (i.e. knowledge not explicitly represented in
the knowledge base) from axioms and deductive rules in
the knowledge network.

An example of a deductive rule is: “The engineer
responsible for a part must approve all changes”. Then for
the common sense questions such as “Who do I have to
contact to make a change to the part?”, the answers are
generated from the theorem prover by deduction from the
rule.

An example of an axiom is “The weight of a part is
equal to the sum of weight of its sub-components.” In our
system, this is formalized as an axiom embedded in the
Enterprise Object Model and is used in calculating weight
of a component structure throughout.

How to present the answer to the users in a user-
friendly way is an important issue in query management
module. Because our query interface is part of the overall

hpa.ma_v4

has_component

has_component

hpa.ma_v5

ver_of

hpa.ef_v4

hpa.sh_v4

hpa.tk_v4 hpa.maa_v4

hpa.wj_v4

hpa.maa_v5

hpa.sh_v5

ver_of

ver_of

hpa.syj

user interface in the project, which is based on a world
wide web client-server architecture, it makes it quite easy
for us to deploy the answer of queries back to the end user
in a graphical format.

The query management module provides most update
functionality of a conventional database, such as insert,
delete and modify, where modify is viewed as a combina-
tion of delete and insert. In either case, conditions can be
imposed to locate proper information to update. In addi-
tion, the service of updating a rule is provided. Updating
rules is more complex and problematic than querying and
updating facts in the knowledge base [5]. As an example,
suppose we want to insert ¬C into a knowledge base con-
taining A, B and A ∧ B ⊃ C, then it is not clear which
piece of information (A, B or A ∧ B ⊃ C) should be given
up to keep the knowledge base consistent. When encoun-
tering such a case, our system leaves the choice to the user.
The user is free to choose which piece to revise if the
knowledge base is inconsistent after an insertion/deletion.

7 Design Management

Design management provides an environment in
which space of alternative designs and their impact can be
explored. In preliminary design, objects are semi-struc-
tured and relationships among the objects are unclear.
Designers often re-use objects obtained from similar
design cases, which can be results from a parametric
search, a case-based retrieval, or a deductive query pro-
cessing. Hence designers need a work space to store and
manipulate the objects at their own will. That is, they need
to work in an environment in which they can explore alter-
native or partial designs without committing to them.

A design set is a work space for a designer to store and
manipulate objects. The objects can be requirements,
parts, parameters, features and constraints, or any others
that are available to the designer. A designer can have one
or more design sets where each design set may be struc-
tured as design subsets (as shown in Figure 6).

Figure 6 Design Set Structure

Designer only accesses the design sets of their own or
those that belongs to a group where the designer is a mem-
ber. Design set operations include:

DS1

DS3DS2

DS4 DS5

contains

contains

• add, delete, modify, copy, etc.

• create design subsets, merge two design sets, move ele-
ments from one design set to another, etc.

More importantly, designer may request the content of
a design set be evaluated by the system’s constraint analy-
sis functions. Designer can copy portion of current or pre-
vious design into his design set where he can start the
process of refinement and develop full relationship and
structure of the objects. When he is satisfied with this por-
tion of design, he can then submit the objects along with
their relationships from the design set into the shared
design.

8 Access Management

Access management is the outer layer of the Knowl-
edge Network. It determines who (and where, when some-
one) is allowed to access information stored in the
database. Since Knowledge Network contains all the
details of a product design, access control is very impor-
tant; obviously a company must not allow competitors to
intrude its database. Within an organization, some infor-
mation can only be revealed to persons with certain roles,
but not to the general employees. For example, the budget
and current spending information of a project may only be
known by, and under the control of, the project manager.
Access management can extract, from the Enterprise
Object Model, information about a person’s roles and
responsibilities within the organization. Depending on this
information, it then determines a particular user’s privi-
leges of querying and updating the knowledge base.

9 References

[1] Bowen, J. and Bahler, D. “An Axiomatic Approach That
Supports Negotiated Resolution of Design Conflicts in
Concurrent Engineering”. Artificial Intelligence in Design’
94, Edited By: J. S. Gero, and F. Sudweeks, Kluwer Aca-
demic Publishers, Netherlands. 1994. pp. 363-379

[2] Crabtree, R., Baid, N., and Fox, M.S., (1993), “Design
Engineering: Problems in Coordination”, in Proceedings of
the JSME/ASME Design Theory Workshop, Tokyo Japan.

[3] Fox, M., Chionglo, J.F., and Fadel, F.G., (1993), “A Com-
mon Sense Model of the Enterprise”, Proceedings of the
2nd Industrial Engineering Research Conference, pp. 425-
429, Norcross GA: Institute for Industrial Engineers.

[4] Fox, M.S., and Gruninger, M. (1994) “Ontologies for Enter-
prise Integration”, Proceedings of the 2nd Conference on
Cooperative Information Systems, Toronto Ont, May 94.

[5] H. Katsuno and A. O. Mendelzon. Propositional knowl-
edgebase revision and minimal change. Artificial Intelli-
gence, 52:263-294, 1991.

[6] Serrano, D., and Gossard, D. Constraint Management in
Conceptual Design. Knowledge Based Expert Systems in
Engineering: Planning and Design, Editors: D. Sriram, and
R. A. Adey, 1987, pp. 211-224

