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Abstract

Communication and coordination play an important
role in achieving concurrency in the design of large com-
plex artifacts. It is also widely accepted that design is con-
straint oriented involving the recognition, formulation,
and satisfaction of constraints. In this paper we have
described how constraints can be used to achieve commu-
nication and coordination in large concurrent design
projects. The system that we are implementing is oriented
towards (but is not limited to) engineering domain, and
supports multiple perspectives, notification mechanisms, a
system management agent, and design knowledge man-
agement.

1 Introduction

Design of large complex artifacts involves efforts of
many engineers with expertise from different disciplines.
In order to structurally solve the big design problem, the
system is divided into many sub-systems with well defined
interfaces. Different teams of engineers work concurrently
on these sub-systems, which later on merge together to
build the complete system. Due to the interacting nature of
the sub-systems, we need to make sure that whenever
there are changes, there is proper communication and
coordination of information. In case of large complex arti-
facts, no single engineer possesses the entire knowledge of
the system. Therefore, it is extremely difficult and often
impossible for an engineer to manually determine all the
possible impacts of a given change. Hence, we need a
fairly sophisticated mechanism of communication and
coordination to be in place, which ensures that people get
notified whenever they should have been notified, and that
the efforts of various people on the project are coordinated
well enough to absorb the impacts of the changes. This is
the bottom-line to achieving high levels of concurrency on
large design projects.

In case of fairly complex design projects, traditionally
there have been two major approaches to achieving con-
currency. These are (i) multi-disciplinary team meetings,

and (ii) distribution lists. It has been found that both of
these approaches fail to timely communicate and coordi-
nate information (changes/decisions etc.), and hence, fail
to achieve concurrency [10], [14].

The major problem with the distribution lists is that
they are static in nature. Distribution lists are generally
based on the names of the people and not their roles. How-
ever, who should be getting the information depends on
who is currently playing the role which is relevant to that
piece of information. Distribution lists would have served
this purpose, had the relationship between the people, and
their roles been static. However, the organization itself is
quite dynamic. The roles and responsibilities of the people
change quite often, and people get moved around. It is
because of this dynamic nature of organization, that the
‘static’ distribution lists fail to achieve concurrency.

Design team meetings also fail to achieve high levels
of concurrency on many counts. Following are some of
them:

• In case of a complex change it is difficult to identify
who all to invite in the meeting. One option is to call
everybody in the meeting. However, studies on group
dynamics say that teams function well only within a
size of seven plus-minus two. Beyond that size, they
start to become chaotic. Therefore, people are called
selectively in the meeting. This immediately results
in the loss of concurrency, because it is quite likely
that a person who should have been there in the meet-
ing has not been invited.

• Meetings are often wasteful of people’s time, because
only a small fraction of all the people are involved in
a particular change [14]. For example, the software
people are most likely, not to be bothered about the
change in the stress of a particular mechanical equip-
ment.

• Meetings often require physical co-location of the
people. In case of the projects in which teams are
located at geographically different places, physical
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co-location is not only expensive, but also often
impractical.

Because of the problems described above, we need
another approach which can help in achieving high levels
of concurrency in the design of large complex artifacts. In
this paper we describe a constraint-based system which
attempts to achieve high levels of concurrency by timely
communication and coordination of information. We
believe that communication and coordination should be
based on the impacts of the changes and the responsibili-
ties of the people in the design project. The impact of a
change determines what to communicate and who to com-
municate it to. In order to do so, we also need a very broad
scope of changes. Our definition of change, does not only
include, for example, changes to the numeric values of the
design parameters, but also includes version releases,
work in progress, organizational changes etc. And, the
means to identify who are impacted by a change is through
the propagation of change through a network of con-
straints. Having identified who are impacted, the last step
in achieving concurrency is to notify these people, and
coordinate their efforts to absorb the impacts of the
change.

This constraint-based system of communication and
coordination, is a part of a larger project called Knowledge
Aided Design (KAD) [6]. In Section 2, we describe the
system architecture of KAD. In Section 3, we describe our
model of concurrency. In section 4 we describe a classifi-
cation of impacts. Section 5 describes our approach to
implement the model of concurrency. In the sections that
follow thereafter, we describe the details of our implemen-
tation. Section 6 describes the Enterprise Object Model
(EOM). Section 7 describes our approach to finding out
who are impacted by a given change. In section 8, we
describe the “Change-Symptom-Action” approach, and its
implementation using the constraint manager (CM), and
the systems management agent (SMA). We conclude with
a brief summary of our work in Section 9.

2 KAD Architecture

At University of Toronto’s Enterprise Integration Lab-
oratory, we are constructing a Knowledge Aided Design
(KAD) system for supporting concurrent engineering
design and enhancing the degree of awareness, coopera-
tion, and coordination among engineering team members.
The main objectives of the KAD system are to:

• Provide a shared representation that stores, integrates
and manages various types of design knowledge. The
representation should be able to model and represent
information such as design rationale, requirements,
versions, product structure, organization etc., and pro-
vide the ability to reason about them. The environment

should not only provide each engineer with a private
working space where the engineer can explore his
design at his will, but also protocols to integrate the
works of different engineers into the shared representa-
tion.

• Ease the access (to find the existing information) to
and acquisition (to get the information out of engineers
head, back-of-paper, notes etc.) of information and
knowledge from the representation and to allow reuse
of existing design knowledge.

• Integrate existing tools like CAD/CAM, PDM etc.
with the KAD system in a seamless manner. The KAD
system should provide services for uploading, and
downloading of information to and from these tools.

• Manage the Systems Engineering process by providing
adequate communication and coordination capabilities,
in order to improve the productivity and quality of the
design process.

The KAD system architecture is shown in Figure 1.
Figure 1 KAD Architecture

The Knowledge Network (KN) provides the capability
for storing design knowledge and services for the manage-
ment of shared design. The Case-Based Retrieval (CBR)
module provides the capability of re-using the existing
design knowledge. The knowledge access and acquisition
module provides a World Wide Web (WWW) and an Elec-
tronic Engineering Notebook (EEN) interface for knowl-
edge access and acquisition. It also integrates the other
tools to the KAD system. The Systems Engineering Man-
agement Agent (SMA) is a rule-based system which man-
ages the communication and coordination of information.

In the context of this paper, only SMA, and the enter-
prise object model, and constraint management layers of
KN are of relevance (cf. Figure 3). As such we have
described only these components of KAD architecture
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here. The other portions of the system architecture are
reported elsewhere [1], [8].

3 Model of Concurrency

As a part of our research we have investigated what
needs to be done in order to achieve a high levels of con-
currency in large design projects. Based on a set of inter-
views1 [10] that we have conducted, we found that:

• Timely communication of accurate information plays
a very important role in achieving concurrency

• People need to share their work in progress for
achieving concurrency

• Changes are the prime driver for the requirement of
concurrency. As such the impacts of the changes need
to be determined accurately and the actions of vari-
ous experts need to be well coordinated in order to
absorb those impacts.

One of the biggest hurdles in the achievement of con-
currency is that people often do not know, who to inform
when they are making a change. This is especially true of
complex designs. Most of the current mechanisms of com-
munication and coordination are manual in nature and fail
on the ground that no single person understands the sys-
tem well enough to know about all the possible impacts of
the change [14]. Conflicts are usually detected later in the
product life-cycle when it is very costly to resolve them.

Our model of concurrency is, therefore, based on the
above listed points, and it states that:

• Ensure that people share their work in progress and
that everyone is working off the same piece of data.

• Whenever, there are changes, find out the impact of
the change.

• Inform all the people who can be affected by the
change, and coordinate their efforts to absorb the
impacts of the change.

The model describes what needs to be done in order to
achieve concurrency and not how to achieve it. There
could be many possible implementations of this model of
concurrency. As a part of this work, we have described
one such implementation which takes a very broad view of
changes, provides a common language to people to
express their design decision, and initiates necessary com-
munication and coordination activities to achieve high lev-
els of concurrency.

1. A total of 13 interviews were conducted across 4
different organizations.

4 Impact Classification

We propose that communication and coordination
should be based on:

• the impact of the changes, and

• the responsibilities of people across the project
In this section we give a classification of impacts, and

some examples of impact-based communication. Respon-
sibility-based communication is described in section 8.2.

A change may not always result in a significant
impact. Therefore, we need to distinguish between various
types of impacts that a change may result into. Our classi-
fication of impacts is shown in Figure 2.

Figure 2 Impact Classification

We give below some of the examples2 which illustrate
the above classification:

• Insignificant Impact: For example, assigning an addi-
tional role, R, to an engineer, E. This change may not
impact anyone else’s work, and just needs a simple
notification to all the members of the project that
engineer E is now playing the role R. Another exam-
ple could be the release of a new version of a draw-
ing. The drawing may not be in conflict with any
existing designs, but still we need to inform people
that now there is a new version available. The new
version of the drawing may have some future impact.

2. We would like to make a note here that we have just
cited some examples. We are not attempting to say that
the examples we have given above fall into the corre-
sponding impact category. On the contrary, we believe
that it is not possible to determine the impact of a
change in advance. Impact of a change is not only a
function of the change itself, but also a function of the
current state of the world. Therefore, the impact needs
to be determined dynamically.
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In that case, it would be classified as an impact of
potential significance.

• Impacts of Current Significance: The most common
ones are conflicts. In such cases, we need to know
what is the impact, who are impacted, and then take
necessary steps to resolve the conflict. Much work
has been done in the area of conflict detection and
resolution [13]. Another example could be the Work-
In-Progress (WIP) of an engineer. The WIP may be
related to the works of other people in the project,
and hence, needs to be communicated to all of them.

• Impacts of Potential Significance: Some of the
changes, may not be causing any impacts of current
significance, but may eventually cause some prob-
lems. For example, it may be the case that weight of
the artifact being designed is an important parameter
to be watched, and it has been observed that for the
last three design reviews the weight has been consis-
tently increasing by 15%. At present, this change
may not be causing any conflicts with the overall
weight requirement, but it may be an indicator of a
possible future violation of the requirement.

5 An Implementation of the Model of Con-
currency

In order to implement the model of concurrency we
propose to have:

• a shared object model which integrates product, orga-
nization, and processes. Within that representation
we have means to represent requirements, con-
straints, parameters, roles, responsibilities, etc.

• a systems management agent which handles the com-
munication and coordination mechanism based on
the messages it receives from the shared object
model.

Our shared object model, called Knowledge Network
(KN), is a layered architecture (Figure 3).

Figure 3 Knowledge Network

The Knowledge Network serves the needs of the entire
KAD project. In the context of this paper, the layers that
are of relevance to us are the enterprise object model
(EOM) layer, and the constraint management layer. EOM
provides (i) a common language (in the form of its
objects) for people to work, and (ii) a medium to make
sure that everybody is working off the same piece of data,
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and that people are able to share their work in progress.
This takes care of the first portion of the implementation
of our model.

Changes are made by various people to the objects of
EOM. We have adopted a fairly broad scope of changes,
which includes, work in progress, version releases, critical
project parameters, organizational changes etc. Based on
the changes made to the EOM layer, the constraint man-
ager (CM) finds out the impact of the change, and sends
messages to SMA. Based on the work that people are cur-
rently doing, and the responsibilities of the people on the
project, SMA finds out who needs to be notified. Thus, the
constraint management layer along with SMA implements
the impact- and responsibility-based communication and
coordination aspect of our model.

The remainder of this paper describes each one of
these concepts in detail.

6 Enterprise Object Model

The core of the Knowledge Network is an enterprise
object model developed within the context of TOVE (TOr-
onto Virtual Enterprise) project, [7]. The object model
provides a representation of data/knowledge spanning
product, process and organization. In addition, it includes
rich representation of activity, time, causality, resources,
cost, quality and more. Object class library for engineering
design provided by the enterprise object model includes:

• Component structure, parts, features, parameters,

• Requirements, constraints, dependency, source,

• Versions,

• Decisions, rationale, alternatives

Component structure is represented by parts connected
with the relationship “has_component”. Features are used
to describe geometrical and functional characteristics
associated with a part. Both part and feature can have
parameters that define their properties such as weight,
color, diameter, material, surface finish, etc. Requirements
specify the properties (functional, structural, physical,
etc.) of the artifact being designed. Constraints form the
leaves of the requirement decomposition tree, and embody
physical laws, equations etc.1 Thus, there exists a network
of information. It is this network that we surf to find the
communication and coordination links.

The relationships between parts, features, parameters,
requirements and constraints are shown in Figure 4.

1. This representation is based on the concepts
described in [16].
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Figure 4 Representing Design Knowledge

The enterprise object model includes the following
representation (ontology) about project/organization:

• Teams, resources

• Responsibility, authority, role, position

• Interactions, dependencies

• Activities, goals, milestones.

Constraints, parameters, parts etc. are owned by differ-
ent organization roles. Each role is played by a person. A
person occupies a position, and belongs to one or more
teams. Relationships between the organization and prod-
uct ontology is shown below in Figure 5.
Figure 5 Organization Ontology and Its Relationship

with Product Ontology1

1. We have not shown all the possible links that exist in
our Knowledge Network. Only some of the links have
been shown to give the reader an idea of the integrated
representation.
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7 How to determine who will be affected?

In case of a concurrent engineering environment, the
design is being simultaneously considered from various
life-cycle perspectives. Each one of these perspectives
puts forward some criteria that the design must satisfy.
Constraints provide a common language for these experts
to talk to each other. Not only do these perspectives
impose constraints on the design, they also try to push for-
ward their concerns ahead of that of the others [3]. The
constraints imposed by one perspective may conflict with
the constraints imposed by another perspective. Design
can therefore be modelled as a network of constraints, and
we can make use of the constraints to find out the people
who are impacted by a given change.

Most of the previous work in the area of constraints
has been in the area of design “solving” [2], [4], [9], [17],
[18]. Recently researchers have started to look into the
area of supporting concurrent engineering using con-
straints [5]. The novel aspect of this work is that it goes
one step further, in the sense that it not only supports con-
current engineering (by allowing the user to have multiple
perspectives, constraint propagation etc.), but also pro-
vides mechanisms to achieve high levels of concurrency
by timely communication and coordination of information
(who to inform, what to inform, when to inform etc.).

8 Change-Symptom-Action Approach

We adopt a “Change-Symptom-Action” approach to
communicate between the constraint manager (CM) and
SMA. CM checks for some of the symptoms that arise as a
result of a change, and informs SMA. Based on the type of
the symptom SMA takes necessary actions to manage the
impacts of the change. The “Change-Symptom-Action”
approach is shown in Figure 6.

Figure 6 Change-Symptom-Action Approach

8.1 Constraint Manager

In the current version of our implementation, the con-
straint manager works only on numeric parameters. We
list below some of the key aspects of the constraint man-
ager:

Change Symptoms Management Actions

results result into
into
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8.1.1 Interval Propagation

All of our parameters have interval values allowing the
design to proceed with incomplete information. Often,
designers do not know the exact value that a parameter
will get, until the detailed design phase [12], [15]. How-
ever, they have some idea of the limits within which the
value will fall. Thus, we need to have interval domains of
the parameters, and the capability of doing constraint
propagation on interval variables.

8.1.2 Modes of operation

CM operates in more than one mode. The user may
like CM to work as a “consultant”, in which case it per-
forms an impact analysis and produces a report for the
user. Or, the user may like CM to act as a decision maker,
in which case it will implement the effects of the change
and reflect it in the new state of the design. In the current
version, the user sets a flag to “analysis” or “implement”
to switch between these two modes. However, in the
future versions when the access management layer of the
Knowledge Network is fully operational, we plan to derive
the authority of switching between these flags, based on
the roles and responsibilities of the user. For example,
only the person responsible for the design will be able to
switch to the “implement” mode of operation of the con-
straint manager.

8.1.3 Analyze a single change or multiple changes

The user can analyze one change at a time, or build a
stack of changes over a period of time and analyze them
all together. We also store the state of the design before a
change was made. Using this mechanism a user can
always revert back to the previous state, i.e the state,
before the change was made.

8.1.4 Impact Analysis at Different Levels of Design

The user can study the impacts of a change at three dif-
ferent levels:

• Frame (or Parameter or Object) Level: Start from the
actual parameter frame that has been changed and do
constraint propagation. This capability is provided,
because an engineer working on a component, and
thinking of making a change may like to study the
affect of that specific change which he/she is making
to the parameter frame.

• Design Set Level: Design set is like a local space for
the engineer to work on the designs, and is described
in detail in [8]. In this level the constraint manager
considers all the parameters and constraints in the
design set and does constraint propagation. Analysis
at the design set level is provided, because an engi-

neer may like to study the consistency of his design
within the design set, before submitting the design
and making it available it to the world.

• Design Level: In this case CM studies the whole
design to find out what constraints are being violated
and how will the simultaneous consideration of all
the constraints will effect the parameter values. The
design level is provided to make sure that all the
designs within the systems are consistent. In other
words, a mechanical design may be consistent within
itself, but may be in conflict with the electrical
design. These inconsistencies can be revealed by run-
ning the constraint manager at the design level.

The constraint manager is built using ECRC’s (Euro-
pean Computer-Industry Research Centre) constraint logic
programming system ECLiPSe [19] and the CLP(Q,R)
constraint solver [11], on a Sun SPARC workstation run-
ning SunOS version 4.1.3.

8.2 Systems Management Agent (SMA)

SMA embodies the model of coordination in the form
of rules regarding how to manage a project in order to
achieve high levels of concurrency. This is an independent
process which communicates with the knowledge network
through a set of messages.

The current implementation of SMA notifies engi-
neers, and creates activities in their to-do lists whenever
there are impacts on the parameters and constraints that
they are responsible for. We illustrate this with an exam-
ple. In case of space systems designs, weight is an impor-
tant parameter that needs to be observed very carefully. As
a result of some changes, if the domain of a weight param-
eter shrinks, then SMA immediately informs the weight
engineer, and advises him to make sure that he can still
proceed with the new limits on the weight parameter.
SMA also informs the weight engineer about the origin of
the change, and who has initiated the change. If the weight
engineer finds out that these new limits are too restrictive
for the design of his part, he can discuss the matter imme-
diately with the initiator of the change. If the new limits
are okay with the weight engineer, then also SMA has per-
formed its duty of timely communicating the relevant
information to the weight engineer, and thereby enhancing
the level of concurrency in the project.

SMA also contains rules regarding responsibility-
based communication. For example, the project leader
may not be directly involved in the design of a particular
component, but since he has the responsibility of the over-
all project coordination we send notifications to the project
leader whenever there are “significant” changes to the
design. Significance of a change is determined on the basis
of the project management rules put into the SMA.
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Another example is a scenario in which the cost of the
project is showing a very sharp increase. In this case, we
inform the senior management people responsible for allo-
cating the cost budgets to the projects. This provides, for
example, a risk and cost management capability in SMA.

SMA is implemented in CLIPS (C Language Inte-
grated Production System) Version 5.1. CLIPS is a rule-
based language which can be used building sophisticated
expert systems.

9 Summary

We have described a model of concurrency, and an
implementation of the model. Achieving high levels of
concurrency requires that people share their work, and that
impacts of changes are informed to all the people who can
be affected. Our implementation is based on a shared rep-
resentation called the Knowledge Network (KN), and a
systems management agent (SMA). KN provides an envi-
ronment for people to share their work, and work on same
piece of data. SMA embodies the model of concurrency in
the forms of rules that can be very general or very specific
to the way a particular organization manages its projects.
Based on its rule-base, SMA carries out impact- and
responsibility-based coordination. Thus, SMA along with
KN provides a very flexible, and effective mechanism for
achieving high levels of concurrency.
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