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CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES
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Abstract. The case-based retrieval is frequently reported as a valuable icol for engineer-
ing design. We discuss similarity based retrieval in the engineering design domain when
the context is given as a set of constraints. This approach comprises the lowest level with
which we support case-based retrieval from our Integrated Knowledge-Base. The char-
acterization of the retrieval process yields a robust compliance measure and a similarity
measure for the cases in a given context. The problematic concept of context is taken up
front by making it an explicit part of the query.

1. Introduction

Engineering design involves usage of domain specific technical knowledge to-
gether with creative problem solving skills to come up with a properly functioning
artifact that complies with a set of requirements — performance goals, physical
constraints, etc. It is a creative process that relies heavily upon associations to past
experiences and similar designs (Goel, 1994). Consequently case-based reason-
ing (CBR) (Kolodner, 1993) has been the focus of the design research community
(Maher et al., 1995).

Our interest in case-based design arises from the design of complex artifacts
for the aerospace industry where design is requirements driven. It is initiated with
a “high level” set of requirements, i.e., goals, functional requirements and con-
straints, that trigger the retrieval of one or more “high level” design cases. These
cases are used by engineers to guide their construction of an abstract design that
in turn provides a set of requirements for the next design level. Design is therefore
a process of successive refinement, when each level iterates between requirements
specification/analysis, design case retrieval and design decision-making.

Indexing, case retrieval and case modification are key issues in case-based
design. In many case-based reasoning systems, case retrieval is performed based
on the similarity between the new problem context and cases represented in the
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case memory. An indexing scheme which defines the situations under which the
new context is similar to the ones in the case-base drives the retrieval process. A
case-based retrieval system is effective to the extent its indexing scheme covers
all possible contexts since similarity is known to change from context to context.

Our work focuses on the indexing/case retrieval problem and leaves the prob-
lem of adaptation to the engineer. In particular, given that design is requirements
driven, we are interested in how requirements, i.e., goals and constraints, can be
used to dynamically retrieve relevant cases from a case library, and how cases in
the library should be represented to support this style of dynamic indexing.

The rest of the paper is organized as follows: we review the relevant literat-
ure in Section 2 and then propose a view of the design process that is consist-
ent with Fox and Salustri (1994) for one-off, high-tech artifacts. We then dis-
cuss what needs to be represented to support this particular view of the design
for the whole design life cycle in Section 3. Particularly, we mention the frame-
work we are working in, which is a broad scope project to support the concurrent
and collaborative engineering design projects using knowledge-based technolo-
gies. In Section 4 we elaborate on the requirement-driven retrieval. Our retrieval
strategy employs a dynamic indexing mechanism that is based on a compliance
measure and resolves the problem of context dependency by providing an explicit
representation for the context as a set of constraints. We also define a similarity
measure between cases and briefly discuss the properties of the measures defined
relevant to case-based retrieval. In Section 5, we give the implementation details
and a small example to illustrate the system. We conclude the paper with a sum-
mary and further research directions.

2. Previous Related Research

Serrano and Gossard (1988) discuss a constraint-based approach to conceptual
design. They build on Serrano's earlier work on constraint management in the
context of computational design. Their constraint representation is parameters on
nodes and constraints on the arcs of a graph. They discuss graph theoretic meth-
ods to handle constraints efficiently.

Sycara and Navinchandra (1992) consider retrieval strategies in a case-based
design system. Their representation not only includes physical attributes but func-
tion and behaviour as well. They represent the behaviour as an influence graph
where the nodes correspond to parts and the arcs to causal relations between them.
The input to their case-based retrieval system is a similar graph which depicts
the new design situation. The input is matched to other graphs or parts of graphs
stored in the case-base.

Nakatani ef al. (1992) describe a case-based engineering design support sys-
tem called SUPPORT which is an interactive system for supporting various phases
of engineering design. Their case-based retrieval module uses a three-level repres-
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entation based on features, functions, and parts hierarchies. They use a constraint-
based search to select parts from line-ups.

Maher and Zhang (1993) represent design cases using two indexes: design
problem specifications and design solutions. They construct hierarchies of design
cases in this manner. Retrieval is done by finding the closest match for given spe-
cifications. If a match does not occur at one level in the hierarchy the process is
repeated for each of the lower levels.

Wood and Agogino (1993) discuss an architecture to support case-based con-
ceptual design. Their architecture relies heavily on the emerging Internet proto-
cols Iike WWW and WAIS. They propose to store the design cases in several dif-
ferent multimedia formats (hypertext, CAD drawings, audio, video etc.) and then
to search the case-base as guided by the design engineer.

Domeshek et al. (1994) discuss MIDAS (a Memory for Initial Design of Air-
craft Subsystems). The authors use a repository of design stories and discuss ways
of creating and indexing those stories. They state that the most developed part
of CBR technology is the retrieval. However, the major challenge in the retrieval
is building a comprehensive indexing vocabulary. They suggest that creating a
design story requires two types of information: presentation and connections.

Maher and Balachandran (1994) explicitly mention the iterative nature of the
case-based retrieval in the engineering design process. They model the retrieval
process as exploration rather than a one-shot search. They represent only func-
tion, behaviour, and structure for case-based retrieval and propose two index elab-
oration methods for iterative retrieval.

Kumar and Krishnamoorty (1995) argue that the indexing process is highly
context dependent and must be carried out for each domain separately.

In the case-based design systems mentioned above the retrieval is implemen-
ted as a memory search task and the system's ability is directly proportional to
the “richness” of the indexing scheme. One has to foresee and provide indices
for most of the query contexts that may arise (i.e. one should be able to abstract
apples and oranges as similar in the context of edible items but be able to differ-
entiate between them in the context of fruits). However, we observed that in the
process of case-based retrieval:

— a person begins an information interaction with only a vague understanding
of the design problem,
— her knowledge, constraints, and goals change over time.

This tends to suggest that, (i) case-base retrieval should be iterative, and (ii)
instead of trying to foresee the context in which the retrieval is to be performed,
the indexing mechanism has to be dynamic and similarity of one case to the con-
text has to be computed on-the-fly.
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——

Design evolves

Figure 1. A particular view of design that emphasizes the iterative nature of the process.

3. Case Representation

At the heart of the case-based reasoning paradigm lies case representation, index-
ing and marching.

For engineering design purposes, comprehensive case libraries can be built in-
house or distributed libraries available on the Internet can be used (e. g. PARTNET
(http://part.net/), INDUSTRY NET (http://www.industry.net/)).

We have found the following three concepts crucial in the process of design-
ing one-off, high-tech artifacts (cf. Figure 1):

— Concepts: The first thing that the design engineers come up with are con-
cepts which provide a solution to the (design) problem at hand. These can
either be competing or complementary design alternatives (e.g. Let's build a
remote manipulator arm with six joints to solve the problem).

— Issues: Then the design team raises issues and deals with them until a com-
promise closure is attained. The issues can be from anywhere within the ljfe
cycle of the design. There can be issues of risk, cost, schedule, control, sta-
bility, manufacturability, quality, fit, form, function etc. (e.g. How are we
going to stabilize the system? What is the power consumption of a partic-
ular joint? How did we handle the manufacturability issues for past designs?
etc.)

— Requirements: The design objectives together with design concepts and is-
sues yield functional, structural and performance requirements. Design is
satisfaction of these requirements. (e.g. The remote manipulator should have
six degrees of freedom. The remote manipulator should be able to handle
payloads upto 1000 kg. The shoulder Joint should provide inclination and
travel to the arm, while elbow and wrist Joints should provide travel to the
end effector etc.). The requirements are iteratively decomposed and elabor-
ated on (e.g. Providing travel decomposes to provide rotation for all joints.)

Although there seems to be a natural hierarchy between concepts, issues, and
requirements, one should bear in mind that the concurrent engineering practices
allow for a concept's requirements to be refined, while issues arising from another
concept are investigated at the same time.
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The knowledge to support the full life cycle of this particular view of the design
is captured in the TOronto Virtual Enterprise (TOVE) (Fox, 1992; Fox ef al.,
1993; Fox and Gruninger, 1994). Particularly TOVE (i) provides a shared termin-
ology for the enterprise that each agent can jointly understand and use, (ii) defines
the meaning of each term in a precise and as unambiguous manner as possible,
(iii) implements the semantics in a set of axioms that will enable TOVE to per-
form deductive query processing to answer “common sense” questions about the
enterprise. TOVE represents both generic concepts (time, causality, activity, and
constraints) as well as enterprise specific entities (products, requirements, activit-
ies, organisation, cost, and quality).

The framework we operate in is a complex engineering design project which
requires the services of many engineers and their efficient collaboration. Reusing
existing designs, which we address in this paper, is one of the objectives of the
system we are developing.

The product, parameter, requirement, constraint and function representations
in TOVE are closely related to the case-based retrieval of engineering design cases
(cf. Figure 2) since TOVE provides a sophisticated representation of the design.
In this paper, we do not utilize TOVE's activity, organisation, and cost ontologies.

Requirements

Parameters

Parts

Constraints

Functions

Figure 2. Representations in TOVE that are used to represent engineering design cases.

We adopt the repository view of TOVE and consider it as a repository of
knowledge relevant for engineering design. We use the term “Integrated Knowledge-
Base” to refer to the repository. This view induces a “monolithic” representa-
tion of design cases (as contrasted with the “snippet” representation) (Kolodner,
1993, Section 5.4.1) from which sub-cases need to be extracted. We make that ex-
traction via functions. The functional representation is the higher level indexing
mechanism of design cases and it complements the dynamic indexing based on
requirements that will be discussed in detail in Section 4.

Furthermore, we assume that the case-based retrieval process 1s iterative, a
view shared by others (Domeshek et al., 1994: Maher and Balachandran, 1994),
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which is consistent with the V-model of systems engineering view (Fox and Sa-
lustri, 1994). The user is not confined to any level of representation at any time
and can ask a question of arbitrary generality at will.

We briefly identify what needs to be represented to support case-based re-
trieval for the particular view of design put forth in this section and then discuss
the details of requirement-driven retrieval in Section 4.

3.1. DESIGN CONCEPTS

In order to reason about design concepts one has to consider notions of:

— fit: how do the parts of the design fit together?

— form: the structure of the design as captured by the parts hierarchy.

— function: the intended behaviour of the artifact that is designed as might be
found in a functional classification of parts.

— behaviour: the causal relationships between different parts of the artifact.

— working principle hydraulic, electro-mechanic etc.

Therefore any case-based design tool should be able to represent and reason
on the above items. TOVE provides explicit representations for fit, form, and func-
tion. Behaviour and working principle is simply implemented as a classification
of design parameters. A simplified schematic representation of an engineering
design case is shown in Figure 3.

has

has
Function

related_to

dnctional

constrains

Constraint

Figure 3. Representation of engineering design cases using TOVE.



CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 275

Furthermore, each category has its internal classification (e.g. allocated para-
meters, estimated parameters, actual parameters, basic functions, non-basic func-
tions, unary functions, binary functions etc.).

We briefly mention the representation of functions since that is usually the
starting point of case-based retrieval in engineering design domains (Goel and
Chandraskaran, 1989; Sycara and Navinchandra, 1989). The functional represent-
ation is as described in (Pahl and Beitz, 1988) who identifies five generally valid
functions (change, vary, connect, channel, and store). These functions take en-
ergy, materials, and signals as their arguments. We distinguish user-defined non-
basic functions from the generally valid basic functions (e.g. the non-basic func-
tion “provide rotation” is related to joints of the manipulator arm as well as to
the basic function “connect(energy,matter)”). Generally valid functions are use-
ful when the system cannot retrieve any prototype for a given non-basic function.
In that case, if there is another level, the retrieval algorithm moves one level up
in the non-basic function hierarchy. If there is still not one item retrieved, the al-
gorithm moves to the related generally valid basic function and retrieves proto-
types related to that function with the hope of retrieving something relevant. The
retrieved cases are pruned by the designer with respect to their relevance.

3.2. ISSUES

In a sense, issues define the solution context for which more detailed questions
can be asked. What issues have been dealt with in the previous cases and how they
were dealt with is an important piece of knowledge. Eventually one can discover
recurring issues in “similar” situations (e.g. how risk was reduced in a previous
project when stabilization issue was raised can be a valuable piece of information
in the current context.)

Hence a case-based design tool should be able to represent and reason on is-
sues. Issue-based retrieval is used to retrieve those cases in which the same issues
have been dealt with. In the current prototype, issues are simply indexed by their
names and no further abstraction is available. The extension of ISsue-management
and categorizing issues lie in out further research agenda.

3.3. REQUIREMENTS

Design is highly requirement-driven in the engineering design domain we are
concentrating on. Usually the customer comes in with a set of higher level re-
quirements which get decomposed and elaborated on during the design process
and find their way to every detail of the design, usually in the form of a constraint
on design parameters.

TOVE supports the requirement management process in various ways. The
requirements are elaborated on and decomposed into sub-requirements until they
are represented (internally) as constraints in the knowledge network (cf. Figure 3).
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We do not impose a way of managing requirements but provide a rich repres-
entation which can support many requirement management schemes.

We differentiate between functional, structural, and performance requirements.
Functional requirements dictate “how” to achieve a desired behaviour whereas
performance requirements dictate “how well” a behaviour must be achieved. Struc-
tural requirements are usually physical laws that are required for the design to
achieve its goals.

Requirements are the basic means to describe the design to our system. The
higher level requirements (which are usually functional) retrieve candidate design
prototypes which come with their own requirements and constraints. The designer
modifies and prioritize the new requirements and continue retrieving in an iterat-
ive manner.

The requirement-driven retrieval is elaborated fully in Section 4. An example
is given is Section 5.

4. A Characterization of the Requirement Driven Retrieval

In this section we outline the retrieval mechanism in the presence of constraints.
The formal treatment in this section should not turn the reader off. What we are
saying is really simple: when context is given as a set of constraints, individual
cases comply with the context to the degree they satisfy the constraints. The case
that satisfies most of the constraints (or more than a predetermined number of
constraints) is retrieved. To yield more flexibility, the constraints can be weighed
as to their importance, in which case our compliance measure is the weighted av-
erage of the number of constraints satisfied. Furthermore, when a case does not
contain some attribute mentioned in the constraints, we propose to solve for it
with the purpose of aiding the designer in selecting an appropriate design case.
We do that by allowing to solve for multiple, weighted objectives.

The formalism will allow us to discuss the properties of the compliance meas-
ure and the similarity of cases which, we believe, are too important to be over-
looked.

Basically we define individual cases with finite number of attribute-value pairs
and a retrieval context with finite number of constraints on the attributes. Then a
case satisfies the retrieval context to the degree it satisfies the constraints.

Formally, the situation is as follows: an individual case, S, is assumed to be
comprised of a finite list of attribute-value pairs:

S = {{a1,v1), (az,v2),- - -, {ag, vp) }-
Then the case-base, CB, is a finite collection of individual cases:

CB = {S1,5,...,5¢).
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The context of retrieval is explicitly defined by a set of constraints * :
X = {<a1’ Cl>’ <a27 C2>7 KRR <am’> Cm’>}-

These can either be explicit constraints on the particular design or constraints re-
lated to functional or structural requirements as well as constraints from anywhere
in the life cycle of the design.

We use the characteristic function, , to denote satisfaction of a constraint by
a case: for any case S; and constraint C;:

1 if §; satisfies C;
XZ(S]){ 0 otherwise

Then we define another relation for a case which satisfies a given context:
sat(S, X) iff VC; € X,3S € CB, x;(S) = 1.

However, this is not flexible enough for retrieval purposes: a case either satisfies
a context or not! We are interested in cases which almost satisfy the context as
well. To achieve this flexibility we can define a measure which shows how much
a case satisfies a given context:

() = DEx(S)

m

Clearly, ux{S) € [0,1] with ux(S) = 0 showing no compliance with the
given context, ux (S) = 1 denoting full compliance and px (S) € (0, 1) denoting
partial compliance.

Consider the situation where one objective dominates all the others in the
sense that if it is not fulfilled then the satisfaction of the rest is not that import-
ant (when an envelope objective is not satisfied it really may not matter whether a
weight objective is fulfilled or not). This situation is typical in engineering design.

To be able to provide more flexibility to the user in terms of retrieval the con-
straints can be weighed by the user as to their importance.

Therefore the context, X, is now given as:

X = {<(l1,’w101>, Y <am/awm’cm’>}

!Since a single constraint can apply to several attributes the list contains more tuples than the
number of constraints. We assume that there are m constraints but the context is given by /'
attribute-constraint pairs where m’ > m.
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where w; are the weights which denote importance of each constraint>. We as-
sume that weights are positive real numbers. The situation is as depicted in Fig-
ure 4.

A list of requirements Weights Case 1 Case?2 Case L.
(constraints)
wi
w2
w3
we
w5
w6
W7 ® o o
Wm
The Context (X) My (S1) 1y (S2) My (SL)

Figure 4. Constraint-based retrieval: case of weighted compliance measure. The shaded areas of
the cases represent unconforming parameters.

The retrieval with weighted constraints is based on the extended compliance
measure, px (S), which is given as:
2oiz1 wiXi(S)
kX (‘S ) = Z%n'{—

i=1 Wi
Some other properties of 1 x are as follows:

— Two px(-) values are commensurate as long as they denote the same context
X. On the other hand, ux and py are incommensurate if the relation of X
to Y is not known.

— pux(S) is a summary measure in the sense that it gives an average compli-
ance measure. It does not tell anything about the similarity of one case to an-
other (i.e., two cases that have the same compliance measure can be totally
dissimilar simply because they satisfy different constraints but end up satis-
fying the same number of constraints!).

As far as the retrieval is concerned for a given context X, one can choose the
case(s) with:

max{px (i)}

*There is a major assumption here about the weights from a measurement-theoretic point of
view. It has to be the case that the weights attributed by the user must be on a ratio scale (Krantz
etal, 1971) (i.e., if the user is assigning 10 and 20 to two different constraints she means not only
the latter is a more important constraint but it is fwice as important.). This cognitive task is usually
fulfitled when aided with proper visual tools like sliding scales. This issue is should not be over-
looked. If the designer is not able to fulfill the cognitive requirement that the weights are on aratio
scale, the averaging operation (and the retrieval based on it) is simply meaningless!
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or cases with compliance measure greater than a user defined threshold:

px(Si) > 7.

However, px is not monotonic as are most of the retrieval measures on which
retrieval is based (i.e., if one adds a constraint to context X to construct context
Y the relation between px and gy is undetermined).

4.1. RETRIEVAL BY SOLVING CONSTRAINTS

Although the representation of the context by weighted constraints and using the
weighted compliance measure for retrieval of cases is a flexible way of retrieving
design cases, it is not sufficient to retrieve a case which does not have a partic-
ular attribute that the constraint requires. In such a case, the unknown parameter
required by the constraint(s) must be solved for.

Furthermore, the engineering design usually has performance requirements
set as goals to achieve.

To account for the two concepts above we extend the definition of a context to
include objectives to be optimized as well as constraints. Hence, the context, X,
is now given as:

X = {<a1aw(1701>7' Ty (an’va’On’>a <a1>wiC1>7 Ty <am’:w7(fn’c1n’>}

where the tuple (a;, w?0;) (footnote 1 applies here as well) denotes a weighted
objective on the attribute (e.g. maximize torque, minimize risk, maximize power
output etc.) and w° and w* denote weights on objectives and constraints, respect-
ively. Note that we allow for multiple objective functions and both the objectives
and constraints can be assigned weights by the user.

During the interaction of the designer with the system we are assuming that
she defines the context using equations to be optimized with respect to constraints
to be satisfied. This is not an unreasonable assumption, since the design proceeds
by posting requirements (of which performance requirements are the goals, and
structural and functional requirements are constraints) and trying to fulfill them.

This complicates the problem particularly when the constraints are not lin-
ear. From an implementation point of view such a system of constraints can be
handled either by constraint logic programming techniques (e.g. CLP(R) (Jaf-
far et al., 1992; Holzbaur, 1995)) or mathematical programming techniques (e.g.
many implementations of the Simplex algorithm or interior point methods for lin-
ear constraints or non-linear search algorithms). In this paper we tackle the case
where the objective functions and constraints are linear.

When the the objective function and the constraints are linear the problem can
be solved by using numerous Multiple Objective Linear Programming (MOLP)
techniques. In fact, multiple criteria optimization techniques have been employed
in detailed engineering design (Statnikov and Matusov, 1995). We are employing
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similar techniques for the full life cycle of the design process. The situation with
unknowns in constraints and objectives to be optimized is depicted in Figure 5.

A list of requirements Weights Case 1 Case?2 Case L
(objectives and constraints)

Obj. < :

Cons.

.
.

.
.

The Context (X) My (P1) My (P2) My (PL)

Figure 5. Constraint-based retrieval: the general case. There arc multiple objectives to be optim-
ized with respect to the given constraints.

The measure of compliance can be extended to the multiple objective case in
a natural manner retaining all the desired properties of the measure for retrieval
process:
=1 wixi (S) + iy wixi(S)

Lty wi + i wf

The characteristic function for the objectives is evaluated by the designer and
only then the compliance measure can be calculated (cf. Section 5).

The retrieval is again based on px(S) but the process of retrieval requires
solving a MOLP.

In fact the cognitive task of coming up with weights for objectives and con-
straints can be quite a hard task in large domains. In order to eliminate the need
for an intrusive acquisition of weights from the user we assume further generality
in the sense that the weights w; are given as intervals rather than a single number:
w; € [Ei,ui].

When this is the case the problem is still tractable as long as the objectives and
the constraints are linear. This formulation gives rise to the family of weighted
sum problems (Steuer, 1986).

px(S) =

4.2. SIMILARITY OF CASES

If one is interested in the similarity of one case to the other the compliance meas-
ure py is useless. For stmilarity one can define another measure, s x, which meas-
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ures the similarity of two cases for a given context X as (for the most general case
with weights):

e [wixa (S)xi(S2)] + 200 [wixi(01)xi(O2)]

S1,52) =
(5 52) Tt i

sx (S1, S2) measures the similarity of case Sj to case Sy in context X (It simply
counts the occurrences where the two cases satisfy the same constraints and nor-
malizes it using the weights). This is a particularly novel definition of similarity
since context is explicitly taken care of. Cases that are similar in one context may
be totally dissimilar in others. This effect of context on the similarity measure is a
well known problem in the research and practice of similarity measures (Tversky,
1977).
As defined here sx is a valued relation® (Ovchinnikov, 1991: Bilgic, 1995). It
has the following desired properties:
— sx € [0,1],
— sx is reflexive (i.e., VS, sx(S5,S) = 1), a design case is totally similar to
itself.
— sx 18 symmetric (i.e., VS;, S;,5x(S5;, S;) = sx(S;,5:)), if a design case,
S;, 1s similar to another, S;, to some extent then S; must also be similar to
S; to the same extent.
— amore robust definition of transitivity holds:

VSZ',SJ‘, Sk,SX(Si,Sk) > min{sx(si, Sj), Sx(S]', Sk)}.

If a design case S, is similar to S; to an extent and S; is similar to Sy, then S;
must also be similar to S, to some extent. Note that this reduces to the usual
definition of transitivity when sx € {0,1}.

Therefore sx is a bona fide valued similarity relation. It has a robust transitiv-
ity condition which avoids heap paradoxes* The transitivity condition of the sim-
ilarity measure we define will make the retrieval algorithm stop at a point when
the similarities of the two items diminish to zero (or when it is under a predefined
threshold).

Similarity of cases is important if one needs to index cases according to their
similarity and store it thar way. However this can result in inadvertent effects
since similarity is dependent on the context. Therefore computing similarity on-
the-fly for a particular context at the time of query seems to be the superior al-
ternative. However note that for retrieval purposes the compliance measure xx is
sufficient.

% A valued relation, R, is an extension of the concept of classical relation which takes on either
O or 1 as its values. Valued relations take on values in the unit interval [0, 1].

*A cup of coffee without any sugar and another one with just one grain sugar added are similar
in terms of sweetness. The transitivity condition entails that the first cup and a cup with thousands
of grains of sugar added are stili similar in terms of sweetness.
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The valued similarity relation can be a basis for soft classification of cases in
which every case belongs to a cluster to a degree (for a given context). Such a
framework provides flexible retrieval strategies and it reduces to crisp clustering
methods similarities are an all-or-nothing matter.

5. Implementation and an Example

In this section, we briefly discuss the implementation of the techniques we de-
scribed and give a small example.

The implementation of the design (and design case) representation has been
carried out in Prolog in an object-oriented manner. An object-oriented layer buiit
on top of Prolog (together with inheritance mechanisms) contains the design rep-
resentations.

The case retrieval module is also implemented in Prolog. We use ECRC's con-
straint logic programming system ECLiPSe (Wallace and Veron, 1993) and the
CLP(Q.R) constraint solver (Holzbaur, 1995) that comes with it on a Sun SPARC
workstation running SunOS version 4.1. The user interface to the system is via
World Wide Web (WWW) and it requires a web browser.

We have the representations of several manipulator arms in the system com-
plete with their part, parameter, requirement, constraint, and function hierarchies.
We assume that we are faced with the situation of designing another manipulator
arm for a totally different task. The aim is to be able to reuse some of the past
designs to reduce development costs.

For purposes of illustration we assume that the design has come to a stage
where it is decided that another arm with three Joints is going to be designed. The
designer is faced with the problem of selecting brakes for each joint. Each joint
has its own requirements from the brakes to be used (i-e, each joint is a different
context for brake selection) and there are several types of brakes used in the past
designs.

The functional requirement for a particular joint (context) is represented in the
system as shown in Figure 6.

This particular functional requirement (REQ202) is related to two functions
that are already defined in the system (FUN30 and FUN31). The representation
of FUN30 is shown in Figure 7.

Since the functional requirement is related to the function “stop-motion”, a
first retrieval on the basis of this requirement retrieves eight parts (design proto-
types) that are functionally related to that requirement (cf. Figure 7). In this ex-
ample, all the prototypes that are retrieved are brakes. It could have been the case
that there were other prototypes (e.g. motors with inverse drive capabilities) re-
trieved for the same function. Pruning of design prototypes can be done by the
designer at this moment or the designer may choose to continue, with everything
retrieved so far, to requirement-based retrieval where prototypes are evaluated for
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Class Frame  REQ202

Subclass of: REQ190

Instances:

Relations: related-to-function [FUN30,FUN31}

Attributes: token {slow-stop]
name [rms.slow-stop.req]
req-type [functional-req]
reg-title [Functional requirement for slowing and stopping]
req-id {3.2.7.11b]
req-documentation [RMS-SG-1944A]
reg-short-description [The artifact should slow down and
stop the motion produced by the joint motors]

Messages:

Figure 6. Representation of the functional requirement in the system.

Class Frame  FUN30

Subclass of:

Instance of: non-basic-function

Relations: related-to-part [PRT138,PRT139,PRT140,PRT141
PRT142,PRT143,PRT144,PRT145]
generalizes-to [FUN3]

Attributes: name [stop-motion]

Messages:

Figure 7. Representation of a function in the system.

their compliance (e.g. motors would have been eliminated from further consider-
ation because they would violate weight and envelope constraints of the context).

In our example, the designer continues with the eight brakes retrieved and
evaluates their compliance for the given context. Since the design solution seems
to be the concept of a brake, the detailed requirements for the brakes can either
be entered explicitly at this point or the requirement tree of one of the retrieved
brakes can be adopted and modified.

There are fourteen requirements for the brake in the current context and the
representation of one of the requirements (REQ142) is shown in Figure 8 as an
example.

The designer weighs each of the fourteen requirements as to their import-
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Class Frame REQI42

Subclass of: REQ90

Instances:

Relations: requirement-of [PRT133,PRT134,PRT135]
has-expression [CON53]
has-document ['slip-torque.req.html']

Attributes: name [brake.slip-torque.req]
reg-derivation-type {derived-req]
req-title [Breakaway torque of the brake]
req-id [3.2.1.2.3]
req-documentation {[RMS-SG-1954A]
reg-short-description [The peak torque level required
to induce brake slip shall not exceed 12- oz-inches]

Messages:

Figure 8. Representation of a derived requirement in the system.

ance and starts the requirement-based retrieval. The results of such a transaction
1s shown in Figure 9.

The results indicate that PRT138 has the maximum compliance for this partic-
ular context. However, the designer selects the top four of the retrieved prototypes
(PRT138, PRT139, PRT144, PRT143) and adds the following goals (performance
requirements) to the system:

— maximize brake actuation life (10), and
— minimize cost (7).

The numbers by the objectives denote their relative importance. The designer sub-
mits this new query to the system which solves for actuation life and cost para-
meters of three parts (PRT144 did not yield a solution to the required parameters
due to insufficient information). Then, the designer evaluates the objectives for
each part as to their acceptance and the system returns the new compliance meas-
ures: (PRT138:0.88, PRT139:0.89, PRT143:0.92).

The designer selects PRT143 as the new brake of the joint with the knowledge
that it has to be modified to meet requirements REQ125, REQ128, and REQ142.

The designer also has the option of classifying retrieved items on the basis of
their similarity. To illustrate that, assume that the designer wanted to classify the
eight brakes retrieved before the introduction of the objectives. Figure 10 shows
the clustering of the eight brakes at two levels of similarity, 0.55 and 0.70.

Note that this clustering is only valid for the particular context (joint).
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PRT138 (0.971429) PRT139 (0.914286)
satisfies 13 out of 14 requirements. satisfies 11 out of 14 requirements.
Requirements that are NOT satisfied:  Requirements that are NOT satisfied:
REQI128 REQ125
REQ128
REQI30
PRT140 (0.6) PRT141 (0.619048)
satisfies 8 out of 14 requirements. satisfies 8 out of 14 requirements.
Requirements that are NOT satisfied: ~ Requirements that are NOT satisfied:
REQ123 REQ125
REQI25 REQ128
REQ130 REQI30
REQ137 REQI136
REQ140 REQ137
REQ142 REQ142
PRT142 (0.752381) PRT143 (0.819048)
satisfies 9 out of 14 requirements. satisfies 11 out of 14 requirements.
Requirements that are NOT satisfied: ~ Requirements that are NOT satisfied:
REQ123 REQI25
REQ125 REQ128
REQI128 REQ142
REQ136
REQ140
PRT144 (0.914286) PRT145 (0.628571)
satisfies 11 out of 14 requirements. satisfies 9 out of 14 requirements.
Requirements that are NOT satisfied:  Requirements that are NOT satisfied:
REQ125 REQ125
REQ128 REQ128
REQ130 REQI138
REQ139
REQ141

Figure 9. Results of requirement-based retrieval.

6. Summary

In this paper we describe a certain view of design for one-off, high-tech artifacts
and outline how that design process can be supported in concurrent engineer-
ing environments. Our aim is to be able to support all phases of the design life
cycle. We briefly mention the type of information we have in TOVE to repres-
ent knowledge necessary for the design task. We suggest that fit, form, function,
behaviour, working principle, issues and requirements need to be explicitly rep-
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Similarity of cases at a level of 0.55 Similarity of cases at a level of 0.70

PRT140 PRTI41 PRTI40 PRTI141

PRTI38  PRTI39  PRTI42 (PRTIBS PRTI39 PRTI43

PRT143 PRT144  PRTI145
PRT142
PRT144
PRT145

Figure 10. Clustering of the retrieved cases for two similarity levels.

resented. We formalize the retrieval process on the basis of constraints in which
we make the constraints, goals, and their appropriate weights an explicit part of
the query rather than part of the knowledge-base. This results in a flexible way of
retrieving and selecting design cases. This formalization leads to:

A definition of context in terms of constraints on the design. Therefore con-
text becomes an explicit part of the case-based query itself.

A concept of compliance measure, ux (.S) for the given context. Each case,
S, can be evaluated on the basis of this measure as to its compliance with the
context, X.

An extension to the context such that it not only contains constraints but
goals (objectives) to be satisfied as well. This approach is more realistic in
the engineering design domain where constraints are decompositions of struc
tural and functional requirements and objectives stem from performance re-
quirements.

A further extension to the context in the sense that not all objectives and con-
straints are weighed equal. The designer has the flexibility to choose weights
for each objective which denote the importance of that particular objective.
The weights can be given as intervals if there is any doubt about their valid-
ity.

A definition of similarity of two cases, s x(.S;, S;). This measure is based on
the context X and can change from one context. to the next. (e.g. apples and
oranges are not similar in the context of fruits that contain starch but they are
similar in the context of edible things).
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We are planning on extending the approach provided here in several respects.
One immediate concern is the measurement units used in parameters and con-
straints. A retrieval mechanism should be able to distinguish between different
units that are used and should be able to convert from one unit system to another
for correct retrieval.

Solving for non-linear objectives and constraints are computationally expens-
ive. Case-based design systems must have well defined protocols to communic-
ate with commercially available symbolic mathematics and detailed engineering
design software to care for non-linear objectives and constraints.
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