JR

3i-

TE

ral
the

ral
ron
pp-

wnd

cal ‘

sis,

>lid

and

D A R |

A

s

|
"_’fﬂ ]

Intelligent CAD Systems IIT, Practical Experience and Evaluation,

P.J.W.ten Hagen P.J.Veerkamp (eds.)
Springer-Verlag, Berlin, 1991. pp.187-204.

13

Constraint Satisfaction Techniques for Spatial
Planning .

Can A. Baykan and Mark S. Fox

Center for Integrated Manufacturing Decision Systems
The Robotics Institute

Carnegie Mellon University

Pittsburgh, PA. 15213, USA

Abstract: WRIGHT is a CAD system for designing two dimensional layouts consisting of rectangles. This
problem arises in space planning, i.e. the design of floorplans, arrangement of equipment in rooms, and
site planning. Space planning is a search process characterized by very large search spaces. Constraint
directed search provides a basic problem solving methodology for intelligent cAD by providing a formal
method for representing domain knowledge uniformly as constraints, and by using constraints for efficient
search. Each configuration is represented as a Constraint Satisfaction Problem (csp), and constraint
propagation restricts the domains of varables as information becomes available during search.
Constraints reduce search complexity by choosing the most constrained decision. The measures that
identify opportunistic decisions are variable tightness, constraint reliance and constraint tightness. Least
commitment representations (value ranges) delay decisions until enough information becomes available.
Abstractions reduce complexity by allowing abstract constraints to prune away entire design subsets.
Keywords: Space Planning, Search, Constraint Satisfaction, Least-commitment, Abstraction

1. Introduction

Intelligent CAD requires a fundamental problem solving methodology that can incorporate
arbitrary amounts of knowledge in a principled manner. Constraint-directed search provides a
formal method for representing expertise uniformly as constraints. From constraints an
understanding of the structure of the problem (search) space, that leads to more efficient search.
can be derived [1,7,8,10]. Thus constraint-directed search addresses the needs of intelligent
CAD by enabling the representation of knowledge from diverse sources and enabling the
selection of efficient search strategies based on an understanding of search space structure. !

! This differs from encapsulating expenise in the form of rules in that rules do not provide for an
understanding of problem space structure, but simply identify situations of applicability without any
guarantee that the search being performed is efficient.



188

This basic problem solving methodology provides the framework within which the
following issues can be addressed:
e knowledge representation,
e  acquisition and maintenance of design expertise,
e user interface for graphical specification of constraints,
e  user interface for interactive design.

WRIGHT is an intelligent interactive space planning system for generating two dimensional
layouts consisting of rectangular shapes using constraint-directed opportunistic search. Space
planning deals with the design of two dimensional layouts, such as floor plans, the arrangement
of equipment in rooms and site planning. In space planning, topological relations and shape,
dimension, distance and other functions of spatial arrangement are a principal concern. Almost
all aspects of design have spatial implications, and influence space planning decisions.

2. Problem

WRIGHT deals with the generation of two-dimensional layouts consisting of configurations of

rectangles. Inputs for generating a layout are: 4

e An existing layout which may be an empty space, and dimensions of which may be
specified as ranges, as seen in Fig. 1.

420-450

!

1

Fig. 1. Plan of kitchen showing existing layout

e  Design units to be located and/or dimensioned, as seen in Fig. 2.

O O
o O

sink-center ‘mix—center range-center

Fig. 2. Design units to be dimensioned and located in kitchen

circulation-area

e Knowledge about the design domain in the form of a class hierarchy of prototype design
units and constraints on them, as seen in Fig. 3.

The output of WRIGHT is a set of optimal layouts that are significantly different from each other,
as seen in Fig. 4.



he

al

of

189

space—<kitchen
hall

boundary door sink
design-unit window range
circulation wall refrigerator
: appliance dishwasher
equipment
work—center<sink—mix—center is;nk—center
Equipment inside kitchen table range-center mix-center

Appliance non-overlap appliance
Appliance completely-next-to circulation
Work~center next-to circulation
Range—-center next-to sink-mix-center
Sink inside sink-center

Sink next-to window

Sink length 2 120 cm.

Fig. 3. Class hierarchy of kitchen design units and some kitchen constraints

S
[e]e]
(e]e]

CEL ~
/ S o

Fig. 4. Solutions to the kitchen design problem defined above

3. Background

Based on their underlying representations, previous approaches to spatial layout can be classified
as grid based, drawing based and relational. Grid based representations partition objects to be
located into subparts of equal area and divide the site into a grid of cells where each cell is equal
in area to one subpart. Drawing based representations use polygons of fixed size and shape to
represent objects. A polygon is represented as a set of sides, and a side as a set of points.
Relational representations use adjacency or incidence between points, between lines and regions,
or between regions to model layouts.

In space planning, search operates by selecting a spatial element(s) and an operator, and
generates a new configuration by applying the operator to the element(s) in some state.
Structuring the elements of search gives rise to different strategies. Starting scarch with an
empty initial configuration results in a build-up strategy . There are two basic variations in a



190

build-up strategy: organize by element and priority solution methods [3]). In an organize by
element strategy, the next object to enter the layout is selected, placed at alternative locations
and tested. All relevant attributes of the object are determined at the time it enters the
configuration, and all applicable tests are carried out to select satisfactory locations. Search
continues by selecting a new object to enter the design. A priority strategy orders search
operators as in ABSTRIPS [16] and other hierarchical planning systems. Operators with high
priority are applied first, creating macro objects or configurations in unbounded space by
determining the important attributes first. In an improvement strategy, search starts from a
configuration which contains all the elements. Changes are made in response to failing
constraints or in order to improve the score of an objective function.

Quadratic assignment formulation [12] wuses a grid based representation. This
representation can not deal with variable sizes, and makes it very hard to deal with issues of
shape and alignment. Both build up and improvement strategies are used with this approach.

DPS [15] and GSP [3] use drawing based representations. GSP objects must be rectangles
and DPS objects can be arbitrary polygons. In both systems dimensions of objects must be fixed.
GSP uses an organize by element strategy, whereas DPS can also employ a priority strategy. In
systems using drawing based representations, locations tried for placing an object depends on the
existing layout, as seen in Fig. 5. As a result of this, configurations generated depend on the
order in which objects enter the layout. Since GSP and DPS try only one ordering, they may miss
possible solutions. Their correctness is not guaranteed. Locations in Fig. 5, from ({3]; p.57), are
defined by lines projected by the edges of the space and the objects that are in place. Placing an
object at every location above, in four possible orientations, results in 96 new configurations.)

1 2,3 4.5 6
\ \
] t
] 1

7 8.9 10,11 12
13 145 16
17 1819 20
b1 22
3 24

Fig. 5. Locations considered by GSP for placing the next design unit

GRAMPA [9], DIS [4] and L.OOS [6] are space planners that use a relational representation.
GRAMPA uses adjacencies between regions, and DIS and LOOS use the adjacencies between
regions and lines. The relations used in LOOS are north-of and east-of, as seen in Fig. 6. Using
these relations it is not possible to specify that rectangle 1 is next-to rectangle 2 — whether they
are adjacent or not depends on the dimensions. The same is true of specifying alignment. Such
relational considerations are treated as dimensional issues.

Relational layout programs systematically generate all distinct configurations defined by
their representation. They use a two step process that deals with relational and dimensional
aspects separately, thus are not opportunistic in the use of constraints. The relations that are



A T = = N Y

U

191

@“@ 3 1
>
oc-R NN R IENAEE

Fig. 6. An orthogonal structure and possible configurations represented by it

w
-
W
[

used for generating solutions are not based on the requirements of the problem, but on a
restricted set of relations defined in each system.

WRIGHT uses relations between lines for expressing topology. It is possible to create new
spatial relations by defining them in terms of relations between lines. The strategy employed in
WRIGHT is a priority strategy, where search operators determine only the attributes specified by
s the selected constraint. The topology and dimensions of a configuration can be decided in any
; order due to the CSP formulation used.

4. Insights and Approach

Design is the process of constructing a description of an artifact that satisfies a functional
specification, meets explicit or implicit performance criteria, is realizable and satisfies
restrictions on the design process itself [13]. The artifact is initially defined by its desired
properties, and it is natural to express them in terms of constraints. In WRIGHT, any knowledge
that defines or restricts the domain is expressed as a constraint.

A

X

R S e i .

Space planing is a search process [2] characterized by very large search spaces. Constraints
play a major role in reducing search complexity, by opportunistically choosing the most
constrained decision to make at each step [7]. Constraint propagation restricts the set of
alternatives by eliminating values that are inconsistent with the current decision. WRIGHT uses
constraints to select an efficient search path, and uses constraint propagation to ensure that
values of all variables are consistent.

%ﬂ a "_. } ~n,.

23

Design representations should tolerate ambiguity and incomplete specification. They are
different from representations of existing situations. Least commitment [16] representations
delay decisions about uncertain aspects, while making it possible to reason about the certain
aspects of designs. Least commitment is achieved by using value ranges, abstract constraints,
and generating only the attributes specified in constraints.

Abstractions can further reduce complexity by allowing abstract constraints to prune entire
design subsets [14]. Abstract constraints bound the solution space, and objects at different levels
of aggregation simplify search in WRIGHT. Decisions are not forced by the representation used.
When a commitment is made, it is always for satisfying a constraint. Attributes of design not
specified by the selected constraint are deferred.

The goal of this research is to identify and elaborate the semantics of constraints 1o express
knowledge of the problem domain, to identify the knowledge that enables efficient search
decisions, and to find the limitations, applicability and performance of this approach with respect
to type and structure of constraints.




192

5. Representation

The elements of WRIGHT are design units (objects), spatial relations and constraints.
Knowledge is represented by a class hierarchy of prototype design units, and constraints
specifying desired relations between design units or restrictions on their attributes such as length
or orientation. Abstraction by aggregation combines design units into larger objects, such as
combining a set of rooms into a house; or a sink, dishwasher, and counter-top area into a sink-
center. WRIGHT can handle problems involving design-units at different levels of aggregation.

5.1. Objects

There are two types of objects used in WRIGHT for representing layouts: aumerical variables
and structured objects. Structured objects contain other structured objects or numerical
variables. Numerical variables are interval or discrete. Design units and rectangles are
structured objects. Lines, dimensions, areas, and distances are interval variables. Orientations
are discrete variables.

Design unit is the building block of configurations. A design unit is a structured object
made of two components: a rectangle and an orientation, as seen in Fig. 7. Design units have
fronts, backs and sides. Orientation of a design unit specifies which way its front is facing. The
counterclockwise angle between the front of the design unit and the y-axis is its orientation. A
rectangle is a structured object consisting of four lines, length, width, and area.

has-orientation .
design unit orientation

has-area

rectangle
has-shape ———

east-line

west-line

north-line

I

south-line

has-length

dimension

has-width

Fig. 7. Structured objects and variables for representing rectangular design units

Discrete variables take a single value selected from a set of allowable values. Orientation is
discrete variable, and the set of allowable values for it are: { 0, 90, 180, 270 ). Interval variables
have a range of values defined by a minimum and a maximum. For vertical lines. minimum and



193

maximum values bound the x-coordinate of the line. For horizontal lines, they bound the y-
coordinate.

5.2. Relations

Spatial relations express the types of configurations that are of interest in Space planning
problems. Spatial overlap and adjacency relations are topological relations where orientations or
relative locations with respect to global or object centered coordinates are not considered.

e  Spatial overlap: inside, contains, overlaps, non-overlapping, one-dimensional-overlap.
e  Adjacency: next-to, completely-next-to, covers.

Location and alignment relations listed below are defined with respect to the global directions:
north, south, east, and west. Orientations of the design units are not considered. For example,
align-north specifies that the north sides of two design units are to be aligned, regardless of their
orientations.

e  Location: north-of, south-of, east-of, west-of.
e  Alignment: align-north, align-south, align-east, align-west.

The following spatial relations are defined with respect to object centered coordinates, and
depend on the orientation of one or both design units.

e  Orientation: parallel-to, perpendicular-to, opposite.

¢  Relative location: in-front, at-back, at-left, at-right.

¢  Relative alignment: align-front, align-back, align-left, align-right.

e  Relative distance: front-distance, back-distance, left-distance, right-distance.

Orientation relations specify relative orientations of two design units. If the orientations are
equal, the design units are parallel. If the orientations differ by 90°, the objects are
perpendicular. If the orientations differ by 180, the objects are opposite. Relative location
relations specify the location of design unit 2 with respect to design unit 1. Relative alignment
relations specify that sides of two design units are collinear. Relative distance relations specify
the distance from the specified side of design unit 1 to the closest side of design unit 2.

Spatial relations between design units are defined in terms of and/or combinations of
algebraic relations between their lines. The algebraic relations are: =, >, >, +, and x. The
statement vertical-linet > vertical-line2 means that vertical-line1 is to the east of vertical-line2, since
the value assigned to a vertical line specifies its x-coordinate.

There is a grammar for defining spatial relations, which maps the relation into disjunctive
and conjunctive combinations of algebraic relations between numerical variables or constants.
As a result of observing the problem solving behaviour of WRIGHT on kitchens, we have
identified new spatial relations such as: completely-overlapping, one-dimensional-overlap, at-
side in addition to the ones we have started with and included them in the system.

5.3. Representing layouts

A layout is represented by a set of variables, their values, and algebraic relations that should
always be satisfied. This defines a Constraint Satisfaction Problem (CSP). A CSP has a set of
variables, each with an associated domain. and a set of constraining relations, each involving a



194

subset of the variables. The variables in the CSP representation of a layout are the lines,
dimensions, areas and orientations of the design unit instances, plus other variables that indicate
distances or amounts of overlap. Types of relations are: =, >, 2, +, and x. The first three relations
are either unary relations between a variable and a constant or binary relations between two
variables. The last two are ternary relations between three variables.

The constraining relations in a CSP are defined by rectangles on their component variables,
and by topological and geometrical relations between design units. A rectangle defines
constraints between its lines, dimensions and area, as seen in Fig. 8.

11 11 + W = 12
? 11 < 12
W 13 + L = 14
¢ 13 < 14
12 L * W = Area
< L >
13 14

Fig. 8. Constraining relations defined by a rectangle

Setting up relations between design units results in algebraic relations between their
components. In Fig. 9, the sink defined by lines Int1, In2, In3, In4 is placed next-to and south of
the window defined by lines In5, In6, In7, in8. This configuration should satisfy the constraint that
sink is next-to the window for > 50 cm. The algebraic constraints seen in Fig. 9 are added to the
CSP as a result. Variables v1 and v2 are created for expressing the adjacent distance between sink
and window.

———1n5 Inl = 1né6
,F c!——lnG/lnl
= i In7 + vl = 1n4
A 1ng In3 + v2 = 1n8
——e——=1n2
‘ 1 vl =2 50
1
' v2 2 50

1n3 1n4
Fig. 9. Constraining relations defined by a configuration

5.4. Constraints

Any knowledge that defines or restricts the domain is a constraint. Constraints indicate
restrictions or desired relations. In WRIGHT constraints are of the form:

. <object> <relation> <object>, or
. <variable> <algebraic relation> <number>.

Constraints expressing domain knowledge are posted to prototype design units, as seen in
Fig. 3. These are called domain constraints. In addition to specifying a relation or a restriction
on some value, a constraint expresses knowledge about how it is to be used during search. This



195

knowledge is expressed by similarity and relavation relations between constraints and
combining-instances, importance, and utility values.

When it is posted, each constraint is assigned an importance value specifying the
importance of satisfying that constraint in a solution. All constraints are binary, so they are
either satisfied or contradicted. Solutions are rated by subtracting the importance values of
failing constraints. Relaxations of constraints are specified by other constraint expressions that
specify alternative relations, alternative design units, or looser bounds on numerical variables.
Relaxations are tried when a constraint can not be satisfied in its original form. States where a
constraint is relaxed are assigned lower ratings as specified by the wriliry of the relaxation.

Design knowledge is expressed in terms of required spatial relations in WRIGHT. Consider
the relationship of the sink to windows: ‘‘The average housekeeper spends nearly 1 and 1/4
hours at the sink each day so there is a good case for putting the sink at a window for good light
and view.”” ([11]; p.72) One way of satisfying the requirements is placing the back of the sink
completely next to the window, which is expressed by the following constraints:

o Sink completely-next-to window
o  Sink at-back window
When it is not possible to put the sink completely next to the window, placing it in front of and

perpendicular to the window will allow direct light and a view of outside. The sink must also be
close enough to the window. The following constraints express this case:

o  Sink distance window, max=120 cm.
e  Sink one-dimensional-overlap window, min=30 cm.
o  Sink perpendicular-to window.

Distance is measured between closest points. One dimensional overlap means overlap in either
the vertical direction or horizontal direction. The second set of constraints are a relaxation of the
first set, and have lower utility values.

When there is more than one window, the constraints between sink and window should be
satisfied for one window only. Whether the constraint should apply to all windows or just one
window is indicated by combining-instances value attached to the constraint or to the relation
specified in the constraint. There are defaults for relations, i.e. for non-overlap the default value
for combining-instances is and whereas for most other relations the default is or.

Similarity is a relation between two constraints which restricts the way the constraints apply
in case there is more than one instance. In the example above, sink should be completely next to
and have at its back the same window. This is expressed by posting a similarity condition
between the two constraints.

5.5. Constraint graph

The constraint graph is an and/or network that refines design knowledge represented by
constraints on prototype design units into a design specification represented as combinations of
algebraic constraints on the components of the design unit instances.

A constraint graph consists of nodes and links as seen in Fig. 10. (The constraint sink
next-to window 1s mapped to constraints on the components of sinkl and windowl.) It is an



e -

196

abbreviated graph, where a constraint in the CSP and the variables it connects, such as:
line1=line2, are represented by a single node. Nodes are of two types: and-nodes, or-nodes.
And-nodes are expressed by connecting the links leaving that node by an arc. The links in the
constraint graph indicate reliance between constraints.

—-—= 1inl windowl

= 1n% ——— 1n9%

i

sinkl —~~ 1lné¢ ]

1n3 Ind kitchenl

sin
inside

kitchen

sinkl sinkl
cmpletely-next-t ompletely-next-ty
window2 windowl

S, G @ S
A\ I

Fig. 10. Partial constraint graph

The constraint graph specifies alternative ways of satisfying a constraint. Prototype design
units that have more than one instance and spatial relations that can be satisfied in different ways
introduce disjuncts to the constraint graph. The top level of the graph is in conjoint normal
form. ' ;

When there are conditions which hold true in all the alternatives, they can be used to bound
solutions without committing to a specific alternative. These are called abstract constraints.
Abstract constraints exist for adjacency and distance relations, and for dimensional constraints.
Fig. 11 shows the abstract constraints for the constraint graph seen in Fig. 10. The
configuration in the figure shows the location defined by the abstract constraints for the sink
when the location of the window is fixed.

6. Search Architecture

The search architecture used in WRIGHT operates by selecting a node connected to the top level
of the constraint graph and satisfying it in all possible ways. Operators are associated with
constraints as in means-ends analysis. The variables indicated by the constraint are assigned
new values, constraints are propagated, and any constraints that have only one way of being
satisfied are also satisfied. Dealing with variables that are not affected is deferred until later.
This is a priority strategv where rexture measures select the constraint to be satisfied. The



#

i

197

sinkl

next-to

windowl

Inl<lné

Hi

Fig. 11. Abstract constraints for sinkl next-to windowl and resulting bounds on location of sink

constraint graph provides a mesh over the problem space and is used for generation and testing.
Texture measures provide an approximation of problem space topology that allows search to be
focused.

6.1. Focus of attention algorithm

Given an initial configuration and design units to locate and dimension, search starts by
compiling the constraint graph. Every search state contains a CSP representation of the layout,
and a constraint graph with values based on the CSP. New layouts are generated by selecting
some constraints from the constraint graph, and adding them to the CSP. Search is controlled by
the focus of attention algorithm, which operates as follows:

1. The state to continue search from is selected using a best first strategy.

2. In a selected state, one of the constraint nodes connected to the root of the constraint graph
is selected, based on the problem space textures described below.

3. Anew state is generated for satisfying each disjunct of the selected constraint. In each new
state, constraints that contain no disjuncts are satisfied. Satisfying a constraint can
determine values of disjuncts in other constraints, therefore this step loops until quiescence.

4. When the status of all constraints in the conjoint normal top level of the constraint graph
-are determined, that state is a solution. States are rated by subtracting importances of
violated constraints at top level of constraint graph.

6.2. Texture measures

WRIGHT uses three texture measures for selecting constraints. The first measure is from a
variable perspective, and the last two are from a constraint perspective. The texture measures
are:



198

e  Variable Tightness: is approximated by the number of remaining conjunctive constraints
on each design unit instance.

¢  Constraint Reliance: is approximated by I/number of disjuncts. Constraints with fewer
disjunctive cases remaining are selected. If the number of disjuncts is 1, the constraint is
satisfied without needing to generate a new state for each disjunct.

¢  Constraint Tightness: is approximated by the reduction in the domains of continuous
variables involved, as a result of satisfying the constraint. Constraints that result in large
reductions are favoured. Types of algebraic relations that will be added to the CSP due to
each of the competing constraints are also taken into account.

Texture measures are applied lexicographically. Active constraints are assigned ratings with
respect to a metric, and constraints with lower values are eliminated from contention. If there is
a single constraint with the best measure, it is used. If more than one constraint remains, the
next texture measure is applied, or a constraint is selected randomly.

6.3. Search operations

Each state contains a different layout and a different constraint graph, as seen in Fig. 12. When
generating a state, the layout is changed by operators that satisfy a constraint. The operators
carry out one or both of these actions:

e  add new relations between objects,
° assign minimum or maximum values to line locations, dimensions, areas, and distances.

As a result of adding new relations or values, constraints are propagated to ensure that the values
are globally consistent. Constraint propagation removes inconsistent values at continuous
variables by increasing the minimums and decreasing the maximums. The constraint graph is
changed by marking the nodes as satisfied or contradicted. These labels propagate up through
the constraint graph according to rules of propagation defined for and-nodes and or-nodes.

Properties of the search architecture and representation of WRIGHT are:

e  Search is monotonic. States are generated by adding new relations to the CSP, Therefore a
requirement that is satisfied can not be violated later.

e Disjuncts specified in the constraint graph are mutually exclusive. Therefore, it is not
possible to get duplicate solutions.

e  Search efficiency depends on the order constraints are satisfied. Satisfying a set of
constraints at the leaves of the goal tree in any order leads to the same solution.

Each solution satisfies a different subset of the constraints at the leaves of the constraint graph.
Fig. 4 shows the set of solutions for the kitchen seen in Fig. 1. Mix-center is the rectangle with
diagonals. In the two solutions on the left, the order of design units clockwise starting from top
left 1s: range-center, sink-center, mix-center and refrigerator. The configuration of sink-center
and mix-center at the top left corner of the kitchen is different between the solutions on the top
left bottom left in Fig. 4. In the two solutions on right, the order of design units clockwise
starting from top left is: refrigerator, mix-center, sink-center and range-center. The difference
between the top and bottom solutions is again the configuration at the corner.



199

Initial

Generate Generate
Statel State?2

= AR

Fig. 12. Search states

WRIGHT uses constraints to define significant differences between altemnatives. In this case
significant differences are defined by different adjacencies and by different ways of placing the
objects adjacent to each other at corners.

The attributes of the layout that are not constrained are treated as unimportant. This
permits solutions at a higher level of abstraction than in other space planning systems, while
enabling exact determination of relevant aspects. Unless the constraints force the assignment of
a unique value, a variable has a range of values even in a solution. It is possible to refine a
solution further by assigning unique values to all variables.

6.4. Performance

Texture measures reduce search. As a result, WRIGHT looks at a smaller number of states.
Fig. 13 shows the number of search states required for finding all solutions to five kitchen layout
problems, under different combinations of texture measures. The combinations tested are:

e method 0: select a constraint at random,

° method 1: variable tightness,

e  method 2: constraint reliance,

e method 3: variable tightness and constraint reliance,

e  method 4: variable tightness, constraint reliance and constraint tightness.

When a combination of measures is used, they are applied in the order: variable tightness,
constrain reliance, constraint tightness. Each measure eliminates some constraints from
consideration. If more than one constraint remains after applying the texture measure(s),
specified by the method, a constraint is selected at random. The number of states given for each
problem-method combination is the average of three runs. In the second problem, method 4
reduces search by more than 80% compared to method O, and in the third problem by 35%.



200

# of states
A\

75
y method 1
4
metHod 1 ya

50 D ——
N 7/ method (
method 2 ~ ___—/-f’———
—— / method
method T \ \\ /

25 method < — l, method e

method <

-———

1 2 3 4 S FProblems

Fig. 13. Effectiveness of texture measures in reducing search

In order to compare the search plus filtering approach with generate and test, WRIGHT is
compared with two space planning programs: DPS [15] which uses a drawing based
representation, and LOOS [5] which uses a relational representation.? The problem used in the
comparison is arranging six fixed size blocks in a box such that no blocks overlap. Due to the
simplicity of the problem, exactly the same set of constraints can be used by all three programs.
The programs are compared in terms of the number of states and search plies3 generated when
finding the first solution and when finding all 24 solutions, seen in Table 1.

First Solution All 24 Solutions
WRIGHT || 5plies 14states | 5-6plies 119 states
LOOS 6 plies 68states | 6 plies 232 states
DPS 6plies 72states | (notavailable)

Table 1. Comparison of WRIGHT, DPS and LOOS in terms of search efficiency

In DPS and LOOS, the number of search plies is always equal to the number of objects to be
located, as a result of the organize by design unit strategy. WRIGHT’s performance in terms of
number of search plies and number of search states depends on number and strength of available
constraints and their interactions. Although the constraints in this problem are not as varied as in
kitchen layout, WRIGHT performs better than DPS and LOOS. WRIGHT looks at a smaller number
of search states by selecting decisions with fewer alternatives, and by eliminating inferior
alternatives earlier.

Another area of comparison is how search behaviour changes when problems are under or
over constrained. In an underconstrained problem, DPS and LOOS find the first solution faster,
but there will be a large number of solutions. WRIGHT also finds the first solution faster, and
will avoid generating a large number of solutions by having solutions at a higher level of

2 See §3 Background for a discussion of these programs.

3 The number of search plies is the number of intermediate states on a path from the initial state 10 a
solution state.



Pt
PV

.
EA

SR s S

201

abstraction. In an overconstrained problem, DPS will not be able find any solutions because it
rejects a solution that fails any constraint. For LOOS, overconstrained problems pose the same
difficulty as underconstrained ones: too many states with equivalent scores. Finding the first
solution will take much longer too. Overconstrained problems will cause WRIGHT to search
longer before finding the first solution. When all constraints can be satisfied, solutions are
defined by alternative ways of satisfying all constraints. When all constraints can not be
satisfied, combinations of constraints that result in equal ratings need to be tried. By defining
explicit relaxations for some domain constraints in its knowledge base, WRIGHT avoids
searching a large number of constraint combinations.

7. User Interface

WRIGHT’s model of the design process and the division of labour between system and user is
that the user inputs the problem, identifies, modifies or relaxes constraints, and the system finds
solutions. The user may also make search control decisions.

The user interface provides a menu-driven, graphical means for designing, posting
constraints and carrying out search. The user interface is designed to facilitate:

e  examining partial solutions,

e  adding missing constraints,

e relaxing overly restrictive constraints,

e  selecting which partial solution to pursue next,
e  observing search decisions and reasons for it.

A change such as adding or removing a constraint and bounding the location of a design unit
takes place in the current search state and only affects states that are generated from it.

Fig. 15 shows three windows: for graphics, for the search tree, and for text. There is a
command menu in the top left corner. When the user selects a command by clicking on it with
the mouse, menus pop up for selecting the parameters of the command. A pop-up menu for
selecting design unit instances is seen in Fig. 15, superimposed on the plan.

The select-state command brings the search tree window in the bottom right corner of the
screen to the top, and enables the user to select a state by pointing and clicking with the mouse.
The configuration in the selected state is displayed in the graphics window, and following
operations take place in that state. The next two commands, interactive-search and
exhaustive-search, are for generating a set of new states from the current state and for carrying
out exhaustive search.

There are commands to create, size, locate, and orient design units. The designer can
define a rectangle by clicking at its top left and bottom right comners in the graphics window
using the mouse. Rectangles are used to mnput minimum size, maximum size and location of
objects. It is possible to think of a rectangle as a constraint, because it indicates bounds. During
interactive sizing and locating operations WRIGHT will not allow the user to violate existing
bounds on a design unit. For relaxing bounds, one needs to move up in the search tree to a state
where those variables have looser bounds. Constraints specifying relations between design units
at any level of the class hierarchy, including particular instances of design units, are posted by



[N

02

KITL wItaowvy scale: 1/Zw

irculation-aread
strk-center
wix-centeri
renge—centeri
ateks

lecate

1at-search

i y 3 H % -
RO

rd

) ST

e

STaTLS~

o]
\ TSGR

p»®2 DIR: 1 e \\ <tetedd
ocacon . w36, 1 Staced et *
e aCS . 115G 1 / * -
eracsize. 16: 1 p Seavest
EraCSINIT. ML 2 \
o 1. con 26 Steted3 & s // Statess
bR IGHT. DIR; 1 \ T e~ suwst

~ \ St
Total of 7 files, 13 N L
¢ bye |

Fig. 15. WRIGHT’s user interface

first selecting post-constraint from the command-menu, and then selecting a design unit, a
relation and another design unit from pop-up menus.

The rest of the commands are for displaying information: displaying all design units — as
seen in Fig. 15, displaying only the appliances, and displaying only the work centers. Show-
constraints command displays the constraints that have not been satisfied yet, in the text
window at the bottom left hand corner of the screen. It is also possible to inspect the database
and call functions, as the text window is the lisp listener.

8. Conclusion

WRIGHT has been tested on kitchen design, house layout and blocks problems. The
representation scheme used in WRIGHT is more flexible than other space planning systems in
two respects:

o It allows design units at different levels of aggregation.

e It enables declaratively defining new relations.

If. in some domain of application, we identify new relations that express the conditions we are
interested in, they can be defined as combinations of =, >, >, +, and x relations between lines and

can be used in constraints.



Kt
N
*

203

The opportunistic constraint directed search approach of WRIGHT leads to significant
increases in performance relative to other spatial planning techniques. This is due to two factors.
First, WRIGHT uses knowledge of constraints to develop a mesh over the problem (search) space.
Propagation of restrictions occurs within the mesh resulting in a reduction in size of the problem
space. Second, WRIGHT opportunistically selects variables to constrain once propagation ends.
Knowledge of problem space ‘texture’ is used to identify the appropriate variable. Texture
measures used are: variable tightness, which chooses a design unit having a large number of
constraints; constraint reliance which selects a constraint having fewer disjunctive alternatives,
and constraint tightness which selects a constraint that reduces the domains of its variables most
[8].

In summary, the philosophy behind this approach is to use constraints fo understand the
structure of the search space to make search efficient. WRIGHT generates fewer alternatives as a
result of selecting decisions opportunistically, avoiding premature commitment, and eliminating
inferior alternatives earlier. Constraints guide generation of significantly different alternatives.
Insignificant aspects of the design do not cause alternatives to be generated while relevant
differences are explored in all possible ways.

References

1. R. Dechter and J. Pearl, ‘“Network-Based Heuristics for Constraint-Satisfaction Problems,”’
Al, vol. 34, no. 1, pp. 1-38, 1988.

2. C.M. Eastman, “‘On the Analysis of Intuitive Design Processes,”’ in Emerging Methods in
Environmental Design and Planning, ed. G.T. Moore, MIT Press, Cambridge, MA, 1970.

3. C.M. Eastman, ‘‘Automated Space Planning,”” A7, vol. 4, pp. 41-64, 1973.

U. Flemming, ‘““Wall Representations of Rectangular Dissections and their Use in
Automated Space Allocation,”” Environment and Planning B 5, pp. 215-232, 1978.

5. U. Flemming, *‘On the Representation and Generation of Loosely Packed Arrangements of
Rectangles,”” Tech. Rept. DRC-48-05-85, Camegie-Mellon University Design research
Center, 1985.

6. U. Flemming, M.D. Rychener, R.F. Coyne, and T. Glavin, ‘‘A Generative Expert System

for the Design of Building Layouts,”” Center for Art and Technology, CMU, Pittsburgh PA,
1986.

7.  M.S. Fox, “‘Observations on the Role of Constraints in Problem Solving,”” Proceedings
Sixth Canadian Conference on Artificial Intelligence, pp. 172-187, 1986.

8. M.S. Fox, N. Sadeh, and C. Baykan, ‘‘Constrained Heuristic Search,”” Proceedings of
IJCAI-11, pp. 309-315, 1989,

9. J. Grason, ‘‘Methods for the Computer-Implemented Solution of a Class of Floor Plan
Design Problems,”” Ph.D. Th., Camegie-Mellon University, 1970.

10. R.M. Haralick and G.L. Elliott, “‘Increasing Tree Search Efficiency for Constraint
Satisfaction Problems,”” A, vol. 14, pp. 263-313, 1980.

11, Architects Journal. **Domestic Kitchen Design: Convential Planning.”” Architecs Journal,
pp. 71-78. 1984.



204

12.

13.

14.

15.

16.

J.C. Koopmans and M.J. Beckmann, ‘‘Assignment Problems and the Location of Economic
Activities,”” Econometrica, vol. 25, pp- 53-76, 1957.

J. Mostow, ‘“Towards Better Models of the design Process,”” Al Magazine, vol. 6, no. 1, pp.
44-57, 1985.

A. Newell, J.C. Shaw, and HA. Simon, ““The Processes of Creative Thinking,” in
Contemporary Approaches to Creative Thinking. ed. HE. Gruber, G. Terrel, and J.
Wertheimer, Atherton, 1962.

C. Pfeffercorn, ‘‘Computer Design of Equipment Layouts Using the Design Problem
Solver,”” Ph.D. Th., Camegie-Mellon University, 1971.

E.D. Sacerdoti, ‘‘Planning in a Hierarchy of Abstraction Spaces,”” Al, vol. 5, pp. 115-135,
1974.



