
Articial Intelligence for Engineering, Design, Analysis and
Manufacturing
http://journals.cambridge.org/AIE

Additional services for Articial Intelligence for Engineering, Design, Analysis
and Manufacturing:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Spatial synthesis by disjunctive constraint satisfaction

Can A. Baykan and Mark S. Fox

Articial Intelligence for Engineering, Design, Analysis and Manufacturing / Volume 11 / Issue 04 / September 1997, pp 245 - 262
DOI: 10.1017/S0890060400003206, Published online: 27 February 2009

Link to this article: http://journals.cambridge.org/abstract_S0890060400003206

How to cite this article:
Can A. Baykan and Mark S. Fox (1997). Spatial synthesis by disjunctive constraint satisfaction. Articial Intelligence for
Engineering, Design, Analysis and Manufacturing, 11, pp 245-262 doi:10.1017/S0890060400003206

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/AIE, IP address: 142.150.190.39 on 18 Mar 2014

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (1997), / / , 2 4 5 - 2 6 2 . Printed in the USA.
Copyright © 1997 Cambridge University Press 0890-0604/97 $ 11.00 + .10

Spatial synthesis by disjunctive constraint satisfaction

CAN A. BAYKAN1 AND MARK S. FOX2

'Department of Architecture, Middle East Technical University, 06531 Ankara, Turkey
2Department of Industrial Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 1A4

(RECEIVED April 1, 1996; ACCEPTED November 18, 1996; REVISED January 15, 1997)

Abstract

The spatial synthesis problem addressed in this paper is the configuration of rectangles in 2D space, where the sides of
the rectangles are parallel to an orthogonal coordinate system. Variables are the locations of the edges of the rectangles
and their orientations. Algebraic constraints on these variables define a layout and constitute a constraint satisfaction
problem. We give a new O(n2) algorithm for incremental path-consistency, which is applied after adding each alge-
braic constraint. Problem requirements are formulated as spatial relations between the rectangles, for example, adja-
cency, minimum distance, and nonoverlap. Spatial relations are expressed by Boolean combinations of the algebraic
constraints; called disjunctive constraints. Solutions are generated by backtracking search, which selects a disjunctive
constraint and instantiates its disjuncts. The selected disjuncts describe an equivalence class of configurations that is a
significantly different solution. This method generates the set of significantly different solutions that satisfy all the
requirements. The order of instantiating disjunctive constraints is critical for search efficiency. It is determined dy-
namically at each search state, using functions of heuristic measures called textures. Textures implement fail-first and
prune-early strategies. Extensions to the model, that is, 3D configurations, configurations of nonrectangular shapes,
constraint relaxation, optimization, and adding new rectangles during search are discussed.

Keywords: Spatial Layout; Geometric Reasoning; Disjunctive Constraint Satisfaction

1. INTRODUCTION

Spatial layout deals with the design of 2D layouts; site plans,
floor plans, manufacturing facility layouts and the arrange-
ment of equipment in rooms. Topological relations, such as
adjacency, alignment, and grouping; geometric properties,
such as shape, dimension, and distance; and other functions
of spatial arrangement are the main concerns in spatial syn-
thesis (Eastman, 1973). A layout, in this paper, is a 2D con-
figuration of rectangles, where the sides of the rectangles
are parallel to the axes of an orthogonal coordinate system.
A layout problem is defined as follows: Given a set of rect-
angles, desired spatial relations between them, and limits
on their dimensions, areas and aspect-ratios, generate the
feasible alternatives. We describe a system called WRIGHT
which solves this problem.

The efficiency apartment problem defined in Tables 1 and
2 is an example to the types of problems addressed: Find all
configurations of an efficiency apartment consisting of liv-

Reprint requests to: Can A. Baykan, Department of Architecture, Mid-
dle East Technical University, 06531 Ankara, Turkey. E-mail:
cbaykan@vitruvius.arch.metu.edu.tr.

ing room, vestibule, kitchen and bathroom, satisfying the
required adjacencies and the limits on their dimensions and
areas. The apartment is adjacent to other apartments to the
north and south, receives natural light from the west, and is
accessed from the east. The objects in a layout, for exam-
ple, the living room and vestibule, are called design units.
The topological or geometrical relations between them, for
example, adjacency, are called spatial relations. The require-
ments given in Tables 1 and 2 are called performance con-
straints. Performance constraints are based on function and
may specify required and forbidden adjacencies, minimum
and maximum distances between the design units and min-
imum and maximum lengths, widths, areas and aspect-
ratios. There are also requirements implicit in a problem
definition, for example, the interior spaces must be inside
the apartment and should not overlap each other. These are
called readability constraints. The layout seen at left in Fig-
ure 1 shows a solution that satisfies the performance and
readability constraints of this problem.

There are other aspects of a configuration we may want
to control, for example, whether holes are allowed, whether
the corners of the design envelope must be filled, and which
design units can be adjacent to the periphery or at the cor-

245

246

Table 1. List of spaces, minimum and maximum
dimension and areas

C.A. Baykan and M.S. Fox

16O1 240 .I60! 18° ,15P| I 360 I 230 I

Length (cm) Width (cm) Area (m)

List of spaces

0. Apartment
1. Living room
2. Vestibule
3. Kitchen
4. Bathroom

Min

360
120
180
180

Max

600

Min

360
120
180
180

Max

700

600

Min

22

4.2

ners of the design envelope. These are called style con-
straints. Adding a constraint that every interior space must
be adjacent to another space or to a side of the apartment on
all four sides eliminates trivial holes, resulting in the layout
shown at right in Figure 1. The hole that remains is a non-
trivial hole. In WRIGHT, all aspects of a layout problem are
specified uniformly and explicitly by constraints, and the
spatial relations required to express the relationships that
are of interest in some domain can be created declaratively.

The topology and geometry of a layout is specified by al-
gebraic equations and inequalities, called atomic constraints,
which determine the locations, dimensions and orientations
of design units. The variables and atomic constraints consti-
tute a constraint satisfaction problem (CSP). The perfor-
mance, realizability and style constraints are expressed in
terms of Boolean combinations of atomic constraints, termed
disjunctive constraints, and define a disjunctive CSP. Solu-
tions are constructed by backtracking search, which instan-
tiates a disjunctive constraint by asserting one of its disjuncts
in each new state. A disjunctive constraint is selected for in-
stantiation using a function of textures that are measures of
the topological and other features of the constraints (Fox
et al., 1989). Textures reduce search by identifying disjunc-
tive constraints that are more likely to fail and to cause other
constraints to fail.

Section 3 describes how a layout is represented by atomic
constraints and gives a new incremental path-consistency
algorithm used when adding a new constraint during search.
Sections 4 and 5 describe spatial relations and how they rep-
resent problem requirements in terms of atomic constraints.
Section 6 describes the search method and constraint selec-
tion by textures. Section 7 discusses whether this formula-
tion can express knowledge of a design domain and some
extensions to the basic model.

Table 2. Required adjacencies (minimum length of shared
boundary in brackets)

Living room—Vestibule (90)
Living room—Kitchen (120)
Vestibule—Bathroom (70)

Living room—West edge of Apartment
Living room—South edge of Apartment
Vestibule—East edge of Apartment

/ K

/
y / s

B

LR

470
590

/

/

/

/

V

1
120

LR

Fig. 1. Solutions to the efficiency apartment problem with and without
trivial holes.

2. BACKGROUND

Two-dimensional configuration problems have been formu-
lated in various ways for different purposes. There are pack-
ing or loading problems, where the configuration is of no
interest other than fitting the most objects in a given area.
Perfect square and incomparable rectangle problems in-
volve placing objects as well as determining their dimen-
sions (Aggoun & Beldiceanu, 1993). Another formulation
is the quadratic assignment problem (Liggett, 1980). These
are discrete problems, that is, the dimensions, when they
are not fixed, and locations are selected from a discrete do-
main. Spatial layout deals with the geometric and topolog-
ical relationships of the layout that requires dealing with
continuous ranges of dimensions and locations.

The early spatial layout systems, DPS (Pfefferkorn, 1971)
and GSP (Eastman, 1973), could not deal with variable sizes
and were not complete; they could miss possible solutions.
Systematic approaches formulated to deal with these draw-
backs used a relational representation, that is, rectangular
dissections (Mitchell et al., 1976) and adjacency graphs
(Baybars & Eastman, 1980). DIS (Flemming, 1978) uses an
algorithm that systematically generates all distinct config-
urations. The generation process has two steps: determin-
ing the relational structure of a layout using north-of and
east-of relations; and deriving the constraints on the dimen-
sions based on this topology, DIS and other layout programs
that use a relational representation have built-in constraints
that restrict the set of layouts under consideration. In DIS,
the built-in constraints are that design units do not overlap
and are tightly packed, LOOS (Flemming, 1986) removes the
tight-packing restriction to allow layouts with holes. Rela-
tional approaches determine the significantly different al-
ternatives based on their underlying representation. The
disjunctive CSP formulation defines both relational and di-
mensional constraints at the outset and represents them uni-
formly. It is possible to use all constraints to reduce search.
Each significantly different solution is formed by the inter-
section of one disjunct from every disjunctive constraint. A
comparison of the approaches of LOOS and WRIGHT can be
found in Flemming et al. (1992).

Spatial synthesis by disjunctive constraint satisfaction 247

A CSP is a network that has variables with finite domains
as its nodes and constraints as its edges. A constraint is a re-
lation between some subset of the variables that identifies com-
patible values of the variables. The domains of variables can
be discrete or interval. If the domains are discrete, constraints
can be expressed as compatibility constraints, by a list of or-
dered pairs. They can also be expressed as procedures, math-
ematical relations, or disjunctive constraints. Solving a CSP
involves finding an assignment to all variables satisfying all
constraints. Solutions can be found by generate and test, that
is, by selecting a variable and assigning a value at each step
and backtracking when dead-ends are reached; by using con-
sistency methods, for example, node, arc or path-consistency;
or by some combination of the two. Consistency methods, also
termed constraint propagation, remove from the domains of
variables those values that do not have corresponding values
in the domains of other variables (Mackworth, 1977; Mack-
worth & Freuder, 1985). Arc-consistency ensures that a value
in the domain of a variable has a match in the domain of any
other variable that is connected to the first by a constraint.
Waltz propagation (Waltz, 1975) is an arc-consistency algo-
rithm. Path-consistency algorithms impose local consistency
among triplets of variables, that is, paths of length two. Path-
consistency is stronger than arc-consistency and achieves glo-
bal consistency, that is, every value in the domain of a variable
can be part of a complete solution to the CSP. When compo-
sition of constraints is distributive over intersection, path con-
sistency algorithm PC-1 given in Mackworth (1977) becomes
equivalent to the Floyd-Warshall all-pairs, shortest-path al-
gorithm(Dechteretal., 1991). Otherwise, PC-1 repeatsaloop
that is equivalent to the Floyd—Warshall algorithm until no en-
try is updated in one complete pass.

For bounded distance and orientation constraints used in
WRIGHT composition is distributive over intersection, and
we give a new incremental form of the Floyd-Warshall al-
gorithm for these. We use Waltz propagation for area and
aspect-ratio constraints. The earlier version of WRIGHT re-
ported in Baykan and Fox (1992) and Baykan (1991) also
used the disjunctive CSP formulation but used a combina-
tion of arc consistency and qualitative reasoning instead of
path consistency when updating layouts. All variables in-
cluding dimensions, aspect-ratios, areas, and atomic con-
straints formed by +, X, <, <, and = were represented
explicitly. This formulation is more flexible as it makes it
possible to add new variables and new types of constraints
on them, that is, the center lines of design units as variables
and the centered-on relation and Euclidean distance rela-
tion as constraints. Waltz propagation results in looser
bounds, and an inconsistent constraint cannot always be de-
tected prior to asserting it even when it is augmented by
qualitative reasoning. It results in more search. The two ver-
sions are compared in Section 6.4.

The disjunctive CSP formulation has been applied to a
variety of problems. In circuit analysis, it arises as a result
of modelling the behavior of nonlinear devices, such as tran-
sistors, by disjuncts of linear constraints (Stallman & Suss-
man, 1977). In qualitative physics, a system that has several

states, such as a quantity of material having solid, liquid,
and gas phases where each phase has different rules, has
been formulated as a disjunctive CSP. Different alternatives
are given by the combinations of rules, and each alternative
forms a CSP (Forbus, 1984). Scheduling problems can also
be formulated as disjunctive CSPs (Dechter et al., 1991).

In algebra, a disjunctive CSP is called a Boolean satisfi-
ability problem. It is NP-complete even if all equations are
of the form x = 0 or x = 1 unless the combinations are very
restricted in form (Davis, 1987). Adding an objective func-
tion to minimize or maximize some combination of vari-
ables transforms a satisfiability problem into a mixed integer
programming (MIP) problem. MIP is also NP-complete. The
MIP solution methods use heuristics that make assumptions
on problem structure. If the method works it works fast, but
when it does not work, it may not terminate in a reasonable
time. And it finds a single optimal solution which does not
enable the designer to evaluate the possibilities and trade-
offs implicit in a problem formulation (Dhar & Ranga-
nathan, 1990; Smith et al., 1996).

3. REPRESENTING LAYOUTS

WRIGHT represents a layout as an interval CSP. The CSP
can be elaborated by adding new constraints, and a unique
layout can be created by selecting a particular value from
the domain of each variable. Each CSP defines an equiva-
lence class of layouts, considered to be a significantly dif-
ferent layout.

3.1. Variables

In WRIGHT, design units are rectangles parallel to the x and
v axes. The coordinate system used has the x-axis pointing
right and the ;y-axis pointing down. Each design unit is de-
fined by four variables specifying the locations of its edges;
x, X, y and Y, as shown in Figure 2. There are also variables
for the area, aspect-ratio and orientation of each design unit.

The design units and variables in the efficiency apart-
ment problem are seen in Table 3. The domains of the vari-
ables are closed intervals defined by lower and upper bounds;
v E [f m i n , f m a j . The lower bound of a variable must be less
than or equal to its upper bound; vmin^ v^ vmax. When the

i

i
1

1

Xi
1

i
I
1

Fig. 2. Variables defining design unit /.

248 C.A. Baykan and M.S. Fox

Table 3. Design units and variables of the efficiency apartment problem

Design unit North-edge South-edge West-edge East-edge Area

0 Apartment
1 Living room
2 Vestibule
3 Kitchen
4 Bath x4

lower bound is equal to the upper bound, the interval be-
comes an exact value. Thus, exact values are a special case
of closed intervals and can be handled uniformly. In WRIGHT,

the bounds are integers. Since the user is free to define the
unit of length, using integers does not impose undue restric-
tions. For example, it is possible to have more precision by
using millimeters as the unit of length instead of centi-
meters in the efficiency apartment problem.

Area and aspect-ratio are also interval variables. Area
bounds are integer but aspect-ratio bounds are real. Orien-
tation is a discrete variable, and its domain is {0,90,180,270}.
When its orientation is 0, front of a design unit faces south,
and when its orientation is 90, it faces east. Orientation is
meaningful when a design unit has sides that must be treated
differently, for example, a refrigerator has a front and back
that must be taken into account when specifying relations
between it and other design units.

3.2. Atomic constraints

An atomic constraint defines a relation between two vari-
ables. Types of atomic constraints used in WRIGHT are bounded
difference constraint, area constraint, aspect-ratio constraint,
and orientation constraint. A bounded difference constraint
specifies minimum and maximum distances between two lines
in the same direction, x(- Xj £ [dmin ,dmax\. The kinds of par-
tial configurations that can be represented using this con-
straint are given below.

The dimensions of a design unit, the length of adjacency
between two design units, and the horizontal or vertical dis-
tance between two design units can be represented as the
difference of two lines as shown in Figure 3. Length of de-
sign unit 1, d, e [dlmin,dlmax] is expressed by X, - *, e
[dlmin, dlmax] as seen at left. The length of overlap between
design units 2 and 3 is expressed by X2 - x3 G [d2mm, d2maii]
as seen in the middle, and the distance between design units
4 and 5 is represented as x5 - X4 £ [d3min,d3m3X] as seen at
right.

Topology and alignment can be expressed by =, <, and^
relations between the edges of rectangles. These algebraic re-
lations can be expressed as differences of [0,0], [l,oo], and
[0,oo], respectively. For example, design units 1 and 2 can be
made adjacent, as seen at left in Figure 4, by asserting the con-
straint X, - x2 G [0,0]. Design unit 3 is placed west of 4, as
seen in the middle, by posting the constraint^ - X3 G [0, oo].
East edges of design units 5 and 6 can be aligned, as shown at
right, by asserting X5 - X6 £ [0,0]. Absolute location of a line
is represented as the distance between it and a special line x0

G [0,0] or;y0 G [0,0]. Thus, *, G [100,150] is denoted as
x, - xQ £ [100,150]. The special lines x0 and y0 are the west
and north edges of the design envelope, which is design unit
number 0 by the convention used in WRIGHT.

Area constraints specify minimum and maximum areas
for a design unit. The area constraints of the efficiency apart-
ment problem are A, £ [220000,oo] and A3 £ [42000,oo].
Similarly, aspect-ratio constraints specify bounds on the ra-
tio of the long side of a rectangle to its short side. For ex-

}

2

* d2-*-
X2

3

4

:

- d 3 -

<4
5

X,

Fig. 3. Representing dimensions, length of adjacency, and distance by bounded distances.

Spatial synthesis by disjunctive constraint satisfaction 249

1

2

Fig. 4. Representing topological relations; adjacency, relative location, and alignment.

ample, the constraint AS^ 1.5 specifies that a side of the
living room can not be longer than 1.5 times the other side.
Orientation constraints specify the relative orientations of
two design units, such as parallel, perpendicular, clock-
wise, counterclockwise, or opposite; the constraint Ot:O2

E {90, 270} asserts that the living room should be perpen-
dicular to the vestibule. There are no aspect-ratio and ori-
entation constraints in the efficiency apartment problem, so
these variables are not created.

Atomic constraints that are valid for all solutions can be
asserted in the initial state, according to the singleton heu-
ristic, and form the partial specification of all layouts gen-
erated from this state. These bounded difference constraints
are given in Table 4. Constraints 1-5 define limits on the
jt-dimensions and constraints 6-9 limits on the y-dimensions.
Constraint 10 places the living room adjacent to the west,
and 11 makes it adjacent to the south. Constraint 12 places
the vestibule adjacent to the east. Constraints 13-28 place
all design units inside the apartment. Constraints 13,15, and
18 are redundant given 10, 11, and 12. Forward-checking
detects inconsistency and redundancy between the con-
straints that are asserted and the constraints that are yet to
be satisfied. Forward-checking and the singleton heuristic
are described in Section 6.1.

The solution at left in Figure 2 is defined by adding atomic
constraints 1-5 in Table 5 to the constraints of the initial
state. Adding constraint 6-11 eliminates the trivial holes and
defines the solution at right. The layout defined by these
constraints can be elaborated further by adding the con-
straint x2 - X3 E [0,0], which eliminates the nontrivial hole
by making the kitchen and the vestibule adjacent. On the
other hand, asserting x2 - X3 E [l,oo] makes the east edge
of the kitchen less than the west edge of the vestibule and
makes the hole impossible to remove.

3.3. Maintaining consistency

The variables and atomic constraints constitute a CSP, which
is formed incrementally by adding constraints to elaborate
the layout. Any change in the domain of a variable due to
asserting a new constraint is propagated to other variables
via the existing constraints; thus, a constraint asserted in
some state defines a relation that is maintained in all lay-
outs derived from it.

The constraints and variables form groups. Orientation
variables and constraints form a network by themselves. The
edges in the x direction and the bounded difference con-
straints on them are separate from the _y edges and the

Table 4. Bounded difference constraints defining the initial state
of efficiency apartment problem

l .X0

4 .X,
l.Y2

10. ,v.

13. _r,
16. Yo

19. v2

22. Xo

25. x4

- .voe
- x3 e
- ><2 e

- . v o e

- -vo e
- Y, e
-y»e
-x3e
- x0 G

[0,700]
[I80,oo]
[120,600]

[0,0]

[0,oo]
[0,oo]
[0,co]
i [0,oo]
[0,oo]

2.X,
5. X4

8. y3

11 - >•.

14. Xo

n.x2
20. Yo

23. y3

26. Xo

28. y0

- * i

- x4

- Vo

- * i

- ^ o
- r2

- >'o

-x4

e
G
6

e
e

G
G

e
e

e

[360,oo]
[180,oo]
[180,oo]

[0,0]

[0,oo]
[0,o>]
[0,oo]
[0,oo]
[O.cx,]

[0,oo]

3.X2

6. /,
9. Y4

12. Xo

15,>',
18. Xo

2\.x3

24. Yo

27- >U

~ *2

- y\
- y*

-Xi

- yo

-x2
- x0

- Yf

- y0

G [120,600]
£ [360, oo]
£ [180,oo]

: G [0,0]

G [0,oo]
: G [O.oo]
G [0,oo]
G [0,oo]
G [0,oo]

250 C.A. Baykan and M.S. Fox

Table 5. Bounded difference constraints defining a solution
to the efficiency apartment problem

1 . / , - > • , £ [0,0]
4. K4 - v2 £ [0,0]

6. v4 - y0 G [0,0]
9. x3 - x0 € [0,0]

2. Y4 - y, G [0,oo]
5. x2 - X, 6 [0,oo]

7. >.3 - v0 6 [0,0]
io. xA - x0 e [o,o]

3. x, - x2 e [0,0]

8. Y2 - Yo e [0, 0]
n .x , -.v4 e [o,o]

bounded difference constraints on them, but area and aspect-
ratio constraints connect the x and y variables. Consistency
of bounded difference constraints and orientations are main-
tained by a path-consistency algorithm, and consistency of
area and aspect-ratio constraints are maintained by Waltz
propagation (Waltz, 1975).

The network of variables in the x or y direction and the
bounded difference constraints on them can be represented
by a complete directed weighted graph, called the distance
graph where each edge from a to /? is labeled by d, length
of the shortest path from a to /3. A bounded difference con-
straint, Xf — Xj E [dmin,dmax], is represented in canonical
form as a pair of inequalities of the form a — /3 ̂ d, be-
cause Xj - xj £ [dmin,dmaK] -»Xj - Xj < dmax A Xj - Xj <
-dmin. A given layout can be completely specified by two
such graphs, one for each direction. Each distance graph
has n nodes, where n is the number of horizontal or vertical
lines, that is, two lines per design unit. Each dimension by
itself is similar to a temporal constraint network, and more
on this formulation can be found in Dechter et al. (1991).
But, instead of the Floyd-Warshall all-pairs, shortest-path
algorithm given there to achieve path-consistency in the dis-
tance graph, we give two incremental algorithms, IPC-1 and
IPC-2. These are sufficient for updating layouts during search
because a few constraints are added in each state. The Floyd-
Warshall algorithm has time complexity of O(n3), whereas
IPC-1 and IPC-2 given below have time complexity of O(n2).

IPC-1, seen in Figure 5, takes one inequality of the form
a - /3 ^ d as input and updates all paths of length 3 that
contain the changed path in the middle. The first distance in
the path is from every one of the n lines to a; the second is
the changed distance, d, between [a, /J], and the third is from
/3 to all other lines, as shown in Figure 6. When length of
path [i, a] + d + [/3,j] is less than the current distance be-
tween [i,j], [i,j] is updated. When i = a, all paths of length
two that contain the new constraint as its first edge are up-
dated. When j = /3, length two paths that contain the new
constraint as its second edge are updated. When both i = a

Procedure IPC-1 (a, p,d)
for i = 1 to n do

for j = 1 to n do
[ij] i ([i j]

Fig. 6. Paths of length 3 considered by IPC-1 and IPC-2.

and j = (3, the new constraint itself is posted. There are n
possible first and last nodes, thus n2 paths to consider; re-
sulting in time complexity O(n2). The order in which the
distances are updated is the same as it is in the Floyd-
Warshall algorithm, and this order is necessary for the al-
gorithm to work correctly. Under these conditions, IPC-1
achieves the same result as the Floyd-Warshall algorithm.

The CSP should be in a consistent state with respect to
the existing constraints before calling IPC-1. This allows
checking a constraint a - (3 < d before asserting it. If d is
greater than or equal to the current value of the edge [a, (3]
then it is redundant, and if —d is greater than [/?, a] then it
is inconsistent. These checks can be done in constant time
before calling IPC-1, therefore the consistency check in the
innermost loop of the Floyd-Warshall algorithm is not
needed in IPC-1.

IPC-2, given in Figure 7, tries only a portion of the n2

distances that are candidates for being updated, by first
checking paths of length 2, which are contained in the paths
of length 3 that have [a, fi\ in the middle. The length of path
[/, at] + d + [/?,/] can be less than the current maximum
distance between [ij], if and only if ([/, a] + d < [i,(3])
and (d + [/3,j] < [a,j]). In the first case, paths of length 3
starting from i are considered. In the second case, paths of
length 3 ending at ; are considered. Otherwise, these paths
are eliminated from consideration. On problems we have
solved, IPC-2 reduced propagation steps by 66-75% com-
pared to IPC-1. Time complexity of IPC-2 is also O(n2).

The consistency of orientation constraints is also main-
tained by IPC-2. The domain of an orientation variable is
represented by a bit-vector of length 4. Each position in the
vector represents a possible orientation. An orientation re-

Procedure IPC-2 (a, p, d)
for i = 1 to n do

if [i, a] + d < [i, P] then add i to end of Ql
for j = 1 to n do

if d + [p, j] < [a, j] then add j to end of Q2
for i in Ql do

forj inQ2do
[j] « m i ([i j] [i

Fig. 5. Incremental path-consistency algorithm IPC-1. Fig. 7. Incremental path-consistency algorithm IPC-2.

Spatial synthesis by disjunctive constraint satisfaction 251

lation is represented similarly; each position in the vector
representing whether the clockwise difference in orienta-
tion between two design units is allowed. For orientations,
composition of constraints adds two orientation differences
and intersection of constraints is the intersection of their bit
vectors. Composition is distributive over intersection.

Area and aspect-ratio constraints are handled by a differ-
ent algorithm as they involve propagation of constraints be-
tween the x and y matrices. When there is an area or aspect-
ratio constraint on a design unit, any change to one of its
dimensions is propagated to its other dimension by Waltz
propagation (Waltz, 1975). The Waltz algorithm is an arc-
consistency algorithm, and it does not achieve global con-
sistency when there are loops in the constraint graph even
though it always detects inconsistencies (Davis, 1987).

4. SPATIAL RELATIONS

It is natural to define layout problems using spatial rela-
tions to indicate the location of one design unit with respect
to another. Some spatial relations are purely topological, such
as adjacency, inside and nonoverlap. Some, for example,
distance, involve a dimension, and some are dependent on
the orientations of the design units.

The x ory component of a rectangle is an interval. If we take
the x component, its endpoints are the west and the east edges.
There are 13 exhaustive and mutually exclusive relations be-
tween two intervals; Allen's qualitative temporal relations

between two time intervals (Allen, 1983). These can be ex-
pressed as algebraic relations between the endpoints of the two
intervals as shown in Malik and Binford (1983). Relations be-
tween the x and y components of rectangles are independent,
therefore there can be 13 X 13 = 169 mutually exclusive and
exhaustive relations between two rectangles. A design unit has
4 possible orientations; so there can be 16 orientation com-
binations between two design units. Considering the orien-
tation of one of the design units results in 4 X 169 = 676
possible relations, and considering orientations of both de-
sign units results in 16 X 169 = 2704 relations. There are two
shortcomings with defining all possible qualitative spatial re-
lations at the outset. There are too many relations that are too
specific. They do not correspond to the types of relations we
want to express. For example, 192 of the 2704 relations are
types of adjacency. The set of spatial relations should make
it easy to express the desired features in a domain of spatial
layout. This set is not fixed; it depends on the design domain.
If we need to express other relationships, it should be possi-
ble to create new spatial relations easily. In WRIGHT, all spa-
tial relations are defined declaratively by templates. The
constraint compiler, described below, makes it easy to define
new spatial relations and use them in disjunctive constraints.

The spatial relations defined in WRIGHT are seen in Fig-
ure 8. These are the relations that were needed to solve the
problems we tried. They are grouped in two: global rela-
tions do not take orientations into consideration at all; and
object-centered relations are defined with respect to the ori-
entation of the first design unit. Configurations illustrating

spatial-relation

lobal-relation

bject-centered-relationl

relative-complete-,
'adjacency

»relative-position

^relative-alignment

'relative-distance

inside
complete-overlap
overlap
one-dim-overlap
non-overlap
id-non-overlap
next-to
completely-next-to
not-adjacent
north-of
west-of
south-of
east-of
align-corner
align-three-sides
align-two-sides
vertical-distance
horizontal-distance
manhattan-distance
side-adjacent
front-adjacent
back-adjacent
side-completely-next-to
front-completely-next-to
back-completely-next-to
at-side
at-front
at-back
align-front
align-back
align-left
align-right
align-sides
side-distance
front-distance
back-distance

Fig. 8. The set of spatial relations defined in WRIGHT.

252 C.A. Baykan and M.S. Fox

A

B

A

B

A

B

A insid* B A comp1«ce-overlap B A overlap B A one-dim-ovarlap B

A

B

A

B

A imxl-lo 11 A compla

A

B

A

B

A

r—'
Horizontal

T"v»rticol

B

A distance B

A north-of B

A A

B

A

B

A

B

A align-corner B A align-three-sides B A align-two-flides A align-one-sid« B

Fig. 9. Some global relations.

global relations are seen in Figure 9. Also, some spatial re-
lations of both types require the specification of a dimen-
sion, such as, distance, relative distance, adjacency, and
relative adjacency. Thus, they are not purely qualitative or
topological, but geometrical.

There are object-centered relations corresponding to all
global relations except spatial-overlap. Configurations il-
lustrating some object-centered relations are shown at the
bottom row of Figure 10. These are similar to their global
counterparts, except they also depend on the orientation of
the first design unit, that is, A back-adjacent B depends on
the orientation of A. The parallel, perpendicular, clock-
wise (cw) and counterclockwise (ccw) relations shown at
the top row in the same figure are orientation relations.

L
B

L
B

A parallel B A perpendicular B

A ccw B

B cw A

A

B B

A back-adjacent B A front-complete-adjacent B

Fig. 10. Some object-centered and orientation relations.

The relative orientations of both design units are consid-
ered. Certain types of relations are difficult to express in
terms of spatial relations between two design units. For
example, the requirement that two design units be physi-
cally accessible from each other, or that there be a path
between two design units with minimal clearance at each
point, or that a design unit has an unobstructed line of sight
to another. The difficulty is that an arbitrary number of
additional design units, changing with the layout, may be
involved in the desired relation. Currently, style con-
straints express general conditions affecting all or most of
the design units in a layout but they are not easy to extend
to handle the cases above.

5. REPRESENTING PROBLEM
REQUIREMENTS

The efficiency apartment problem is defined in Figure 11 in
terms of spatial relations. Performance constraints specify
the adjacency requirements. Limits on areas and dimen-
sions, which are also performance constraints, are not shown
as they are not spatial relations. Realizability constraints
specify that all rooms are inside the apartment and that they
do not overlap. Style constraints eliminate trivial holes in-
side the apartment. The edges of the apartment, which is
the design envelope, are indicated by N, S, E, W. Repre-
senting all requirements declaratively and explicitly rather
than building them into the generator gives control to the

Spatial synthesis by disjunctive constraint satisfaction 253

Performance Constraints
C-l living room next-to vestibule > 90
C-2 kitchen next-to living room > 120
C-3 bath next-to vestibule > 70
C-4 living room completely-next-to S
C-5 living room completely-next-to W
C-6 vestibule next-to E

Readability Constraints
C-7 vestibule inside apartment
C-8 living room inside apartment
C-9 kitchen inside apartment
C-10 bath inside apartment

C-l 1 vestibule non-overlap living room
C-l2 vestibule non-overlap kitchen
C-l3 vestibule non-overlap bath
C-14 living room non-overlap kitchen
C-l5 living room non-overlap bath
C-l6 kitchen non-overlap bath

Style Constraints
C-l7 bath north-adj (living room v vestibule v kitchen v N)
C-l8 bath south-adj (living room v vestibule v kitchen v S)
C-l9 bath east-adj (living room v vestibule v kitchen v E)
C-20 bath west-adj (living room v vestibule v kitchen v W)
C-21 kitchen north-adj (vestibule v living room v bath v N)
C-22 kitchen south-adj (vestibule v living room v bath v S)
C-23 kitchen east-adj (vestibule v living room v bath v E)
C-24 kitchen west-adj (vestibule v living room v bath v W)
C-25 living room north-adj (vestibule v kitchen v bath v N)
C-26 living room south-adj (vestibule v kitchen v bath v S)
C-27 living room east-adj (vestibule v kitchen v bath v E)
C-28 living room west-adj (vestibule v kitchen v bath v W)
C-29 vestibule north-adj (living room v kitchen v bath v N)
C-30 vestibule south-adj (living room v kitchen v bath v S)
C-31 vestibule east-adj (living room v kitchen v bath v E)
C-32 vestibule west-adj (living room v kitchen v bath v W)}

Fig. 11. Disjunctive constraints formulating the efficiency apartment problem.

users but results in the order of n2 disjunctive constraints
for n design units.

The performance, realizability, and style constraints that
define a spatial synthesis problem are formulated as Bool-
ean combinations of atomic constraints. The canonical form
of a disjunctive constraint is defined to be disjunctive nor-
mal, that is, the top level elements, called disjuncts, are con-
nected by an or, the second level elements by an and, and
there are at most two levels. Thus, a disjunctive constraint
C, is in the form C, = (dn v di2 v ... v dlk(j)), and each
disjunct dj is in the form dj = (c,-, A C J 7 A . . . A

 cjk(j))> where
the c are atomic constraints.

Disjunctions result from a spatial relation that can be sat-
isfied in topologically distinct ways or a requirement that
can be satisfied by more than one design unit. In the first
case, each disjunct corresponds to a topologically different
way of satisfying the constraint. For example, two design
units can be adjacent by the first being to the north, south,
east or west of the second; thus, an adjacency constraint has
four disjuncts. A spatial relation needs to be formulated by
a set of mutually exclusive and exhaustive disjuncts. Dis-
juncts that are not mutually exclusive result in duplicate so-
lutions. A set of disjuncts that is not exhaustive results in
missing possible solutions, that is, an incomplete genera-
tion process. The second cause of disjunction is if more than
one design unit can satisfy a requirement. For example, the
requirement that the kitchen should be adjacent to either the
living room or the vestibule can be expressed by a disjunc-
tive constraint with eight disjuncts. C-l7 in Figure 9 ex-
presses that the west edge of the bathroom should be adjacent
to the living room, vestibule, kitchen, or the west edge of
the apartment. Because the bathroom can be adjacent to more
than one of these, the disjuncts of C-l7 are not mutually
exclusive.

Spatial relations are defined by templates that show the
disjunctive and conjunctive combinations of algebraic con-
straints between the edges of the two design units. For ex-
ample, north-of-relation consists of one disjunct that consists

of one bounded distance constraint; i north-ofj is defined
as the south edge of i being north-of the north edge of j ,
yj ~ Yj E. [0,oo]. The built-in spatial relations, as well as
new ones, are defined in the same way, by defining its tem-
plate. A constraint compiler creates the atomic constraints
given the templates defining spatial relations and the dis-
junctive constraints on design units.

Let the edges of the bath and the vestibule be as seen in
Table 3, and let C-3 be the constraint bathroom next-to ves-
tibule > 70 cm. C-3 is seen in Figure 12 in disjunctive nor-
mal form. Some relations, for example, inside, result in a
disjunctive constraint with a single disjunct, as in C-10. Dis-
junctive constraints can share disjuncts and atomic con-
straints. The third disjunct of C-3 and the second disjunct of
C-l7 are very similar except they specify minimum adja-
cent distances of 70 cm and 1 cm.

6. SOLUTION METHOD

6.1. Search algorithm

The disjunctive CSP is solved by instantiating disjunctive
constraints by backtracking search. A new state is created
for each disjunct. The layout in the new state is modified by
asserting the atomic constraints in the disjunct and propa-
gating constraints. If an inconsistency is detected, then the
current state is eliminated and backtracking occurs. Other-
wise forward-checking evaluates the remaining disjunctive
constraints and removes disjuncts and atomic constraints that
are satisfied or contradicted as a result of asserting the dis-
junct. If a disjunctive constraint is left with a single disjunct
in its domain after forward-checking, it can be instantiated
in the same state. This is termed the singleton-disjunct heu-
ristic or the singleton heuristic. It may cause more than one
disjunctive constraint to be instantiated in a state. The cycle
of forward-checking future disjunctive constraints and find-
ing and instantiating those that have a single disjunct left is
repeated until no singleton disjuncts are found in a pass.

254 C.A. Baykan and M.S. Fox

C-3 bathroom next-to vestibule > 70
(((x4 - X2 e [0, 0]) A (Y4 - y2 e [70,«]) A (Y2 - y4 e [70, «])) v
((x2 - X4 e [0, 0]) A (Y4 - y2 e [70, -]) A (Y 2 - y4 e [70, «])) v
((y4 - Y2 6 [0,0]) A (X4 - x2 e [70, -]) A (X2 - x4 e [70, oo])) v
((y2 - Y4 e [0, 0]) A (X4 - x2 e [70, ~]) * (X2- X4 6 [70, oo])))

C-10 bathroom inside apartment
((x4 - x0 e [0,«]) A (Xo - X4 e [0,«]) A (y4 - y0 e [0, «>]) A (Yo - Y4 e [0, «=]))

C-13 vestibule non-overlap bathroom
(((x2 - X4 e [0, oo]) A (Y2 - y4 e [1, «]) A (Y4 - y2 e [1, «])) v
((x4 - X2 e [0, oo]) A (Y2 - y4 6 [1, oo]) A (Y4 - y2 e [1,«]}) v
(y 2 - Y 4 e [0,-~])v
(y 4 - Y 2 e [0,o.]))

C-17 bathroom north-adj (livingroom v vestibule v kitchen v N)
(((y4 - Y, e [0,0]) A (X4 - x, e [1, «]) * (X, - x4 e [1, «])) v
((y4 - Y2 6 [0, 0]) A (X4 - x2 e [1, oo]) A (X2 - x4 6 [1, oo])) v
(.(y* ~ Y3 e [0,0]) A (X* - x3 e [1, oo]) A (X3 - x« e [1,«])) v
(y 4 - y 0 e [0,0])))

Fig. 12. Expressing spatial relations between design units as disjunctive constraints.

Forward-checking infers the status of an atomic con-
straint by checking the domains of its variables. If their do-
mains contain no values that can satisfy the atomic constraint,
as in the following example: c, : vx — v2 G [0,oo], vx G [100,
200] and v2 G [300, 400]; forward-checking can infer that
c, is violated. A constraint is inferred to be satisfied when
all combinations of the values of its variables satisfy the
constraint. If t>, G [500, 600] and v2 G [300, 400], then
every possible combination of values for v, and v2 satisfies
c,. If neither of the above two cases hold, then the status of
the constraint must remain undetermined. This is the case if
v, G [300, 400] and v2 G [300, 400], because value com-
binations that satisfy or violate c, are both possible.

Efficiency of forward-checking depends on tightness of
bounds derived by constraint propagation. Since path-
consistency updates all relations and achieves global con-
sistency, a constraint can be checked by simply comparing
the value derived by path-consistency against the value spec-
ified in the constraint. Arc-consistency derives looser bounds
that may contain inconsistent values when there are loops
in the constraint network, thus some inconsistent combina-
tions are not removed by forward-checking but can only be
discovered by asserting the disjuncts during search. Path-
consistency reduces search by detecting violated disjuncts
earlier than arc-consistency does.

The search tree generated while solving problem 1 is shown
in Figure 13. Nodes of the tree are the search states num-
bered in the order of generation. The constraint that is instan-
tiated in each intermediate state is written under the state.
States 1,17,32, and 39 have two lists to their left. The top list
shows the disjunctive constraints that forward-checking finds
to be satisfied initially. The bottom list shows the disjunctive
constraints instantiated by the singleton-disjunct heuristic or
found to be satisfied by forward-checking during successive

applications. The configuration(s) at each solution state is
drawn below the state.

Forward-checking does not find any satisfied disjunctive
constraints in state 1, thus the top list for state 1 is empty.
The singleton heuristic finds some constraints with only one
disjunct. These are the inside constraints, C-7-C-10, and
the fixed adjacencies, C-4-C-6, which are instantiated.
Forward-checking and the singleton heuristic are applied
again. Forward-checking detects that C-26, C-28, and C-31
are satisfied. C-2 kitchen next-to living room S: 120 cm is
selected from the remaining constraints for instantiating at
state 1. C-2 has two undetermined disjuncts at this point:
the kitchen can be adjacent to the north or the east of the
living room. The other disjuncts have been removed by
forward-checking. In state 2, the kitchen is placed to the
east of the living room, and in state 17, to the north of it. In
all solutions derived from these states, the kitchen and the
living room remain in the same position with respect to each
other. Placing the kitchen adjacent to the north of the living
room at state 17 satisfies C-14 living room non-overlap
kitchen, C-22 kitchen south-ad] (vestibule v living room v
bathroom v S), and C-25 living room north-adj (vestibule v
kitchen v bathroom v N). There are no singleton disjuncts,
and search continues by selecting C-l living room next-to
vestibule ^ 90 cm. In state 18, the vestibule is placed ad-
jacent to the east of the living room and in state 32 to the
north of it.

Problem 1 has 22 significantly different solutions. This
method finds the solutions without looking at any dead ends
because forward-checking is able to remove the disjuncts
that lead to dead ends before they are instantiated. In more
complicated problems, it is not possible to remove all dead
ends even though the search space that is expanded is a very
small portion of the total problem space.

Spatial synthesis by disjunctive constraint satisfaction 255

- 8 , C 9 , C - 1 0 , C - 2 6 , C - 2 8 , C - 3 1)

ran
HH

(C-15.C-18,C-19,C-20,
C-21,C-23,C-27,C-29,C-32)

| |bathroom

• kitchen

Fig. 13. Search tree for the efficiency apartment problem.

6.2. Problem space

The problem space is the Cartesian product of the domains
of all disjunctive constraints. Given d disjunctive con-
straints each having b disjuncts, there are bd candidate so-
lutions, where d is the depth of the search tree and b is the
branching factor. Thus, the number of candidate solutions
for the efficiency apartment problem is 425 without consid-
ering duplicate disjuncts. According to the analysis above,
additional constraints should increase search complexity
measured by the number of states. But, additional con-
straints on the same variables increase inconsistent combi-
nations. Constraint propagation and forward-checking detects
inconsistent and redundant disjuncts, pruning many possi-
ble search paths.

A more realistic measure of search complexity in con-
straint problems is problem difficulty as defined by Purdom
(1983). Problem difficulty decreases as the ratio of con-
straints to variables increases and is categorized as hard,
difficult, and easy. Hard problems have an exponential
number of solutions, and it takes exponential time to solve
them by backtracking search. Difficult problems have a
polynomial number of solutions, but backtracking still takes
exponential time. Easy problems have a polynomial num-
ber of solutions, and there are known procedures for solv-
ing them in polynomial time. Purdom showed that for a
subset of difficult problems, backtracking takes polynomial

time with dynamic order of instantiation and exponential
time with a fixed order of instantiation. He also conjectured
that dynamic instantiation may save exponential time
throughout the difficult region even though the resulting
times may still be exponential. As they are initially given,
layout problems usually do not contain enough constraints
to restrict the solutions to a small set. Thus, layout prob-
lems are hard. But, design process is characterized by iden-
tification of new constraints and relaxation of constraints
(Akin et al., 1992). Baykan (1991) conjectured that by mod-
ifying constraints, the designer changes hard problems into
difficult ones. This enables the designer to evaluate the pos-
sibilities and trade-offs implicit in a problem definition by
considering all solutions.

6.3. Dynamic determination of instantiation order

In WRIGHT, a disjunctive constraint is selected for instanti-
ation by a function of textures. Textures are measures of
features of the constraint graph, topological, and otherwise
(Fox et al., 1989). Textures can be on variables, atomic con-
straints, and disjunctive constraints. We have defined three
texture measures.

1. Looseness-1 is the number of active disjuncts in a dis-
junctive constraint.

256 C.A. Baykan and M.S. Fox

2. Looseness-2 measures the reduction in the domains
of interval variables due to satisfying a disjunctive con-
straint.

3. Interaction is a measure of the relationship between
disjunctive constraints that arise from sharing design
units.

Textures assign values to future disjunctive constraints. Vari-
able and value ordering heuristics and textures are not the
same; a variable or value ordering heuristic is a function of
a set of textures.

Looseness-1 selects the disjunctive constraint with the
fewest active disjuncts. It reduces the branching factor and
maximizes the probability that a disjunctive constraint will
fail. If every disjunct has the same probability of failing, P,
and the probabilities of failure are independent, the proba-
bility of failure of a disjunctive constraint with n active dis-
juncts is P" (Haralick & Elliott, 1980). This heuristic has
been used in discrete CSPs by picking the variable with the
fewest values remaining in its domain (Purdom, 1983).

Looseness-2 measures the reduction in the domains of
variables due to instantiating a disjunctive constraint. The
domain size of a variable v,vE [vmin, ymax], is umax - vmin.
The reduction in domains due to asserting a bounded
difference constraint is calculated by adding the increases
in the lower bounds and the decreases in the upper bounds
of the two variables. The looseness-2 measure of a disjunct
is the sum of the reductions due to its atomic constraints,
and that of a disjunctive constraint is the minimum of its
disjuncts. Looseness-2 considers the dimensions and the cur-
rent locations of the design units, and the severity of the
spatial relations between them in a uniform and principled
way. Locating larger design units first has been found to be
the best strategy when the problem involves arrangements
that fill available space tightly (Pfefferkorn, 1971). Using
spatial relations that project smaller areas has been shown
to be a fail-first strategy when the intersection of the areas
projected by two spatial relations depend only on the mag-
nitudes of the areas (Eastman, 1973).

The third texture, interaction, is a measure of the rela-
tionships between future disjunctive constraints that arise
due to sharing variables. The variables considered are de-
sign units. Each design unit is assigned a weight based on
the number of constraints on it. The interaction measure of
a disjunctive constraint that specifies a spatial relation be-

tween two design units is the sum of the weight of its de-
sign units. For a disjunctive constraint whose disjuncts are
between different design units, the interaction of each dis-
junct is calculated by adding the weights of its design units,
then the minimum interaction of its disjuncts is taken as the
value of the disjunctive constraint. The width of the con-
straint graph is dynamically minimized. Selecting a disjunc-
tive constraint that interacts strongly with future disjunctive
constraints maximizes the likelihood that disjuncts will be
pruned from the domains of future disjunctive constraints
by forward-checking. A heuristic is to instantiate the vari-
able participating in more constraints (Purdom, 1983). East-
man (1973) proposed entering the design unit most strongly
connected to those already located. In WRIGHT, forward-
checking propagates the effects of decisions to future con-
straints, therefore this texture considers the interactions
between future constraints.

Selection is by a lexicographic function of textures. The
first texture assigns ratings to all future disjunctive con-
straints and eliminates those with lower values. If more than
one constraint remains, the next texture is applied. If more
than one constraint remains after applying all textures, one
of them is selected at random.

6.4. Performance of textures

To evaluate the effectiveness of textures in reducing search,
we solved six problems using all possible lexicographic or-
derings of the textures, as well as randomly without using
textures. Table 6 shows the performance of selected texture
functions in solving the courtyard apartment problem. The
texture functions are seen in the first column. The problem
is solved 12 times using each texture function, starting the
random number generator with a different seed each time.
The entries in the table are the average of the 12 runs. If the
texture function selects a unique constraint in every state,
then all runs become identical. If the texture function is not
able to pick a unique constraint at each state, and a con-
straint is selected randomly then each trial is different. When
no textures are used, the variation between trials is larger.
Tests were run on a Decstation 5000, using Allegro com-
mon lisp.

The number of states expanded given in row 2 and total
search time given in row 1 are good indicators of search
efficiency. Rows 3 and 4 show the average branching factor

Table 6. Performance of textures in solving the courtyard apartment problem

Seconds
States
b
d

L1/L2

6.4
321

2.00
8.36

L2/L1

8.8
337

2.74
5.77

L2

8.6
350

2.85
5.60

Ll/Int

15.1
523

2.00
9.06

Int/Ll

17.2
609

2.64
6.61

Int

18.6
652

2.75
6.40

L!

17.6
822

2.00
9.68

Random

65.9
2548

3.09
6.96

Spatial synthesis by disjunctive constraint satisfaction 257

and depth of the search tree. Columns of Table 6 are ar-
ranged from left to right in decreasing search efficiency. The
best texture function is looseness-1 and looseness-2, which
reduces search states by 87% and total time by 90% com-
pared to random selection of constraints. All texture func-
tions reduce search. Even the texture function that performs
worst, looseness-1 by itself, reduces search states by 68%
and search time by 73% compared to random selection. In
some cases, adding another texture to some combination of
textures does not improve performance. Those combina-
tions are not shown in Table 6.

Looseness-1 used first reduces the branching factor by se-
lecting a disjunctive constraint with the fewest disjuncts. In
the courtyard apartment problem, there is a constraint with
two disjuncts at every state. Looseness-2 reduces the depth
of the search tree by implementing prune-early and fail-first
strategies. Using the two in combination results in the best
performance, as seen in the first two columns of Table 6.
Looseness-2 also performs well by itself. Interaction reduces
search depth to a lesser extent than looseness-2, and reduces
the branching factor to a lesser extent than looseness-1.
Looseness-1 combines well with other textures, especially
looseness-2 when used first. Interaction does not combine well
with the other textures, thus it is less useful. Interaction mea-
sure is expensive to use because it is more complicated to com-
pute. This may explain some of the increased search times
when using this texture. In general, texture functions that re-
duce search also reduce the time per state.

Next we look at how textures perform on various prob-
lems. The complexity of a layout problem depends on the
number of design units being arranged, the number and type
of disjunctive constraints, and how constraining the initial
state of the layout is. Problem complexity or difficulty in-
creases with the number of design units. Given the same
number of design units, a problem becomes less difficult if
more constraints are available. Table 7 shows the number
of design units to locate plus the number of design units
fixed in initial state, the number of disjunctive constraints,
the number of solutions, the number of states expanded by
the best texture function, and the percent reduction in num-
ber of states by the best texture function compared to ran-
dom search. The last column gives the best texture function.

Based on the number of states that must be expanded and
the number of solutions, we can say that the top three prob-
lems are more difficult than the bottom three. In the easier
problems, the best texture function reduces the number of
search states by 34-67%, and in the more difficult prob-
lems it reduces search states by 80-90% compared to ran-
dom selection. The courtyard apartment problem is solved
by expanding fewer states than blocks-3, because of the num-
ber and type of constraints available. There are also adja-
cency, no-trivial-holes and fill-corners constraints in the
courtyard apartment problem in addition to the nonoverlap
and dimensional constraints in blocks-3.

Textures reduce search by an order of magnitude in dif-
ficult problems and find an instantiation order that solves
the problem with minimal or no dead ends in easy prob-
lems. Based on our observations, the texture functions to
use based on problem characteristics are as follows: in easy
problems, looseness-1 performs better than others when used
alone; otherwise, looseness-2 is best. In bin-packing prob-
lems, looseness-2/looseness-l/interaction; and in architec-
tural layouts, looseness-1/looseness-2 combinations work
better. Interaction improves performance in all but one prob-
lem when used last. The relation between the effectiveness
of textures and problem characteristics need to be investi-
gated more, but we have not considered creating random
problems with desired characteristics to systematically look
at this issue.

Using path-consistency results in more efficient search
than arc-consistency. The courtyard apartment problem is
solved in 760 states by the earlier version of WRIGHT (Bay-
kan, 1991) compared with 321 states in the current version
as shown in Table 6. There is no difference in the number of
states between the two versions when solving blocks prob-
lems. Because the blocks have fixed dimensions, search is
not affected by ambiguities of interval arithmetic.

6.5. Constraint relaxation and optimization

The efficiency apartment example defines the disjunctive
CSP as a satisficing problem; all of the disjunctive con-
straints have to be satisfied by a feasible solution. It may
not be possible to satisfy all constraints. It is useful to in-

Table 7. Performance of textures on selected problems

Problem

Blocks-3
Courtyard Apt.
Blocks-2
Blocks-1
Kitchen-1
Kitchen-4

No. of
design u.

7 + 1
9 + 1
6 + 1
6 + 1
7 + 8
7 + 8

No. of
disj. constr.

25
75
25
15
59
57

No. of
solutions

96
45
72
24

3
2

Best no.
of states

1076
321
509
111
25
29

Reduction
in states

(%)

90
87
80
67
64
34

Best
texture fn

L2/Ll/Int
L1/L2
L2/L1/IM
L1/L2/IM
L2/Ll/Int
Ll/L2/Int

258

dicate which constraints are relaxable, and also which should
be relaxed before others. Omitting style and performance
constraints results in meaningful configurations, whereas so-
lutions violating realizability constraints may not be admis-
sible. In WRIGHT, relaxable (soft) constraints are indicated
by including a null disjunct in their domains, which is triv-
ially satisfied. Let C, be a disjunctive constraint, and d^ the
disjuncts in its domain. If C, is soft, a null disjunct d0 is
added to its domain: C, = (dn v ... v dik^ v d0). The null
disjunct is the same as omitting the constraint. When it is
instantiated, it has no effect other than lowering the evalu-
ation of that state. This formulation is used in kitchen lay-
out problems discussed below.

This formulation can be extended by assigning a utility
between 0 and 1 to every disjunct. The disjuncts with lower
utilities are relaxations of those having the highest utility.
An objective function that can be used to evaluate inter-
mediate and final states is given below:

Rating = 2 "<
i G satisfied constraint 2

j E future constraint

Max(ujk).

The utility of a satisfied constraint, w,, is the utility of the
instantiated disjunct. The utility of a future constraint, ujk,
is the maximum of the utilities of the disjuncts in its domain
(Fox, 1987). The objective function can be a function of
any set of variables in the problem. For example, the area of
the apartment can be minimized in the efficiency apartment
problem, or the weighted total distance between design units
can be minimized in a computer board layout problem. It is
possible to terminate search paths that cannot lead to a bet-
ter solution than the current best.

The largest problem we have attempted is the layout of a
computer board. There are 14 design units that are fixed on
the board and 20 that are being configured. The elements on
the board are connected by wires that run in the two main di-
rections. This is an optimization problem where the weighted
manhattan distance between the design units are minimized.
It is an underconstrained problem with an exponential num-
ber of solutions, and it was not possible to exhaust all alter-
natives even when the system worked for days. It is possible
to derive constraints from the objective function, such as, de-
sign units connected to each other by the most number of wires
should be adjacent or close (maximum distance constraint).
Adding these constraints simplifies the problem by orders of
magnitude.

It is more efficient and may be also more useful to sat-
isfice rather than to optimize. Minimizing the area of the
apartment gives one solution as the best, whereas setting a
limit on the area and satisficing gives all possible solu-
tions having an area less than the limit. Then by decreas-
ing or increasing the area iteratively it is possible to see
the trade-offs. In most spatial layout problems, the de-
signer has a pretty good idea of the limits that can be
achieved.

C.A. Baykan and M.S. Fox

7. REPRESENTING DOMAIN KNOWLEDGE

Are spatial relations between pairs of design units and the ap-
proach described above adequate to represent knowledge of
a design domain? We have used kitchens to test this because
kitchen layout is complicated enough to be challenging, and
because kitchen layout knowledge has been formulated ex-
tensively. We have tried to express kitchen layout knowl-
edge as spatial relations between prototype design units and
used it to solve different kitchen layouts.

7.1. Kitchen domain knowledge

The basics of kitchen layout are as follows: There should be
well-defined centers for cooking, mixing, and the sink. They
should be arranged based on their sequence of use during
food preparation. Enough countertop area to meet various
functions and cabinet frontage to meet storage needs must
be provided. The work triangle formed by the front mid-
points of the sink, range, and refrigerator should have a to-
tal length of 360-660 cm. If the appliances are too close
together, there is not enough work area between them. If
they are too far apart, users have to walk too much. There
should be no traffic or furniture interfering with the work
triangle. Because most of the time spent in the kitchen is
spent at the sink, placing the sink against a window pro-
vides light and view while working. For safety reasons, the
range should not be next to a window or door. It is desirable
to have all the work centers in a kitchen connected, with the
refrigerator at one end. If it is not possible to have all work
centers connected, they may be split (Drake & Pheasant,
1984; Gulliver, 1984; Jones & Kapple, 1984; Miell, 1984;
Prizeman, 1984; Small Homes Council, 1950).

There is a taxonomy of prototype design units for orga-
nizing constraints. Inheritance of constraints through the tax-
onomy eliminates duplication. The design units in a particular
problem are instances of the prototypes and inherit con-
straints from them. The design unit taxonomy used to for-
mulate kitchen constraints is shown in Figure 14. The design
units to be configured in the example problems are sink,
range, refrigerator, sink center, mix center, range center, and
circulation area. A design unit can itself be composed of
other design units. The different levels of detail are called

design-unit i

,space

-boundary

••circulation

V equipment

,sink

* range

- refrigerator

^work-center_—sink-center

\ ^ mix-center

\rarange-center

Fig. 14. Taxonomy of kitchen design units.

Spatial synthesis by disjunctive constraint satisfaction 259

levels of aggregation. In kitchens, we are dealing with de-
sign units at three levels; the kitchen, the work centers,
and the appliances, WRIGHT permits designing at different
levels concurrently.

Most of the requirements can be expressed in terms of
desired or unwanted spatial relations between two design
units. The work triangle can be split into distances between
every pair of appliances. This results in looser bounds be-
cause taking the minimum in each case results in a lower
bound that is less, etc. The distances are approximated by
manhattan distance between the edges of the appliances.
Work centers should be next to other work centers or to a
boundary element at sides. The constraint that the sink cen-
ter should be next to the mix center has a null relaxation,
which permits splitting the counters into two groups if re-
quired. Other conditions, such as, there should not be any
furniture or traffic interfering with the work triangle is very
hard to express. It is a global constraint that is a function of
all design units. These are the performance constraints.

The realizability constraints are that the work centers and
the circulation area should be inside the kitchen and they
should not overlap. The sink should be inside the sink cen-
ter and the range inside the range center. There should be
one circulation area, and all doors must completely overlap
it on one side. The fronts of appliances should be com-
pletely next to the circulation area, and the fronts of work
centers should be next to the it. In all of the 50 plus kitchen
designs given in Small Homes Council (1950), the appli-
ances and the work centers were always placed with their
backs against a wall; there were no island kitchens. Thus, it
is also added as a constraint. These result in 64 constraints
on the prototype design units (Baykan, 1991). There are no
style constraints.

7.2. Constraint compiler

The constraint compiler formulates a disjunctive CSP by
applying the domain knowledge to the design unit in-
stances in a particular problem. Domain constraints
express general knowledge about the design domain in
the form of desired spatial relations between prototype de-
sign units or in the form of limits on their dimensions.
Because constraints expressing domain knowledge are
posted to prototype design units, they must also contain
the quantifiers all and some to designate how they apply
to instances. The constraint compiler takes a taxonomy of
prototype design units, domain constraints on them, and
the templates defining spatial relations in terms of atomic
constraints; and creates the disjunctive constraints on the
design unit instances.

The user may decide to define a problem using disjunctive
constraints rather than domain constraints. They can also be
specified declaratively. In this case, the constraint compiler
creates the atomic constraints using the templates defining spa-
tial relations. AdisjunctiveCSPfor even a small problem, such

as the efficiency apartment, is quite complex and tedious to
generate manually. The constraint compiler lets the user spec-
ify it at a high level, in a user-friendly manner.

The philosophy behind the representation of domain
knowledge in WRIGHT is to do it explicitly and declara-
tively, so that the users can have direct control. The three
components of the knowledge base: the taxonomy of de-
sign units, the set of spatial relations, and the domain con-
straints are represented declaratively and can be modified
through the user interface. New spatial relations are defined
the same way the built-in relations are.

7.3. Performance of spatial relations
and constraints

One of the books (Small Homes Council, 1950) gives a cat-
alogue of 50 plus small home kitchens. These are classified
with respect to position of door(s) and window. There are
three differently sized kitchens for each window and door
configuration. The kitchens are between 7-12 square me-
ters, rectangular in shape, and have one or two doors and
one window. The best layout attainable in each kitchen is
also given, together with a rating that can be used to com-
pare different kitchens. The test cases selected from this cat-
alogue are solved using the same domain knowledge. There
are some differences between the layouts given in the hand-
book and those generated by WRIGHT. In WRIGHT'S layouts,
doors open inside, whereas in the solutions given in (Small
Homes Council, 1950), it is not specified, even though the
layout is such that doors can open inside if need be, and the
work centers are not shown as separate areas but as a con-
tinuous counter, sometimes L-shaped, that contains the sink
and range.

The first plan in each row in Figure 15 is the solution
given in the Handbook of Kitchen Design, and the rest are
the solutions generated by WRIGHT. In WRIGHT'S layouts,
all work centers are separate rectangles, and the mix center
is indicated by diagonals inside it. Having separate rectan-
gles instead of connected counters causes spurious alterna-
tives to be generated. For example, in the last two solutions
in the top row, the counter in the top right corner is part of
the sink center in one and range center in the other solution.
This is also observed in the bottom left corners of the first
two solutions in the second row. In all five cases, one of the
solutions found by WRIGHT is the same as the one given in
terms of the sequence of work centers and the placement of
the appliances. In all kitchens except the last, another se-
quence of work centers is also permitted by the constraints.
These are left-handed and right-handed sequences and both
are valid, except the last solution in the third row is not ac-
ceptable due to the relation of the door and the refrigerator.
A spatial relation that permits the first solution but prevents
the second needs to take into account the orientations of the
refrigerator and the door.

260 C.A. Baykan and M.S. Fox

JJT1

xm

Fig. 15. Solutions to five kitchen layout problems. The solution given in Handbook of Kitchen Design is at left, and the other layouts
in each row are the solutions by WRIGHT.

In the second and fifth problems, sink center is not next
to another work center. This constraint is relaxed because it
cannot be satisfied. It is the only constraint that requires a
relaxation. Placing the sink next to the window, mix center
next to the sink, etc. finds the possible solutions without
much search in the above problems. The number of states
expanded when solving kitchens 1 and 4 is given in Table 7.

The constraints that solve small house kitchens are inad-
equate in solving the detached house kitchen shown in Fig-
ure 16. There needs to be more than one circulation area so
that all doors and all appliances can be adjacent to one. The
exact number depends on the configuration; and it is not
possible to specify beforehand. It is possible to formulate

backyard

dining

"basement™

Fig. 16. A detached house kitchen and existing layout.

the problem such that instead of a circulation space, every
work center and appliance has its own use area in front of it.
The use areas may overlap each other. An alternative for-
mulation may be to omit the circulation area altogether and
to specify minimum distances from the fronts of all appli-
ances and work centers to everything else. Both of these
formulations run into problems with global conditions, that
is, the circulation paths and the work triangle should not be
obstructed. As this example shows it is harder to define the
realizability constraints than the performance constraints,
that is, to define what is a well-formed kitchen. When the
constraints are not formulated adequately, WRIGHT either fails
by generating thousands of nonsense solutions or by find-
ing no solution and giving no indication of which other con-
straints to relax.

Two approaches are possible to deal with this issue. One
is to have test-only constraints for checking global condi-
tions in the layouts generated by disjunctive constraints. The
second approach is to create new design unit instances, such
as circulation areas, dynamically during search when they
are needed (Mittal & Falkenhainer, 1990). The design units
that are used depend on the configuration to some extent.
The island counter in the kitchen in Figure 16 is wider than
usual and can be used from both sides, and there is a tall
cabinet next to the chimney. These are selected because they
fit the layout.

Disjunctive constraints specifying spatial relations are not
sufficient for expressing deep knowledge about a design do-

Spatial synthesis by disjunctive constraint satisfaction 261

main. They are constructed on the fly based on deep knowl-
edge about the domain and the possibilities of the problem
at hand. Currently this is the role of the user. Role of the
spatial layout system is to find a set of significantly differ-
ent solutions. Design is more about determining the con-
straints and selecting one of the alternatives based on other
considerations rather than finding solutions when the con-
straints are given. Thus, a system such as WRIGHT is best
used interactively for exploring a problem as well as for
finding a solution.

7.4. Extensions

Because objects required in a layout sometimes depend on
the configuration, it is useful to be able to create new de-
sign units during search. An example is the creation of cir-
culation areas when they are needed. New design units would
be created when some required spatial relations cannot be
formed between existing design units.

The disjunctive constraints specifying spatial relations be-
tween pairs of design units are not good for expressing glo-
bal conditions. It is possible to have procedural or other types
of constraints that can express arbitrary conditions and to
use them just for testing. A constraint compiler that can ex-
press functional and performance requirements in terms of
spatial relations between design units can be an area for fu-
ture research.

WRIGHT can have design units that are at different levels
of aggregation, and problems containing a large number of,
design units can be simplified by creating hierarchical lev-
els. This is made use of in kitchen problems, but all design
units and constraints between them are treated the same. The
issue is how to make use of levels to increase efficiency and
to simplify search.

This formulation can be extended naturally to three di-
mensions, by making each design unit a rectangular prism
defined by six planes, where each plane is parallel to two
axes. The same textures and atomic constraints can be used;
but 3D spatial relations need to be formulated. It is also pos-
sible to extend this formulation to nonrectangular shapes.
Arbitrary lines can be defined by treating the four coordi-
nates of a rectangle as the two endpoints of a line. The con-
straints on them are similar in form to the bounded difference
constraints, but their semantics are different. It is not clear
whether this formulation is useful for any domain.

8. CONCLUSION

This study demonstrates that it is possible to formulate spatial
synthesis as a disjunctive CSP. We have solved satisficing
and optimization problems from various domains, requir-
ing different types of constraints. The disjunctive con-
straints used in defining layout problems are based on a
deeper knowledge of problem domains. Formulating func-
tional requirements as spatial relations between design units
is an issue that can be addressed in future work.

We give a new O(n2) incremental path-consistency algo-
rithm for efficiently maintaining consistency of layouts dur-
ing search. We define textures, which are heuristic measures
based on the structure and other features of the constraints,
and use them to dynamically select the disjunctive con-
straint to instantiate. Textures implement fail-first and prune-
early strategies and reduce the width of the constraint graph.
Our experiments show that textures can reduce search time
by an order of magnitude in difficult problems and can find
an instantiation order that solves the problem with minimal
or no dead ends in easy problems. As they are initially given,
layout problems usually do not contain enough constraints
to restrict the solutions to a manageably small set, thus the
problem has to be explored interactively by modifying the
constraints.

ACKNOWLEDGMENTS

This research was supported in part by a grant from Digital Equip-
ment Corporation.

REFERENCES

Akin, 0., Dave, B., & Pithavadian, S. (1992). Heuristic generation of lay-
outs (HeGeL): Based on a paradigm for problem structuring. Environ.
Plann. B 19, 33-59.

Aggoun, A., & Beldiceanu, N. (1993). Extending Chip in order to solve
complex scheduling and placement problems. Math. Computational
Modelling 17(7), 57-73.

Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Com-
mun. ACM 2(5(7/j, 832-843.

Author. (1984). Domestic kitchen design: Conventional planning. Archi-
tects J., October, 71-78.

Baybars, I., & Eastman, CM. (1980). Enumerating architectural arrange-
ments by generating their underlying graphs. Environ. Plann. B 7, 289-
310.

Baykan, C.A. (1991). Formulating spatial layout as a disjunctive con-
straint satisfaction problem. PhD Thesis. Carnegie Mellon University,
Pittsburgh, PA.

Baykan, C.A., & Fox, M.S. (1992). WRIGHT: A constraint based spatial
layout system. In Artificial Intelligence in Engineering Design, Vol-
ume I (Tong, C. and Sriram, D., Eds.), pp. 395-432. Academic Press,
Inc., Boston.

Davis, E. (1987). Constraint propagation with interval labels. AI 32(3),
281-331.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. AI
49, 61-95.

Dhar, V., & Ranganathan, N. (1990). Integer programming vs. expert sys-
tems: An experimental comparison. Commun. ACM 33(3), 323-336.

Drake, F., & Pheasant, S. (1984). Domestic kitchen design: The ergono-
mists view. Architects J., October, 79-80.

Eastman, CM. (1973). Automated space planning. AI 4, 41-64.
Flemming, U. (1978). Wall representations of rectangular dissections and

their use in automated space allocation. Environ. Plann. B 5,215-232.
Flemming, U. (1986). On the representation and generation of loosely

packed arrangements of rectangles. Environ. Plann. B 13, 189-205.
Flemming, U., Baykan, C.A., Coyne, R.F., & Fox, M.S. (1992). Hierar-

chical generate-and-test vs. constraint-directed search: A comparison
in the context of layout synthesis. In Artificial Intelligence in Design
'92 (Gero, J.S., Ed.), pp. 817-838. Kluwer Academic Publishers, Dor-
drecht, The Netherlands.

Forbus, K. (1984). Qualitative process theory. AI 24, 85-168.
Fox, M.S. (1987). Constraint-Directed Search: A Case Study of Job-Shop

Scheduling. Morgan Kaufmann, Los Angeles.
Fox, M.S., Sadeh, N., & Baykan, C.A. (1989). Constrained heuristic search.

Proceedings UCAI-I1, 309-315.

262 C.A. Baykan and M.S. Fox

Gulliver, W. (1984). Domestic kitchen design: Specifying built-in furni-
ture. Architects J., October, 91-93.

Haralick, R.M., & Elliott, G.L. (1980). Increasing tree search efficiency
for constraint satisfaction problems. AI 14, 263-313.

Jones, R.J., & Kapple, W.H. (1984). Kitchen planning principles—
equipment—appliances. Small Homes Council—Building research
Council. University of Illinois, Urbana-Champaign.

Liggett, R.S. (1980). The quadratic assignment problem: An analysis of
applications and solution strategies. Environ. Plann. B 7, 141-162.

Mackworth, A.K. (1977). Consistency in networks of relations. AI 8, 99-
118.

Mackworth, A.K., & Freuder, E.C. (1985). The complexity of some poly-
nomial network consistent algorithms for constraint satisfaction prob-
lems. AI 25, 65-74.

Malik, J.,& Binford, TO. (1983). Reasoning in time and space. Proc. Eighth
Int. Conf. Artif. lntell, 343-345.

Miell, C. (1984). Domestic kitchen design: the building regulations. Ar-
chitects J., October, 95-97.

Mitchell, W.J., Steadman, J.P., & Liggett, R.S. (1976). Synthesis and opti-
mization of small rectangular floor plans. Environ. Plann. B 3, 37-70.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction prob-
lems. Proc. Eighth Nat. Conf. Artif. lntell., 25-32.

Pfefferkorn, C. (1971). Computer design of equipment layouts using the
design problem solver. PhD Thesis. Carnegie Mellon University, Pitts-
burgh, PA.

Prizeman, J. (1984). Domestic kitchen design: Services. Architects J., Oc-
tober, 99-103.

Purdom, P.W. (1983). Search rearrangement backtracking and polynomial
average time. AI 21, 117-133.

Small Homes Council. (1950). Handbook of kitchen design. University of
Illinois, Urbana-Champaign. Circular C5.32R.

Smith, B.M., Brailsford, S.C., Hubbard, P.M., & Williams, H.P. (1996).
The progressive party problem: Integer linear programming and con-
straint programming compared. Constraints 1(1), 119-138.

Stallman, M.R., & Sussman, G.J. (1977). Forward reasoning and depen-
dency directed backtracking in a system for computer-aided circuit anal-
ysis. AI 9(2), 135-196.

Waltz, D. (1975). Understanding line drawings of scenes with shadows. In
Psychology of Computer Vision (Winston, P.H., Ed), pp. 19-91.
McGraw Hill, New York.

Can A. Baykan is an associate professor, teaching design,
computer-aided design and design methods at the Depart-
ment of Architecture at Middle East Technical University. He
received B. Arch, and M. Arch, from METU and a Ph.D. from
Carnegie Mellon University. He worked as a research asso-
ciate at the Robotics Institute and as an adjunct assistant pro-
fessor at the Dept. of Arch, at Carnegie Mellon. His research
interests are in AI, CAD and cognitive studies in design.

Mark S. Fox received his B.Sc. in Computer Science from
the University of Toronto in 1975, and his Ph.D. in Com-
puter Science from Carnegie Mellon University in 1983. In
1979 he joined the Robotics Institute of Carnegie Mellon Uni-
versity as a Research Scientist. In 1980 he started and was ap-
pointed Director of the Intelligent Systems Laboratory. He co-
founded Carnegie Group Inc. in 1984, a software company
which specializes in knowledge-based systems for solving en-
gineering, manufacturing, and telecommunications prob-
lems, and was its Vice-President of Engineering and President/
CEO. Carnegie Mellon University appointed him Associate
Professor of Computer Science and Robotics in 1987 (with
tenure in 1991).In 1988 he was appointed Directorofthe new
Center for Integrated Manufacturing Decision Systems. In
1991, Dr. Fox returned to the University of Toronto where he
received the NSERC Research Chair in Enterprise Integra-
tion and was appointed Professor of Industrial Engineering,
Computer Science and Management Science. In 1992, he was
appointed Director of the Collaborative Program in Inte-
grated Manufacturing. In 1993, Dr. Fox co-founded Fox-
Novator Systems Ltd., a company that provides Electronic
Commerce services over the Internet.

