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Abstract

Coordination of the participants in the supply chain of a manufacturing enterprise is a key to agile
reaction to unexpected events. As a starting point, we take a mediated approach to coordination: a
single agent is responsible for recovery of the supply chain from a disruptive event. This mediator
gathers commitment information from other agents and forms a constraint graph. If the event is
truly disruptive, this graph will reflect an infeasibility: a subset of agents can no longer meet com-
mitments. Repair of the graph is done via constraint relaxation controlled by the mediating agent.
We present a schema for constraint relaxation algorithms and experimental results on Partial Con-
straint Satisfaction Problems (PCSPs). We sketch the coordination protocol that is being developed.

1.0 Introduction
Dynamic events in a multiagent environment can have significant impact on the ability of agents
to meet commitments made to other agents. If the network of commitments is viewed as a con-
straint graph, an environmental event that prevents the meeting of a commitment creates an infea-
sible constraint graph. We apply constraint relaxation directed by a mediating agent in an attempt
to optimally reconfigure the commitment graph. This model is applicable to a wide range of mul-
tiagent domains where response is needed to unexpected events. An example of such a domain is
that of supply chain management.

2.0 Supply Chain Management
The ability to quickly respond to environmental changes has been recognized as a key element in
the success and survival of corporations in today’s market [Nagel  91] . This agility includes an
ongoing monitoring of events both inside and outside the corporation, quick recognition of the
impact of exogenous events, and rapid re-planning and reconfiguration to allow the enterprise to
take advantage of opportunities and minimize incurred costs.

In a manufacturing enterprise, the entire supply chain is subject to unexpected events for which
reactions are required. The supply chain flows from the customer order taken by the sales division
through planning, production, distribution, field service, and reclamation. Exogenous events are
many and varied: change in the customer order, unavailability of a particular resource, price
change in a resource, late delivery of a resource, breakdown of a machine, an urgent order from a
good customer, and so on. Handling these events requires close coordination and cooperation
among sales, marketing, accounting, material planning, production planning, production control,
and transportation. The following example illustrates the scope of the problem [Fox  92] .
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The Canfurn, Inc. furniture company produces a variety of furniture with options on wood type
and upholstery. Leo’s, the largest and best-paying customer of Canfurn, places a large order for
delivery in six months and Canfurn is able to schedule delivery as requested. Two months before
the original delivery date, Leo’s requests a significant change in the order but still wants to main-
tain the delivery date. Canfurn’s sales department immediately contacts the manufacturing divi-
sion. Manufacturing has a number of options:

• Can the new order be manufactured? Are extra shifts needed to meet capacity requirements?
What does personnel think of extra shifts? Are the materials for production in stock? If not, can
a supplier be found that can make delivery?

• Can another order be delayed (and possibly delivered late) in order to meet Leo’s order? What
does sales think of this?

• Can the job be subcontracted to another manufacturer? What does marketing and strategic
planning think of this? What does accounting say about reducing the margins? Can we afford
to take a loss on the order?

Clearly, the manufacturing division cannot make the decisions on its own. It must canvas a num-
ber of other divisions within the company and some external bodies (suppliers and subcontrac-
tors) in order to choose an alternative that is optimal.

The supply chain extends over the breadth of the enterprise and, as in actual corporations, the
inter-agent coordination is hierarchical. For example, with multiple production centers, coordina-
tion among agents within one center is at a level of abstraction below the coordination among the
centers. The latter abstraction is enterprise-wide logistics. It has a global view of the enterprise
and is be concerned with sales, customer delivery, and all aspects of inter-production center coor-
dination. We will focus on this level.

Each production center is viewed as a single resource with the ability to perform multiple activi-
ties resulting in the production of a quantity of some resource. The activities that each factory can
perform and the capacity of each factory is known.2 Scheduling at this level involves assigning
factories to supply specific quantities of resources at particular times.3 Figure 1 shows a sche-
matic of the logistics level assignments when an order is received via the Order Acquisition agent.

2. These capacities represent aggregate information based on previous performance. Environmental events (e.g.
machine breakdown) can dynamically impact these capacities.
3. For now we ignore transportation between factories and the delivery to the customer.



FIGURE 1. Logistics Level Scheduling of a Customer Order

When a customer order is scheduled each factory commits to the execution of a number of activi-
ties. Each activity has a number of characteristics such as quantity of the resource to be produced
and the time of completion. On the basis of these commitments activities at other factories are
scheduled, producing a constraint graph of inter-dependent activities such as shown in Figure 2.

This is a simple graph, dealing with a single order. Given multiple orders and activities at each
factory, a full constraint graph will certainly grow to a non-trivial size. A search for a near-optimal
reconfiguration has to handle the combinatorial explosion of interdependent alternatives in
resource choice, transportation method, and execution times.

FIGURE 2. A Simple Activity/Resource Constraint Graph

The Enterprise Integration Laboratory at the University of Toronto is pursuing the development of
an Integrated Supply Chain Management System (ISCM) addressing these and other problems.
The project is based on a distributed simulation of an enterprise, with departments encapsulated as
software agents. Given this distribution, the inter-departmental coordination in real corporations
is manifest in inter-agent coordination in the simulation. Rationale for the distributed model is
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manifold such as the exploitation of concurrent processing and the reduction in the complexity of
the knowledge base of each agent. Part of the project is the examination of enterprise knowledge
and the forming of a reasonable partitioning of it into functional agents. We will use the following
agents in our logistics-level coordination example below.

• Logistics: responsible for the logistics-level scheduling.

• Order Acquisition (OA): responsible for all order-related contact with customers including
order entry, cancellation, and modification.

• Resource Manager (RM): responsible for managing both the consumable resources (e.g.
timely ordering of raw materials) and the usable resources (e.g. scheduling of regular mainte-
nance on the machines).

• Factory Agents: each factory has an agent that is the factory-level scheduler.

3.0 A Mediated Approach
Much coordination work looks at negotiation among agents as the coordination mechanism
[Lesser  81] [Durfee 87a] [Durfee 87b] [Durfee  91] . In contrast we adopt a mediated approach.

 [Sathi  89] shows that in some cases a mediated solution can be significantly better than a negoti-
ated solution. The problem investigated is resource reallocation where each agent has some
resources and needs other resources. Agents sell the resources they have for those they need.
Experimental results show poor performance for a negotiation-based algorithm, while a mediated
algorithm using texture measurements4 on the aggregate constraint graph out-performed the
human expert.

We take this work to indicate that coordination via a completely distributed algorithm is not nec-
essarily the best choice. The problems studied demonstrated “keystone” components: critical sub-
problems for which few solutions exist, but such that once a solution is found the rest of the prob-
lem is significantly easier. For problems such as these, a mediated or partially mediated approach
may result in superior solutions.

Based on this work, we have a number of reasons for a mediated approach:

• The supply chain is a highly-structured domain that will only require explicit coordination
techniques when unexpected events occur.

• A mediator minimizes the coordination knowledge overhead at each agent.

• The constraint graph upon which relaxation is performed is partially represented in the existing
schedules. Logistics is a natural choice as a mediator at the logistics level as is the Factory
Agent within each factory.

• Scheduling difficulties can often be traced to scarce or “bottleneck” resources [Smith 89]
[Sadeh  91]  [Fox  90] . Coordination in the supply chain is needed when the schedule is found
to be infeasible due to environmental events, therefore we expect difficulties will arise from
similar resource properties. The work of  [Sathi  89] indicates that problems with such key-
stone elements can be solved much better by mediated protocols.

4. Texture measurements [Fox  89]  [Sycara  91]  assess structural properties of the constraint graph representation of
the problem. Based on these measurements, heuristic search decisions are made.



4.0 Constraint Relaxation
We view a multiagent plan as a commitment/constraint graph amongst the participating agents.
Each agent is assigned one or more tasks toward the global goal. The tasks that are assigned are
subject to constraints: a maximum amount of a shared resource that can be used, latest acceptable
completion time for the task, precedence constraints with tasks to be completed by other agents,
and the availability of a resource as a precondition on the task, among others. When an agent
accepts a task, it is committing to the satisfaction of all constraints on that task. Commitments cre-
ate a series of inter-dependencies among the agents. Finding an original, feasible constraint graph
is the problem of multiagent planning. We assume that such a plan (and the corresponding con-
straint graph) is in place and focus on recovering from stochastic events that make the graph
infeasible.

With the occurrence of an event, an agent may no longer be able meet all the constraints on a task.
For example, in a manufacturing domain, a machine breakdown can prevent a task at a particular
factory from being completed on time. If this task produces a resource needed for a subsequent
task at a different factory, the former factory can no longer meet its commitments. It is necessary
to assess the alternatives and adopt the one that has the least negative global impact.

A constraint relaxation algorithm takes an overconstrained constraint graph and attempts to find
the minimum cost modification that can be made to a subset of the constraints to produce a feasi-
ble graph. The cost associated with modification of the constraints are the key optimization crite-
ria. It is important to note that the cost of a relaxation depends on how the constraint is relaxed. If
the constraint on the end time of an activity is relaxed by three hours, the cost that will be incurred
(due to late or rush delivery of the final product to the customer) will be significantly less than if
the relaxation allows three more days.

4.1 A Schema for Constraint Relaxation

4.1.1 Constraint Model

We extend the common variable/constraint model used in CSPs by adding to the constraint repre-
sentation. Each constraint:

• is defined over a subset of variables, {xi, …, xj}.

• contains a predicate, Satisfied(xi, …, xj), which returns TRUE to indicate that the constraint is
satisfied by the current variable instantiation and returns FALSE otherwise. The predicate is
defined over the Cartesian product of the domains of the relevant variables.

• contains a function, GenerateRelaxation, which returns a set of constraints that are relax-
ations of the constraint.

• contains a function, RelaxationCost(ck), indicating the local cost incurred if the constraint is
relaxed to match ck.

The two functions are keys to a relaxation algorithm. In the former, we put no limitations on the
form of the function; it will typically be a center for heuristic decision making. We want to limit
the number of relaxations of each constraint that we investigate, therefore heuristic decisions,
likely based on texture measurements of the graph, will be used to prune the possibilities. A con-
straint can be non-relaxable, in which case the GenerateRelaxation function returns an empty



set. Similarly, we do not put limitations on the form of the RelaxationCost function. The cost will
depend on the particular sources of cost in the problem model.

4.1.2 Constraint Propagation

The central mechanism for investigation of relaxation costs is the propagation of information
through the constraint graph. Propagation is common in consistency algorithms, however the con-
straint graph structure allows information other than simply the values to be “transmitted” to other
variables.5 A brief example of the propagation of values, costs, and relaxations on the graph in
Figure 3 is presented.

FIGURE 3. A Simple Constraint Graph

Suppose we want to find the minimum cost if x1 = 2. In propagating the value x1 = 2 to x2, we can
not satisfy c1 as it is. The GenerateRelaxation function, in this case, simply returns a singleton
set containing the local minimum cost relaxation. We choose that relaxation and propagate the
consistent value 1 to x2. We assign x2 = 1, perform the same greedy procedure on c2, and propa-
gate 2 to x3. Once at x3, the cost of the relaxations is propagated backward. A cost of 1 is propa-
gated from c2 to x2. This is summed with the cost at c1 and propagated to x1. The cost of the
graph, with these relaxations is 2. This is the minimum cost with x1 = 2, but finding the minimum
is not guaranteed with the minimum local cost approach. If the cost is acceptable, the relaxation is
propagated in the same way as the values. With relaxation propagation we actually replace each
constraint with the best relaxation that was tried in the cost/value phase.

More generally, we propose an constraint relaxation schema as follows:
select a variable, a set of candidate values, and a set of outgoing constraints
for each value{

for each outgoing constraint, c{
find a set of candidate constraints6, CCc
propagate value along each constraint in the CCc set
record the element of CCc that returns the minimum cost

}
store the sum of the minimum costs from each outgoing constraint

}
if one of the summed costs is acceptable{

select corresponding local value
instantiate the value
propagate relaxations along the outgoing constraints

}

5. This use of propagation builds on work done in propagation of preferences [Sadeh  89] .
6. The set of candidate constraints can contain the constraint itself and any relaxations of it.
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Clearly, if there is a possibility of cycles in the graph, this must be dealt with in order to terminate
the algorithm.7 The strength of this schema is the isolation of heuristic decision points in the value
selection, the selection of outgoing constraints, and the selection of candidate constraints. If all
values and all constraints are selected, we have an exhaustive (and exponential) algorithm. A key
to practical algorithms is the exploitation of the problem structure based upon which limits can be
placed on the propagation. For example, estimates of costs can be made without propagation or
the algorithm can be focussed on a certain type of constraint or a certain subgraph.

We have applied algorithms within this schema to Partial Constraint Satisfaction Problems
[Freuder  92] and to a set of scheduling optimization problems [Sadeh  91] . The algorithms
applied to the PCSP problems are exponential in complexity and require significant caching of
information in order to increase performance and cope with graph cycles. Despite this the algo-
rithms performed well as compared with PEFC3, the best PCSP algorithm investigated by
[Freuder  92] . In most cases, the algorithms ran faster than PEFC3 and found solutions with a
cost that was equal to or just higher than the cost of solutions found by PEFC3.

Table 1 presents results comparing four relaxation algorithms with the PEFC3 algorithm. Each set
contains 10 problems. Problem Sets 1, 3 and 5 were used in [Freuder  92] and contain problems
with 10, 12, and 16 variables respectively. The cost of not satisfying a constraint is 1. Sets 2, 4,
and 6 were created from Sets 1, 3, and 5 respectively by randomly assigning the cost of an unsat-
isfied constraint on the [1,9] interval. The relaxation algorithms are instantiations of the propaga-
tion-based relaxation schema described above, with varying parameters.8 The results presented
are the average number of consistency checks required for a solution to be found for problems in
each set and the average cost of the solutions that were found. No results could be found for the
16-variable problems with the MMV relaxation algorithms due to exponential growth in memory
use.

The weakness of the both the relaxation algorithms and the PCSP algorithms is their exponential
complexity. None of these algorithms will scale-up to problems much larger than 15 variables.

7. Cycle detection is addressed in [Beck  94] .
8. For further information see [Beck  94] .

Algorithms
Problem Sets

1 2 3 4 5 6

PEFC3
Avg. Checks 4664 1460 18077 9700 17221190 592303

Avg. Cost 3.1 8.9 4.1 12.7 7.6 23.4

MMVLH1
Avg. Checks 1871 1055 5329 2686 - -

Avg. Cost 3.3 11.6 4.2 14.2 - -

MMVLH2
Avg. Checks 2647 1647 8315 5200 - -

Avg. Cost 3.1 10.4 4.1 13.9 - -

SMVLH5
Avg. Checks 1039 1062 2865 2412 28987 25664

Avg. Cost 3.4 12.0 4.7 14.7 9.0 34.8

SMVLH10
Avg. Checks 1498 1833 5047 4164 50560 43619

Avg. Cost 3.3 11.3 4.4 13.7 8.6 31.0

TABLE 1. Average number of consistency checks and solution costs for 6 sets of PCSPs.



5.0 Mediated Constraint Relaxation in the Supply Chain

5.1 Constraint Graph Generation

At the logistics level, the normal mode of execution surrounds the scheduler’s acceptance a new
order and modification of the existing logistics-level schedule to meet the order. Each factory
receives its new partial schedule and modifies its factory-level schedule accordingly. As long as
the operation of the enterprise does not violate the assumptions and aggregate information upon
which the various schedules are based, no coordination is necessary. When an unexpected event
occurs that prevents an agent from satisfying a constraint, the agents must coordinate their efforts
to respond optimally.

The first step in the coordination is the notification of the mediator that an agent cannot meet its
commitments. The current schedule is a partial representation of the global constraint graph, but
will typically not represent all relaxation information. The mediator creates the augmented con-
straint graph by requesting information of other agents and adding it to the schedule constraint
graph. The new information is composed of constraints that are not represented at the higher-level
of abstraction, changes to the higher-level constraints (e.g. the throughput of a factory is modified
when a machine in the factory breaks down), and the cost of relaxing constraints. The mediator
must know where it can find information on the relaxations of these constraints. Since the base
constraint graph is a schedule there may be relaxations of any of the following relationships:

• the precedence constraints between activities

• the resource requirements of an activity

• the release date of an order

• the due date of an order

The precedence constraints for an order are represented in the process plan defined in the partial
enterprise model used by the scheduler. The mediator can access the process plan directly if it is
the scheduler or it can ask the scheduling agent for the possible relaxations on the precedence
constraints. The resource requirements of an activity are also represented in the process plan,
however the resource substitutions may not be. The Resource Manager is responsible for this
information. The release date of an order is often constrained by resource availabilities (as well as
the current time) so the Resource Manager will model possible relaxations of the release date.
Finally, the due date is constrained by the customer’s wishes, which are represented inside the
supply chain by Order Acquisition. The mediator requests due date information and relaxation
cost from OA which may or may not query the customer about possible changes.

In general, the mediator must know where to find relaxation information. The above description is
not limiting as additional constraints can be easily handled by assigning an agent to be responsible
for the relaxation information and by informing the mediator of the existence of the agent. A case
in point is the role of the Transportation Manager (TM) which we will not include in our example.
If we are modeling transportation, we need to insert transportation activities between some pro-
duction activities. The TM has knowledge about possible relaxations to the constraints resulting
from transportation alternatives (e.g. the resource shipment can travel by plane instead of truck
and arrive much sooner at an increased cost).



5.2 An Example

In our example above, we described the reaction necessary by the supply chain of Canfurn, Inc. to
a requested change. Here we will present a particular instantiation of a supply chain simulation
and show the actions taken by each agent in reaction to an order change request.

In our supply chain instantiation, we will use the agents described above at the logistics level
(Logistics, Resource Manager (RM), and Order Acquisition (OA)) plus three factory agents: Fac-
tory1 (with machines: M11, M12), Factory2 (with machines: M21, M22), and Factory3 (with
machines: M31, M32).

There are currently three orders each with a release date of t0 and due date of t3. Each order con-
sists of three unit-duration activities that each use one unit-capacity machine. The schedule is
shown in Table 2.9

At time t-1, the customer for O3 requests a change requiring A13 to be executed on M12. The OA
agent is the first to know about the customer’s wishes and notifies Logistics. Logistics investigates
the following alternatives:

1. Move activities A11 and A12 to another machine.

2. Delay delivery of some products.

In order to answer these questions, the mediator requests information from other agents. A repre-
sentation of the communication for option 1 is as follows:

• Logistics to RM: “What machines can be substituted for M12?”

• RM to Logistics: “M22, but quality will decrease.”10

• Logistics to OA: “What is the cost of the reduced quality on O2 and O1?”

• OA to Logistics: “3 each.”

For option 2, Logistics must add the cost of late delivery of each order:

• Logistics to OA: “What is the cost of late delivery on each order?”

• OA to Logistics: “O1: 5 per time unit, latest acceptable delivery is t6.”

• OA to Logistics: “O2: 5 per time unit, latest acceptable delivery is t6.”

• OA to Logistics: “O3: 2 per time unit, latest acceptable delivery is t6.”

9. Note that the due date constraint on O3 is already relaxed at some cost.
10. Work is progressing on a theory of quality [Kim  94] that will make this answer meaningful.

Start
Times

Machines

M11 M12 M21 M22 M31 M32

t0 A11 A13

t1 A31 A12 A22 A21

t2 A23 A32

t3 A33

TABLE 2. Current Schedule in the Supply Chain Simulation



The information from other agents allows the mediator to form the augmented constraint graph
upon which it can execute a relaxation algorithm. Relaxation will not simply choose one of the
options, but rather investigate possibilities of a combination of moving some activities and delay-
ing delivery of some products.

6.0 Conclusion
We have presented an mediated approach to multiagent coordination using constraint relaxation.
Having modeled the interactions of the agents as a commitment/constraint graph, deviations
expected events may produce an overconstrained situation. A mediator gathers information in the
form of variables, constraints, and relaxation costs and executes a constraint relaxation algorithm
on the augmented graph. The results is a near optimal modification to the constraints to re-estab-
lish a feasible graph.

Mediation is one end of a spectrum of coordination techniques. Further work will attempt to move
toward a more distributed approach by the combination of negotiation and mediation. The media-
tion approach will provide empirical data against which future, more distributed approaches can
be compared. We are pursuing the development of a theory of coordination where the structure of
the problem can be correlated with different coordination algorithms (e.g. at different places along
the negotiation/mediation spectrum) resulting in the ability to choose the algorithm that will likely
be most efficient for the problem at hand.

The use of constraint relaxation as a coordination operator builds on the power and expressivity of
the constraint model. With the appropriate modeling of problems in the constraint formalism,
properties of the structure of the problem can be assessed via texture measurements. As men-
tioned above, the algorithms applied to the PCSP problems are all exponential in complexity and
can not be successfully applied to larger problems. We view texture measurements on the graph as
an important tool providing information upon which dynamic heuristic decisions can be based.
Preliminary work with schedule optimization problems show promising results on graphs of over
150 variables.
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