
1

The Essence of the Process Specification
Language

Craig Schlenoff
National Institute of Standards and Technology

Bldg. 220, Rm. A127
Gaithersburg, MD 20899

Michael Gruninger
Department of Mechanical and Industrial Engineering

4 Taddle Creek Road
University of Toronto

Toronto, Ontario M5S 3G9

Mihai Ciocoiu
Institute of Systems Research

University of Maryland
College Park, MD 20742

Jintae Lee
Information Systems

Campus Box 419
University of Colorado

Boulder, Colorado 80309-0419

Keywords: manufacturing process specification, PSL, interoperability, ontology

In all types of communication, the ability to share information is often hindered because
the meaning of that information can be affected drastically by the context in which it is
viewed and interpreted.  This is especially true among manufacturing simulation systems
because of the growing complexity of manufacturing information and the increasing need
to exchange this information not only among different simulation systems but also
between simulation systems and systems that perform different functions (e.g., process
planning, scheduling, etc.).  Different manufacturing functions may use different terms to
mean the exact same concept or use the exact same term to mean very different concepts.
Often, the loosely defined natural language definitions associated with the terms contain
much ambiguity that doesn’t make these differences evident and/or do not provide
enough information to resolve the differences.

A solution to this problem is the development of a taxonomy, or ontology, of
manufacturing concepts and terms along with their respective formal and unambiguous
definitions.  The Process Specification Language (PSL) (Version 1.0) developed at the
National Institute of Standards and Technology identifies, formally defines, and
structures the semantic concepts intrinsic to the capture and exchange of discrete
manufacturing process information.
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1.0. Background and Overview

1.1.Purpose

As the use of information technology in manufacturing operations has matured, the

capability of software applications to interoperate has become increasingly important.

Initially, translation programs were written to enable communication from one specific

application to another, although not necessarily both ways.   As the number of

applications has increased and the information has become more complex, it has become

much more difficult for software developers to provide translators between every pair of

applications that need to exchange information.  Standards-based translation mechanisms

have simplified integration for some manufacturing software developers by requiring

only a single translator to be developed between their respective software product and the

interchange standard.  By only developing this single translator, the application can

interoperate with a wide variety of other applications that have a similar translator

between that standard and their application.

This challenge of interoperability is especially apparent with respect to manufacturing

process information.  Many manufacturing engineering and business software

applications use process information, including manufacturing simulation, production

scheduling, manufacturing process planning, workflow, business process reengineering,

product realization process modeling, and project management.  Each of these

applications utilizes process information in a different way, so it is not surprising that

these applications’ representations of process information are different as well.

Traditional approaches to integrating these packages rely on point-to-point translators,
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which force the existence of n2 translators for every n applications to be integrated. A

standard process exchange language can reduce this n2 number to 2n. The primary

difficulty with developing a standard to exchange process information is that these

applications sometimes associate different meanings with the terms representing the

information that they are exchanging.  For example, in the case of a workflow system, a

resource is primarily thought of as the information that is used to make necessary

decisions.  In a simulation system, a resource is primarily thought of as a person or

machine that will perform a given task.  If one were to integrate a process model from a

workflow with a simulation application, one’s first inclination would most likely be to

map one resource concept to the other.  This mapping would undoubtedly cause

confusion.  Therefore, both the semantics and the syntax of these applications need to be

considered when translating to a neutral standard.  In this case, the standard must be able

to capture all of the potential meanings behind the information being exchanged.

The Process Specification Language (PSL) project at the National Institute of

Standards and Technology (NIST) is addressing this issue by creating a neutral, standard

language for process specification to serve as an interlingua to integrate multiple process-

related applications throughout the manufacturing life cycle.  This interchange language

is unique due to the formal semantic definitions (the ontology) that underlie the language.

Because of these explicit and unambiguous definitions, information exchange can be

achieved without relying on hidden assumptions or subjective mappings.

1.2.Approach

The plan for the PSL project has five phases: requirements gathering, existing process

representation analysis, language creation, pilot implementation and validation, and
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submission as a candidate standard.  The completion of the first phase resulted in a

comprehensive set of requirements for specifying manufacturing processes [1].  In the

second phase, twenty-six process representations were identified as candidates for

analysis by the PSL team and analyzed with respect to the phase one requirements [2].

Nearly all of the representations studied focused on the syntax of process specification

rather than the meaning of terms, the semantics.  While this is sufficient for exchanging

information between applications of the same type, such as process planning, different

types of applications associate different meanings with similar or identical terms.  As a

result of this, a large focus of the third phase involved the development of a formal

semantic layer (an ontology) for PSL based on the Knowledge Interchange Format (KIF)

specification [3].  By using this ontology to define explicitly and clearly the concepts

intrinsic to manufacturing process information, PSL was used to integrate multiple

manufacturing process applications in the fourth phase of the project.

1.3.Scope

To keep this work feasible, the scope of study is limited to the realm of discrete processes

related to manufacturing, including all processes in the design/manufacturing life cycle.

Business processes and manufacturing engineering processes are included in this work

both to ascertain common aspects for process specification and to acknowledge the

current and future integration of business and engineering functions.

In addition, the goal of this project is to create a “process specification language”, not

a “process characterization model”.  Our definition of a process specification language is

a language with which to specify a process or a flow of processes, including supporting

parameters and settings and establishing varying contexts.  This may be done for
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prescriptive or descriptive purposes and is composed of an ontology and one or more

presentations. This is different from a process characterization model, which we define

as a model describing the behaviors and capabilities of a process independent of any

specific application.  For example, the dynamic or kinematic properties of a process (e.g.,

tool chatter, a numerical model capturing the dynamic behavior of a process or limits on

the process’ performance or applicability) independent of a specific process would be

included in this characterization model.

2.0. Related Work

The PSL project at NIST is creating a neutral, standard language for process specification

to serve as an neutral interchange language to integrate multiple process-related

applications throughout the manufacturing life cycle.  This project is related to, and in

many cases working closely with, many other efforts.  These include individual efforts

(those involving only a single company or academic institution) such as A Language for

Process Specification (ALPS) Project [4], the Toronto Virtual Enterprise (TOVE) Project

[5], the Enterprise Ontology Project [6], and the Core Plan Representation (CPR) Project

[7].  In addition, the PSL project is in close collaboration with various projects (those

which involve numerous companies or academic institutions) such as Shared Planning

and Activity Representation (SPAR) Project [8], the Process Interchange Format (PIF)

Project [9], and the WorkFlow Management Coalition (WfMC) [10].

ALPS was a NIST research project whose goal was to identify information models to

facilitate process specification and to transfer this information to process control.  The

PSL project, which could be viewed as a spin-off of the ALPS project, has a goal to take
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a much deeper look into the issues of process specification and to explore these issues in

a much broader set of manufacturing domains.

The TOVE project provides a generic, reusable data model that provides a shared

terminology for the business and enterprise.  The Enterprise Ontology project’s goal is to

provide “a collection of terms and definitions relevant to business enterprises to enable

coping with a fast changing environment through improved business planning, greater

flexibility, more effective communication and integration”.  While both TOVE and the

Enterprise Ontology focus on business processes, there are common semantic concepts in

both these projects and the manufacturing process-focused PSL.

The CPR project is attempting to develop a model that supports the representation

needs of many different military planning systems.  The SPAR project is an ARPI

(ARPA (Advanced Research Projects Agency)/Rome Laboratory Planning Initiative)

funded project whose goals are similar to CPR.  Both of these projects are similar to PSL

in the sense that they are attempting to create a shared model of what constitutes a plan,

process, or activity.  However, both SPAR and CPR are focusing more on military types

of plans and processes.

PIF is an interchange format based upon formally defined semantic concepts, like

PSL.  However, unlike PSL, PIF is focused on modeling business processes and offers a

single, syntactical presentation, the BNF (Backus-Naur Format) specification of the

Ontolingua1 Frame syntax.

The Workflow Management Coalition has developed a Workflow Reference Model

whose purpose is to identify the characteristics, terminology, and components to enable

the development and interoperability of workflow specifications.  Although the area of
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workflow is within the scope of the PSL project, it is only one small component.  The

Workflow Reference Model has and will be used by the PSL project to ensure

consistency.

In addition to the existing projects described above, there have been countless,

previous efforts to create process representations focusing specifically on various

representational areas or on different functionality.  For example, representational areas

such as workflow, process planning, and business process re-engineering have had

representations developed focusing solely on their respective areas.  Equally important to

the representational area in which the representations are being developed is the role

(functionality) that the representation will play.  There have been process representations

developed which have focused on simply graphically documenting a process, to those

which are used as internal representations for software packages, to those which are used

as a neutral representation to enable integration.  The process representations that resulted

from many of these efforts were analyzed in the second phase of the PSL project

(described above).  A sampling of some of these existing process representations is

shown in Figure 1.  For more information about the representations listed in the figure,

please see [2].

3.0. The Process Specification Language

3.1. The Need for Semantics

Existing approaches to process modelling lack an adequate specification of the semantics

of the process terminology, which leads to inconsistent interpretations and uses of the

information.  Analysis is hindered because models tend to be unique to their applications
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and are rarely reused.  Obstacles to interoperability arise from the fact that the legacy

systems that support the functions in many enterprises were created independently, and

do not share the same semantics for the terminology of their process models.

For example, consider Figure 2 in which two existing process planning applications

are attempting to exchange data.  Intuitively the applications can share concepts; for

example, both material in Application A and workpiece in Application B correspond to a

common concept of work-in-progress.  However, without explicit definitions for the

terms, it is difficult to see how concepts in each application correspond to each other.

Both Application A and B have the term resource, but in each application this term has a

different meaning.  Simply sharing terminology is insufficient to support interoperability

-- the applications must share their semantics.

A rigorous foundation for process design, analysis, and execution therefore requires a

formal specification of the semantics of process models. One approach to generating this

specification is through the use of ontologies.  An ontology is a formal description of

entities and their properties, relationships, constraints, and behaviors [11].  It provides a

common terminology that captures key distinctions and is generic across many domains,

facilitating translation of concepts among these domains.

Translation itself places constraints on the specification of process model semantics.

Applications interoperate by translating between their native format and PSL.  One

approach is to design unique translators that must be written for every two-party

exchange; however, this would require O(n2) translators for n different ontologies.  A

major goal of PSL is to reduce the number of translators to O(n) for n different

ontologies, since it would only require translators from a native ontology into the
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interchange ontology.  The other feature of this approach is that the applications primarily

interact through the exchange of files that contain process information.  This requires the

declarative specification of semantics -- there can be no procedural interpretation of the

application constructs, since all we have is  the input file.  Similarly, all assumptions

made by the application must be made explicit since translation must be done using the

input file alone.

3.2. What is PSL?

Within our work, the term “ontology” refers to a set of sentences in first-order logic,

comprising of a set of foundational theories and sets of definitions written using the

foundational theories.  In providing such an ontology, we must specify three notions:

• language

• model theory

• proof theory (axioms and definitions)

A language is a set of symbols (lexicon) and a specification of how these symbols can

be combined to make well-formed formulae (grammar/syntax).  The lexicon consists of

logical symbols (such as connectives, variables, and quantifiers) and nonlogical symbols.

For PSL, the nonlogical part of the lexicon consists of expressions (constants, function

symbols, and predicates) that refer to everything needed to describe processes.

The underlying language used for PSL is KIF (Knowledge Interchange Format).

Briefly stated,  KIF is a formal language developed for the exchange of knowledge

among disparate  computer programs.  KIF provides the level of rigor necessary to define

concepts in the ontology unambiguously, a necessary characteristic to exchange

manufacturing process information using the PSL Ontology.
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The primary component of PSL is its terminology for classes of processes and

relations for processes and resources, along with definitions of these classes and relations.

Such a lexicon of terminology along with some specification of the meaning of terms in

the lexicon constitutes what is known as an ontology.  In our case, this will be the PSL

ontology for processes.

The model theory of PSL provides a rigorous mathematical characterization of the

semantics of the terminology of PSL.   The objective is to identify each term with an

element of some mathematical structure, such as a set or a set with additional structure

(e.g. a complete partial order); the underlying theory of the mathematical structure then

becomes available as a basis for reasoning about the terms of the language and their

relationships.

The proof theory of PSL provides axioms for the interpretation of terms in the

ontology.  It is useful to distinguish two types of sentences in this set of axioms: core

theories and definitions.  A core theory is a set of distinguished predicates, function

symbols, and individual constants, together with some axiomatization.  Distinguished

predicates are those for which there are no definitions; the intended interpretations of

these predicates are defined using the axioms in the core theories.  For these terms, we

need to describe the set of models corresponding to the intuitions that we have for them.

We then write axioms that are sound and complete with respect to the set of models.

That is, every interpretation that is consistent with the axioms is a model in the set, and

any model in the set is an interpretation consistent with the axioms.  These axioms

constitute the foundational theories of the ontology.  The set of models form the

semantics (or model theory) of the ontology.
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All other terms in the ontology are given definitions using the set of primitive terms.

These definitions are known as conservative definitions since they do not add to the

expressive power of the core theories, that is, anything that we can deduce with the

definitions, we can deduce using the core theories alone.  All definitions in an ontology

are specified using the core theories; any terminology that does not have a definition is

axiomatized in some core theory.  Since all other terms are defined using these

primitives, the set of models for them can be defined using the models of the core

theories for the primitives.  We can therefore give a semantics to the definitions using the

classes of models that have already been specified for the core theories.

The challenge is that we need some framework for making explicit the meaning of the

terminology for many ontologies that reside only in people's heads.  Any ideas that are

implicit are a possible source of ambiguity and confusion.  For PSL, the model theory

provides a rigorous mathematical characterization of process information and the axioms

give precise expression to the basic logical properties of that information in the PSL

language.  So when we speak about a semantics for PSL, we are referring to the

axiomatization of core theories and definitions for the PSL terminology.

The focus of the ontology is not only on the terms, but also on their definitions.  We

can include an infinite set of terms in our ontology, but they can only be shared if we

agree on their definitions.  It is the definitions that are being shared, not simply the terms.

3.3. Semantic Architecture

The PSL Ontology consists of axioms and definitions for the lexicon of PSL.  However,

this is not simply an amorphous set of sentences. Figure 3 gives an overview of the

semantic architecture of the  PSL Ontology.  There are three major components of the
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architecture -- the axioms of PSL-Core, core theories, and definitions that are organized

as sets of extensions to PSL-Core.

PSL-Core is used to specify the semantics of the primitives in the PSL Ontology

corresponding to the fundamental intuitions about activities.  Recall that primitives are

those terms for which we do not give definitions; rather, we specify sentences which

constrain the interpretation of the terms.

The terms that have definitions can be grouped into modules, each of which is an

extension of PSL-Core.  The modules are organized by logical  dependencies -- one

module depends on another if the definitions of the terminology of the first module

require the lexicon of the second module.  PSL-Core is therefore intended to be used as

the basis for defining  terminology of the extensions in the PSL Ontology.

The first version of PSL illustrates some of this organization.  Figure 4 illustrates the

modules required to define the  terminology of the simplified process planning domain.

There are four extensions to  PSL-Core: Ordering Relations, Resource Roles, Processor

Actions, and Resource Paths.  The arcs in the diagram illustrate direct logical

dependencies -- if there is an arc from one module to another, then there exists a term in

the second module which uses a term defined in the first module.  Thus, the  definition of

the ordering relations and resource roles depends only on  PSL-Core.  The definition of

processor actions uses resource roles, but no ordering relations.  Finally, resource paths

are partially ordered sets of processor actions through which material resources flow;

hence, the definition depends on both ordering relations and processor actions.

In addition to PSL-Core and its extensions, other sets of axioms may be required to

introduce new primitive concepts; these axioms are grouped into core theories.  The
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extensions that introduce new primitive concepts do so because the concepts that are

introduced in the PSL Core are not sufficient for defining the terms introduced in the

extensions.  Therefore, new primitive concepts are introduced within the extensions to

ensure that all other terms within the extension can be defined completely.

One of the most important such core theories within PSL 1.0 is situation calculus

[12].  This theory is powerful enough to prove theorems about PSL-Core and its

extensions, such as theorems to characterize the completeness of the set of resource roles,

and similar theorems to characterize the structure of partially ordered actions.  It is also

strong enough for building formal semantic models and proving the soundness of

proposed semantic translation schemes.  Finally, and perhaps most important, in situation

calculus, one is able to give precise definitions and axiomatizations of many notions that

are usually left as primitives or are at best inadequately axiomatized, thus greatly

enhancing the precision of semantic translations between different schemes.

Other core theories include Kripke-Platek Set Theory [13], which provides a simple

set of axioms for reasoning about sets, Resource Requirements Theory [13], which

provides axioms for the relation between activities and resources, and Duration Theory

[13], which provides axioms for the concept of duration, clocks, and their relationship to

timepoints.

3.4. PSL-Core

PSL-Core is based upon a precise, mathematical, first-order theory,  i.e., a formal

language, a precise mathematical semantics for the language,  and a set of axioms that

express the semantics in the language.  Here we will provide a brief informal sketch of

the semantics and give the basic axioms for that semantics.  There are four basic classes
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and four basic relations in the ontology of PSL-Core.  The classes are Object, Activity,

Activity Occurrence, and Timepoint.  The four relations are Participates-in, Before,

BeginOf, and Endof.  Activities, Activity Occurrences, Timepoints (or "points", for

short), and objects are known collectively as entities, or things.  These entities are all

pairwise disjoint.

Intuitively, an Object is a concrete or abstract thing that can participate in an Activity.

The most typical examples of objects are ordinary tangible things - like people, chairs,

car bodies, NC-machines, and the like - though abstract objects like numbers are not

excluded.  Objects can come into existence (e.g., be created) and go out of existence (e.g.,

be "used up" as a resource) at certain points in time.  In such cases, an Object has a begin

and/or end point.  Some Objects, e.g., numbers, do not have finite begin and end points.

In some contexts, it may be useful to model certain ordinary objects as having no such

points either.

An Activity Occurrence is a limited, temporally extended piece of the world, such as

the first mountain stage of the 1997 Tour de France or the eruption of Mt. St. Helen.  Any

Activity Occurrence is simply taken to be characterized chiefly by two things: its

temporal extent, as determined by it’s begin and end points (possibly at infinity), and the

set of Objects that participate in that activity at some point between its begin and end

points.

Timepoints are assumed to be ordered by the Before relation.  This relation is taken to

be a transitive, irreflexive, total ordering.  It is not assumed in PSL-Core that time is

dense (i.e., between any two distinct timepoints there is a third), though it is assumed that

time is infinite.  Points at infinity are assumed for convenience.  (Denseness, of course,
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could easily be added by a user as an additional postulate.) Time intervals are not

included among the primitives of PSL-Core, because they can be defined with respect to

Timepoints and Activities.  Time durations are included in an extension of the PSL-Core

that builds upon [14].

The basic notions of the PSL-Core are axiomatized formally as a first-order theory.

These axioms simply capture, in a precise way, the basic properties of the PSL ontology.

The basic axioms for Activities, Objects, and Timepoints are listed below.  The following

definitions simplify the axioms.

3.4.1. Supporting Definitions for PSL-Core

Definition 1. Timepoint q is between timepoints p and r if and only if p is before q and q
is before r.

(defrelation between (?p ?q ?r) :=
(and (before ?p ?q) (before ?q ?r)))

Definition 2. Timepoint p is beforeEq timepoint q if and only if p is before or equal to q.
 

(defrelation beforeEq (?p ?q) :=
(and (timepoint ?p)  (timepoint ?q)

      (or  (before ?p ?q)
              (= ?p ?q))))

Definition 3. Timepoint q is betweenEq timepoints p and r if and only if p is before or
equal to q, and q is before or equal to r.
 

(defrelation betweenEq (?p ?q ?r) :=
 (and  (beforeEq ?p ?q)
                        (beforeEq ?q ?r)))

Definition 4. An object exists-at a timepoint p if and only if p is betweenEq its begin and
end points.
 

(defrelation exists-at (?x ?p) :=
 (and (object ?x)
       (betweenEq (beginof ?x) ?p (endof ?x))))

Definition 5. An activity is-occurring-at a timepoint p if and only if p is betweenEq the
activity's begin and end points.

(defrelation is-occurring-at (?a ?p) :=
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(exists (?occ)
(and (occurrence ?occ ?a)

(betweenEq (beginof ?occ) ?p (endof ?occ)))))

3.4.2. PSL-Core Axioms

Axiom 1. The before relation only holds between timepoints.
 

(forall (?p ?q)
(=> (before ?p ?q)

    (and (timepoint ?p)
(timepoint ?q))))

Axiom 2. The before relation is a total ordering.

(forall (?p ?q)
(=> (and (timepoint ?p)

(timepoint ?q))
    (or (= ?p ?q)

(before ?p ?q)
(before ?q ?p))))

Axiom 3. The before relation is irreflexive.
 

(forall (?p)
(not (before ?p ?p)))

Axiom 4. The before relation is transitive.

(forall (?p ?q ?r)
(=> (and (before ?p ?q)

(before ?q ?r))
(before ?p ?r)))

Axiom 5: The timepoint inf- is before all other timepoints.

(forall (?t)
(=> (and (timepoint ?t)

(not (= ?t inf-)))
 (before inf- ?t))

Axiom 6. Every other timepoint is before inf+.

(forall (?t)
(=> (and  (timepoint ?t)

(not (= ?t inf+)))
   (before ?t inf+))
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Axiom 7. Given any timepoint t other than inf-, there is a timepoint between inf- and t.
 

(forall (?t)
(=> (and (timepoint ?t)

(not (= ?t inf-)))
(exists (?u)

(between inf- ?u ?t))))

Axiom 8. Given any timepoint t other than inf+, there is a timepoint between t and inf+.

(forall (?t)
(=> (and (timepoint ?t)

(not (= ?t inf+)))
(exists (?u)

(between ?t ?u inf+))))

Axiom 9. Everything is either an activity, object, or timepoint.
 

(forall (?x)
(or (activity ?x)

(activity-occurrence ?x)
(object ?x)
(timepoint ?x)))

Axiom 10. Objects, activities, activity occurrences, and timepoints are all  distinct kinds
of things.

(forall (?x)
(and (=> (activity ?x)

         (not (or (activity-occurrence ?x)
(object ?x)
(timepoint ?x))))

     (=> (activity-occurrence ?x)
         (not (or (object ?x)

(timepoint ?x))))
     (=> (object ?x)
         (not (timepoint ?x))))

Axiom 11. The occurrence relation only holds between activities and  activity
occurrences.

 (forall (?a ?occ)
(=> (occurrence ?occ ?a)

(and (activity ?a)
(activity-occurrence ?occ))))

Axiom 12. An activity occurrence is associated with a unique activity.
 

(forall (?occ ?a1 ?a2)
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        (=>     (and    (occurrence ?occ ?a1)
                               (occurrence ?occ ?a2))
                 (= ?a1 ?a2))))

Axiom 13. The begin and end of an activity occurrence or object are timepoints.

 (forall (?a ?x)
(=> (or (occurrence ?x ?a)

(object ?x))
    (and (timepoint (beginof ?x))
         (timepoint (endof ?x)))))

Axiom 14. The begin point of every activity occurrence or object is  before or equal to its
end point.
 

(forall (?a ?x)
(=> (or (occurrence ?x ?a)

(object ?x))
(beforeEq (beginof ?x) (endof ?x))))

Axiom 15. The participates-in relation only holds between objects, activities, and
timepoints, respectively.
 

(forall (?x ?a ?t)
(=> (participates-in ?x ?a ?t)

    (and (object ?x)
(activity ?a)
(timepoint ?t))))

Axiom 16. An object can participate in an activity only at those timepoints at which both
the object exists and the activity is occurring.
 

(forall (?x ?a ?t)
(=> (participates-in ?x ?a ?t)

    (and (exists-at ?x ?t)
         (is-occurring-at ?a ?t))))

3.5. Extensions in PSL 1.0

The set of extensions in PSL 1.0 fall roughly into three “families”:

• Generic Activities and Ordering Relations

• Process Planning

• Resources and Schedules
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3.5.1. PSL Extensions for Generic Activities and Ordering Relations

Figure 5 illustrates the modules in PSL that are required to define the terminology for

generic classes of activities and their ordering relations.  There are ten relevant extensions

to PSL-Core, five dealing with generic process modeling concepts and five dealing with

resources and schedules.  The five focusing on resources and schedules will be discussed

in Section 3.5.3. The five dealing with generic process modeling concepts are:

• Ordering Relations

• Partially Ordered Activities

• Nondeterministic Activities

• Complex Sequence Ordering Relations

• Junctions

The first two of these extensions characterize deterministic activities -- all

subactivities occur, and the (partial) ordering relations are defined over these

occurrences.  The final three extensions characterize nondeterministic activities in which

not every subactivity occurs when the activity occurs; for example, to fabricate an engine

block, one may either use the casting machine or modify an existing engine block.

Junctions are a particular class of nondeterministic activities used to define notions such

as splits and joins.  Within a split, one of several activities may possibly occur next,

whereas within a join, one of several activities must occur before the next activity occurs.

3.5.2. PSL Extensions for Process Planning

Figure 4 (in Section 3.3) illustrates the modules in PSL that are required to define the

terminology of a simplified process planning domain.  There are four relevant extensions:

• Ordering Relations
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• Resource Roles

• Processor Actions

• Resource Paths

The arcs in Figure 5 illustrate direct logical dependencies -- if there is an arc from one

module to another, then there exists a term in the second module that uses a term defined

in the first module.  Thus, the definition of the ordering relations and resource roles

depends only on PSL-Core.  The definition of processor actions uses resource roles, but

not any ordering relations.  Finally, resource paths are partially ordered sets of processor

actions through which material resources flow; hence, the definition depends on both

ordering relations and processor actions.

The Resource Roles extension axiomatizes the fundamental intuitions about

resources.  An Object is a resource only with respect to the role that it plays in some

activity that requires the Object.  We are therefore not axiomatizing any other properties

of resources.  Rather, resource roles are one way of formalizing the way in which an

activity  requires the resource.

In particular, resources are the means for reasoning about Activity interaction.  This is

a common intuition in the artificial intelligence (AI)  planning community, where tasks

are frequently described in terms of the resources that are required.  This appears to be a

useful concept for reasoning about how different activities interact.  The first step in the

axiomatization of resource roles is to define activity interactions with respect to the

preconditions and effects of activities.  In particular, the resource role definitions in PSL

1.0 apply to a class of activity interactions in which two activities are interfering with one

another in that the occurrence of both activities is not possible.
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The class of processor actions is defined with respect to the resource roles.  These are

activities that use or consume some set of resources, and produce a set of objects.

Intuitively, reusable resources are machines and the consumable resources are materials.

Finally, the extension for resource paths defines partially ordered sets of processor

actions, where the object produced by one activity is the input object for the next activity.

3.5.3. PSL Extensions for Resources and Schedules

These extensions were motivated by the applications in the PSL pilot implementation, in

particular ILOG Scheduler 4.3.  At the beginning of the pilot implementation of PSL,

there were no extensions capable of defining concepts such as temporal or resource

constraints completely.  It was necessary therefore to design new extensions containing

terminology whose definitions correctly and completely captured the intuitive meaning of

the ILOG Schedule concepts.

Scheduling can be characterized intuitively as the assignment of resources to

activities such that both resource constraints and temporal constraints are satisfied.

Resource constraints include notions such as resource sharing (capacity) and the states of

resources, such as availability.  Temporal constraints include the duration of activities

and the temporal ordering of activity occurrences.  These intuitions lead to the

introduction of five extensions within PSL 1.0, shown in Figure 5:

• Durations

• Activities and Duration

• Temporal Ordering Relations

• Reasoning about State
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• Interval Activities

The biggest hurdle in the development of these extensions is the axiomatization of

discrete capacity resources.  The major problem in this case is that the discreteness of

the resource arises from the fact that it is actually composed of a set of resources,

and any activity requires or provides some subset of resources in this set.  Within the PSL

Ontology, this led to the introduction of the following extensions, presented in order of

increasing specialization (shown in Figure 6):

• Kripke-Platek Set Theory, which defines the basic notion of a set of objects

• Resource Sets, which defines the class of sets of resources which themselves behave

as resources

• Resource Set-based Activities, which defines classes of activities which use resource

sets

• Substitutable Resources, which makes the distinction between sets of arbitrary

resources and sets of resources that can be substituted for others in an activity  (e.g.

the set of carpenters in a house construction activity)

• Resource Pools, which are equivalent to discrete capacity resources within ILOG

Schedule;

• Inventory Resource Sets, which are equivalent to reservoirs within ILOG Schedule.

3.6. Approach for Developing Extensions

From the above list of extensions, it is easy to see that certain representational areas

within PSL have been thoroughly worked out and some have not been addressed yet.  For

example, the area relating to “ordering of activities” has been well addressed within the

extensions of  “Ordering Relations for Complex Sequence Actions”, “Ordering Relations
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over Activities”, and “Temporal Ordering”.  However, other representational areas such

as “Process Intent” have not yet been addressed.

The initial PSL ontology was developed using a single scenario, the EDAPS

(Electromechanical  Design and Planning System) scenario developed by Steve Smith at

the University of Maryland [15].  The concepts introduced in that scenario were defined

and modeled within PSL and later extended as other scenarios were explored.  The PSL

ontology was then further expanded to incorporate the concepts introduced in various

manufacturing software applications when PSL was used to exchange process

information among these packages.  As more software applications become “PSL-

compliant”, PSL will be continuously expanded to ensure that ALL process-related

concepts are capable of being represented within the language.

4.0. Translation Using PSL

4.1. Motivation

To guarantee correct and complete translation, translators must be based on the formal

specifications of the representation’s semantics.  Translators written “by hand” provide

no such guarantee, and proving that they actually perform the intended “correct”

translation is so difficult that it is almost never done.

4.2. Overview of Semantic and Syntactic Translation

We consider translation to be a two-stage process -- syntactic translation and semantic

translation.  The syntactic translator is a parser between the PSL syntax (e.g. KIF) and the

native syntax of one of the applications; this parser keeps the terminology of the
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application intact.  Figure 7 illustrates the translation transaction between two

applications and the role played by the PSL Ontology.

Semantic translation substitutes terminology of one application with the definitions

written using PSL terminology.  These translation definitions between an application

ontology and PSL are driven by the ontological definitions that were written using the

same foundational theories.  These are definitions for the terminology of the application

ontology, using only the terminology from the PSL Ontology, as well as definitions for

the terminology of the PSL Ontology using only the terminology of the application

ontology.

This procedure is best shown by an example.  The resource construct is highlighted

during each stage of the example to show how it progresses through the translation

process.  We begin with a simple file written in Application A's syntax and using

Application A's terminology:

{stock: wire (x)}
{stock: plug (x)}
{resource: inject_mold (x)}
{material: plug_head (x)}
{operation: fabricate_plug}

The syntactic translator takes this file and produces a corresponding file using PSL

syntax, but still preserving Application A terminology.

(forall (?r)
(=> (wire ?r)

(stock ?r)))

(forall (?r)
(=> (plug_head ?r)

(material ?r)))
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(forall (?r)
(=> (inject_mold ?r)

(resource ?r)))

(forall (?r)
(=> (plug ?r)

(stock ?r)))

The semantic translator takes this file and produces a file containing only PSL

terminology by substituting the definitions of all Application A terms with their

definitions in PSL.

(forall (?r)
(=> (wire ?r)

(material ?r)))

(forall (?r)
(=> (plug_head ?r)

(wip ?r)))

(forall (?r)
(=> (inject_mold ?r)

(machine ?r)))

(forall (?r)
(=> (plug ?r)

(material ?r)))

We now follow reversed steps to translate the file into Application B.  Using the

translation definitions for Application B, the PSL file is mapped to a file containing only

Application B terminology.

forall (?r)
(=> (wire ?r)

(resource ?r)))

(forall (?r)
(=> (plug_head ?r)

(workpiece ?r)))
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(forall (?r)
(=> (inject_mold ?r)

(machine-tool ?r)))

(forall (?r)
(=> (plug ?r)

(resource ?r)))

 Finally, the syntactic translator for Application B maps the file back into Application B

syntax.

(define-class wire
(Subclass-Of resource))

(define-class inject-mold
(Subclass-Of machine-tool))

(define-class plug
(Subclass-Of resource))

(define-class plug_head
(Subclass-Of workpiece))

(define-class fabricate_plug
(Subclass-Of task))

Note that this ontology-based approach to compliance is different than the traditional

approach to standards compliance.  Rather than forcing the adoption of exactly the same

terminology, an application is PSL-compliant if there exist definitions for its terminology

using either some foundational theory or other ontology.  Given these definitions,

translation definitions can be written between the application and PSL.
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4.3. Semantic Translation: Practical Considerations

4.3.1. Problem Statement

Translating into PSL should be an easy task, due to the expressivity of KIF, the format on

which PSL is based.  Typically, it can be done by writing compilation rules that map each

concept of a language with the corresponding KIF formula using PSL terminology.

Writing such compilation rules can be seen as providing a declarative semantics for the

language, and PSL can be thought of as a semantic description language.  Once the

semantic concepts of a source representation are clearly defined, a translator that mapped

those concepts to the concepts within PSL could be written in less than one week.

The reverse process however, that is translating from PSL to a target language seems

to be more difficult.  We expect that the target languages will be much less expressive

than KIF, and the same approach will not work, since there will be no way to write

“definitions” in the target language for some of the constructs in PSL.  Some form of re-

construction will have to be done, that is, the construct in the target language will need to

be built whenever its PSL semantic definition is satisfied.  The problem is that there are

infinitely many ways of expressing the same thing in KIF, and we want to build the target

language construct whenever its KIF definition, or some logically equivalent form of it

can be inferred.  Therefore, a first-order theorem prover would need to be built in order to

do the translation.

To better understand the difficulties involved, one can think of an analogy with

translating programming languages.  In this analogy, we want to build a translator

between two high level (and thus less expressive) languages like C and Fortran.  PSL is

analogous to an assembly language.  The problem of translating from a higher level (less
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expressive) language into assembly language is solved relatively easy using compilers.

The reverse problem however, namely, taking some assembly language and re-generating

the high level code, is only solved when the compiler saved some information especially

for this purpose.  Generating high-level instructions of a different high level language has

not been done.

There are two main challenges to be solved in order to translate out of PSL.

• one has to be able to write translation rules (or be able to infer them) for all concepts

in PSL in order to build such a translator. (this task is made even harder  by the

extensibility requirement of PSL)

• a translator that does full power first-order theorem proving at translation time has to

be very efficient.

4.3.2. An Approach for Semantic Translation

An approach to solving this problem is to develop a methodology for specifying

compilation rules from arbitrary languages into PSL, that is, a method for writing

semantic descriptions from a language constructs into PSL.  This methodology should be

both “user-friendly” (i.e. supporting a natural way of expressing a construct's semantics)

and general (i.e. it should work for any language we might want to translate).  In this

vision, the semantics of an arbitrary language will be expressed by its semantic

description, together with the (formally specified) semantics of PSL.

In order to exchange process information among arbitrary languages, all one needs to

do is to provide the semantic description of the language.
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This methodology will enable the automatic inference of translation rules among

arbitrary languages based only on their semantic descriptions into PSL.  Such a

methodology would be useful since:

• It will solve the difficult problem of translating out of PSL.

• It will guarantee the correctness of the generated translators with respect to the

semantic descriptions of the languages involved in the translation.

• It will facilitate the translation specification, since all that will need to be written for

an application in order to be able to exchange information will be the semantic

definitions.

• It will lead to very efficient translators, since the inference procedure will be run only

once for any two languages and only on the semantic definitions.

• It will allow PSL to be extensible, without requiring one to rewrite the “out of PSL”

translators each time a PSL extension is created.

• It will address the challenge of partial translation (a way of approximating concepts

that are similar enough to be translated to one another but have slightly different

semantic descriptions or are of a different granularity).

5.0. Conclusion

The purpose of the Process Specification Language  is to provide a representation for

manufacturing process information that will serve as an interlingua to facilitate the

exchange of information among manufacturing software applications.  This paper

discusses the components of Version 1.0 of PSL.

Other efforts to develop mechanisms for the exchange of data, such as the Standard

for the Exchange of Product model data (STEP) [16], have focused on syntactical
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standards elements necessary for data exchange.   This focus works well for exchanging

information among similar domains where the terms used have the same meanings.

However, within the increasingly complex manufacturing environment where process

models are maintained in different software applications, standards for the exchange of

this information must address not only the syntax but also the meanings or semantics of

terms and concepts used.  PSL uniquely addresses this in its identification and

development of semantics for specifying and exchanging process information.  The

identification of the necessary concepts was based on a thorough analysis of the

requirements for specifying business and manufacturing engineering processes in the

manufacturing domain and then analyzing a broad set of existing approaches to

representing process models with respect to these requirements.

Version 1.0 of PSL represents the beginning point in the development of a robust and

complete Process Specification Language.  This initial version will be refined in an

iterative fashion to continuously increase the robustness of the language.  A series of pilot

implementations, in which PSL will be used to exchange process information between

existing manufacturing applications, will allow us to determine which representational

areas need to be expanded upon to ensure that the PSL will be able to capture and

exchange all current and future manufacturing process information.  Early findings

indicate that areas such as process intent and feature information are needed and currently

lacking. These areas will be the immediate focus for the next release of PSL.
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Figure 1: A Sampling of Existing Process Representations
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Figure 3: The PSL Semantic Architecture

PSL Core
Core Theory

(Situation Calculus)

Extensions



33

Figure 4: Modules Required for the Process Planning Domain
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Figure 6: Resource-Related Extensions
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Figure 7: Translation to/from PSL
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Figure 8: Translating In and Out of PSL
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Figure 9: Challenges With Translating In and Out of an Additional Language
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Figure 10: A Depiction of the Methodology when a New Language is Added
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Appendix: An Example of the Challenges with Semantic Translation

This appendix illustrates the problems mentioned in the paper, and helps build one's

intuitions about the semantic translation methodology.

(Partial) Translation

Let us consider the case of using PSL as an interlingua for translating from a language L1

to a language L2.  Suppose we have some way of mapping a set of sentences (concepts)

in L1 and L2 to PSL concepts.  We say that a set S1 of L1-concepts is partially

translatable into a set S2 of L2-concepts if the PSL concepts that are mapped to L1’s

concepts (i.e. Im(S1)) include the PSL concepts that are mapped to L2’s concepts (i.e.,

Im(S2)).

We say that S1 is translatable to S2 if Im(S1) and Im(S2) are identical.

Translating In and Out of PSL

Figure 8 illustrates the process of using  PSL as a language to translate process

information.

Starting with some set S1 of L1-sentences, the translation definitions are applied to it,

and the set Im(S1) is found.

The reverse translator has to now find a subset S2 of the PSL theory having Im(S1) as

axioms (i.e. Cn(Im(S1))) and use the reverse translation rules to find the set InvIm(S2)

whose image in PSL is S2.  Finding such an S2 is difficult, since the set Cn(Im(S1))  is

infinite.  Also, writing the inverse translation rules from PSL to L2 is not as easy as

writing direct translation rules from L1 to PSL.  This is due firstly to the difference in

language expressivity (i.e., PSL  is usually more expressive than the languages that are
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using it for translation).  A second reason is language complexity and robustness: being

an interlingua, PSL will be usually more robust and therefore larger than the languages

being translated. An inverse translator must be able to translate all PSL sentences (S3 and

S4 in Figure 8 are examples of such sets of PSL sentences) and thus specifying its rules

will be a lot harder than specifying rules for translating into PSL.

Figure 9 illustrates the second  challenge of translating in and out of PSL.  That is, if

PSL is extended after a reverse translator has been written, the reverse translator cannot

handle sentences in the PSL extension, even though they might be translatable.  (S5 is

such a case, where it could be translated to InvIm(S5), but the reverse translator cannot

handle that).

Of course if we would like to translate from another language L3 into L2 , and L3 has

a set of sentences S6 for which the translator has been written in terms of the new

extension, S6 cannot be translated by the combination of the L3-to-PSL translator plus L2

reverse translator, without first extending the reverse translator to handle the extension.

This is not ideal, since in the worst case such an L2 translator might be rewritten for each

new language. This would cause us to write (N-1)2 translators, not an improvement over

current practices.  Another problem with this focuses on the person that has to do these

translator rewritings.  It can be the case that each organization maintaining a PSL

compliant product dedicates a person to extending the PSL translator each time an

extension is added to PSL, or that in the absence of such a person, the L3 expert has to do

it herself, thus becoming an L2 expert in the process.  Neither of these variants is very

cost-effective.
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A Methodology for Addressing this Challenge

Figure 10 illustrates a methodology for addresses these challenges.  In order to be able to

perform translation using PSL, a L1 language expert will write the semantic definitions of

L1 concepts into PSL.  In order to do this, he only needs to be  familiar with the

semantics of the language he is translating and that part of PSL he needs for expressing it.

(as opposed to the necessity of being familiar with all current and future extensions of

PSL for writing the reverse translator(s)).

Once the semantic definitions are written, that person's role is finished, and L1 is

compliant with all future extensions of PSL.

Suppose now an L2 expert has similarly written L2's semantic definitions.  To get a

L2 to L3 translator, an automated procedure can be run that, based on L1 and L2's

semantic definitions and on the (formal) PSL ontology, generates a direct translator from

L1 to L2  (shown as the solid arrows in Figure 10).

When another language (L3), whose semantic definitions are written in terms of an

extension that was not present at the time of writing L2's semantic definitions, is

introduced, the L3 expert writes L3's semantic definitions as usual, and then runs the

automated inference procedure.  Even though the L2 definitions were written before the

extension was added, they still work.  This is because, at the time of running the

inference procedure, the extensions’ definitions are available for the inference

mechanism to use (and figure out the set Im(S6)'  axiomatizing the same PSL theory as

Im(S6)).
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